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ABSTRACT

Frontier-based exploration is the most common approach to exploration, a fundamental prob-

lem in robotics. In frontier-based exploration, robots explore by repeatedly computing (and moving

towards) frontiers, the segments which separate the known regions from those unknown. However,

most frontier detection algorithms process the entire map data. This can be a time consuming

process which slows down the exploration. In this thesis, we present two novel frontier detection

algorithms: WFD, a graph search based algorithm and FFD, which is based on processing only

the new laser readings data. In contrast to state-of-the-art methods, both algorithms do not process

the entire map data. This thesis contains a theoretical complexity analysis for both algorithms

and since FFD is a novel approach, we proove its correctness. We succeeded to improve WFD

and FFD performance even further by combining them into two new algorithms called WFD-INC

and WFD-IP. We implemented all algorithms and showed that all are faster than a state-of-the-art

frontier detector implementation (by several orders of magnitude).



Chapter 1

Introduction

The problem of exploring an unknown territory is a fundamental problem in robotics. The goal of

exploration is to gain as much information as possible of the environment within bounded time.

Applications of efficient exploration include search and rescue [28], planetary exploration [3] and

military uses [22]. The most common approach to exploration is based on frontiers. A frontier

is a segment that separates known (explored) regions from unknown regions. By moving towards

frontiers, robots can focus their motion on discovery of new regions. Yamauchi [57, 58] was the

first to show a frontier-based exploration strategy. His work led to many others (e.g, [9,10,34,41]).

Most frontier detection methods are based on edge detection and region extraction techniques

from computer vision. To detect frontiers, they process the entire map data with every execution to

the algorithm. State-of-the-art frontier detection algorithms can take a number of seconds to run,

even on powerful computers. If a large region is explored, the robot actually has to wait in its spot

until the frontier detection algorithm terminates. Therefore, many exploration implementations

call the frontier detection algorithm only when the robot arrives at its destination.

This slows down the exploration process. It also can cause inefficiencies in the exploration.

We present two examples: First, consider a common single-robot case (Figure 1.1), where a robot

exploring its environment detects a frontier and moves towards it (Figure 1.1(a)). Because of sensor

1
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(a) (b) (c)

Figure 1.1 A single-robot example. In 1.1(a) the robot is heading towards the marked
target on the frontier. In 1.1(b) the target and all of the remaining are covered by the
robot’s sensors, but because the robot does not re-detect frontiers, it continues to move.
In 1.1(c) the robot has reached the frontier, unnecessarily.

coverage, the robot may in fact sense (and clear) all remaining unknown area (Figure 1.1(b)),

but because it cannot call the frontier-detection mechanism, it continues to move unnecessarily

(Figure 1.1(c)). Similarly, consider a multi-robot case (Figure 1.2). Here, two robots, R1 and

R2 which are located on bottom and top, respectively, are exploring the environment, from their

initial locations (Figure 1.2(a)). One of the robots passes by a target assigned to the other, and thus

clearing it (Figure 1.2(b)). But because the other robot cannot continuously re-detect frontiers, it

unnecessarily continues towards the covered target, instead of turning to more fruitful exploration

targets.

In this thesis, we thus focus on significantly speeding up frontier detection. We introduce four

algorithms for fast frontier detection: The first, WFD (Wavefront Frontier Detector) is an iterative

method that performs a graph-search over already-visited map points. It builds on ideas suggested

in earlier work [11] which were not evaluated as an alternative to the edge-detection state-of-the-

art. The key idea in WFD is that it does not scan the entire map, only the regions that have already

been visited by the robot. However, as exploration progresses, the scanned area grows, and thus

WFD cannot be expected to perform well in large areas. Our second contribution is FFD (Fast

Frontier Detector), a novel approach for frontier detection which processes raw sensor readings,
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(a) (b)

Figure 1.2 A multi-robot example. In 1.2(a), the top robot (R2) is heading towards the
right target, t2; the other robot (R1) heads towards the top target t1. In 1.2(b) R2 has
reached its target, clearing both t1 and t2, making R1’s movements unnecessary.

and thus only scans areas that could contain frontiers. But because it works with raw sensor

data, it requires extending the mapper (SLAM) with additional data-structures, so that frontiers are

maintained even when they are no longer within sensor range. We describe these data-structures in

detail, focusing on fast implementations. Finally, we synthesized the different approaches of WFD

and FFD into two novel algorithms: WFD-INC and WFD-IP. Both algorithms perform frontier

detection on known regions but they differ from WFD by searching for frontiers only within the

areas that were covered by the robot sensors since last call.

WFD and edge-detection methods use the occupancy grid maintained by a SLAM mapper as a

representation of the accumulated, processed sequence 〈O0, . . . ,Ot〉. They thus essentially ignore

most of the sequence, and act (mostly) on the latest observation of the grid Gt , as it integrates

all sensor readings up to time t. The edge detection method processes Gt (the entire occupancy

grid at time t). The WFD algorithm processes a subset, starting with the cell indicated by Pt (the

latest robot position), within Gt . FFD uses Rt directly to detect current frontiers, and a modified

occupancy grid data structure to maintain/delete past frontiers. We provide a theoretical complexity
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analysis for both algorithms and in addition, FFD is a novel approach and hence we proove its

correctness. More definitions and terms related to the frontier detection problem can be found in

Section 3.1.

We provide a detailed evaluation of these algorithms, and contrast them with the state-of-the-art

(SOTA). We examine their performance in different types of environments and two different CPUs.

We show that WFD and WFD-INC are faster than SOTA by 1–2 orders of magnitude, and that FFD

and WFD-IP are faster than WFD and WFD-INC by 1–2 orders of magnitude. The results make

it possible to execute real-time frontier-detection on current-day robot CPUs, opening the way to

novel frontier-based exploration methods which were impractical until now.

List of Publications The work reported in this thesis has been published in the following con-

ferences:

• M. Keidar, E. Sadeh-Or, and G. A. Kaminka. Fast frontier detection for robot exploration. In

The Autonomous Robots and Multirobot Systems (ARMS) workshop at AAMAS 2011, volume

LNAI 7068, pages 281–294. Springer, 2011

• M. Keidar and G. A. Kaminka. Robot exploration with fast frontier detection: Theory and

experiments. In Proceedings of the 11th International Joint Conference on Autonomous

Agents and Multi-Agent Systems (AAMAS-11), 2012



Chapter 2

Related Work

An outline of the exploration process can be described as follows: while there is an unknown

territory, allocate to each robot a target point to explore and coordinate team members in order

to minimize overlaps. In frontier-based exploration, targets are drawn from existing frontiers,

segments that separate known and unknown regions (see Section 3.1 for definitions).

Most literature ignores the computational cost of frontier detection. Instead, there are two

aspects that are often tackled in existing literature on exploration: deciding on next target to be

explored and coordinating team members in order to minimize overlaps. The latter is not related

to this thesis and so, we focus on the former, it may indirectly provide evidence as to the state of

the art in frontier detection.

To the best of our knowledge, all of the following works utilize a standard edge-detection

method for computing the frontiers. They therefore recompute target locations whenever one robot

has reached its target location or whenever a certain distance has been traveled by the robots or

after a timeout event.

Yamauchi [57, 58] developed the first frontier-based exploration methods. The robots explore

an unknown environment and exchange information with each other when they get new sensor

readings. As a result, the robots build a common map (occupancy grid) in a distributed fashion. The

5
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map is continuously updated until no new regions are found. In his work, each robot heads to the

centroid, the center of mass of the closest frontier. All robots navigate to their target independently

while they share a common map. Frontier detection is performed only when the robot reaches its

target.

Burgard et al. [9, 10] focus their investigation on a probabilistic approach for coordinating a

team of robots. Their method considers the trade-off between the costs of reaching a target and

the utility of reaching that target. Whenever a target point is assigned to a specific team member,

the utility of the unexplored area visible from this target position is reduced for the other team

members. In their work, frontier detection is carried out only when a new target is to be allocated

to a robot.

Wurm et al. [56] proposed to coordinate the team members by dividing the map into segments

corresponding to environmental features. Afterwards, exploration targets are generated within

those segments. The result is that in any given time, each robot explores its own segment.

In addition, Wurm [55] claims that updating frontiers frequently is important in a multi-robot

setting since the map will be updated not only by the robot assigned to a given frontier, but also

by all the robots in the team. In reasonably sized environments, Wurm suggests to call frontier

detection on every time-step of the coordination algorithm. In real world environments, he suggests

executing the frontier detection algorithm according to the traveled distance (i.e. every 0.5m−1m)

or on every second or whenever a new target is requested.

Stachniss [43] introduced a method to make use of background knowledge about typical struc-

tures when distributing the team members over the environment. In his work, Stachniss computes

new frontiers when there are new targets to be allocated. This happens whenever one robot has

reached its designated target location or whenever the distance traveled by the robots or the elapsed

time since last target assignment has exceeded a given threshold.

Berhault et al. [6] proposed a combinatorial auction mechanism where the robots bid on a
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bunch of targets to navigate. The robots are able to use different bidding strategies. Each robot has

to visit all the targets that are included in his winning bid. After combining each robot’s sensor

readings, the auctioneer omits selected frontier cells as potential targets for the robots. Frontier

detection is performed when creating and evaluating bids.

Visser et al. [53] investigated how limited communication range affects multi-robot explo-

ration. They proposed an algorithm which takes into account wireless constraints when selecting

frontier targets. Visser [52] suggests recomputing frontiers every 3–4 meters, which in his opinion,

has a positive effect.

Juliá et al. [25] surveyed the most important exploration methods according to different as-

pects such as team coordination and integration with the SLAM algorithm. None of the compared

exploration strategies takes advantage of real-time frontier detection.

Lau [34] presented a behavioral approach. The author assumes that all team members start

from a known location. The team members follow the behavior and spread in the environment

while updating a shared map. Frontier detection is called when the robot plans its next direction of

movement.

Many other works omit details of their frontier detection timing, and thus provide no evidence

for the computational cost of frontier detection. However, they broadly refer to frontier detection as

a central task as part of exploration, and thus signify its centrality within modern robot exploration

systems.

Sawhney et al. [41] presented an exploration method for both 2D and 3D environments. They

showed a novel visibility per-time metric. Their method covers nearly the same number of points

like other metric methods that can be found in literature. However, the time length of the paths is

smaller. The outcome is reduced exploration time.

Simmons et al. [42] proposed to assign a target destination to each robot in a way that that

maximizes the expected map knowledge over time. They proposed a bid-based heuristic. Each
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robot estimates its utility and cost until arriving various targets. According to this calculation, each

robot creates bids. After receiving all bids, a central agent assigns a target to each robot considering

minimization of the overlapping coverage of the team members.

Bouraqadi et al. [7] proposed a flocking-based approach for solving the exploration problem,

where robots act according to the same set of rules. One of their rules (R5) makes the robot

navigate towards the nearest frontier.

Ko et al. [29] presented a decision-theoretic approach to the mapping and exploration problem.

Their approach uses an adopted version of particle filters to estimate the position in the other

robot’s partial map.

Fox et al. [14] presented an exploration and mapping distributed system for multi-robot ex-

ploring teams. Their system enables building a map of the environment and is robust against

limited-range communication and against uncertainty of initial locations of the team members.

Zlot et al. [60] coordinates a team of exploring robots by applying a market-based approach.

The market architecture maximizes the exploration information gain while minimizing the travel

distance in order to maximize the overall utility.

Kuipers et al. [33] presented a method for exploration and mapping for large-scale spatial

environments. Their method utilizes the qualitative properties of large-scale environments before

relatively error-prone geometrical attributes. This in contrary to traditional methods which utilize

sensor data to build a geometrical representation of the environment and than extract topological

structure from the geometric representation.

Rekleitis et al. [38, 39] presented a strategy of localization and exploration designed for small-

scale and large-scale environments. Each pair of robots that are able to sense each other work

together in order to reduce localization error. They modeled the free areas as a simple polygon with

holes and use a well-known planar decomposition form. For large-scale areas, they use trapezoid

decomposition and for small-scale areas, they apply a triangulation of the free space.
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Stachniss et al. [44] investigated the assignment of targets to the robot team members. They

applied semantic information on the environment in order to better distribute the explorers over the

explored environment.

Batalin et al. [4] presented an exploration method which does not utilize a map for navigating

in the environment. Their algorithm uses markers which are dropped off by the robot and aid the

exploration.

Puig [37] presented an algorithm for coordinating the team members during the exploration

task. Their method is based on K-Means (KME) global optimization strategy.

Stoeter et al. [46] presented a mechanism for controlling a robot team for missions of ex-

ploration and surveillance. Controlling the team members is performed through a hierarchical

behavior tree. Their system is modular and enables adding new kinds of behaviors.

Ortiz et al. [31, 32] presented Centibots, a framework which enables to control a large team of

robots performing tasks of exploration, planning and collaboration in unknown environments.

Our work on WFD (Chapter 3) is independent from previous work, though [11] mentions a

frontier detection algorithm that utilizes breadth-first search, similar to WFD. However, [11] does

not provide details of the algorithm, nor evaluation of its performance, and so exact similarities

and differences cannot be assessed.



Chapter 3

Wavefront Frontier Detector

In this chapter we review the basic definitions and terms related to the domain of frontier-based

exploration, as well as a formal definition of the frontier-based exploration problem (Section 3.1),

present common state-of-the-art techniques for performing a Simultaneous Localization and Map-

ping (Section 3.2) and present an algorithm which searches for frontiers on the map, but is faster

than state-of-the-art methods which can be found in literature (section 3.3).

3.1 Frontier-Based Exploration: Definitions

In this section we define and explain the terms that are used in the following sections. We assume

the robot in question uses an occupancy-grid map representation in the exploration process (Figure

3.1) within the map:

Unknown Region is a territory that has not been covered yet by the robot’s sensors.

Known Region is a territory that has already been covered by the robot’s sensors.

Open-Space is a known region which does not contain an obstacle.

Occupied-Space is a known region which contains an obstacle.

Occupancy Grid is a grid representation of the environment. Each cell holds a probability that

10
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Figure 3.1 Evidence grid, frontier points, extraction of different frontiers (from left to
right). Taken from [58].

represents if it is occupied.

Frontier is the segment that separates known (explored) regions from unknown regions. Formally,

a frontier is a set of unknown points that each have at least one open-space neighbor.

Definition. Suppose we are given a temporal sequence of observations 〈O0, . . . ,Ot〉 (time 0 to

time t), where each observation Ox is a tuple 〈Gx,Px,Rx〉 composed of: (i) the occupancy-grid Gx

of time x; (ii) the robot pose Px (in occupancy-grid coordinates); and (iii) the range sensor readings

Rx originating at the robot location (given in either ego-centric polar coordinates, or in occupancy-

grid coordinates). The Frontier Detection Problem is to return all frontiers existing at time t, given

the sequence.

Existing algorithms for frontier detection rely on edge-detection methods. The algorithms

systematically search for frontiers all over the occupancy-grid, i.e., both in known and unknown

regions.
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3.2 Simultaneous Localization and Mapping Methods

Simultaneous Localization and Mapping (SLAM) is a method utilized by autonomous mobile

robots for building a map of an unknown environment while at the same time navigating the en-

vironment using the map. The term SLAM was originally developed by Leonard et al. [13, 35].

In SLAM both the trajectory of the mobile robot, its location and the location of the landmarks

observed by the robot are estimated without using any a priori knowledge of the environment.

SLAM is a concept and hence, there are various algorithms in literature which deal with the SLAM

problem:

Extended Kalman Filter The Kalman Filter (KF) is a method for implementing Bayes filters.

It was invented by Rudolph Emil Kalman [50, 54] to apply filtering and perform prediction in

linear systems. In Kalman Filter, beliefs are represented by moments (i.e., by the mean and the

covariance). Markov assumptions are held and the posteriors are Gaussian. Kalman filters are

based on linear system dynamics. However, real-world systems are seldom linear in practice

(e.g., robot which moves in a cyclic path). The Extended Kalman Filter (EKF) uses a non-linear

functions that describe the system dynamics. In EKF-SLAM systems, there is only one map (part

of the system state) that is composed from the observed landmarks.

Particle Filter A Particle Filter (also known as sequential Monte Carlo method) is a model

estimation method which is based on simulation. Particle Filter is the online version of Markov

chain Monte Carlo (MCMC) methods [16,20,36]. With sufficient samples, a particle filter is often

an alternative to EKF with the advantage that it approaches the Bayesian optimal estimate and so it

is more accurate than EKF. Each particle is a possible hypothesis of what is the true world state at

a certain time, that is, each particle is an instance of the system state at a certain time. By state we

refer to a collection of variables such as the map of the explored environment, the robot position



13 Chapter 3 Wavefront Frontier Detector

etc.

In this thesis we focus on particle filter systems since in practice, they provide more accurate

results.

3.3 WFD

We present a graph search based approach for frontier detection. The algorithm, WFD (Algorithm

3.1–3.2), processes the points on map which have already been scanned by the robot sensors and

therefore, does not always process the entire map data in each run, but only the known regions.

WFD (Algorithm 3.1) is based on Breadth-First Search (BFS). First, the occupancy-grid point

that represents the current robot position is enqueued into queuem, a queue data-structure used to

determine the search order (Algorithm 3.1 lines 1–3).

Next, a BFS is performed (Algorithm 3.1 lines 4–21) in order to find all frontier points con-

tained in the map. The algorithm keeps scanning only points that have not been scanned yet and

represent open-space (Algorithm 3.1 line 15). The above scanning policy ensures that only known

regions (that have already been covered by the robot’s sensors) are actually scanned. The signifi-

cance of this is that the algorithm does not have to scan the entire occupancy-grid each time.

Because frontier points are adjacent to open space points, all relevant frontier points will be

found when the algorithm finishes (Algorithm 3.1 line 21). If a frontier point is found, a new

BFS is performed in order to extract its frontier (Algorithm 3.2 lines 6–22). This BFS searches

for frontier points only. Extracting the frontier is ensured because of the connectivity of frontier

points.

At the end of the frontier extraction process (Algorithm 3.2 line 22), the extracted frontier data

is saved to a set data-structure that stores all frontiers found in the algorithm’s run.

In order to avoid rescanning the same map point and detecting the same frontier reachable from
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Algorithm 3.1 Wavefront Frontier Detector (WFD)
Require: queuem // queue, used for detecting frontier points from a given map

Require: pose // current global position of the robot

1: queuem← /0

2: ENQUEUE(queuem, pose)

3: mark pose as “Map-Open-List”

4: while queuem is not empty do

5: p← DEQUEUE(queuem)

6: if p is marked as “Map-Close-List” then

7: continue

8: end if

9: if p is a frontier point then

10: NewFrontier← EXTRACT-FRONTIER-2D(p)

11: save NewFrontier

12: mark all points of NewFrontier as “Map-Close-List”

13: end if

14: for all v ∈ N(p) do // get all neighbors of current frontier point

15: if v not marked as one of {“Map-Open-List”,“Map-Close-List”} and v has at least one

“Map-Open-Space” neighbor then

16: ENQUEUE(queuem,v)

17: mark v as “Map-Open-List”

18: end if

19: end for

20: mark p as “Map-Close-List”

21: end while
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Algorithm 3.2 Extract Frontier 2D
Require: p // frontier point

Output: NewFrontier // extracted frontier which was found starting from p

1: function EXTRACT-FRONTIER-2D(p)

2: queue f ← /0

3: NewFrontier← /0

4: ENQUEUE(queue f , p)

5: mark p as “Frontier-Open-List”

6: while queue f if not empty do

7: q← DEQUEUE(queue f )

8: if q is marked as one of {“Map-Close-List”,”Frontier-Close-List”} then

9: continue

10: end if

11: if q is a frontier point then

12: add q to NewFrontier

13: for all w ∈ N(q) do // get all neighbors of current frontier point

14: if w not marked as one of {“Frontier-Open-List”,“Frontier-Close-List”, “Map-

Close-List”} then

15: ENQUEUE(queue f ,w)

16: mark w as “Frontier-Open-List”

17: end if

18: end for

19: end if

20: mark q as “Frontier-Close-List”

21: end while

22: return NewFrontier

23: end function
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two frontier points, WFD marks map points with four indications:

1. Map-Open-List: points that have already been enqueued by the outermost BFS (Algorithm

3.1 line 16)

2. Map-Close-List: points that have already been dequeued by the outermost BFS (Algorithm

3.1 line 5)

3. Frontier-Open-List: points that have already been enqueued by the frontier extraction BFS

(Algorithm 3.2 line 15)

4. Frontier-Close-List: points that have already been dequeued by the frontier extraction BFS

(Algorithm 3.2 line 7)

The above marks indicate the status of each map point and determine if there is a need to handle it

in a given time.

The key innovation in WFD is that it prevents scanning unknown regions, since frontiers never

appear there. However, it still searches all known space.



Chapter 4

Fast Frontier Detector

In this chapter, we present a novel approach to the problem of frontier detection. The FFD algo-

rithm (Section 4.1) avoids searching for frontiers both in known and unknown regions of the map;

it only searches within the boundary between them. This significantly reduces the search area.

However, the search-space reduction forces FFD to run in the background persistently. In order to

be robust against map orientation changes caused by loop closures, FFD has to perform mainte-

nance over previously detected frontiers (Section 4.1.4). At the end of this chapter, we prove that

FFD is complete and sound (Section 4.2).

4.1 Fast Frontier Detector

Unlike other frontier detection methods (including WFD), our proposed algorithm (Algorithm 4.1)

only processes new laser readings which are received in real time. It therefore avoids searching

both known and unknown regions. In doing this, we make use of the fact that by definition,

frontiers represent the boundaries between the known and unknown regions of the environment

(see Figure 3.1). Hence, scanning all unknown regions is definitely unnecessary and not time-

efficient. The FFD algorithm contains four steps (Algorithm 4.1), and can be called with every

17
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new scan.

Algorithm 4.1 Fast Frontier Detector (FFD): Outline
Require: f rontiersDB // data-structure that contains last known frontiers

Require: pose // current global position of the robot

Require: lr // laser readings which were received in current iteration. Each element is a 2-d

cartesian point

Require: activeArea // data-structure that contains all points that lie inside the active area

1: // polar sort readings according to robot position

2: sorted← SORT-POLAR(lr, pose)

3: // get the contour from laser readings

4: contour←CONTOUR(sorted)

5: // extract new frontiers from contour

6: NewFrontiers← EXTRACT-FRONTIERS-1D(contour)

7: // maintainance of previously detected frontiers

8: MAINTAIN-FRONTIERS(NewFrontiers, f rontiersDB,activeArea)

4.1.1 Sorting

The first step (Algorithm 4.2) sorts range readings based on their angle, i.e., based on the ego-

centric polar coordinates with the robot as the origin. Normally, laser readings are given as a

sorted set of polar coordinated points, making this sorting step unnecessary. However, if this is not

the case, a sorting is needed to be applied on the received laser readings.
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Algorithm 4.2 Fast Frontier Detector (FFD): Sorting Stage
Require: lr // set of laser readings

Require: pose // current robot position

Output: sorted // sorted laser readings according to polar coordinates

1: function POLAR-SORT(lr, pose)

2: sorted← /0

3: Ar← /0

// set robot position as origin

4: for all Point p ∈ lr do

5: Ar← polar∪{(p.x− pose,x, p.y− pose.y)}

6: end for

7: sorted← SORT(Ar, POLARCOMPARATOR)

8: return sorted

9: end function

10: function POLARCOMPARATOR(p1, p2)

11: s← (p1.x · p2.y− p2.x · p1.y) // calculate cross-product of input points

12: if s > 0 then // check the sign of the cross-proudct

13: return 1

14: else if s < 0 then

15: return -1

16: else

17: return 0

18: end if

19: end function
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In this case, we assume that range readings are a set of Cartesian coordinated points, which

consists of the locations of range hits (
{
(x0,y0), . . . ,(xn,yn)

}
where n is the number of readings).

The naive method for converting Cartesian to polar coordinates uses two CPU time-consuming

functions: atan2 and sqrt.

To speed angle sorting, we use a cross product [12] to avoid converting Cartesian to polar

coordinates, while still sorting the points based on polar angle. Given 3 Cartesian coordinated

points:

P0 = (x0,y0),P1 = (x1,y1),P2 = (x2,y2)

the cross product is defined as:

(p1− p0)× (p2− p0) = (x1− x0) · (y2− y0)− (x2− x0) · (y1− y0)

If the result is positive, then
−−→
P0P1 is clockwise from

−−→
P0P2. Else, it is counter-clockwise. If the result

is 0, then the two vectors lie on the same line in the plane (i.e., the angle is the same).

Therefore, by examining the sign of the cross product, we can determine the order of the Carte-

sian points according to polar coordinates, without calculating their actual polar coordinate value.

This applies only five subtractions and two multiplications which are far less time-consuming than

calling atan2 and sqrt.

4.1.2 Contour

In this step (Algorithm 4.3 lines 2–10) we use the angle-sorted laser readings. The output of the

contour step is a contour which is built from the sorted laser readings. The algorithm computes

the line that lies between each two adjacent points from the set. The line is computed by calling

the function GET-LINE. In our implementation we use Bresenham’s line algorithm [8]. Next, all

points that are represented by all the lines (including the points from the laser readings set) are

merged into a contour (Figure 4.1).
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Algorithm 4.3 Fast Frontier Detector (FFD): Contour Stage
Require: sorted // sorted set of laser readings

Output: contour // the contour built from the sorted laser readings

1: function CONTOUR(sorted)

2: prev← POP(sorted)

3: contour← /0

4: for all Point curr ∈ sorted do

5: line← GET-LINE(prev,curr)

6: for all Point p ∈ line do

7: contour← contour∪{p}

8: end for

9: end for

10: return contour

11: end function

Figure 4.1 Example of produced contour.
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Algorithm 4.4 Fast Frontier Detector (FFD): Extract Frontier Stage
Require: contour // the contour built from the sorted laser readings

Output: NewFrontiers // list of new detected frontiers that lie on the contour

1: function EXTRACT-FRONTIERS-1D(contour)

2: NewFrontiers← /0 // list of new extracted frontiers

3: prev← POP(contour)

4: if prev is a frontier cell then // special case

5: create a new frontier in NewFrontiers

6: end if

7: for all Point curr ∈ contour do

8: if curr is not a frontier cell then

9: prev← curr

10: else if curr has been visited before then

11: prev← curr

12: else if curr and prev are frontier cells then

13: add curr to last created frontier

14: prev← curr

15: else

16: create a new frontier in NewFrontiers

17: add curr to last created frontier

18: prev← curr

19: end if

20: end for

21: return NewFrontiers

22: end function
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4.1.3 Detecting New Frontiers

In this step (Algorithm 4.4 lines 2–21) the algorithm extracts new frontiers from the previously

calculated contour. There are three cases correspond to each two adjacent points in the contour:

1. Current scanned point is not a frontier cell: therefore, it does not contribute any new

information about frontiers and can be ignored.

2. Current and previous scanned points are frontier cells: therefore, both points belong to

the same frontier and current scanned point is added to last detected frontier.

3. Current point is a frontier cell but the previous is not: a new starting point of a frontier

was detected. Hence, the algorithm creates a new frontier and adds the new starting point to

it.

4.1.4 Maintaining Previously Detected Frontiers

FFD gains its speed by processing the laser readings only, rather than entire regions of the map.

However, if the robot navigates towards a specific frontier, other previously detected frontiers are

no longer updated because they are not covered by the robot’s sensors. Thus, scanning the new

received laser readings enables FFD to detect only new frontiers in each execution. In this step

(Algorithm 4.5 lines 2–20), in order to get complete information about the frontiers, the algorithm

performs maintenance over previously detected frontiers which are no longer covered in the range

of the sensors. Only by joining together new detected frontiers and previously detected frontiers,

we get the overall frontiers in current world state. This step has multiple goals: avoiding detection

of new frontiers in an already scanned area (Section 4.1.4.2), eliminating frontier points which

are no longer belong to frontiers (Section 4.1.4.3) and joining correctly the new detected frontiers

together with previously detected frontiers (Section 4.1.4.4).
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Algorithm 4.5 Fast Frontier Detector (FFD): Maintenance of Previously Detected Frontiers
Require: NewFrontiers // list of new detected frontiers

Require: f rontiersDB // data-structure that contains last known frontiers

Require: activeArea // data-structure that contains all points that lie inside the active area

1: function MAINTAIN-FRONTIERS(NewFrontiers, f rontiersDB,activeArea)

2: for all Point p ∈ ActiveArea do // eliminate previously detected frontiers

3: if p is a frontier cell then

4: // split the current frontier into two partial frontiers

5: get the frontier f ∈ f rontiersDB which enables p ∈ f

6: f1← f [1 . . . p]

7: f2← f [(p+1) . . . | f |]

8: remove f from f rontiersDB

9: add f 1 and f 2 to f rontiersDB

10: end if

11: end for

12: for all Frontier f ∈ NewFrontiers do // store new detected frontiers

13: if f overlaps with an existing frontier ExistFrontier then

14: merged← f ∪ExistFrontier

15: remove ExistFrontier from f rontiersDB

16: add merged to f rontiersDB

17: else

18: create a new index and add f to f rontiersDB

19: end if

20: end for

21: end function
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4.1.4.1 The FFD Data-Structures

In order to perform the maintenance step within a very short time as possible, FFD utilizes two

data-structures which have a short access time. These data structures must maintain memory of

frontiers between calls. Thus FFD has to have persistent memory, i.e., data structures that persist

between calls. This is contrast to other approaches that can be executed in a certain time, and only

then.

Another thing to note is that in particle filter based systems (our focus in this thesis), each

particle represents a possible hypothesis of the world state (including the robot position of course).

The “best” particle is chosen according to a likelihood measurement. FFD requires the previously

detected frontiers to be robust against map orientation changes caused by loop-closures of the

mapping algorithm. Therefore, when a new laser reading is received, each particle executes its

own instance of FFD algorithm on its own map, using its own data structures. More specifically,

each particle performs maintenance with its own map because particles do not share maps. We

describe the data structures for maintenance below.

The first, Grid of Frontier Indices, is an extension of the occupancy grid (though it can be

implemented as a separate entity). In addition to occupancy information, each grid cell contains a

frontier index, pointing to a frontier to which the grid cell belongs, or NULL otherwise. The pointer

points to a record stored in the Frontier Database (described below). In our implementation, we

used integer index values. After accessing a grid cell (Algorithm 4.5 Line 3), querying for its

frontier index is O(1).

The second, Frontier Database, maps frontier indices (pointers) to sets of points ( f rontierDB

requirement of Algorithm 4.1 and Algorithm 4.5). All detected frontiers are stored in this data-

structure. We use it to map frontier index to the actual set that contains the points in world coordi-

nates. In our implementation, we use the default C++ implementation of a map template, which is

implemented as a self-balancing binary search tree. Therefore, assuming n represents the number
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of frontiers stored in the database, searching for a frontier index takes O(logn), inserting a new

frontier takes O(logn) and removing a frontier index takes O(logn), though a (hash) table lookup

implementation can make this faster.

4.1.4.2 Avoiding Re-Detection of Same Frontier

FFD detects new frontiers by processing laser readings only. Hence, FFD might detect the same

frontier again and classify it as a new frontier if the robot did not change its position during two

following FFD executions. Moreover, if the robot travels back to an already visited region, no new

frontiers should be detected. FFD has to distinguish between laser readings from between time

frames. Otherwise, FFD might wrongly detect a new frontier which lies within an already scanned

area.

Therefore, we keep track of the number of sensor visits (sensor covers) of each map cell.

The definition of a frontier point is now expanded: a frontier point is a point which represent an

unknown region, has at least one open-space neighbor and has not been scanned before. Given a

contour, the detection of new frontiers ignores points that have already been scanned by the laser

sensors and treats them as non-frontier points (Algorithm 4.4 lines 10–11).

Figure 4.2 demonstrates the necessity of the above. Figure 4.2(a) shows frontiers extraction

without tracking the number of visits. It can be seen that there are frontiers that lie inside an

open space area. This is absolutely wrong because frontiers are supposed to be positioned on

the boundaries between known and unknown regions. In contrast, Figure 4.2(b) shows frontiers

extraction with avoidance of re-detecting same frontiers. It can be seen that every frontier separates

known and unknown regions.
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(a) Incorrectly re-detected frontiers. (b) Correct detection.

Figure 4.2 An example of re-detecting same frontiers.

4.1.4.3 Eliminating Previously Detected Frontiers

In order to complete the process, points which are no longer in frontiers (i.e. were covered by the

robot’s sensors) have to be eliminated. Lines 2–11 in Algorithm 4.5 contain the elimination logic

applied by FFD.

Let ti be a time frame and lrti be the laser readings which were received in time frame ti. In

order to perform maintenance in a specific time, we define the Active Area of time frame ti to be

the blocking rectangle that can be constructed using the farthest laser readings of lrti , relative to

the robot position in time frame ti.

xmin = min({x|x ∈ lrti}),ymin = min({y|y ∈ lrti})

xmax = max({x|x ∈ lrti}),ymax = max({y|y ∈ lrti})

ActiveAreati = {(x,y) |xmin ≤ x≤ xmax,ymin ≤ y≤ ymax}

The active area’s rectangle is constructed from the following vertices: (xmin,ymin), (xmin,ymax),

(xmax,ymax), (xmax,ymin). The rectangle is an approximation to the real active area that is actually

bounded within the laser readings.
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By processing received laser readings, FFD extracts new frontiers. However, in order to get the

complete world’s frontiers state, points that are no longer on frontiers have to be eliminated. FFD

maintains a frontier database which maps an integer (frontier index) to a set of points (frontier).

An unknown region is classified as known region only if it is covered by the robot’s sensors.

FFD gets its input from the new received laser readings, and thus only regions that are covered by

the robot’s sensors might contain frontiers that have to be eliminated. Thus, if there are frontiers

that need to be eliminated, they must lie inside the Active Area. Hence, the active area is a key

feature in the process of maintaining frontiers. FFD scans each point that lies inside the active area

and checks if it was previously belonged to a frontier. The check can be performed very fast as

explained before. If the current scanned point was belonged to a frontier, the current scanned point

is removed from the frontier and the frontier is splitted into two partial frontiers using the current

scanned point as a pivot (Algorithm 4.5 lines 6–7).

In the end of this process, all no-longer frontier points in the frontier database are removed and

the database contains only points that are still valid frontiers.

4.1.4.4 Storing New Detected Frontiers

In the last phase of the maintenance step (Algorithm 4.5 lines 12–20) new detected frontiers are

stored in the frontier database alongside with existing valid frontiers. For each new detected fron-

tier, FFD checks if it overlaps with an already existing frontier. This comparison can be performed

in a short time using the matrix of frontier indices. Each frontier point is queried in O(1) opera-

tions. If an overlap is found, the frontier is merged with the frontier that it is overlapped with. If

no overlap is found, then the frontier is inserted to the frontier database.
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4.2 FFD is Sound and Complete

We show that Algorithm 4.1 is sound and complete. We begin with a lemma that demonstrates

that FFD always recognizes new frontiers (i.e., frontiers that appeared at time t, but did not exist

before). This will then be used to prove completeness of FFD.

Lemma 4.2.1. Suppose f is a frontier point at time t, which was not a frontier point at any time s,

where s < t. Then FFD will mark f as a frontier given observation Ot .

Proof. Let f be a valid frontier point in time t and was not classified as frontier in time s < t. Since

f is a valid frontier point, then it has a value of Unknown and has at least one Open Space neighbor

at time t. Assume towards a contradiction that FFD did not recognize f as a frontier point. First,

let us show that f is contained in the contour handled in Algorithm 4.4 lines 2–21. Since f is a

valid frontier point, then it has a value of Unknown and has at least one Open Space neighbor in

time t. The point f cannot be located wholly within an unknown region because it must have at

least one Open Space neighbor. Also, the point f cannot be located wholly within a known region

since f is a valid frontier point and hence, its value is Unknown. Therefore, f must be located

on the contour itself. Lines 2–21 in Algorithm 4.4 handle points on the contour, which we have

just shown f is on. In these lines, the FFD algorithm scans all contour points sequentially and

specifically searches for frontier points. Because it scans all points on the contour, and we have

shown that f is on the contour, it follows that f would be detected, contradicting the assumption

that FFD did not recognize f as a frontier point at time t.

We now turn to proving the completeness of the FFD algorithm.

Theorem 4.2.2. Let f be a valid frontier point at time t. Then FFD will mark f as a frontier point

given the sequence of observations 〈O0, . . . ,Ot〉.

Proof. Two cases should be examined:
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Case 1. f is a new frontier point at time t. Trivially, this case is handled directly by lemma 4.2.1.

Case 2. f was a new frontier point at time s, where s < t. Let s be the earliest time in which f

was a frontier. Based on lemma 4.2.1, it follows that it was detected at this time. All that remains

to show is that given f is still valid at time t, FFD will maintain knowledge of it from time s and

report on it. If f is still a valid frontier point at time t, then it has not been covered yet by the

robot’s sensors. Otherwise, it would no longer contain an Unknown value and hence, would not

be a valid frontier point. So if it was not yet covered, it must be a frontier point that is maintained

by FFD. The only way in which f can be eliminated from being classified as a frontier point is

done by Algorithm 4.5 lines 2–11. In these lines, FFD scans all points that are covered by the

robot’s sensors and checks if any points should be eliminated (Algorithm 4.5 line 3). Since f is not

covered by the sensors, then it will not be scanned and eliminated in time t ⇒ f remains classified

as a frontier by FFD.

In both cases we show FFD will recognize f to be a valid frontier at time t. Since Theorem

4.2.2 is true for any frontier point valid at time t, it follows that FFD is complete.

To show the soundness of FFD, we must demonstrate that there does not exist a case where

FFD marks a point f̂ as a frontier, when it is not.

Theorem 4.2.3. Let f̂ be an arbitrary point in the occupancy grid, which is not a frontier at time

t. Then FFD will not return f̂ as a frontier point, given the sequence of observations 〈O0, . . . ,Ot〉.

Proof. Assuming that f̂ is an arbitrary point which is not a frontier point at time t, then f̂ is either

contains value different from Unknown or all its adjacent values are different from Open Space.

We will examine two cases:

Case 1. f̂ is marked as a new frontier. Suppose, towards a contradiction, that FFD detects f̂ as

a new frontier (i.e., true at time t, but not a frontier in time s, where s < t). Since detection of new

frontier points (Algorithm 4.4 lines 2–21) considers only points on the contour, it follows that f̂
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must be located on the contour and detected by Algorithm 4.4 lines 2–21. However, Algorithm

4.4 line 8 specifically avoids classifying non-frontier points as frontiers. Since f̂ is a non-frontier

point, it is ignored by FFD. Therefore, f̂ cannot be marked as a new frontier⇒ contradicting the

assumption that it is detected by FFD as a new frontier. Case 1 is impossible.

Case 2. f̂ is an old frontier but was not eliminated by the maintenance routine. Suppose,

towards a contradiction, that f̂ is located inside the active area and is not eliminated by the main-

tenance section. Therefore, f̂ is a point that was covered by the robot’s sensors and no longer

contains an Unknown value, yet is still marked as a frontier by the FFD algorithm. We remind

the the reader that in order to maintain frontier points across runs, each point in the grid keeps a

value which contains NULL if the point is not a frontier point or the index of the frontier to whom

it belongs. Therefore, in Algorithm 4.5 line 3 FFD scans all points in the active area and checks

if they contain a frontier index. When FFD scans f̂ , it finds out that it contains a valid frontier

index (because it has previously belonged to a valid frontier) and continues executing Algorithm

4.5 lines 5–9. In these lines, FFD checks and removes from the frontier database all points that

are no longer frontier points and previously were frontier points. Thus, f̂ will be eliminated after

scanning the active area, contradicting the assumption that f̂ was not eliminated.

Since in both cases we show that FFD necessarily eliminated f̂ from the valid frontier list, it

follows that if f̂ is not a frontier-point at time t, it would not be marked as such by FFD. Since

Theorem 4.2.3 holds for any arbitrary point, it follows that FFD never incorrectly marks a non-

frontier point as a frontier. It is thus sound.
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Complexity Analysis

In this chapter, we show a theoretical analysis of WFD and FFD algorithms run-time upper bound.

In Section 5.1, we discuss WFD and in Section 5.2, we discuss FFD.

5.1 WFD Complexity Analysis

As shown in Chapter 3, WFD is based on Breadth-First Search (BFS) over the occupancy grid.

Within every call to WFD, it scans all open-space regions for frontier points. When a frontier point

is found, WFD performs another Breadth-First Search in order to extract its frontier. Regarding a

graph G = (V,E), the upper bound of BFS run-time is O(E +V ), full proof can be found in [12].

Therefore, complexity of scanning the open-space regions is linear in size of the area of the open-

space regions. Moreover, frontier points are always located on the edges of the open-space regions.

Thus, extracting frontiers from given frontier points is also linear in size of the perimeter of the

open-space region. Hence, WFD’s run-time complexity is linear in size of the area (denoted S(·))

and perimeter (P (·)) of the open-space region and can be formulated as:

O

S(open− space)︸ ︷︷ ︸
area

+P (open− space)︸ ︷︷ ︸
perimeter

 (5.1)

32
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Figure 5.1 WFD Best Case: perimeter of open-space regions is small as possible

In the following sections we discuss WFD’s best case and worst case. The reader should be

aware to the fact that for a given map and a time stamp, the open-space area is determined by the

trajectory of the robot. However, its perimeter length affects the run-time and two cases should be

examined:

5.1.1 WFD Best Case

The perimeter of the open-space regions is minimal relatively to the area of the open-space regions.

This can be shown in Figure 5.1. In this case we denote the area of the shape as Sopen and its

perimeter as Popt . Their values are shown in Equations (5.2) and (5.3):

Sopen = 4πr2 (5.2)

Popt = 2πr (5.3)
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5.1.2 WFD Worst Case

In the worst case we would like to maximize the length of the perimeter while keeping the total

area of the open-space regions. Therefore we use a polygon as an approximation to a circle. We

take an inner regular polygon and build triangles on each side. The level of accuracy is determined

by k, the number of vertices. For a given k value we denote the total area of the shape by Sk and

the total perimeter length by Pk. In order to bound an area, at least 3 vertices have to be used. As

previously mentioned, all areas are equal and thus, for each k ∈ N \ {0,1,2} holds: Sk = Sopen.

Figure 5.2 demonstrates the results of different k values.

5.1.2.1 The General Case

Assuming we have a general shape with an arbitrary number of vertices, k and a radius, r. Let bk

be the base of the inner polygon that is located inside the open-space regions (examples can be

found in Figure 5.2). The length of base bk is given by the formula:

bk = 2r · tan
π
k

(5.4)

Let hk be the height of an outer triangle. The length of hk is given by equation (5.5):

Sk = Sopen

k · r ·bk

2
+ k · hk ·bk

2
= 4πr2

k · r ·bk + k ·hk ·bk = 8πr2

hk =
8πr2− k · r ·bk

k ·bk
=

8πr2

k ·bk
− r (5.5)

Let lk be the length of an outer triangle side. The length of lk is given by equation (5.6):

lk =

√
(hk)

2 +

(
bk

2

)2

(5.6)
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Figure 5.2 WFD worst case: different values of k
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Therefore, the length of the polygon’s perimeter equals to the total length of the outer edges of the

triangles. We can calculate the perimeter of the polygon by:

Pk = 2k · lk (5.7)

We now express the perimeter Pk as a function of the area Sopen:

Pk = 2k · lk

= 2k

√
(hk)

2 +

(
bk

2

)2

= 2k

√(
8πr2

k ·bk
− r
)2

+

(
2r · tan π

k
2

)2

= 2k

√(
8πr2

k ·bk
− r
)2

+
(

r · tan
π
k

)2
(5.8)

Equations (5.2) and (5.4) can be joint with Equation (5.8):

Pk = 2k
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(5.9)

The only case that yields a division by zero in Equation (5.9) happens when k = 2. That causes

both tan π
k and cos π

k to return the value of ∞. In any other values of k, the functions are well-



37 Chapter 5 Complexity Analysis

defined. Since we work on a discrete domain, the number of vertices the polygon that approximate

the open-space area is bounded by the number of open-space points, which in our case equals to

Sopen:

k ≤ Sopen (5.10)

In the range [3,∞) the function f (x) = 1
cosx is a monotonic deceasing function and therefore gets a

maximal value of 2. This yields:

1
cos π

k
≤ 2 for k ∈ N\{0,1,2} (5.11)

Therefore, Equations (5.9), (5.10) and (5.11) can be joint and we get Equation (5.12):

Pk ≤

√√√√( 2 ·Sopen

r · tan π
Sopen

)2

−8
S2

open

tan π
Sopen

+2 ·S2
open · r2 (5.12)

Therefore, when we join Equation (5.12) together with (5.1), we get the overall run-time complex-

ity of WFD algorithm in terms of the open-space area, Sopen:

O

Sopen +

√√√√( 2 ·Sopen

r · tan π
Sopen

)2

−8
S2

open

tan π
Sopen

+2 ·S2
open · r2


After omitting constants:

O

Sopen +

√√√√( Sopen

r · tan π
Sopen

)2

−
S2

open

tan π
Sopen

+S2
open · r2

 (5.13)

Figure 5.3 shows an evaluation of the open-space region’s perimeter length as a function of the

total area of open-space regions.

Figure 5.4 shows the graph for WFD final complexity function (Equation (5.13)), in the range

of Sopen ∈ [0,10000].
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Figure 5.3 The linearity relation between the area of open-space region and its perimeter
(Equation (5.9)). The x-axis contains samples of different open-space regions in sizes of:
22,23, . . . ,220 and y-axis contains their perimeter size, respectively.
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Figure 5.4 WFD’s complexity function, Equation (5.13)
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5.2 FFD Complexity Analysis

In Section 5.1, we showed that the run-time complexity of WFD is bounded by Equation (5.1).

Allegedly, it may seem that FFD’s complexity is contained within WFD since FFD searches only

inside the active area where all of its points are open-space. However, this is not true since FFD

has to persistently run in the background. It may thus run a number of times by every single run of

WFD. Moreover, it run for each particle, in particle-based mapping systems. As shown in Chapter

4, FFD contains four stages. We now analyse the complexity of each stage separately:

5.2.1 Sorting stage (Algorithm 4.2)

FFD performs polar-sorting of laser readings. FFD utilizes cross-product instead of actually cal-

culating angle and radius (which are relatively very time-consuming calculations). As explained

in Chapter 4, in order to determine the order of the points received from the laser readings, we

calculate the cross-product between them. Cross-product calculation is performed in a constant

time and sorting is performed in time of O(n logn). We denote lr as the number of laser readings

received in each measurement and therefore, total complexity of this stage is:

O(lr log lr) ·O(1) = O(lr log lr) (5.14)

5.2.2 Contour stage (Algorithm 4.3)

FFD scans each two adjacent points received from the polar-sorted laser readings. For each two

adjacent points FFD calls Bresenham’s line algorithm which returns a set of the points that lie

between them. Bresenham’s line algorithm is performed in linear time complexity. In the end,

FFD merges all received lines into a single contour. We denote dpi,p j as the euclidean distance

between points pi and p j. Therefore, total complexity of this stage is the total distance between



40 Chapter 5 Complexity Analysis

each two adjacent points, which is denoted as c(t), the length of the contour in time t:

O

(
∑

pi∈lr

dpi−1,pi

)
= O

(
c(t)
)

(5.15)

5.2.3 Detecting new frontiers stage (Algorithm 4.4)

FFD scans the contour from the previous stage and extracts new frontiers (if available of course).

Each found new detected frontier is added into a list (which will be used in next stage) and hence,

the addition is performed in a constant time. Lines 2–6 handle the special case when the first point

on the contour is a frontier point. All actions are performed in a constant time. Therefore, total

complexity of this stage is proportional to the length of the given contour:

O(1)︸︷︷︸
special case

+O
(

c(t)
)
·O(1)︸ ︷︷ ︸

general case

= O
(

c(t)
)

(5.16)

5.2.4 Maintenance stage (Algorithm 4.5)

5.2.4.1 Elimination of previous frontiers (Lines 2–11)

FFD scans each point which lies inside the active area and checks if it was previously belonged

to a frontier. Checking a specific point is performed in a constant time since all points in map

already store a frontier index. The index is used as a lookup index in the frontier database (full

implementation details can be found in Chapter 4). We denote A(t) as the bounding rectangle

(the active area) in time t. Hence, scanning all points in the active area can be done in time of

O
(

A(t)
)
·O(1) = O

(
A(t)
)

. We denote f (t)max as the length of the longest frontier that exists in the

frontier database in time t and n(t)f as the number of frontiers that are stored in the frontier database

in time t. If a previously frontier point is found, then FFD searches for its frontier in the database

and removes this point from the frontier. Therefore, for a specific frontier point it takes O
(

logn(t)f

)
to find the frontier in the frontier database by the lookup index (we used a self-balancing binary
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search tree in our implementation), O
(

f (t)max

)
to locate the specific point in the found frontier and

O(1) to remove it from the found frontier. Therefore, total complexity for this stage is:

O
(

A(t)
)
·O
(

f (t)max + logn(t)f

)
= O

(
A(t) ·

(
f (t)max + logn(t)f

))
(5.17)

5.2.4.2 Adding new frontiers (Lines 12–20)

FFD scans each frontier point within all new detected frontiers that were found at the detection

stage. We denote n(t)new as the number of new frontiers that were found in time t and hence, scanning

all new detected frontiers that are found in time t is performed in complexity of O
(

n(t)new

)
. Next,

FFD checks if each new detected frontier point belongs to another previously detected frontier.

As mentioned before, this check can be performed in a constant time since each point stores a

frontier lookup index. Therefore, scanning all points in a specific frontier is performed in time of

O
(

f (t)max

)
and searching the frontier whose index is stored within the point is performed in time of

O
(

logn(t)f

)
. In the end, the new frontier is merged with the existing frontier which is performed

in a constant time. Total complexity of this stage is:

O
(

n(t)new

)
·O
(

f (t)max + logn(t)f

)
= O

(
n(t)new ·

(
f (t)max + logn(t)f

))
(5.18)

5.2.5 Combining all stages

By joining together equations: (5.14), (5.15), (5.16), (5.17) and (5.18), we get the total complexity

for one iteration:

O

lr log lr︸ ︷︷ ︸
sorting

+ c(t)︸︷︷︸
contour

+ c(t)︸︷︷︸
detection

+

frontiers maintenance︷ ︸︸ ︷
A(t) ·

(
f (t)max + logn(t)f

)
)︸ ︷︷ ︸

eliminate existing frontiers

+n(t)new ·
(

f (t)max + logn(t)f

)
︸ ︷︷ ︸

add new frontiers


= O

(
lr log lr + c(t)+

(
A(t)+n(t)new

)
·
(

f (t)max + logn(t)f

))
(5.19)
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All new detected frontiers are found only inside the active area. Thus, the number of new detected

frontiers is bounded by size of the active area:

n(t)new ≤ A(t) (5.20)

All new detected frontiers lie within the contour. In the worst-case, all points that lie within the

contour belong to the longest frontier. Hence, we can bound the length of the longest frontier by

the contour’s length:

f (t)max ≤ c(t) (5.21)

Therefore, by joining the upper bounds from equations (5.20) and (5.21) together with (5.19) we

bound the complexity of FFD by Equation (5.22) below:

O
(

lr log lr + c(t)+
(

A(t)+A(t)
)
·
(

c(t)+ logn(t)f

))
= O

(
lr log lr + c(t)+A(t) ·

(
c(t)+ logn(t)f

))
(5.22)

The size of the active area can be bounded by the maximum range of the laser. The largest active

area rectangle is received only when the the laser scans an open area. In this case, the active area

is a rectangle that bounds a circle whose radius equals to the maximum laser range:

A(t) ≤ (2lm)× (2lm) = 4(lm)
2 (5.23)

Joining together (5.22) and (5.23):

O
(

lr log lr + c(t)+4(lm)
2 ·
(

c(t)+ logn(t)f

))
= O

(
lr log lr + c(t)+4(lm)

2 · c(t)+4(lm)
2 · logn(t)f

)
= O

(
lr log lr +

(
1+4(lm)

2
)
· c(t)+4(lm)

2 · logn(t)f

)
(5.24)

The maximal laser range and the number of laser readings (lm and lr, respectively) do not change

during the execution. Hence, they both can be considered as constants and therefore, can be re-

moved from the asymptotic upper bound:

O
(

c(t)+ logn(t)f

)
(5.25)
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5.3 Summary

In this chapter, we showed running-time upper-bounds for both WFD and FFD algorithms (Section

5.1 and Section 5.2, respectively). Until now, we discussed FFD’s run-time complexity in a single

execution. However, as said in Chapter 4, FFD has to persistently run in the background. More

precisely, in order to maintain previously detected frontiers, FFD is executed when a new laser

reading is received. Traditional frontier detectors are executed on demand, usually when a map-

event has occurred. A map-event is an event which is raised by the SLAM implementation when

a sufficient amount of new data was received in order to produce a new map. In order to compare

FFD to other traditional frontier detectors, we define lω as the frequency of the laser sensor (e.g.

how many laser readings are received in a time unit of 1 second). In addition, we denote tm to be

the worst-case elapsed time between two following map-events in the (i.e. in times ti and ti+1).

Finally, we denote Pn as the number of particles in the SLAM implementation. In implementations

containing only one map, such as EKF-based systems, the value of Pn is 1. The reason is that as

said in Chapter 4, each particle has to maintain its own map and thus, run its own instance of FFD.

Thus, Equation (5.25) now considers the frequency of the laser sensor and we get Equation (5.26):

O
(

Pn · (tm · lω) ·
(

c(t)+ logn(t)f

))
(5.26)

It might seem that in Equation (5.26) the value of Pn · (tm · lω) is constant during all FFD ex-

ecutions and hence, redundant. However, in real-world situations, this value plays a major role

in determining FFD’s run-time. For example: although lower values of lω decrease the number

of FFD executions in the time between two following map-events, increasing the number of FFD

instances (e.g. increasing the number of particles in a particle-filter based SLAM implementation)

causes the total run-time becoming slower. The question remains open: how do Pn, tm, and lω val-

ues affect FFD’s run-time in the real-world? The answer to this question is presented in Chapter

7.



Chapter 6

About Maintenance and Improving WFD

The WFD algorithm does not separate old and new frontiers and therefore, has to detect them

with each execution. Therefore, WFD’s search domain is bounded to the whole map. In contrast,

FFD algorithm is able to detect new frontiers only. In order to enable FFD eliminating previously

detected frontiers, it has to persistently perform a maintenance. The general maintenance algorithm

is shown in Chapter 4 (Algorithm 4.5). In this chapter we discuss the general concepts of the

maintenance process (Section 6.1) and present two algorithms which represent a hybrid version of

both WFD and FFD (the former is discussed in Section 6.2 and the latter is discussed in Section

6.3).

6.1 General Maintenance Concepts

In Section 4.1.4, we showed and explained the maintenance stage of the FFD algorithm (Algo-

rithm 4.5). This process can be generalized and applied to other frontier detection algorithms. By

applying maintenance, we can separate between the two parts that any frontier detection needs to

handle: detection of new frontiers and elimination of existing frontiers.

The presented maintenance algorithm (Algorithm 4.5) is not bounded to a specific frontier

44
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detection algorithm. The algorithm gets its inputs and acts independently. We encourage the

reader to find more details in Section 4.1.4. By integrating the maintenance algorithm into WFD,

the frontier search domain can now be reduced (similar to FFD).

For instance, we integrated the maintenance mechanism into WFD algorithm and created two

advanced versions of it which are presented in the following sections. The first, an incremental

version of WFD is called WFD-INC, and the second, a parallel version which is called WFD-IP.

6.2 Incremental Wavefront Frontier Detector

Our first WFD improvement is called WFD-INC (Algorithm 6.1). In this version of WFD, instead

of searching the whole map for frontier points, the search domain contains only points that lie

inside the active area. The idea is based on the proof in Section 4.2; the only region in the map

that contains changes (i.e. contains new frontiers and contains frontiers that are needed to be elim-

inated) is the active area. We define the active area to be the bounding rectangle that is constructed

using the farthest laser readings received from last executions of WFD-INC.

Similar to State-of-the-art frontier detection algorithms, WFD has to detect all frontiers in each

execution. WFD has better performance than State-of-the-art frontier detection algorithm since it

has a smaller search domain. However, comparing to FFD, it is still limited. If there were not

changes in map orientation, then all previous frontiers should keep their map coordinates.

The WFD-INC algorithm exploits this fact and scans only regions that might contain changes

in frontiers (i.e. regions which were hit by the laser sensors). If a map orientation was changed

(Lines 2–5), then all previous frontier data is cleared and the algorithm start detecting all frontiers

in the same way as WFD algorithm. Another modification from original WFD algorithm is when

checking the adjacent points of current scanned point (Line 21). In this version of WFD, only

points that lie inside the active area are scanned. This reduces the size of the search domain. The
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Algorithm 6.1 Incremental Wavefront Frontier Detector (WFD-INC)
Require: queuem // queue, used for detecting frontier points from a given map
Require: pose // current global position of the robot
Require: f rontiersDB // data-structure that contains last known frontiers

1: function WFD-INC(activeArea,Map, pose, f rontiersDB)
2: if best particle index was changed from last execution then
3: clear all data from f rontiersDB
4: activeArea←Map // active area contains all map points
5: end if
6: queuem← /0
7: newFrontiers← /0
8: ENQUEUE(queuem, pose)
9: mark pose as “Map-Open-List”

10: while queuem is not empty do
11: p← DEQUEUE(queuem)
12: if p is marked as “Map-Close-List” then
13: continue
14: end if
15: if p is a frontier point then
16: f oundFrontier← EXTRACT-FRONTIER-2D(p)
17: add f oundFrontier to newFrontiers
18: mark all points of f oundFrontier as “Map-Close-List”
19: end if

20: for all v ∈ ad j(p) do
21: if v not marked as {“Map-Open-List”, “Map-Close-List”} and v has at least one

“Map-Open-Space” neighbor and v ∈ activeArea then
22: ENQUEUE(queuem,v)
23: mark v as “Map-Open-List”
24: end if
25: end for

26: mark p as “Map-Close-List”
27: end while
28: MAINTAIN-FRONTIERS(newFrontiers, f rontiersDB,activeArea)
29: end function
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last modification from the original WFD algorithm is that a maintenance has to be called, since

WFD-INC does not search over the whole map (Line 28).

Both WFD (Algorithm 3.1) and WFD-INC (Algorithm 6.1) share many common code lines.

We highlighted the differences between both algorithms in order to help the reader to notice the

differences between them more easily.

6.3 Incremental-Parallel Wavefront Frontier Detector

Our second improvement of WFD is actually an improvement of WFD-INC and called WFD-IP. If

changes in map orientations happen too often, then WFD-INC’s performance is the same as WFD

(but now including an overhead of maintenance). Our goal is therefore to artificially reduce the

number of changes in map orientation as much as possible. The solution is simple: WFD-IP keeps

a separate instance of WFD-INC algorithm for each particle. Whenever WFD-IP is executed, it

executes each instance of WFD-INC according to each particle’s map data. Therefore, all instances

of WFD-INC never reach lines 2–5 and keep frontier data between executions is guaranteed.

Algorithm 6.2 Incremental-Parallel Wavefront Frontier Detector (WFD-IP)
Require: particles // data-structure that contains all particles of the SLAM implemantation

1: for all Particle p ∈ particles do

2: WFD-INC(p→ activeArea, p→Map, p→ pose, p→ f rontiersDB)

3: end for
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Experimental Results

In this chapter, we describe the different experiments that were conducted in order to evaluate and

compare the algorithms described in Chapters 3, 4 and 6. In Section 7.1 we describe the settings

of the testing environment. In Section 7.2 we compare all discussed frontier detection algorithms.

In Section 7.3 we examine FFD algorithm in a finer resolution and test different aspects that might

affect its performance.

7.1 Background

We have fully implemented WFD, WFD-INC, WFD-IP and FFD and performed testings on data

obtained from the Robotics Data Set Repository (Radish) [24]. Figure 7.1 shows the environments

used for the evaluation. WFD, WFD-INC, WFD-IP and FFD were compared with a SOTA (state-

of-the-art) frontier detection algorithm, due to Wurm1 and Burgard [55, 56].

To evaluate the algorithms, we integrated them into a single-robot exploration system. The

system is based on GMapping, an open-source SLAM implementation [18, 19]. We integrated our

1We thank Kai M. Wurm and Wolfram Burgard for providing us with their own implementation of state-of-the-art

frontier detection algorithm.
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code into the ScanMatcher component which is contained inside gsp thread (Grid SLAM Proces-

sor). At the time that a new MapEvent is raised, all frontier detection algorithms are executed

according to current world state. Execution times are measured by Linux system-call getrusage,

which measures the CPU-process time.

We used several environments taken from Radish [24]:

(A) Cartesium Building, University of Bremen

(B) Freiburg, Building 079

(C) Outdoor dataset recorded at the University of Freiburg

(D) 3rd Floor of MIT CSAIL

(E) Edmonton Convention Centre (site of the AAAI 2002 Grand Challenge)

Note that we use the exploration data (raw sensor readings and odometry) from these data

sets, and thus all algorithms use exactly the same data, form the same robot trajectories. Thus the

movement of the robot is identical, and the only thing we examine is how quickly it can compute

frontiers.

7.2 Comparing SOTA, FFD, WFD, WFD-INC and WFD-IP

We begin by examining overall performance. We examined the run-time of all algorithms on two

different machines:

• First experiment: we used a fast desktop computer containing Intel Core 2 Duo T6600

CPU with clock speed of 2.20 GHz, Random Access Memory (RAM) in size of 4 GB,

L1 cache in size of 64KB (8-way Set-associative) and L2 cache in size of 2048KB (8-way

Set-associative).
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(a) Cartesium Building, University of Bremen. (b) Freiburg, Building 079.

(c) Outdoor dataset recorded at the University of

Freiburg

(d) 3rd Floor of MIT CSAIL

(e) Edmonton Convention Centre (site of the AAAI

2002 Grand Challenge)

Figure 7.1 Testing environments.
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• Second experiment: we used a slower desktop computer containing Intel Pentium III (Cop-

permine) with clock speed of 800 MHz, Random Access Memory (RAM) in size of 1 GB,

L1 cache in size of 32KB (4-way Set-associative) and L2 cache in size of 256KB (4-way

Set-associative). Research-grade robots typically have a faster CPU, but commercial robots

typically do not.

FFD is called every-time a new laser reading is received. Therefore, in order to compare

FFD execution time to other algorithms correctly, we accumulate FFD’s execution times between

calls to other algorithms. In other words, if we call WFD in time-stamps ti and ti+1, then FFD’s

accumulated execution time is calculated by:

ti+1

∑
x=ti

ExecutionTimeFFD(x)

Moreover, we remind the reader that because FFD is called for every particle in the particle-

filtering GMapping [19], the results here accumulate also over the number of particles (30 in our

case).

Figure 7.2 shows results of the comparison in each of the two machines. Each group of bars

represents a run over a separate map. For each algorithm, we calculate the mean execution time,

over the duration of the exploration. The vertical axis measures the calculated execution time in

microseconds, on a logarithmic scale. The one-second line is at 106 microseconds. The next tick,

at 107, marks 10 seconds.

Figure 7.2 shows that WFD is faster than SOTA by approximately one order of magnitude.

FFD is faster than WFD by one to two orders of magnitude. Indeed, FFD performs close to the

one-second line. In contrast, WFD and SOTA typically take anywhere from 10 to 100 seconds to

perform their task, even on relatively fast machines. Surprisingly, we discovered that WFD-IP of-

ten performs frontier detection in the shortest execution time. The reason is that WFD-IP contains

a well balance between the frequency of number of calls (only on map-events). On the one hand,
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WFD algorithm has to detect all frontiers in each execution because it does not utilize previous

detected frontiers. On the other hand, FFD algorithm keeps utilizing previous detected frontiers

but in price of keep running the maintenance routine in the background. WFD-IP algorithm is an

hybrid approach that reduces the number of calls (relatively to FFD) while performing frontier

detection on a smaller search domain (relatively to WFD).

FFD’s improvement over SOTA and WFD is indeed notable, given that the measured results

are not for single FFD runs, but in fact show accumulated run-time, over the frequency of the

sensor readings, multiplied over the number of particles (approximately 2000 calls to FFD for

each WFD or SOTA calls). These multiplicative factors have significant impact on FFD’s usability.

It is important to understand whether the number of particles influences the result more than the

frequency of sensor readings, as the number of particles is often increased for better quality. We

discuss this in detail in Section 7.3.

7.2.1 What Happened in Environment (D)?

If we take a closer look at the results shown in Figure 7.2(a), in environment (D) the mean run-time

of WFD is relatively not much slower than FFD. Environment (D) contains plenty of regions that

seems to have small obstacles which enlarge the length of the contour scanned by FFD. In Section

5.2 we showed an upper bound of FFD’s run-time complexity (Equation (5.26)). One of the factors

that affect the boundary is the contour length that is scanned by FFD algorithm (Section 4.1.3).

Figure 7.3 shows an example of the enlargement of the contour when the robot arrives to a crowded

region. Thus, The empirical results shown in this section well-support the theoretical boundary.

7.2.2 Why is WFD-INC Sometimes Worse than WFD?

In the worst-case, WFD-INC algorithm should perform the same as WFD including an overhead of

maintenance. However, as can be seen in Figure 7.2, the run-time means of WFD and WFD-INC



53 Chapter 7 Experimental Results

(A) (B) (C) (D) (E)
environments

103

104

105

106

107

108

109

1010
lo

gs
ca

le
 ti

m
e 

(m
ic

ro
se

co
nd

s)
WFDIP

FFD

WFDINC

WFD

SOTA

(a) Intel T6600

(A) (B) (C) (D) (E)
environments

105

106

107

108

109

1010

lo
gs

ca
le

 ti
m

e 
(m

ic
ro

se
co

nd
s)

WFDIP

FFD

WFDINC

WFD

SOTA

(b) Intel Coppermine

Figure 7.2 Comparing all versions of WFD and FFD to State-of-the-Art algorithm on
different machines.
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Figure 7.3 An example of FFD’s worst-case as shown in Environment (D)

do not have a specific trend.

We hypothesize that in certain environments, where there is a high frequency of active particle

change, WFD-INC cleans its previous detected frontiers more often, and this explains its run-time.

We provide evidence to support this hypothesis in Table 7.1 and Figure 7.4. Table 7.1 shows

the particle changes in different environments. Each row represents a single environment. The

first column contains the environment identifier. The second column contains the number of active

particle changes. The third column contains the total number of executions and the forth column

contains the percentage of particle changes relative to the total number of executions.

Figure 7.4 shows the active particle changes over time. For a specific environment, the vertical

axis represents each execution and the horizontal axis represents whether the active particle was

changed (Yes for a change and No otherwise). There is an exception in environment (C) in which

the active particle changes percent is quite low but WFD-INC’s execution time is still worse than

WFD’s execution time. Here, the explored environment is very large and hence, for each change,

the robot has to detect frontiers in a very large area, in contrast to other environments.
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Map Changes Executions Percent (%)

(A) 56 110 50.91

(B) 52 287 18.12

(C) 25 160 15.62

(D) 193 429 44.99

(E) 73 340 21.47

Table 7.1 Comparing active particle changes in different environments.

7.2.3 What Happened to WFD-IP in Environments (A),(C),(E), Figure 7.2(b)?

Figure 7.2 shows the run-time results of all algorithms on two testing machines. On the stronger

machine (Figure 7.2(a)) WFD-IP outperforms all other algorithms. However, on the weaker ma-

chine (Figure 7.2(b)), the situation is different in environments (A),(C) and (E). We hypothesize

that the reason for such behavior of WFD-IP relates to either the lack of memory or to the single

core of the weaker machine.

The Coppermine machine is equipped with less random access memory (1 GB) than the stronger

machine (4 GB). The key feature of WFD-IP is its robustness against changes in active particle

since it holds a separate instance of WFD-INC for each particle. In our implementation, there are

30 particles and hence, WFD-IP holds 30 instances of WFD-INC (i.e., 30 frontier databases, 30

maps etc. ). In addition, the Coppermine machine is equipped with a single core CPU, in contrast

to the stronger machine that is equipped with 2 cores. The GMapping SLAM system runs two

threads (Main thread and SLAM thread). We hypothesize that the stronger machine has better

support for multi-threading since every thread is able to run on a separate core. We leave testing

these possible explanations for future work.
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7.3 Evaluating FFD in a Finer Resolution

We turn to evaluating FFD in a finer resolution. Figure 7.5 compares the run-time of individual

particles in specific environments. Each bar represents a specific particle. The vertical axis mea-

sures the mean run-time of FFD for the particle. The error-bars represent the standard deviation of

each particle’s run-time.

The figure shows that the per-particle run-time is measured in a few hundred micro-seconds.

Thus the overall results were accumulating comparing the accumulation of thousands of FFD

runs against single WFD and SOTA runs. Indeed, one can boost FFD’s execution time by not

executing it on every received laser reading, since the frequency of receiving new laser readings

is often higher than the speed of processing and updating the map anyways. Many laser sensors

generate output at 30Hz–75Hz, at least three times faster than the rate at which the robots process

the information. By ignoring some laser readings, FFD would perform much better, without any

noticeable decay in mapping quality.

FFD’s Performance According to Number of Particles One of FFD’s drawbacks is that in

order to get a complete picture of frontiers in a given time, it has to persistently run in the back-

ground. As mentioned in Section 4.1.4, if FFD is integrated into a particle-filter based SLAM

implementation, each particle has its own instance of FFD algorithm and hence, the overall run-

time is increased. Figure 7.6 compares the mean run-time of FFD by changing the number of

particles in specific environments. Each bar represents a run of FFD with a specific number of par-

ticles. The vertical axis measures the mean run-time of FFD for the configuration. The error-bars

represent the standard deviation of each configuration’s run-time.
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Figure 7.5 FFD run-time for individual SLAM particles.
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Figure 7.6 FFD’s run-time according to number of particles.
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7.4 Speeding-Up WFD Even Further

WFD’s execution time can be boosted even more by reducing the grid size (i.e., by using a coarse

grid). Of course, there is a trade-off between shorter execution time and the quality of the output

frontiers. Even though, standard exploration tasks can utilize the output frontiers received in this

manner. The grid is divided into blocks in size of the robot’s width and height. Smaller blocks

will not make sure that robot will be able to pass through terrain obstacles (i.e. corridors). Each

block in the real world is represented by a single cell in the reduced grid. In order to determine

the occupancy value of the cell, we examined different strategies. We considered both the speed of

creating the new grid and the quality of the output. We found out that sampling the center of the

block edges and the block center yields the best results. We plan to investigate efficient techniques

to reduce the grid size while considering the quality of the output coarse grid data.



Chapter 8

Conclusions and Future Work

This chapter contains a summary of the work presented in this thesis (Section 8.1) and our plans

for future work (Section 8.2).

8.1 Conclusions

The main motivation for our work was practical issues. It all started from a joint project with

MAFAT. The goal of the project was to create an autonomous robot that explores the entire floor

of our lab. However, we found out that the frontier detection module is very time-consuming. It

was then that we realized that frontier detection deserves more study.

Frontier-based exploration is the most common approach to solve the exploration problem.

State-of-the-art frontier detection methods process the entire map data which hangs the exploration

system for a few seconds with every call to the frontier detection algorithm.

In this work we present four novel faster frontier detectors, WFD, FFD, WFD-INC and WFD-

IP. The first algorithm, a graph-based search, processes the map points which have already been

scanned by the robot sensors and therefore, does not process unknown regions in each run (though

it grows slower as more area is known). The second algorithm, a laser-based approach for frontier

61
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detection, only processes new laser readings which are received in real time, eliminating also

much of the known search area. However, maintaining previous frontiers knowledge requires tight

integration with the mapping component, which may not be straightforward. The third and fourth

algorithms are a combined approach of both WFD and FFD. Both algorithms search for frontiers

within the known regions but their search space is still smaller than WFD’s search space since

they search for frontiers only in the regions that were covered by the robot sensors since their last

execution.

We describe efficient implementation for all algorithms and compare them empirically. FFD

and WFD-IP are shown to outperform WFD, WFD-INC by 1–2 orders of magnitude. In addition,

FFD and WFD-IP outperform state-of-the-art by 2–3 orders of magnitude.

8.2 Future Work

In future, we plan to integrate the general maintenance mechanism with EKF-based SLAM imple-

mentations, which we hope will lead to further improvements. We also plan to begin investigation

of novel exploration policies, based on real-time frontier-detection. In addition, we plan to inves-

tigate the performance of WFD-IP on different machines, as mentioned in Section 7.2.3.
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  תקציר

) היא השיטה הנפוצה ביותר frontiersשיטת חקירת סביבה מבוססת על גבולות (

, בעיה בסיסית בתחו� של רובוטיקה. �explorationלהתמודדות ע� בעיית ה

בחקירת סביבה מבוססת גבולות, הרובוטי� מבצעי� את החקירה באמצעות חישוב 

, הקטעי� המפרידי� בי� האזורי� הידועי� והלא ידועי� גבולות(ותזוזה לעבר) 

במפת העול�. אול�, רוב האלגוריתמי� אשר מחשבי� את הגבולות הנ"ל חייבי� 

לעבד את כל המידע של המפה. כתוצאה מכ�, זיהוי הגבולות צור� זמ� חישוב רב 

  ומאט את זמ� הביצוע הכולל של תהלי� חקירת הסביבה.  

, אלגורית� WFDגי� שני אלגוריתמי� חדשי� לזיהוי גבולות: בעבודה זו, אנו מצי

קריאות חייש� , אלגורית� המבוסס על עיבוד �FFDהמבוסס על חיפוש בגר" ו

הלייזר בלבד. בניגוד לשיטות קיימות, שני האלגוריתמי� הנ"ל אינ� מבצעי� עיבוד 

יתמי�. על כלל המידע במפה. עבודה זו מכילה ניתוח סיבוכיות של שני האלגור

הינו אלגורית� חדשני, אנו מוכיחי� את נכונותו. הצלחנו  �FFDבנוס", מכיוו� ש

אלגוריתמי�  �2על ידי שילוב� ל �FFDו WFDלשפר עוד יותר את הביצועי� של 

. מימשנו את ארבעת האלגוריתמי� והראינו שה� �WFD-IP ו WFD-INCחדשי�: 

  ).State-of-the-artמהירי� יותר בכמה סדרי גודל מאלגורית� קיי� (

 



קמינקא מן המחלקה למדעי המחשב . עבודה זו נעשתה בהדרכתו של גל א
 .אילן-של אוניברסיטת בר



 

 

 

 

זיהוי מהיר של גבולות סביבה 
 באמצעות רובוט חוקר

 

 

 מתן קידר

 

 

עבודה זו מוגשת כחלק מהדרישות לשם קבלת תואר 
 אילן-מוסמך במחלקה למדעי המחשב של אוניברסיטת בר
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