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1 Overview and Key Themes

Agents are computational entities that sense and act, and decide on their actions
in accordance with some tasks or goals. There is no consensus among researchers
on an exact definition of agents. However, definitions generally agree that agents
are: (i) situated, in that their sensing and acting occur within the same environ-
ment, (i) persistent, in that their existence and operation are continuous over
a non-trivial amount of time (with respect to the environment and their task),
and (iii) eutonomous, in that their control process (i.e., their decision making)
cannot be tweaked by external means, other than through their sensors. Agents
are goal-oriented if they act in accordance with their tasks and goals.

Multi-agent systems (MASs) is the scientific field that studies the behavior of
multiple agents, when interacting with each other and with their environment,
in various scales and forms of organization. Researchers in this field (1) build
theories that predict such behavior in natural and synthetic MASs; (2) discover
techniques that guide agents in their social and rational interactions; and (3)
create methods for constructing MAS instances that address specific application
needs, including but not limited to simulation, testing, and software engineer-
ing. The field is influenced by economics, sociology and organization science,
philosophy, natural language processing, biology, and artificial intelligence.

The field of multi-agent systems is concerned with decentralized processes
(distributed systems), as each individual agent in the system has its own per-
ception (via sensors), control, and actuation (via actions). Thus, agents may
differ in their perception (for instance, due to difference in physical locations),
in their control (for instance, different expertise), and in their actuation (for
instance, due to having different potential actions). Where such differences are
significant to the operation of the MAS, the agents are called heterogeneous. In
many cases, however, these differences are only significant in that they enable
parallelism, and the agents are called homogeneous. For example, if any one of
a number of agents can carry out a task (all with the same quality), the agents
are considered homogeneous—since increasing the number of similar tasks will
allow multiple agents to tackle these tasks in parallel.

Whether heterogeneous or homogeneous, agents in MASs interact with each
other in some form to achieve their individual goals, since these goals may



depend on one another. Where such dependencies exist, the agents will need
to coordinate with one another. Broadly categorized, there are three types of
coordination: Agents may compete for resources, or to achieve conflicting goals;
they may cooperate to achieve compatible/complimentary goals; and they may
collaborate to achieve common goals. Note that while collaboration is inherently
two-sided, cooperation and competition can also be one-sided. For example,
a stealthy predator may coordinate its movements with that of its prey, but
the prey—lacking knowledge of the predator—does not coordinate with the
predator. An agent may also be malicious, if its goals involve preventing others
from pursuing their goals.

A key challenge in any MAS deals with allowing the agents to interact ef-
fectively, by expanding their sensing and acting capabilities to handle social
interactions. A single agent, alone in its environment, must be able to sense
its environment, reason about it, and act on it, to be effective. Similarly, to
be effective in interacting with other agents, an agent in a multi-agent system
must be able to sense others, reason about them, and act on them (e.g., through
manipulation, persuasion, argumentation, negotiations, command, etc.). Such
sensing and acting can be done by manipulating common features in the en-
vironment, or by specialized sensors/actuators (e.g., radio devices, Internet).
There is a distinction between communications (which involve two-way inter-
actions), and observations (in which one of the agents does not know that it is
being sensed and/or acted upon).

Multi-agent systems involve computational limitations both at the level of
individual agents (e.g., memory, computation power, sensor uncertainty) and in
communications/observations (e.g., in terms of bandwidth, latency, reliability,
security against tampering or eavesdropping, preservation of order of messages,
etc.). All of these limitations play a critical role in how agents interact with each
other. For instance, a two-agent system, composed of a human user and a soft-
ware agent, has limited bandwidth; the software cannot continuously bombard
the user with information or queries. Thus the software agent must carefully
control the content, timing, and form of interaction with the user. Similarly,
the user must consider his or her interactions with the software agent, so as to
cause it to achieve the required goals.

To ease the computational load on agents (in terms of their choice of interac-
tions), MASs often employ organizations that constrain the type of interactions
that an agent may employ. Such constraints are called norms, and they guide
the social behavior of agents, by reducing the number of alternative interactions
agents may take. Norms may dictate interaction protocols to be followed when
agents interact with each other. Also, organizations may have roles within them,
that constrain the individual behavior of agents fulfilling them. For example, a
customer service telephone operator for a large company may be guided in her
interactions with an angry client by norms (e.g., saying “Hello” and dictating
politeness towards the client), and also by role (limiting the range of actions the
operator may take to noting down the complaint and compensating the client
by no more than a fixed amount). Agents in complex MASs may face conflicts
within their roles, norms, or both.



Many, if not most, MASs have within them multiple types of organizations,
sometimes in nested forms. For instance, a game of soccer has a nested orga-
nizational structure. The organization has two teams that cooperate with each
other in playing a game of soccer according to standard rules (norms). To play
the game, the teams compete with each other to score goals. Each team is
composed of players that collaborate with each other to achieve their common
goal. To do this, players may organize themselves into sub-teams as necessary,
and even compete within the team in order to improve its effectiveness (e.g., a
few teammates may run to meet an incoming ball, such that the fastest of them
will be able to stop it). Players in soccer also often have roles: For example, a
goalie stays behind to protect its own team’s net, while the strikers’ role is to
try to kick the ball into the opponents’ net.

Organizations differ not only in their structure and coordination types, but
also in scale and openness. The scale of an organization is defined by the num-
ber of agents that participate in it. Empirically, different types of interactions
occur in small groups (up to a hundred agents) then in swarms (thousands
to millions of agents). Closed organizations maintain their agent membership
throughout their lifetime. Open organizations allow agents to join and leave
dynamically, and as a result cannot typically dictate the internal controls of
the agents. Instead, participation in open organizations is typically achieved by
maintaining interaction standards, for example standard communication lan-
guages and communication protocols. Often, open organizations rely on middle
agents to provide services such as match-making (connecting agents requiring a
service to agents providing it), brokering, certification, etc.

Indeed, organizations may dynamically change over time, not only in mem-
bership, but also in the roles assigned to members, and also in tasks or goals.
The problem of forming a new organization by choosing agent members such
that their interactions and roles best carry out (cover) a set of tasks is called the
coalition formation problem. The problem of assigning (and re-assigning) tasks
to given agent members such as to maximize overall organizational effectiveness
is called the task allocation problem. While organizations are mostly concerned
with carrying tasks for specific goals (whether competitive or not), their dis-
bandment does not simply occur with goal achievement. Some organizations
may disband based on environmental conditions (for instance, a soccer game
ends with time). In others, norms may dictate that agents remain members of
an organization even once the organizational goal is achieved.

We can now restate the goals of the field of multi-agent systems in the terms
we introduced:

e Build theories that predict the interactions and organizations that allow
agents to carry out given tasks, in given environments, and given their
computational limitations.

e Discover techniques that allow agents to overcome computational and sys-
tem limitations in order to effectively coordinate/interact with each other.

e Create methods for forming organizations that address specific application



needs.

Often, advances towards one of these goals lead to further advances in others.
For instance, techniques that proscribe effective teamwork behavior can lead
to predictions as to the interactions observed in well-coordinated teams, and
vice-versa. All of these goals are pursued within multi-agent systems using a
variety of approaches, described below.

2 Approaches in Multi-Agent Systems

Historically, MAS has evolved from earlier attempts with the artificial intelli-
gence community to consider questions that arise out of the study of multiple
problem-solving agents that work in parallel. These earlier attempts are of-
ten referred to as DAI (Distributed Artificial Intelligence) or DPS (Distributed
Problem Solving). MAS has also borrowed from social sciences, including soci-
ology, economics, and organizational science. These different backgrounds lead
to different approaches within the field.

2.1 Distributed Problem Solving

Distributed Problem Solving (DPS) deals with MASs in which agents cooperate
or collaborate with each other to solve a common problem (the results of their
problem solving may be centralized or distributed to the participants). This
type of MASs arise naturally in many industrial and computational problem
settings, where a large-scale problem may benefit from a significant speed-up if
it is decomposed into many sub-problems that are solved in parallel. DPS also
matches well with problems where agents are heterogeneous in their capabilities
or the resources they have, and can achieve their (common) goals by collabo-
rating with each other. For instance, if different agents have access to different
information, or have different computational power, they may solve problems
together, that none of them could tackle individually.

There are several distinct arch-types of DPS, which differ in the basis for
the decomposition, and in the centralization of the solution(s). In one type,
the agents focus on different sub-problems, but they all have access to the same
inputs in principle. Thus the main purpose of decomposition is to speed up
problem solving. The decomposition itself can be challenging, as alternative
decompositions are often possible. Moreover, in more complex settings, the
heterogeneous capabilities of the agents are taken into account in the decompo-
sition, such that sub-problems are allocated to the agents best suited to handle
them. In such allocation, an important objective is load-balancing, which dis-
tributes resource usage as fairly as possible. A good example of this type of
DPS is multi-agent computation; different parts of a complex computation are
handed off to different agents, and the results are combined once the agents are
done, each with its own process.

In a different type of DPS, agents focus on tackling the same problem, but
using different expertise or knowledge. In such settings, the solution is often



formed through iterative process of agents computing partial results, which are
passed to their peers to be refined (and assist the other agents), and then posted
back. A global solution is constructed out of these iterations over partial results.
A good example of this DPS type is distributed management of cellular phone
base-stations. Each base-station (agent) can only monitor and communicate
with phones in some limited-range local area (cell), but must adjust its frequency
and resource usage to match that of other stations, whose cells overlap. Load
balancing here involves making sure no single cell is carrying out too much of
the traffic.

Complex applications often involve a combination of these two types of DPS,
and no single technique is known yet that addresses all of the challenges in-
volved in DPS. Moreover, challenges are raised not only during the planning
phase, but during run-time, where due to the nature of dynamic environments,
the decomposition of the task or results must change dynamically, and the
agents must coordinate their run-time responses. Some techniques have repeat-
edly been demonstrated to solve important subsets of such challenges. These
include blackboard architectures (in which agents exchange partial results by
using shared memory), contract-net protocols (which allow agents to consider
their task load when negotiating over allocation of tasks), and distributed con-
straint satisfaction techniques (which determine globally-coherent solutions).

An important instance of DPS deals with collaboration—also called team-
work—in which agents are not only committed to a shared goal, but also to an
agreed-upon way of achieving it, and to providing mutual support and assistance
to their teammates. Thus for instance, team members cannot terminate their
activities within the team without gaining their teammates’ agreement, and
they are committed to taking over tasks from teammates, proactively providing
relevant information to teammates, etc.

2.2 Rational and Economic Approaches

While DPS techniques and models assume that agents have banded together
to solve a common problem, distributed rational approaches stemming from
economics and game-theory make no such assumption. Instead, agents are as-
sumed to be rational and self-interested, in the sense that they seek to maximize
(by their chosen actions) some individual utility function with no concern for
the global good. Such models fit naturally with systems in which independent
businesses or individuals interact. Key questions in such settings involve the
prediction of the action sequence (called strategy) of each agent, and the design
of the protocol (mechanism) which governs their interaction, such that the MAS
displays required characteristics.

There are several alternative criteria for evaluating an MAS based on self-
interested agents. First, we may ask as to the social welfare of the system—the
sum of its agents’ utility values. We may also want the system to be stable, in
that agents are motivated out of their own self-interest to choose the desired
strategy. For instance, if each agent, given the strategies of its peers, cannot
improve its reward by selecting a different strategy, the system is said to be



in a “Nash equilibrium”. Ideally, we would prefer a mechanism that maximizes
social-welfare and is also stable. However, these two criteria can sometimes be
at odds, for instance in the Prisoner’s Dilemma game. Other criteria exist, such
as manipulability, which considers the ability of a single or a coordinated group
of participants to bias the outcome of a mechanism in their favor.

A wide variety of mechanisms exist. However, some key types are: (i) social
choice—also known as voting—mechanisms, in which all agents provide input
as to a preferred outcome, and all agents are committed by the output of the
mechanism; (ii) auctions, in which all agents provide input, but the outcome
only commits a subset of the agents, auctioneer(s) and bidder(s); (iii) markets,
which optimize resource production and consumption by allowing consumers and
producers to negotiate over prices; (iv) contract nets, which facilitate distributed
task allocation. Each one of these main types represents a large number of
variations, which exhibit different characteristics.

3 Multi-Agent Systems and HCI: Key Areas of
Overlap

Multi-Agent Systems and HCI have overlapping areas of research, which have
resulted in a number of productive investigations, and offer still many oppor-
tunities for future technologies. These overlapping areas can be generally cate-
gorized based on the cardinality of the interaction: (a) one-to-one interactions
(a human user interacting with a single computer as a two-agent multi-agent
system); (b) one-to-many interactions between a human user and a set of com-
putational agents; (c) many-to-many interactions, where a mixed group of hu-
mans and computational agents interact with each other; and (d) many-to-one
interactions, where a single computational agent interacts with multiple human
users.

In terms of one-to-one interactions, teamwork theories which have been de-
veloped in multi-agent systems have been successfully used to improve user-
interface mechanisms. By modeling the two-agent system as a team, and ac-
counting for the different capabilities of the agents (the user and the computer),
improved interactions have resulted in which the computer can take a more
proactive collaborative role. Also, modeling the interaction as collaboration
facilitated improved communication from the computer, and reduce the load
on the user. The techniques have also been used in two-agent human-robot
interactions.

An expanding area of research deals with one-to-many interactions, in par-
ticular in providing methods for a single human user (often, the operator) to
monitor, visualize, and command a group of agents that work on its behalf.
Methods for allowing command of groups vary from providing commands to a
centralized agent (which distributes them to its peers), to sequential one-on-one
interactions between the operator and a single agent, as needed. In general,
one-to-many interactions require significant underlying autonomy by the agent



group members. A key challenge lies in monitoring the group, as agents are
physically and logically distributed, and thus mostly unobservable to the user.
To gather the monitoring information, agents may be required to communicate
their activities to the user, assuming reliable and cheap communications. Alter-
natively, a technique called overhearing allows the user to monitor the agents
by listening in to their routine conversations.

Finally, applications have recently emerged for many-to-many interactions,
in which agent groups consist of multiple humans and multiple computational
agents. For example, future search-and-rescue operations will include software
and robotic agents, which will provide logistics and physical labor services to
human rescue workers, to limit danger to humans and improve rescue efforts. In
addition to task and resource allocation issues here, challenges also include using
agents to represent their human users in interacting with other humans (e.g.,
as avatars) or with other agents. In such cases, agents must decide, through
techniques of adjustable autonomy, on the scope of their authority to act on
behalf of their user(s) without asking her for guidance.
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