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Abstract

Control graphs are used in multi-robot systems to maintain infor-
mation about which robot senses another robot, and at what posi-
tion. On the basis of such graphs, it is possible to compute a shared
coordinate system, localize relative to others, and maintain stable for-
mations. While existing work shows how to utilize control graphs for
these tasks, it makes two critical assumptions. First, it assumes edge
weights of control graphs are single deterministic scalars. However in
reality there are many stochastic factors (e.g, latency, resource costs,
or position errors), that affect optimality of control graphs. Second,
it assumes that a single robot is given, to serve as the global anchor
for the robots’ relative positioning and location estimates. However,
optimal selection of this robot is an open problem. In this work, we
generalize control graphs to distinguish different stochastic sensing fac-
tors that may be represented by control graphs, beyond existing work,
and discuss risk-based policies for their treatment. We show that ex-
isting work in coordinate frame alignment and formation maintenance
may be recast as graph-theoretic algorithms inducing control graphs
for more general representation of the sensing capabilities of robots.
We then formulate the problem of optimal selection of an anchor, and
present a centralized algorithm for solving it. We evaluate use of these
algorithm on physical and simulated robots equipped with depth and
image sensors (RGB-D cameras), and show they very significantly im-
prove on existing work.
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1 Introduction

Control graphs are used in multi-robot systems to maintain information
about which robot senses another robot, and at what position. In such
control graphs, nodes represent robots in given positions. Weighted edges
represent sensing capabilities; an edge from node A to node B, with weight
w, represents the fact that robot A can sense robot B, with preference w
(typically, smaller weight indicates stronger preference). On the basis of such
graphs, it is possible to build a shared coordinate system (e.g., [24]), compute
message passing paths in ad-hoc networks, and maintain stable formations
(e.g., [8, 10,17]).

Existing work utilizing control graphs raises several open challenges. First,
it offers no systematic treatment of the edge weights, how they are deter-
mined, and how they should be utilized in the computation of optimal control
graphs. Different tasks (e.g., building a coordinate system versus formation
maintenance) utilizes the edge weights differently. Second, it makes the as-
sumption that a single robot is given, chosen to serve as the global anchor
of the shared coordinate system, leader of the formation, or origin of a mes-
sage whose position is taken as the basis for the robots’ relative positioning
and location estimates. Third, it ignores uncertainty in the weights of edges,
such that, for instance, if the edge weight denotes a distance, it assumes the
distance is known with certainty, despite the inherent uncertainty that exists
in real-world sensing. In this work, we tackle these open challenges.

First, we synthesize from existing work, and then generalize the notion
of control graphs and their uses. We begin by refining the definition of mon-
itoring multi-graphs [17], which distinguish between different sensing config-
urations of robots. We show how existing techniques (e.g., for computing
shared coordinate systems) can be optimized by re-casting them in terms of
graph-theoretic algorithms for inducing directed trees from the multi-graphs,
such that the trees optimize for a given criteria (e.g., team costs, individual
position error). Each such tree is an optimal control graph for a given task
(e.g., message passing, formation maintenance).

Second, on the basis of this more general understanding of how control
graphs are generated from monitoring multi-graphs, we formulate the prob-
lem of optimal selection of leader or global anchor in a given monitoring
multi-graph. A leader robot serves as the root of the control graph (tree)
generated from it. We present a centralized algorithm that efficiently deter-
mines the optimal leader for a given task, as well as the resulting control
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graph.
We evaluate use of the novel algorithms on physical and simulated robots

equipped with depth and image sensors (RGB-D cameras), and contrast them
with results obtained from existing work. The results show very significant
improvements from using these algorithms for coordinate frame alignment,
in both simulated and real robots, in static and dynamic settings.
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2 Related Work

The use of the mathematical notion of a graph for reasoning about roles of
robots in cooperative multi-robot tasks has a long history. We survey below
only the most related, recent work.
Formation maintenance. In the problem of formation maintenance, a
team of robots should move while maintaining a shape, dictated by their
relative positions (e.g., column, diamond, arrow). Some of the literature
focuses on aspects of stability, motion efficiency and feasibility for different
types of robots, all of which we do not address here [2, 3, 5, 25,26,28].

Balch et al. [4] developed behaviors for formation maintenance in multi
robot systems. The formation behaviors were implemented as a reactive
navigational strategy, where every robot had some high level behavioral in-
tentions and the sum of all responses that served every intention created the
output for execution by each robot. Balch et al. introduced the behavior
maintain-formation which generates a movement vector towards the correct
robot location in the formation. Three techniques for positioning in the for-
mation were introduced: Unit center reference, leader reference and neighbor
reference. In this work we focus on the robots positioning and how to choose
the correct leader that optimize the robots locations. We do not interfere
with the robots movement or try to improve the formation stability.

Desai et al. [8–10] defined a control graph as an unweighted directed graph
(digraph) whose vertices are the robots in the formation. An edge from A
to B represents that robot A monitors robot B’s position. They utilize this
graph to discuss formation maintenance tasks, in which the shape of the
formation (and thus the graph) changes to accommodate the terrain and
obstacles. Moreover, they show that a formation can be stably maintained
if the control graph implies each robot (except a single leader) maintains
its bearing (angle) and separation (distance) with respect to one other robot
(target). This type of formation control is known as SBC (Separation-Bearing
Control). Without referring to control graphs, Fredslund and Matarić [13]
propose a distributed algorithm for generating SBC monitoring rules (i.e.,
which robot monitors whom) given a target placement of the robots and the
leader, by their identification (IDs). This restriction on placement, and addi-
tional constraints on the formations, maintain connectivity of the underlying
graph. In contrast, we consider weighted edges in our control graphs, and
show how to optimally induce (select) control graphs for different tasks (not
just formations). We also address the question of leader selection. However,
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our algorithms here are centralized, to avoid these restrictions.
Kaminka et al. [17] generalized on these works. They defined a monitor-

ing multi-graph, which compactly represents all possible SBC control graphs
for a given placement of robots. Each edge represents a possible configura-
tion of the follower robot by which it can sense a target robot (local leader).
Graph edges are weighted, where the weights indicate costs of sensor usage
in the given configuration. They present a centralized algorithm for inducing
a specific control graph, which optimizes the selection of targets, given a cho-
sen leader. In particular, their algorithm optimizes individual sensor usage
costs, which accumulate over edges. We show that their representation and
algorithm is a special case of a broader definition of monitoring multi-graphs,
and of a family of useful algorithms which can optimize for criteria other than
individual accumulating costs. Moreover, we address the question of leader
selection, which they leave open.

Lemay et al. [18] and Michaud et al. [23], present a distributed method
of assigning robots to formation positions. The computation relies on a cost
function that considers distances and angles to the teammates; it outputs
the lowest-cost assignment of robots to positions. Additionally, a leader
robot is determined, which minimizes costs over all possible assignments. In
contrast, we begin with robots already assigned, and only then select a leader
and SBC targets. Each robot in a formation determines a cost for assigning
its teammates to positions in the given formation, assuming it is the leader
(which they refer to as conductor). Then the best (minimal cost) assignment
of roles to robots (including the leader) is made. Our approach complements
this work. We use computation of sensing costs after robots have already
been assigned to their positions, to determine the sensor configuration used
by each robot to monitor its target. Furthermore, the technique we present
allows dynamic switching of control graphs within the same formation, where
the work by Lemay et al. and Michaud et al. do not allows switching of the
formation shapes.
Shared Coordinate Systems (Coordinate Frame Alignment). An-
other common task is that of multiple robots agreeing on a common coor-
dinate system (axes and origin), e.g., as the basis for relative localization
to the surrounding environment and multi-robot mapping [1, 11, 14]. There
are several studies regarding the construction and alignment of coordinate
systems (e.g., [15, 21, 27, 30]). Briefly, the task here is for robots to identify
their alignment (translation and rotation) with respect to each other (typ-
ically one of the robots serves as a global anchor). As not all robots can
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sense the global anchors, they may instead localize via anchor chains, i.e.,
localize with respect to local anchors, who sense other anchors, etc. This is
also referred to as coordinate frame alignment.

Most such work focuses on the filtering mechanisms able to cope with the
uncertainty inherent to this process, and with various types of errors (e.g.,
receiving only range information).

Piovan et al. [27], introduced the frame localization problem in a con-
nected network and provided an algorithm for positioning the nodes based
on a bearing sensor (distance and angle readings). Some assumptions were
made on the network, such as that it is bi-directional in the sense that if
node i can sense node j then node j can sense node i and that the network
is static. The algorithm aligned the network frames and established position
for all the nodes. In our work we remove the bidirectional and static assump-
tions and focus on choosing the optimal node to align with. We use the same
technique for aligning the frame after the optimization has been finished.

Recently, Nagavalli et al. [24] presented a distributed method for improv-
ing the accuracy of such alignments, by utilizing a breadth-first search (BFS)
to minimize the number of anchors in anchor chains, all beginning with a se-
lected global anchor. In this work we present a centralized algorithm for
selecting an optimal global anchor in this task, and show that this further
improves (significantly) the position estimates of the robots. Moreover, this
works with anchors that are not part of the team, such as objects in the team
surroundings that the robots can identify.
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3 Optimal Construction of Control Graphs

We begin with robots placed in fixed relative positions, and no leader as-
signed. In Section 3.1 we show how to compactly represent all the different
possibilities for robots to sense each other in their positions, using a refined
definition of monitoring multi-graphs, originally presented in [17]. Then,
in Section 3.2 we show how existing work can be re-cast in terms of graph-
theoretical algorithms, properly extended to run on monitoring multi-graphs.
Existing work leaves open the question of optimal leader selection, which we
address in Section 3.4.

3.1 Monitoring Multi-Graphs

A monitoring multigraph captures all the potential control graphs for a group
of robots in fixed positions. As defined in [17], it is a directed, weighted
multigraph G = 〈V,E〉, where V is a set of vertices representing robots, and
E is a bag (multi-set) of weighted edges between vertices.

Each vi ∈ V represents a unique robot i, identified by its index, and
having a specific pose in space. The function pos : V 7→ <n identifies the
unique pose of each robot v ∈ V (typically, n = 3, with the pose determined
by the position and orientation of the robot v).

Let vi, vj ∈ V be two robots. Suppose vi can use a specific configuration
of its sensors to sense vj, i.e., vi computes an estimate of pos(vj), denoted

by ˆpos(vj). Denote the specific configuration by x. For instance, it may
refer to a specific pan of a camera or Lidar, combined with a specific sensor
processing algorithms (e.g., visual marking recognition, depth perception),
a specific choice of resolution or focus, etc. [17] propose using scalar costs
to indicate the robot manufactures’ preferences for the use of the sensor in
this configuration, based on distance, field of view, and pan range. Sensor
reliability based on these factors, i.e., the quality of ˆpos(vj), is supposed to
be the basis for setting this preference. The scalar cost values are combined,
using a weighted-sum function, into a single scalar value cxij to be used as the
edge weight.

We depart from this definition as presented in [17] in two ways. First, we
distinguish between directly measurable resource costs (such as expenditure
of power, computation time, or sensor processing latency), and errors in the

estimate ˆpos(vj), which are given in terms of deviations from the ground
truth. Second, we accept that realistically, costs and errors can only be
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estimated with uncertainty. Thus we model them—and their translation into
edge weights—as random variables, with a known probability distribution
function.

More precisely, with each measurable cost factor k in the operation of the
sensor, and each component of error m resulting from it in ˆpos(vj), we asso-

ciate a known probability distribution Cx,k
ij (Rx,m

ij , respectively), explicitly or
parametrically represented. For instance, if the perception latency l is known
to be uniformly distributed in the range 20ms–30ms, this may be explicitly
represented by setting Cx,l

ij ≡ U(20, 30). If the distance from vi to vj is d,

measured by a Lidar with a 3%, we may set Rx,d
ij ≡ U(−0.015d,+0.015d). As

vi only approximates the true position of vj with ˆpos(vj)), we use an approx-
imate d and update it as additional measurements are made. The overall
costs associated with the edge eij are then drawn from the joint distribution

of all Cx,k
ij , denote Cx

ij. Likewise, we denote the errors by Rx
ij.

Given these definitions, we define the edges in E as follows. An edge
exij ∈ E is a tuple exij = 〈vi, vj, Cx

ij, R
x
ij〉. When clear from the context, we

omit the superscript x. This definition departs from [17] in that we add the
representation of errors, and distinguish multiple components in costs and
errors. We also depart from [17] in that we assume that the sensing robot can
identify the sensed robot id and contrast the graph with the existing edges
without assuming all possible edges can exist and eliminating edges that are
occluded by other robots. Alternative configurations may result in improved
costs or lower errors; often a robot may trade these off, e.g., by spending
more computation time or more energy to improve its position estimate of
the other robot. Given |X| configurations for robot vi to monitor vj, the

exist edges e1ij, e
2
ij, . . . , e

|X|
ij ∈ E.

3.2 Inducing Control Graphs (for a Given Robot)

Monitoring multigraphs compactly represent all potential ways in which
robots could monitor each other in their positions. Given a task which re-
quires robots to monitor each other’s positions (e.g., formation maintenance),
we want to induce a control graph: a subset of the monitoring graph, which
specifies for each robot which sensor configuration to use, and what other
robot(s) to monitor, in order to improve task performance.

Many previous methods for tasks such as formation maintenance and dis-
tributed localization can be recast as a process of such control graph induc-
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tion, if we ignore the distributions, and instead assume a single deterministic
scalar value is associated with each edge. To see this, we distinguish between
tasks that accumulate edge costs (or errors) and tasks that do not. The
distinction is between tasks, not between types of costs or errors.

For example, consider the use of errors. In relative multi-robot localiza-
tion [15,24], robots build ego-centric coordinate systems where their relative
positions are known; each robot can determine its position with respect to
others (anchors), who determine their position with respect to other anchors,
etc. A single robot can be selected as an agreed upon origin for a shared co-
ordinate system. Position estimates with respect to this origin accumulate
errors with every such hop from one anchor to the next. Thus minimizing
the length of these anchor chains, as a heuristic, reduces these accumulating
errors. On the other hand, in many flocking algorithms, robots need to main-
tain their distances to others within certain bounds, so as to form amorphous
clusters (in contrast to specific positions, in formation maintenance tasks).
Here, position errors do not accumulate over links, as chains of robots that
use each other to anchors do not relate to a single origin point or target
positions.

Likewise, for costs. In formation maintenance, the latency in identifying
motion in observed robots results in the familiar “traffic-light effect”, where
there is a noticeable, accumulating delay between the time the leader of the
formation moves, and the time the last robot moves. Longer anchor chains
(e.g., in convoys) aggravate this effect. On the other hand, when costs mea-
sure power usage when monitoring other robots, costs are not accumulated.
If the task is to maintain visibility, the power spent by a robot to maintain
its target robot in sight is not an accumulation of the power spent by the
target robot itself. These examples are summarized in Table 1.

Costs Errors
Accumulating Factor Motion detection latency Position error
Task Formation-maintenance Relative Localization

e.g., [13, 17] e.g., [24]
Non-accumlating Factor Power usage Position error
Task Maintain in sight Aggregate

e.g., [32] e.g., [31]

Table 1: Example tasks relying on accumulating and non-accumulating costs
or errors.
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Indeed, we can now begin to recast existing work in terms of the algo-
rithms used to induce a control graph from a monitoring multigraph, whether
explicitly represented or not. We focus here on accumulating factors (Table 2
summarizes).

In the column marked “No leader selection, no optimal control graph” we
list previous works which utilize heuristic algorithms for deciding, for each
robot, which robot it should monitor, i.e., heuristic methods for constructing
control graphs, which are not guaranteed to be optimal (in the sense of
reducing accumulating errors or costs). In the next column, marked “no
leader selection, optimal control graphs”, we list investigations which, for a
given leader, generate an optimal control graphs minimizing accumulating
errors or costs (assuming scalar edge weights).

No leader selection, No leader selection, Leader selection, Leader selection,
No optimal Optimal Optimal Uncertainty

control graph control graph control graph
Algorithm type Heuristic Dijkstra’s All Pairs All Pairs
Algorithm type Shortest Path Shortest Path
Formation maintenance [13] [17] This This
Relative Localization [15,30] [24] Work Work

Table 2: Related work utilizing accumulating factors, re-cast by type of algo-
rithm and problem settings. [17] uses costs to represent errors. [24] assumes
uniform errors, allowing use of BFS instead of Dijkstra’s algorithm.

In general, a variant of Dijkstra’s single-source shortest path (S3P) algo-
rithm [7] is optimal for all cases in the “no leader selection, optimal control
graph” column, as long as edge weights are given in scalar terms. As de-
scribed in [17], once a leader (source) is given, and by reversing the direction
of all edges, Dijkstra’s algorithm can in principle compute a control graph
where the accumulating factors are minimized for a path from the leader to
any robot. If all edge weights are the same, Dijkstra’s algorithm reduces to
a breadth-first search (BFS).

For example, for the task of formation maintenance, Fredslund and Matarić
develop an algorithm for inducing formation-maintenance SBC rules using a
heuristic distributed algorithm. The algorithm does not explicitly construct
a monitoring multigraph from which it extracts a control graph. However, in
effect it acts to build a control graph by considering observable target robots.
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The leader is selected heuristically; the control graph is not guaranteed to
minimize accumulated errors. To address this, Kaminka et al. present a
method, based on Dijkstra’s algorithm, which minimizes path length to a
single target robot [17], using scalar edge weights. Thus once a leader is
selected, an optimal control graph is generated for it.

Several challenges remain open: First, how to address the uncertainty
inherent—and explicitly represented—in the stochastic edge weight com-
posed of Cx

ij, R
x
ij. Second, the challenge remains of determining the optimal

leader (i.e., one that whose associated control graph is superior to those of
other leaders). We address these in the next two sections.

We note in passing that for non-accumulating factors, whether errors or
costs, Dijkstra’s algorithm will not yield an optimal control graph. Instead,
the strategy here would be for every robot to select its own minimally-
weighted edge, as long as every robot is reachable. This, in particular, is
essentially equivalent to determining a minimum-spanning tree over a di-
rected graph, e.g., using ChuLiu/Edmonds’ algorithm [6, 12]. Here again, a
leader robot must often be chosen, as the direction of edges must be consid-
ered in the construction of the tree.

For each robot vi ∈ V there is a set of edges (vi, vj) ∈ E than robot
vi can use in order to measure its relative position. When talking about
global costs, the strategy to obtain minimal graph will be for every robot to
individually choose the minimal edge (vi, vj) and set vj as his local anchor vAi .
Two problems can occur, first, this strategy does not promise a connected
graph so not all robots in the team will be aligned on the same coordination
system. Second, it is possible that by choosing for robot vi a sub optimal
edge, the total cost for the team will decrease.

3.3 Inducing Control Graphs with Uncertainty: Man-
aging Risk

Following [19], we refer to a multigraph with random-variable weights as a
stochastic multigraph. Our task here is to determine the shortest path in the
stochastic graph, from a given root vertex (the leader) to every other vertex
(more accurately, in the reverse direction).

The length of a path in a stochastic graph is a function of random events
characterized by the probability distributions associated with the cost along
the path. We therefore have to decide how we would like to deal with the
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uncertainty. The common approach to dealing with uncertainty is by consid-
ering the risk involved in the decision. Standard policies include risk-aversion
(hoping to reduce risk, even at higher cost, i.e., minimize the expected max-
imal cost/error); risk-seeking (hoping to reduce costs, even at higher risk,
i.e., maximize the expected minimal cost/error); and risk-neutrality (per-
fectly balancing risk and costs, i.e., the mean cost/error). A decision may
also be bounded by either constant cost or risk.

In the risk averse policy, the shortest path selected will be the one that
minimize the cost in the worst case scenario. There are few algorithms dealing
with this problem, in general, we should choose a risk level α, between 0 to 1,
which will determine the likelihood of scenarios we want to take into account.
In the case of Global costs, the probability of each weight will be bound by α,
and the cost value C will be calculated by: Select C such that P (x < C) = α
for every edge.

In the risk-seeking policy we are trying to maximize the probability of
choosing the shortest path, where the aim is to get the lowest possible cost.
In this case the lowest cost available in every edge distribution will be chosen
as the edge cost. This strategy can be moderated by choosing different costs
with higher probability for every edge.

Different decision strategies can lead to different shortest path selections
in a given control graph. For instance, supposed we are given the following
monitoring multigraph (Figure 1). Here, robot S has to choose a minimal
path to the leader G, based on accumulating positioning errors (measured in
cm; the lower the better) that are normally distributed in the edges. Using
a risk averse policy with risk level α = 95%, S will choose the minimal path
S → C → G with accumulated error of 33.3cm, as the other path is expected
to be 35.4cm in length under the same risk policy. However, in case of using
the risk neutral policy, the path S → A→ G will be chosen as minimal path
with expected value of 28cm, while the other path value is 30cm.

In general, variants on Dijkstra’s algorithm, such as those used in pre-
vious work, must be modified to consider risk-dependent policies. Several
such algorithms appear elsewhere [16, 19], and are outside the scope of this
paper. However, it has been shown that risk-neutral selection both works cor-
rectly [19], and is safe, in the sense that it minimizes notions of regret [29].
For the remainder of the work, and in the experiments, we therefore used the
risk-neutral policy, by using the expected (mean) value of the distributions
E[Cx

ij] (or, as needed, E[Rx
ij]) as the edge weights. Here E[P ] is the expected

(mean) value of the probability distribution P .
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Figure 1: An example stochastic graph, with weight drawn from the normal
distributions shown.

3.4 Inducing Control Graphs with Optimal Global An-
chor

Having decided on a policy for handling risk resulting in the distributions
of errors and costs, we now turn to the second challenge raised by the state
of the art. Our task here is to select a single robot which will serve as the
origin point (global anchor) for an agreed-upon shared coordinate system,
or as leader of a formation. In the previous sections, we have discussed
how, given this selection, it is possible to compute optimal control graphs
which minimize costs or errors. In this section, we discuss how to efficiently
select a robot whose associated optimal control graph is superior to all other
control graphs, for all other leaders. We focus concretely on the task of
relative localization and construction of a shared coordinate system, and will
therefore optimize the leader selection and associated control graph to reduce
the errors Rx

ij. However, we emphasize that the same algorithm can be used
to optimize costs.
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3.4.1 Problem Formulation

K robots are positioned in space. Each robot is equipped with sensors,
allowing it to identify (some) other robots in its vicinity, and to estimate
their position with respect to itself (i.e., their position in its own ego-centric
coordinate frames). Furthermore, we assume robots are able to communicate
with their peers, at least with those they are able to observe. The settings are
captured by a monitoring multi-graph GK . The task is to extract a control
graph where the coordinate frame of a single robot (global anchor) is used as
the origin, and all robots align their coordinate frames to it. Because not all
robots can directly sense the global anchor, each robot can decide to align
its coordinate system with respect to one other robot (called local anchor),
who aligns itself to the global anchor, or to another local anchor. Thus a
coordinate frame alignment control graph has the following properties:

• The vertex representing the global anchor has an out-degree of 0.

• All other vertices (robots) have an out-degree of 1.

• There exist a path from every vertex (robot) to the vertex representing
the global anchor.

A coordinate frame alignment control graph is optimal with respect to
the selected global anchor vA if it minimizes the errors in position estimates
of the robots. Suppose we have a robot v0. Its position estimate in the
shared coordinate system accumulates errors with every local anchor it uses
on a path from itself to the global anchor in the control graph. It thus seeks
to minimize the sum of expected errors

∑
eij

E[Rij] where eij is an edge on

the path from v0 to vA. The question is how to choose vA. If we assume
all robots have the same position estimate errors, then the control graph
is the directed breadth-first search tree resulting from applying BFS to the
monitoring multigraph, beginning with the global anchor [24]. Otherwise,
a version of Dijkstra’s algorithm may be used to induce an optimal control
graph for the global anchor [17].

3.4.2 Optimal Global Anchor Selection

A global anchor vA is called optimal, if its associated control graph is superior
to the control graphs associated with any other potential global anchor. We
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consider two different ways a control graph may be superior to another: It
may reduce the average position error for the group (a societal view of errors),
or it may reduce the maximal position error (an individual view of errors).
Our task here is to determine the optimal global anchor for both definitions.

The process includes the following steps (see details next).

1. Transform the stochastic monitoring multigraph GK into an interme-
diate representation, G′K , which is a deterministically-weighted regular
digraph (embedding errors, and reversing direction of edges). This step
is carried out in time O(|E|), where E is the bag of edges in GK .

2. Apply an All Pairs Shortest Path (APSP) algorithm to the graph G′K .
The time needed depends on the algorithm chosen, but is generally
O(|V |3), where V is the set of vertices in G′K (normally, |V | = K).

3. Determine for each robot v ∈ V the set of shortest paths leading from
it Pv. For each such set Pv, determine the sum of the path lengths
Sv, or the maximal path length Mv, depending on the global anchor
selection criteria. This is carried out in time O(|V |2).

4. The global anchor vA is one that minimizes SvA or MvA . This is deter-
mined in time O(|V |).

Transformation of GK into G′K. This step is carried out to transform the
stochastic directed monitoring multigraph into a deterministic graph, which
embeds the necessary information, yet amenable to the execution of familiar
graph-theoretic algorithm. The graph G′K = 〈V ′, E ′〉 is built as follows.

First, we set V ′ ← V . Then, for each pair of vertices vi, vj ∈ V , we do
the following.

1. If an edge exij exists, with error distribution Rx
ij, then create a temporary

reversed edge, e′xji, with scalar weight rxji = E[Rx
ij].

2. Among all edges e′xji, select the one with minimum rxji, i.e., eji =
arg min

e′xji

(rxji).

3. Add eji to E ′

The result is a directed graph, with scalar deterministic edge weights, in
which all errors have been folded into the edge weights using the risk-neutral
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policy, redundant edges in the multigraph removed, and edge direction re-
versed. This allows us to now run the shortest path algorithm in the direc-
tion from a selected vertex to others, representing the reverse direction to
the robots’ monitoring of the selected robot. For ease of presentation, we
described the process as if it examines all pairs of vertices, but it could be
rewritten to work enumerating the edges.

All Pairs Shortest Paths. We now run an algorithm for determining the
shortest paths for all pairs of vertices. In our implementation we utilized
Johnson’s algorithm [7]. Given the size of V ′ is the number of robots K,
the algorithm runs in O(K2 logK + K|E|). The result is often represented
in a matrix L, such that matrix cell lji contains the length of the shortest
path from vertex j to vertex i (or ∞ if none exists). As edges are revered in
direction compared to the sensing direction, lji is the accumulating error in
position estimates, from robot vi to robot vj, where vi, vj ∈ V .

Determine Sv and/or Mv. We propose two different criteria for selecting
a global anchor that, if used as the origin for a shared coordinate system,
would result in smaller position estimate errors for the team of K robots.
One possible criterion is to minimize the mean position error of all K robots.
This is a societal criterion, as it balances the errors across all robots. An
alternative criterion is to minimize the worst-case error of any single robot,
possibly resulting in some robots accepting a larger error than individually
needed, in order to reduce the error got others.

We examine the matrix L. Let S,M be vectors of dimension K. We
denote Sv the component of S associated with a given v (and similarly, Mv).

For all v ∈ V , Sv = 1
K

K∑
i=1

lvi, i.e., the sum of all cells in row v divided by K, or

more intuitively, the mean length of shortest paths from all robots i to robot
v. As these shortest path represent smallest errors, this is the mean smallest
error in position estimates, if v is selected as global anchor. Similarly, for all

v ∈ V , Mv =
K

max
i=1

lvi, i.e., the maximal smallest error in position estimate

for any robot i, if v is the global anchor.

Determine global anchor vA. Finally, a new global anchor can be chosen,
by setting vA = arg min v ∈ V ′Sv, if we prefer a global anchor that minimizes
the average position error, or vA = arg min v ∈ V ′Mv, if we prefer to minimize
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Robot ID Max number of hops AVG number of hops
1 3 13/9 = 1.4
2 2 18/9 = 2

Table 3: Global anchor selection changes based on criteria.

the maximal error instead. If there are ties, they can be broken by preferring
according to the other criterion, or arbitrarily.

As an example of the difference in selection criteria, consider the graph
in Figure 2. It shows 9 robots and their control graph. Let us assume all
position errors are the same, thus minimizing position errors is correctly
approximated by minimizing the number of edges in a path. If we select
robot 1 as the global anchor, the average number of hops reaching all robots
is the sum of all path lengths (13), divided by the number of robots (9), i.e.,
1.4. The maximum path length for any single robot, however, is 3 (from
the rightmost robot to robot 1). On the other hand, if we select robot 2
as the global anchor, the average number of hops will be 18/9 = 2, and the
maximum path length will be 2. Thus in case, the average error will increase,
but the worst-case error is reduced.

Figure 2: Example graph for global anchor selection.
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4 Aligning Frames

In the previous section we presented a method for finding the optimal anchor
for a given team of robots, given an optimization criterion. In this section
we present in details the method used in order to align the robots’ frames to
the optimal anchor frame. This will produce a single axis system, with origin
on the optimal anchor, and a set of positions that represents every robot in
the team relative to the new origin.

4.1 Defining a single axis system

In order to create a single axis system on which every root knows its relative
place to all other robots, the team needs to define one axis system, and then
every robot needs to align its coordination frame relative to the best anchor.
Each robot needs to calculate its rotation relative to the axis system and its
translation relative to the axis system origin (the optimal anchor).

There are different ways to define one axis system that will be agreed
by all the team. Moreover depending on the given team of robots and the
given task the team is planning to preform, there is a different relevant axis
system (1D, 2D or 3D). For example, a team of robots that are patrolling on
a straight line, will need only 1D axis system in order to align them selves.
A team of UGVs that preform a coverage task will need 2D axis system, but
a team of UAVs that can move in 3D and are not bounded to move on the
ground, will need a 3D axis system in order to align themselves.

There are some cases were even though some of the robots in the team
can maneuver in 3D, the team needs only a 2D axis system in order to align
themselves. For example, if the team is composed of a given number of
UGVs and one UAV, it is enough to have a 2D axis system that all the team
is aligned accordingly, and only the UAV will have the dimension of height.

The axis system can be determined using vision. In this case, all robots
in the team needs to see a number of anchors, and create the axis system
accordingly. That means that for a 2D axis system, all robots in the team
need to decide on the positive direction of the ’X’ axis and the positive
direction of the ’Y’ axis. After the axis have been defined, rotation can be
calculated for all the robots in the team.

In order to agree on the axis system, a team of robots can use other
resources other than vision. The most basic sensor that is widely used by
robots, and can help in defining an axis system, is the compass. Using the

20



North-East convention for 2D axis system, or the North-East-Down conven-
tion for 3D system, can ease the construction of the axis system, and ease
the stage of calculating the rotation for every robot.

In the experiments we preformed in the simulator and with real robots
we used the compass sensor in order to construct the axis system. All robots
calculated their rotation relative to the North and later calculated their trans-
lation from the origin.

4.2 Aligning the team frames

Given the selection of the global anchor vA, we can now proceed to the
construction of the shared coordinate system by frame alignment. After each
robot decided on which anchor to align its frame to, the process of aligning
one robot frame to its local anchor frame is a set of affine transformation
(rotation and translation) which after, the robot’s location is relative to the
anchor coordination system. This process is described in detail in [24], The
next section will describe the algorithm for iteratively aligning all robot in
the team with vA.

Briefly, robot vA sets itself as the origin point, and broadcasts its own
identifier as such. Robots monitoring vA then align their coordinate frames
with respect to vA, and inform their peers that they are thus aligned and can
serve as local anchors. Robots further down the anchor chains, repeat this
again and again, until all robots are aligned to the origin in vA.

4.2.1 A Centralized Algorithm For Aligning Frames

In previous sections we presented the method of choosing vA that minimizes
the errors. The algorithm presented here is a centralized algorithm for align-
ing all team frames. It is centralized in the sense that it considers the entire
visibility graph, and can act on any edge or vertex arbitrarily. To simplify
the algorithm we assumes that if edge (vi, vj) ∈ E exists, its cost is 1, which
means that the visibility graph is equal to the cost graph. This assumption
can be removed by using another graph in the algorithm.

The algorithm that we present is implemented as a framework and can be
easily applied to any multi-robot system. The robots in the system should
have the capability to sense their location relative to other teammates in
the group and should provide an implementation for checking if robot vi can
sense robot vj (bool isConnected(i, j)).
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The algorithm has 5 main parts:

1. Initialization (line 2)

2. Updating vA (line 4)

3. Alignment based on local anchor (line 7)

4. Preforming robots’ tasks (line 21)

5. Updating the connectivity matrix (line 22)

In the first part the algorithm sets value to two matrices. ConMatold
is initialized to null and is being used to track changes in the connectivity
between the robots in the team. The second matrix ConMatnew is initialized
with the current connectivity matrix. GetConnectivityMatrix() in line 3
construct the connectivity matrix by using isConnected(i, j) function. It
iterates over all robots and checks for every robot if it is connected to all
others (implementation can be seen in line 1)

Since the second part of the algorithm is computationally expensive and
takes long time to calculate, it is being preformed only if there is a change
in the connectivity matrix. If the team keeps its formation or standing still,
and the connectivity is not being changed, this part will be preformed only
once, in the beginning of the algorithm.

In the second part of the algorithm we calculate all the shortest paths
that exists between all the robots based on the connectivity matrix. Any
implantation of the algorithm family of AllPairsShortestPath can be used
to calculate the shortest path connectivity matrix (ConMatsp). In our ex-
periments we implemented the Johnson’s algorithm.

After calculating ConMatsp, we use this data to find vA as shown in
previous section.

In the third part of the algorithm, the alignment of the coordinate system
is preformed and the location estimate is calculated. But before, each robot
needs to find its optimal local anchor to align according to it, and it needs
to make sure that its local anchor is already aligned according to vA. This
can be achieved by iterating over the team members by their number of hops
from vA, and make sure all the local anchors will be aligned according to vA.

In line 7, i represents the current number of hops from vA and in every
iteration, j is used to find all robots in the connectivity matrix with i number
of hops from vA (line 11). After finding robot j with i hops from vA, robot
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j needs to find its local anchor. This is being preformed by traversing row
number j in the shortest path matrix and looking for a cell with the value 1.
From all robots that are connected directly to j, the one with minimal cost to
vA is chosen as the local anchor of robot j. After choosing the local anchor,
robot j aligns its coordinate system with its local anchor and calculate its
estimate location based on relative data gain from its image sensor. Robot j
has its one coordination frame, its local anchor frame and both has a given
axis system. Based on this data, rotation and translation can be calculated.

The fourth part (line 21) of the algorithm is where the robots preform
their individual task. As this algorithm is a framework for multi-robots
systems, in this part all robots already has estimated locations relative to
one globe anchor and can start preforming their tasks. This part should not
take long time or block the main loop of the algorithm, because it can affect
the accuracy of the estimations.

The last part (line 22) is used for updating the connectivity matrix.
After preforming some task or moving, some of the edges in the connectivity
graph may change, and this change can affect the selection of vA. We keep
the current matrix in ConMatold and setting the new matrix to ConMatnew
using GetConnectivityGraph().

This entire process of selecting a global anchor and re-aligning may need
to be repeated as robots move or their sensing of their peers changes. A
weakness of the algorithm above is that it is centralized, so changes requiring
re-computation must be announced and the operation of the team must be
paused until a new global anchor is computed. We conjecture that there
is a method for making this process run faster than the initial process, by
propagating edge weight changes only where and as needed. This was done
for the more limited Dijkstra variant [17]. We leave this for future work.
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Algorithm 1 Centralized Coordination Frame Alignment

1: procedure AlignFrames())
2: ConMatold ← null
3: ConMatnew ← GetConnectivityMatrix()

4: if ConMatnew! = ConMatold then
5: ConMatsp = AllPairsShortestPath(ConMatnew)
6: bestAnchor = GetBestAnchor(ConMatsp)

7: i = 0
8: for i < sizeOfTeam do
9: j = 0

10: for j < sizeOfTeam do
11: if ConMatsp[bestAnchor][j] == i then
12: localAnchorID = null
13: localAnchorDepth = sizeOfTeam
14: k = 0
15: for k < sizeOfTeam do
16: if ConMatsp[j][k] == 1 then
17: if ConMatsp[bestAnchor][k] < localAnchorDepth

then
18: localAnchorID = k
19: localAnchorDepth = ConMatsp[bestAnchor][k]

20: AlignCoordinateFrames(localAnchorID)

21: DoWork()

22: ConMatold ← ConMatnew
23: ConMatnew ← GetConnectivityGraph()
24: goto 4
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Algorithm 2 Get Connectivity Graph Function

1: function GetConnectivityMatrix
2: i = 0
3: for i < sizeOfTeam do
4: j = 0
5: for j < sizeOfTeam do
6: if i == j then
7: ConMat[i][j] = 0
8: else if isConnected(i, j) then
9: ConMat[i][j] = 1

10: else
11: ConMat[i][j] =∞
12: return ConMat

5 Evaluation

To evaluate the effects of using the techniques presented in this work, we im-
plemented the algorithms for optimal global-anchor selection and coordinate
frame alignment in ROS (Robot Operating System1), to be used on Gazebo2-
simulated and real RoboTICan Lizi3 robots (shown in Figure 4b) and the
hector quad-rotor for simulated experiments on UAV-UGV formations. All
robots in the team were marked with unique visual markers identifying each
robot. Using image and depth data from an RGB-D sensor (a Kinect), each
robot identified its neighbors and measured their relative position in its ref-
erence frame. The performance of the algorithm was tested on a variety of
formations.

We have carried out experiments in three types of settings: robots stand-
ing still (Section 5.2), robots moving while maintaining a static formation
(Section 5.3), and robots moving while changing formation (Section 5.4). In
the first two settings, the relative positions of the robots are maintained—by
definition in the first setting, and using feedback control in the second. In the
third setting, moving robots changed their initial formation, requiring them
to select a new global anchor. In the experiments, the error measurements
Rij were synthesized from a sensor model that was estimated for the robots’

1http://www.ros.org/
2http://gazebosim.org/
3http://www.robotican.net/
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RGB-D sensors from calibration data (Section 5.1). Results summery can be
seen in table 4.

5.1 Sensor Model

In our algorithm we assume that the robots can assign cost or error to every
edge in the control graph that is relevant to their node. There are two
separate ways by which we can get the cost and error distributions for a
sensor, or a combination of sensors. The first is by learning/estimating the
distribution from calibration. The second is by relying on the specs of the
sensors from the manufacturer.

We wanted to test and see if the cost and error can be predicted based on
the robot’s sensor. We placed the Kinect sensor in front of a marker of size
10×10 centimeters with a distance of 1.5 meters and measured the difference
between the real distance from the marker and the Kinect measurements for
1 minute. We did the same measurement for every 10 centimeters, and
calculated the average difference (error) for every distance. The results are
shown in Figure 3. The graph represents the average error for every measured
distance. For example, when the sensor was placed at a distance of 150
centimeter, the average error was 0.055 meters. That mean that the average
measurement was 1.445 meters. The error bars show the standard deviation
of the measurements, that means that some of the measurements were 150±2
and some were 150± 9.

The results show that the sensor has an optimal range that produces
minimal error in range measurement, this is the readings range between 50
to 70 centimeters. Above this range and also below it, the error is growing.
Based on this data the algorithm can assign predictable error/cost to the
edges. The second interesting result that can be seen in the Kinect sensor
model graph is that even though there is a distribution of the measurement
error it is not around the real measured value, that means that for the Kinect,
we can try to improve the accuracy of the measurement by averaging more
than one result, but it still going to produce an error.

We conducted the same evaluation for other sensors that can be used in
multi robots team in order to measure relative location such as a simple USB
camera with marker recognition software, the Hokuyo URG-04LX-UG01 and
the Hokuyo UTM-30LX laser sensors. We did not repeat the same experiment
for the Hokuyo lasers but instead we evaluated the errors, costs and working
distance from the manufacturer specification sheet. For the USB camera we
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Type Experiment Robot Arbitrary
vA

Optimal
vA

Significance p value

ID Error in
meters

Error in
meters

(one-tailed t-test)

Standing
3-line (simulation) 3 0.058

(0.102)
0.036
(0.009)

7.12× 10−15

3-line (real robots) 3 0.107
(0.019)

0.049
(0.001)

0 (below excel limit)

6 zigzag (simulation) 2 0.031
(0.021)

0.014
(0.006)

2.62× 10−78

4 0.073
(0.142)

0.030
(0.005)

4.12× 10−15

5 0.086
(0.181)

0.032
(0.005)

4.90× 10−15

6 0.134
(0.239)

0.061
(0.033)

7.49× 10−16

Moving
Simulation 4 center 3 0.036

(0.014)
0.019
(0.018)

1.72× 10−98

4 0.032
(0.017)

0.013
(0.012)

5.92× 10−143

Real moving 4 center 3 0.155
(0.076)

0.095
(0.009)

8.31× 10−6

4 0.140
(0.105)

0.084
(0.038)

0.00056

Table 4: All experiment results, including mean errors in meters (standard
deviations), and t-test significance testing. Robot ID is shown for robots
not acting as global anchor vA in either setting. The optimal global anchor
column shows significant improvement in all experiments.
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Figure 3: Kinect sensor model

used the manufacturer sheet for costs and distances and for estimating the
error we based our prediction on the results shown in [20].

Table 5 summarizes the cost and capabilities for all the sensors. Every
row in the table represents a different sensor and its capabilities. The first
column notes the electrical cost for using the sensor in ampere (Taken from
the manufacturer manuals). If a robot decides to use the ’Hokuyo 30’ over
the ’Hokuyo 04’ it will use more battery power on the sensor. The second
column notes the estimated error in range measurement. For example, as
seen in Figure 3, the average error for the Kinect sensor depends on the
distance from the measured object, that means that for an object that is
located in front of the sensor with distance of 10 − 150 centimeters, the
error can vary between an average of 1 centimeter for the optimal distance
measure and an average of 6 centimeters for the worst. In the case of the
Hokuyo sensors, based on the manufacturer specification sheet, the error is
calculated as a percentage of the distance, which mean that for a distance
of 150 centimeters the error can be up to 4.5 centimeters. The last column
notes the maximum distance that the sensor can measure.
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Sensor Type Costs (Electricity) Errors Max Range

Kinect 1A (RGB & Depth) 10–60mm depends on 1.5m
distance to leader (For 10× 10cm marker)

USB Camera 0.3A (RGB only) 30–150mm depends on 1.5m
distance to leader (For 10× 10cm marker)

Hokuyo URG-04LX 0.5A 0.06 to 1m : 30mm, 4m
1 to 4m : 3% of measurement

Hokuyo UTM-30LX 0.7A 0.1 to 10m : 30mm, 30m
10 to 30m : 50mm

Table 5: Cost and capabilities for different types of sensors

5.2 Robots standing still

We begin with experiments in simulation. Our first experiment here recre-
ates an experiment in [24]. Six Lizi robots are placed as shown in Figure 4a.
All robots are static, and align their coordinate system with respect to the
selected global anchor. We use two different selection algorithms. The con-
trol experiments utilized the robot with minimal ID (an arbitrary selection),
as in [24]. The treatment experiments used the optimal global anchor selec-
tion as presented above (specifically, minimizing average error). Each setting
was run 5 times, each trial for two minutes, for a total of almost 1000 mea-
surements in each setting. We then compare the global position errors of
the robots using the two global anchors, based on ground truth measured
externally.

We conducted similar experiments, placing three robots as shown in Fig-
ure 4b. These were conducted both in simulation, as well as in real robots.
Robot 1 (bottom of the image) could monitor robot 2 (center) and vice versa;
robot 3 could see robot 2. We again collected position measurement data for
10 minutes in each settings, in simulation, and then again in the real robots.

The results, summarized in the upper part of Table 4, show a very sig-
nificant improvement in the position estimates of the robots, in the shared
coordinate system. For example, in the experiment with six standing robots,
when using the minimal robot ID as a global anchor the farthest robot (#6)
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(a) Six simulated robots.

(b) Three real robots. Simu-
lated robots placed likewise.

Figure 4: Formation in static experiments.

was located five hops away, and accumulated approximately 13cm in error.
However, using the global anchor selected by our algorithm, the average error
for the same robot, now located 3 hops away, drops to 6cm. This improve-
ment is statistically significant (one tailed t-test, p < 7.49× 10−16). Similar
improvements can be seen in the case of three robots standing in line, both
simulated and real. Over all trials, these results are over approximately 5000
measurements in each settings, for each robot. Figures 5 and 6 shows the
results of the simulated experiment while Figure 6 shows the comparison be-
tween minimal and optimal vA average error for a given number of hops in
simulated experiments.

Results in Figure 7 show the improvement in location accuracy for the
real robots experiment. When using the minimal robot ID as a global an-
chor the farthest robot (#3) was located two hops away, and accumulated
approximately 10cm in error. However, using the global anchor selected by
our algorithm, the average error for the same robot, now located one hop
away, drops to 5cm.
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(a) Minimal robot ID as vA

(b) Optimal robot ID as vA

Figure 5: Simulated experiment with six static robots
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Figure 6: Simulated experiment with six static robots, Optimal Vs. Minimal

5.3 Moving in Static Formation

We now turn to experiments where robots moved while continually estimating
their position based on a shared coordinate system, with the origin at the
selected global anchor. We placed four robots in the formation shown in
Figure 8a, again both in simulation as well as in the lab. Robot 1 (front of
the formation) could monitor robot 2 (center) and vice versa, robots 3 and
4 (side by side, bottom) could monitor robot 2. Figure 8b shows the real
robots in one of the trials.

We conducted 5 runs of the formation in each of the settings (using the
minimum ID for the global anchor vA, and using the global anchor selected
by our algorithm). Each run was for two minutes, allowing us to collect
just under 1000 position measurements in each settings, for each robot. In
the minimum ID settings, robot 1 was selected as the global anchor. In the
optimal settings, our algorithm chose robot 2 as the global anchor.

While in the simulated experiment the location error was measured rela-
tive the ground truth, in the experiments with real robots we did not have
a accurate location of the robots in the lab. We got the real robots relative
location from measurements that where done during the experiment with a
roller and measured the errors based on the chosen leader.

The results of this experiment are summarized in the lower part of Ta-
ble 4. We see very significant improvements in the accuracy of the position
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(a) Minimal ID as vA

(b) Optimal ID as vA

Figure 7: Running static experiments on real robots
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(a) Formation place-
ment. (b) Real robots.

Figure 8: Formation maintained while moving.

estimates of robots 3 and 4, which are trailing behind. For instance, in the
real robots, position estimate errors dropped from around 13cm to around
9cm. Figure 9 and 10 show the results for the simulated and real experiments.

An interesting observation can be made from this experiment, regarding
the difference in tasks between formation maintenance and stability, and
coordinate frame alignment. This experiment showed that the first robot in
a formation may be optimal as a leader in the sense of showing the path to
all robots but may not be optimal as global anchor to the shared coordinate
system.

(a) Minimal ID as vA (b) Optimal ID as vA

Figure 9: Simulated experiment with four moving robots
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(a) Minimal ID as vA (b) Optimal ID as vA

Figure 10: Real experiment with four moving robots

5.4 Moving and switching global anchor vA

Figure 11: Dynamic formation. Robot #4 overtaking others.

As a final experiment, we tested the ability of the algorithm to adjust the
global anchor while moving, when the relative position of robots is changed.
Four simulated robots were placed as shown in Figure 11. All robots moved
forward; robots 1–3 at constant speed, and robot 4 three time faster, along
the dotted path shown in the figure, and until it pulled ahead of everyone
else. While moving, the robots continually checked and recomputed the
global anchor appropriate to their current settings.

We ran 5 trials of this experiment, each taking approximately two and
a half minutes. At the beginning of each run, robot 1 was chosen as global
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anchor vA, and the algorithm chose local anchors for all other robots: robot
4 monitored 3, which monitored 2, which monitored 1. However, as robot 4
begins to overtake it peers, its local anchor changes from 3 to 2, then to 1,
until finally it overtakes robot 1, at which point it becomes the global anchor,
and root 1 switches to monitor it.

Figure 12 shows the mean error (error bars indicate standard deviation)
of robot 4 during the experiment. It shows that between 0.1 minutes and
0.5 minutes into a trial, when robot 4’s local anchor is robot 3, the error
in position (in the shared coordinate system where robot 1 is the origin) is
around 40cm. After passing robot 3, robot 4 changes local anchor based on
the optimal selection, first to robot 2 and then to robot 1. Approximately
0.95 minutes into the run, and until 1.15 minutes in it, robot 4’s local anchor
is robot 1 which is still the global anchor vA. We see a corresponding decrease
in robot 4’s position error as it now monitors the global anchor directly. After
1.15 minutes, robot 4 cannot see any other robot and its error increases due
to moving and assuming location in its last position. With real robot it is
possible to change the localization method to less accurate one such as GPS
in this situation. After robot 4 enters robot 1’s field of view, the algorithm
sets robot 4 to serve as vA.

Figure 12: Changing control graph in real time

5.5 UAV-UGV Formations

In order to evaluate our algorithm with heterogeneous robots and to evaluate
the affect of different camera to marker angles on the location estimate, we
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created a simulated experiment with two robots: one UAV and one ground
robot. Sections 5.5.1 and 5.5.2 describe the experiment setup and results.

5.5.1 UAV-UGV Experiment Setup

In this experiment we used two simulated robots, a UGV and a UAV. For the
UAV model we used the hector quadrotor ROS package [22], we have used
the basic quadrotor model with one fixed camera in the front of the UAV.
For the UGV model we created a new omni directional robot shaped as a
cube. We placed five different markers on the robot, one marker on each
cube face and one on the top. We used the first five markers in the ar pose
ROS package implementation.

In the experiment presented here, the UAV flies in a circle around the
UGV while maintaining the marker placed on top of the cube in its sight.
We ran our algorithm to set the optimal vA (in this case there is only one
possibility) and measured the errors for the UAV estimated location.

5.5.2 UAV-UGV Experiment results

In this experiment we found that the angle of the UAV relative to the marker
on the ground changes the accuracy of the distance measurement, thus effects
the location estimate error. We saw the same behavior in the Lizi experiments
and also with two different implementations of markers in ROS: ar pose and
ar track alvar. Figure 13 shows the UAV location error while it circled around
the UGV and estimated its location based on one marker placed on top of
the UGV. We can see that in some bearing angles to the marker the UAV has
better accuracy in its location. Those findings can be taken in consideration
when choosing vA, a better understanding of the causes to the errors can
help improving the location estimations.

6 Discussion and Extensions

The algorithm presented (and evaluated) in the previous sections can be
used for different multi robot teams with a variety of tasks, in many envi-
ronments. In this section we discuss some extensions that can be made in
order to improve the capabilities of the algorithm and in order to improve
its evaluation.
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Figure 13: Average UAV location error given different angles to marker

6.1 Static Landmarks

It is possible that for some tasks the team of robots will prefer to align their
coordinate system on static landmarks that the team can identify. Those
landmarks can be objects in the surrounding area or even a malfunctioning
robot. In this case the team needs to take in consideration that the object
or robot can serve as a global anchor for the team but it should not be
considered as an robot that needs to align its coordinate system or to serve
as a local anchor. To deal with this case we extended the algorithm showed
above to take this option of choosing a global anchor that is not from the
team.

The changes that needs to be done are as follow:

1. In the monitoring multi-graph, vertices that represent the static land-
marks need to be added, and all edges from all robots that can identify
the landmark are added with their error distribution.

2. Run the All Pairs Shortest Paths algorithm.

3. Because that the vertices that represents the static landmark in the
monitoring multigraph have no out-going edges, when calculating Sv

or Mv there will be no change to the sum, because there are no paths
between the static landmarks to the robots in the team.

4. The rest of the algorithm has no changes and the output with intro-
ducing static landmarks can improve the accuracy of the coordination
system.
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6.2 Optimal Control Graphs for Heterogeneous Teams

In section 5.5 we briefly started evaluating our algorithm on heterogeneous
teams. In this section we would like to extend this evaluation on heteroge-
neous teams by using simulated graph with three types of robots and different
possible types of sensors. The data regarding the sensors capabilities is based
on the sensor models that were presented in section 5.1 and on the sensors
manufacture specification. Table 6 summarizes the capabilities of our three
robots used in the simulated graphs. The sensors we use are the Kinect sen-
sor with two options of usage: RGB & Depth or RGB only that acts as a
USB camera and two types of Hokuyo laser, URG-04LX and UTM-30LX.
Despite the fact that the laser sensors can not be used in order to identify
the other robots identification number, we use their specifications in order
to show the differences in robots capabilities and leader selection.

In the simulated graphs, for a given formation of the robots, we show
the different leader selection made by the robots in different optimization
criteria (cost and number of hops). We also present the different leader
selection for different distribution of robots types in the formation. Previous
works (e.g., [17]) also included the tilt of the sensor and the range of the local
leader in the cost function. The cost can be defined by many parameters that
are relevant to the specific multi robot team. In this experiment we use the
electricity consumption of the sensor in order to define the cost of using the
sensor.

We present here two static formations, for each one we present two possi-
ble distributions of robots. One with only robots of ”Type 1” and the second
with a mix of robots of ”Type 2” and ”Type 3”. In the example figures (15,
14, 17, 16), the type of robot is written on each circle that represents a robot.
In all of our examples the distance of every two adjacent robots is 1.5 meter
and the capabilities to identify a robot is based on this distance.

We also included in this section an example for the different leader se-
lection in a simulated graph when changing the selection criteria for Va. the
formation presented in Figure 17.

Figure 14 shows a formation of nine robots all of the same type. The
arrows present the capabilities of each robot in the team to identify and
measure it relative location to other robots. Figure 14a presents the full
multigraph that emerge for this example. Figure 14b presents the selected
global and local anchors and the selected sensor that is optimal to use when
trying to minimize the number of hops.
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Robot type Sensors Mounted Costs (Electricity) Errors Max Range

Type 1:
Kinect 1A (RGB & Depth) 10–60mm 1.5m

0.3A (RGB only) 30–150mm 1.5m

Hokuyo URG-04LX 0.5A 0.06 to 1m : 30mm, 4m
1 to 4m : 3% of measurement

Type 2:
Hokuyo URG-04LX 0.5A 0.06 to 1m : 30mm, 4m

1 to 4m : 3% of measurement

Hokuyo UTM-30LX 0.7A 0.1 to 10m : 30mm, 30m
10 to 30m : 50mm

Type 3:
Kinect 1A (RGB & Depth) 10–60mm 1.5m

0.3A (RGB only) 30–150mm 1.5m

Hokuyo UTM-30LX 0.7A 0.1 to 10m : 30mm, 30m
10 to 30m : 50mm

Table 6: Three types of robots that differ in the sensors mounted on them.
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(a) Full multigraph (b) Minimizing the number of hops

Figure 14: Nine robots formation of ”Type 1”

In Figure 15 we use the same formation as in the previous example, but
the type of robots is changed. Figure 15a presents the new emerged multi-
graph and Figures 15b and 15c presents the selected edges when minimizing
the number of hops to the global anchor and when minimizing the cost of
using the sensors of the robots. The results show that for different types of
robots, different formations can emerge. Even thought the global anchor in
this formation is given (as it is the only one how can serve as global anchor),
when trying to optimize different features the robots choose different local
anchors.

Figures 16 and 17 present a formation of seven robots arranged in a shape
of a square. In this formation the upper left robot and upper central robot can
see each other. Due to this, both of these robots can serve as global anchors.
In the next examples we can see that not only the local leaders are changing
but also the global leader can be changed due to different optimization or
different distribution of robots.

Figure 16a present the full multigraph that emerge from the square for-
mation when all the robots are of ”Type 1” while Figure 16b present the
selection of global leader and local leaders when optimizing the number of
hops. Even thought some of the robots can detect other robots with lower
cost by using a different sensor, when trying to optimize the number of hops,
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(a) Full multigraph (b) Minimizing the number of hops

(c) Minimizing the cost

Figure 15: Nine robots formation of mix types
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sometimes the individual robot in the team will ”pay” more then the minimal
cost his could.

(a) Full multigraph

(b) Minimizing the num-
ber of hops

Figure 16: Square formation of ”Type 1”

For the last example for heterogeneous robots team, we used the same
team of seven robots holding a formation of a square, only that we changed
the robots’ type to ”Type 2” and ”Type 3”. Figure 17a presents the multi-
graph for this formation and Figures 17b and 17c the formation control graph
after the optimization. The results in these two control graphs show that for
different optimizations the global anchor may change even thought the dis-
tribution of robots stayed the same.

The last example with simulated graphs, presents how changing the se-
lection criteria of vA, also changes the selected control graph. Figure 18a
presents the full multi graph for the given formation. Figures 18b and 18c
presents the selected control graph for the given team formation while choos-
ing the Mean selection criteria and the Min/Max selection criteria. We can
see that in this formation the selected vA changed based on the criteria used
to choose it. This is not true for all team formations, in the examples shown
above, the leader selection and the selected control graph would be the same
for both vA selection criteria.
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(a) Full multigraph

(b) Minimizing the num-
ber of hops

(c) Minimizing the cost

Figure 17: Square formation of mix types

7 Conclusion And Future Work

Control graphs are used in multi-robot systems to maintain information
about which robot senses another robot, and at what position. On the basis
of such graphs, it is possible to compute a shared coordinate system, localize
relative to others, and maintain stable formations. To compactly represent
all possible control graphs, a monitoring multigraph construct was proposed
in [17], with the idea that an optimal control graph could be induced from
such a multigraph.

In this work, we argued that while existing work shows how to induce and
utilize control graphs for these different tasks, it makes two critical assump-
tions. First, it assumes that a single robot is given, to serve as formation
leader or global anchor and origin point for coordinate frame alignment.
Second, it induces control graph heuristically (often) and on the basis of
unrealistic deterministic weights which qualitatively correspond to the robot
builders belief in sensor reliability.

We address both of these assumptions. First, we extended the defini-
tion of monitoring multigraphs, a construct intended to compactly represent
all possible control graphs, in several ways. We distinguished the cost and
error factors which need to be taken into account, and argued for the ex-
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(a) Full multigraph

(b) Mean selection criteria (c) Min/Max selection criteria

Figure 18: Eleven robots of type one, optimized with two different vA selec-
tion criteria
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plicit representation of distributions of these factors, so as to allow managing
risk involved in control graph induction. We focused on risk-neutral decision
policy, which allows us to replace the stochastic edge weights with the de-
terministic expected value of the distributions (i.e., their mean). Second, we
demonstrated that an All Pairs Shortest Path algorithm can be utilized, on
the extended monitoring multi-graph, through some transformations. This
facilitates the automatic determination of an optimal robot to lead a forma-
tion or serve as a global anchor. We conducted extensive experiments in real
and simulated robots; these show very significant improvement to the robots’
position estimates. In future work, we hope to examine alternative methods
for dealing with decision policies that are risk-averse, or risk-seeking.
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ries. In Proceedings of the Eighth Conference on Intelligent Autonomous
Systems (IAS-8), volume IOS Press, 2004.

[29] M. Traub, G. A. Kaminka, and N. Agmon. Who goes there? using social
regret to select a robot to reach a goal. In Proceedings of the Tenth
International Joint Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS), 2011.

49



[30] N. Trawny, X. S. Zhou, K. Zhou, and S. I. Roumeliotis. Interrobot
transformations in 3D. IEEE Transactions on Robotics, 26(2):226–243,
April 2010.
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