
CPNP: Colored Petri Net Represention

of Single-Robot and Multi-Robot Plans

Limor Marciano

Submitted in partial fulfillment of the requirements for the Master’s Degree in the
Department of Computer Science, Bar-Ilan University

Ramat Gan, Israel September, 2013

This work was carried out under the supervision of Prof. Gal A. Kaminka,
department of Computer Science, Bar-Ilan University.

ACKNOWLEDGMENTS

First of all, I would like to express my heartfelt thanks to my teacher and advisor, Professor Gal

Kaminka. It would be impossible to quantify how much I learned from him during my years as a

student. Gal taught me to carry out my research to the utmost of my ability, to present challenges

and overcome them and to prepare presentations at the highest level possible (excellent tips can

be found on his website). He helped to develop my ideas, formulate them and present them. Gal

showed me different ways to approach and solve problems. I especially want to thank him for

always finding the time to see me even during busy periods.

Furthermore, I would like to thank the laboratory manager, my friend Gabriela Melamed. She

was of tremendous help with all the administrative issues. Gabriela was very considerate and

always tried to do the best in scheduling an appointment even if she had to squeeze me in.

Next, I would like to thank the secretaries of the Computer Science Department for their sup-

port and help whenever it was needed. They helped me to apply for and receive the proper schol-

arships. Their door was always open during and beyond office hours.

I also want to thank my friends and colleagues for their support, encouragement and help.

I thank G-d for exposing me to the wonderful world of robots, for letting me work with a world-

renowned robotic expert and for providing me with wonderful and supportive friends.

Contents

1 Introduction 1

2 Background and Related work 4
2.1 Representing Robot Plans for Execution . 4

2.1.1 Finite State Machine (FSM) . 4
2.1.2 BDI and Behavior-Based Representations 5
2.1.3 Planning and Hybrid Approaches . 7

2.2 Petri Nets: A Promising Basis for Representing Plans 8
2.2.1 Petri Nets: The Basics . 9
2.2.2 Properties of Petri Nets . 12
2.2.3 Colored Petri Nets . 15
2.2.4 Literature on Petri Net-Based Representations of Robot Plans 18

3 Representing the Plans of a Single Robot: CPNP 24
3.1 Colored Petri Net Plan (CPNP) . 25
3.2 Basic Building Blocks . 28

3.2.1 Actions . 28
3.2.2 Operators . 30

3.3 Re-use and Abstraction through Hierarchical Decomposition 38
3.4 Interrupting a Running Task . 44
3.5 Representing Resources . 50
3.6 CPNP: Execution Algorithm of a Single Robot 52

4 Theoretical Analysis of Multi-Robot Petri Net Plan Representations 59
4.1 Joint State Representation vs. Individual State Representation 60
4.2 An Analysis of Petri Net Representations for Multi-Robot Systems 64

4.2.1 Space Complexity Analysis When Each Robot is Independent 66
4.2.2 Space Complexity Analysis of The Weak Dependence Operator 69
4.2.3 Space Complexity Analysis of the Strong Dependence Operator 74

4.3 Summary . 78

iv

v CONTENTS

5 CPNP Representation for Multi-Robot Systems 80
5.1 Building Blocks for Multi-Robot CPNPs . 81

5.1.1 Multi-Robot Operators in Centralized Settings 82
5.1.2 Multi-Robot Operators in Distributed Settings 92

5.2 Dynamic Roles and Task Assignment . 97
5.2.1 Dependencies When Robot Roles Are Not Predefined 102
5.2.2 Centralized Execution When Robot Roles Are Not Predefined 103
5.2.3 Distributed Execution When Robot Roles Are Not Predefined 105

5.3 Execution Algorithm of a Multi-Robot CPNP . 110
5.3.1 CPNP: Centralized Execution Algorithm Settings 111
5.3.2 CPNP: Distributed Execution Algorithm Settings 117
5.3.3 CPNP Distributed Algorithm vs. CPNP Centralized Algorithm 122

5.4 Summary . 125

6 Reasoning about CPNPs 126
6.1 Behavioral Properties . 126
6.2 CPNP: Building State Spaces . 128

6.2.1 Transformation Methods . 129
6.2.2 State Space Building Method for CPNP 133

7 Summary and Future Work 136
7.1 Summary and Conclusions . 136
7.2 Open Challenges . 138

Bibliography 139

List of Algorithms

3.1 CPNP execution algorithm - single robot, execute 56

3.2 CPNP execution algorithm - single robot, EnableTransition 56

3.3 CPNP execution algorithm - single robot, HandleTransition 57

3.4 CPNP execution algorithm - single robot, fire . 57

5.1 Centralized CPNP execution algorithm - centralized robot, CMR_Execute 113

5.2 Centralized CPNP execution algorithm - centralized robot, CMR_Listener 113

5.3 Centralized CPNP execution algorithm - centralized robot, CMR_Fire 114

5.4 Centralized CPNP execution algorithm - centralized robot, CMR_HandleTransition 116

5.5 Centralized CPNP execution algorithm - CMR_Slave 117

5.6 Centralized CPNP Execution Algorithm - slave robot, CMR_ListenerBeliefs 117

5.7 Centralized CPNP Execution Algorithm - slave robot, CMR_ListenerCommands . . 118

5.8 Distributed CPNP execution algorithm - DMR_Execute 119

5.9 Distributed CPNP execution algorithm - DMR_Listener 120

5.10 Distributed CPNP execution algorithm - DMR_EnableTransition 121

5.11 Destributed CPNP execution algorithm - DMR_Fire 122

6.1 CPNP Transformation Algorithm for Interrupts 132

6.2 CPNP Building a State Space . 134

vi

ABSTRACT

Single-robot and multi-robot plans are steadily gaining interest in the academic community

and in industry. The representation of such plans (for analysis, validation, monitoring, etc) is an

important aspect of both single-robot and multi-robot systems. There are a great many challenges

that should be addressed when representing robot plans in real world environments, such as dealing

with interrupts, modeling concurrent events, reducing space complexity, providing validation and

verification, etc. The current thesis addresses these issues. First, we introduce a framework called

Colored Petri Net Plans (CPNPs) that explicitly represents single-robot plans based on Colored

Petri Nets. This framework provides a comprehensive approach that addresses the mentioned

challenges and proposes building blocks for representing single-robot plans. Then, we provide a

space complexity analysis of existing multi-robot representations and examine their suitability for

representing multi-robot plans. Finally, we extend the CPNP framework in order to represent multi-

robot plans. The framework provides operators for representing either centralized or distributed

plans. These operators are built based on the insights gained from the space complexity analysis

in order to minimize the space complexity of the representation.

Chapter 1

Introduction

Robots are becoming part of our daily lives. They are being used in a variety of areas and mostly

they work in dynamic, partially observable and unpredictable environments. As a result their plans

are becoming more complex. These plans must allow representations of loops, decision making

points, concurrent actions, synchronization with other robots, handling interruptions, resource us-

age, etc. Therefore, qualitative and quantitative formal methods to represent and analyze these

plans are required in order to enable controlling, monitoring and validating of certain properties of

robotic systems. Representations of robotic plans, which are not based on formal methods, tend to

be tailored to a specific plan. Principled representations of either single-robot or multi-robot plans

provide a systematic approach to modeling, analysis, controlling and design of robotic plans.

Representations methods should provide an explicit and efficient representations for single-

robot and multi-robot plans. However, there are many challenges in representing either single-

robot or multi-robot plans in real-world environments. Building an efficient representation in terms

of space complexity, facilitating the readability, representing concurrency, dealing with interrup-

tions and shared resources, representing coordination and cooperation among multiple robots, an-

alyzing properties of the plan (e.g., reachability to goals) and preventing thrashing (i.e., behavior

resets and then reselected) are common challenges which representations methods need to deal

1

2 Chapter 1 Introduction

with.

Finite State Machine (FSM), BDI (Belief, Desire, Intention) and Petri Net (PN) are common

approaches for representing either single-robot or multi-robot plans. Existing approaches are de-

scribed in detail in Chapter 2. However, in general they do not provide complete solutions to

the challenges of modern robot systems. For instance, FSM and BDI systems do not in general,

provide explicit representation of multi-robot systems.

Petri Nets (PNs) [66, 72] have recently emerged as a promising approach for modeling ei-

ther single-robot or multi-robot plans. This approach provides a clear graphical representation

for modeling and developing systems which are concurrent, distributed, asynchronous, nondeter-

ministic and/or stochastic. In addition, it provides automatic analysis of certain properties of the

plan (e.g., reachability to goal, avoidance of undesirable situations such as thrashing and deadlock,

etc) [26, 45, 49, 66]. Petri Nets are described in detail in Chapter 2.

Lately, the interest in using Petri Nets for modeling single-robot and multi-robot plans has been

increasing, and various types of frameworks and architectures have been proposed [20, 50, 53, 99–

101]. However, existing Petri Nets based models do not provide satisfactory solutions for deal-

ing with interruptions. In addition, robotic plan representations tend to be very complicated and

their space complexity become very large. Therefore, reducing the space complexity is essential

when representing robotic plans. While radically different approaches for representing multi-robot

plans have been proposed, their relative strengths and weaknesses have not been investigated and,

specifically, their space complexity.

In this thesis, we thus focus on the space complexity of Petri Nets based representations of

robotic plans in our analysis. Motivated with the above issues, first, we proposed a method for

representing single-robot plans (Chapter 3) based on Colored Petri Nets called Colored Petri Net

Plans (CPNP). CPNP is an extension of the PNP representation [101] (described in Chapter 2).

We introduce basic building blocks and operators from which plans can be built. CPNP uses hi-

3 Chapter 1 Introduction

erarchies not only for facilitating the readability of the Petri Nets but also for reducing the space

complexity. CPNP represents interruptions without the need of explicitly specifying the handling

of each interrupt in each state in which it may occur. CPNP also supports sharing resources be-

tween multiple concurrent processes in the robot. Last, we proposed an algorithm for executing

single-robot CPNP.

The second contribution is a space complexity analysis of the existing Petri Net based repre-

sentations (Chapter 4). We show the scalability of the existing representations in two dimensions:

1. The technique which is used to represent multi-robots plans (P/T Nets or Colored Petri Nets).

2. The choice of representing either individual or joint states.

We show that using Colored Petri Nets with the combination of both individual state and joint state

representations yield the best results in space complexity.

Based on this analysis, we extended the single-robot CPNP method for also representing multi-

robot plans (Chapter 5). We introduced the basic operators of this representation. The operators are

built according to the insight gain in the analysis of Chapter 4 in order to achieve a representation

with the best space requirements. CPNP supports coordination among the robots, sharing resources

and dynamic task allocation. Last, we proposed an algorithm for executing multi-robot CPNP.

The final contribution is an algorithm for automatically building a state space from a given

CPNP (Chapter 6). Using this algorithm, we can analyze behavioral properties of the represented

plan, such as: reachability, boundedness, home marking, liveness and fairness. These properties

are specified in detail in Chapter 6.

Chapter 2

Background and Related work

This section discusses recent approaches to representation of, and reasoning about, robot plans. We

begin by examining popular existing representations of single-robot and multi-robot architectures

in Section 2.1. This survey reveals important open challenges. Petri Nets, which we briefly review

in Section 2.2, offer a promising approach to addressing these challenges.

2.1 Representing Robot Plans for Execution

This section provides an overview of the recent approaches that have been proposed for repre-

senting single-robot and multi-robot plans for execution. We divide these approaches into three

broad classes: Finite State Machines (Section 2.1.1), Belief-Desire-Intention and behavior-based

approaches (Section 2.1.2), and others (Section 2.1.3).

2.1.1 Finite State Machine (FSM)

Many architectures for controlling and executing single-robot and multi-robot plans, such as [51,

57, 58, 61, 79, 80, 90], are based on Finite State Machine representation (Finite State Automata).

4

5 Chapter 2 Background and Related work

An FSM is a graphical representation composed of states, transitions between states (edges), and

events associated with transitions. Every state represents a behavior. A behavior is a set of actions

that are performed by robots to bring about some atomic (implicit) goal. Events in the world are

matched against those associated with transitions, causing execution to stop in one state, and begin

in the next. FSMs are often visualized by state diagrams. The states are represented by nodes in

the graph, and edges move the agent from one state to another according to events associated with

the edges.

FSM has a number of key advantages; first, it has automated methods for validation and verifi-

cation [91]. Second, the rules of this representation are very simple and intuitive. Third, FSM can

be hierarchical [91]. Notwithstanding these advantages, FSM’s representation of concurrent events

is limited and wasteful in space complexity [40]. Therefore, FSMs are inadequate for multi-robot

systems [101]. Furthermore, FSMs suffer from inflexibility; there is a need to plan the order of

executable tasks in advance.

2.1.2 BDI and Behavior-Based Representations

Behavior-based architectures [7,24,62,70,73] are robot control architectures in which the control of

robots is shared between a set of behaviors. There are many variants, which differ in how behavior-

based architectures execute behaviors (whether to fuse behaviors or select between behaviors), in

how behaviors are selected, and in how their execution is terminated. Many robotic applications

use behavior-based architectures, such as search and rescue, military missions, office automation,

health care, etc. [8, 24, 46, 84].

Behavior-based architectures share the important strength in that the designer does not need to

specify a predefined sequence of basic behaviors. This significantly enhances the flexibility of the

framework since it allows the system to pick the executed plans from a potentially large library.

On the other hand, these behavior-based robotic applications suffer from a lack of validation and

6 Chapter 2 Background and Related work

verification tools, or formal analysis.

Belief, Desire, Intention frameworks (BDI) [78] are a related method for representing and

controlling behaviors. In a BDI architecture, agents select behaviors or plans to be executed (in-

tentions), based on their goals (desires) and the current representation of the environment’s state

(beliefs). The behaviors are selected from a set of implemented behaviors. Each behavior has pre-

conditions that allow its selection (the robot can select between enabled behaviors), and termina-

tion conditions that determine when its execution must be stopped. Thus, inherent to BDI systems

there is a process of modeling the world (at least partially), which is not found in behavior-based

systems.

BDI architectures build their plans during execution and thus they guarantee flexibility [74] and

modularity. Furthermore, they are sensitive to environmental changes. However, BDI architectures

do not have formal graphic representation and they lack automatic validation and verification tools.

There exist many architectures such as [39, 46, 47, 56, 67, 77, 88, 89, 97]. Those architec-

tures are divided into single-robot architectures (e.g., [56] and [67]) and multi-robot architectures

(e.g., [39,46,47,77,88,89,97]). Multi-robot architectures can be further divided into architectures

represented by individual state representations or those represented by joint state representations.

In individual state representations, each state represents a single robot (i.e., different robots, dif-

ferent states). Examples of individual state representations are [39] and [97]. By contrast, in joint

state representations each state represents the joint state of all robots in the system. A variety of

joint state representations are presented in [46,47,77,88,89]. The two types of representations will

be explained in greater detail in Chapter 4.

To elaborate a bit further on some of the above-mentioned proposed architectures, STEAM

[88, 89] is a teamwork architecture based on Cohen & Levesque’s joint intentions theory [16].

STEAM uses joint state representation and facilitates reusability, which is essential for robotic

teamwork. However, STEAM has not been used with real robots.

7 Chapter 2 Background and Related work

The BITE architecture [46, 47] is a behavior-based teamwork architecture that automates col-

laboration and coordination between autonomous robots in a real-world environment. BITE is

based on BDI with joint state representation. Due to the separation between behaviors controlling

a robot’s interaction with its task and behaviors controlling a robot’s interaction with its team-

mates, BITE guarantees flexibility and modularity. As opposed to STEAM, BITE enables the use

of multiple synchronization and task-allocation protocols.

Teamcore [77] provides an architecture for integrating heterogeneous software agents. Each

agent has a proxy which handles coordination. This teamwork model enables robust execution

within dynamic environments, provides abstract task specification, and selects the appropriate

agents for the mission in question. Teamcore uses STEAM as a teamwork module between the

proxies. However, this architecture was built for software agents, not for robots.

2.1.3 Planning and Hybrid Approaches

We focus in this work on representations of plans for execution, and mostly ignore the important

challenge of how the plans are synthesized in the first place. A vast span of literature on automated

(artificial intelligence) planning deals with exactly this challenge. However, common wisdom

in the field, originating with the work on ATLANTIS and other 3-Tier architectures [10, 34], is

that representations used for planning are not often executable directly by relatively low-level

controllers. Rather, an intermediate executive level is responsible for scheduling calls to instances

of lower-level controllers, and request for new plans, from planner. Such a level uses a separate

representation (and we will argue that Petri Nets can be useful for this purpose).

Researchers in artificial intelligence have long sought to address the need for generating a con-

trolling algorithm for a given task, using automated means. One general approach to multi-robot

planning explicit considers the uncertain in sensing and acting, and often also in communications.

This approach is based on variants of decentralized Markov decision processes (DEC-MDP) and

8 Chapter 2 Background and Related work

decentralized partially-observable Markov decision processes (DEC-POMDPs). Unfortunately,

such planning is NEXP-Complete [35], scaling exponentially in the number of robots. Despite

recent successes in applying such planning to robotics problems, often by incorporating execution-

time coordination [13,81], most general tasks remain well outside the capabilities of existing plan-

ners.

One way to limit the complexity of planning is to utilize abstraction, e.g., using separate plan-

ning and execution layers for teamwork than for individual actions. For instance, the Skills, Tactics

and Plays (STP) approach [11] treats plays as team plans, whiles skills and tactics are handled at

the individual levels. This reduces the complexity of planning and execution, but creates artifi-

cial abstraction barriers, which may need to be broken to improve performance. For instance, the

execution of a specific skill, which is supposed to be ignorant of the play involved and of con-

siderations of teammates, may occasionally need to consider teammate location and decisions, for

example due to failures at the individual levels, which can affect team-level plan execution. This

does not happen in the representation discussed in this thesis.

T-REX [76] is a system that combines planning and scheduling at multiple levels of abstraction

to allow plans to be re-worked depending on events at the different levels of abstraction. However,

it only works with an individual robot, not multiple robots. In contrast, our work deals with both

individual and multiple robots, but does not offer planning or re-planning capabilities.

2.2 Petri Nets: A Promising Basis for Representing Plans

Petri Nets [44, 66, 71, 72] are a graphical modeling tool for representing information processing

systems that are characterized as being concurrent, asynchronous, distributed, parallel, nondeter-

ministic, and/or stochastic [66]. We briefly describe Petri Nets in Section 2.2.1, properties of Petri

Nets in Section 2.2.2, and Colored Petri Net in Section 2.2.3. We then discuss work by others

9 Chapter 2 Background and Related work

concerning the use of Petri Nets as a representation for robot plans (Section 2.2.4).

2.2.1 Petri Nets: The Basics

A Petri Net is a directed, weighted, bipartite graph that consists of two types of nodes: places and

transitions. Arcs exist only from a place to a transition or from a transition to a place. A place may

have zero or more tokens. Graphically, places, transitions, arcs, and tokens are typically visualized

by circles, bars, arrows, and dots, respectively.

Definition 1. A Petri Net (P/T Net) [14, 45, 66] is a tuple: PN =< P,T,A,E,M >

(i) P is a finite set of places.

(ii) T is a finite set of transitions.

(iii) A⊆ P×T ∪T ×P is a set of arcs that connect transitions and places.

(iv) E : A→ N>0 is an arc expression function (also known as weights).

(v) M j = [m j(p1), ..,m j(pn)] is the state of the net. It represents the marking of the net at time

j, where m j(pi) = r indicates that there are r tokens in place pi at time instant j. M0 is the

initial marking of the net.

The places (P), transitions (T) and arcs (A) are separately grouped into three sets: P, T and A.

These sets are finite and pairwise disjoint. The arc expression function E (also known as weight

function) maps each arc a ∈ A to a positive integer denoted as e(a), (or e(p, t), where p ∈ P and

t ∈ T) which defines the weight of the arc. It is customary to omit an arc expression that is equal

to 1.

A distribution of tokens in the places is called a marking [42]. Formally, a marking maps

each place p ∈ P to a non-negative integer which defines the number of tokens that exist in p. A

10 Chapter 2 Background and Related work

marking is denoted by M such that M(p) is the number of tokens in place p at marking M. One

of the significant advantages of Petri Net is that it can clearly and graphically represent parallel

processes. This includes a process that splits into multiple concurrent processes (fork), or multiple

concurrent processes that merge into a single process (join) by the distribution of tokens in the

Petri Net (i.e. the marking).

As mentioned in Definiton 1, the initial marking is denoted by M0. It maps each place to the

number of tokens at the initial state of the Petri Net execution. M0(p) = q means that there are q

tokens in place p at the initial state.

Definition 2. ∀pi ∈ P, t ∈ T , pi is called an input place of t iff ∃ (pi, t) ∈ A.

Definition 3. ∀po ∈ P, t ∈ T , po is called an output place of t iff ∃ (t, po) ∈ A.

Definition 4. A transition t is enabled, iff each input place pi is marked with at least e(pi, t) tokens.

Figure 2.1 presents an example of a simple Petri Net at the initial marking M0. The Petri

Net consists of three places (P = {p1, p2, p3}), one transition (T = {t1}), and three arcs A =

{(p1, t1),(t1, p2),(t1, p3)} such that e(p1, t1) = 1, e(t1, p2) = 2, and e(t1, p3) = 1. p1 is an in-

put place of t1 (since ∃(p1, t1) ∈ A) and p2, p3 are output places of t1 (since ∃(t1, p2),(t1, p3) ∈ A).

t1 is enabled since e(p1, t1) = 1 and M0(p1) = 1.

Figure 2.1 A Petri Net (initial marking M0)

Definition 5. Transitions fire the tokens (move a token from place to place) according to the fol-

lowing firing rules. A transition t ∈ T fires tokens iff t is enabled. If t fires, t consumes e(pi, t)

11 Chapter 2 Background and Related work

tokens from each input place pi (e(pi, t) is the arc expression of arc (pi, t) ∈ A), and it produces

e(t, po) tokens on each output place po such that (t, po) ∈ A .

When a transition is enabled the corresponding move may take place. If this happens we say

that the transition has been fired (Definition 5). An enabled transition does not necessarily fire the

tokens; it may not fire in a situation of conflict. Conflict is a situation where one or multiple places

are input places of multiple transitions. This situation causes multiple transitions to compete on

firing the tokens (conflict is described in detail in Section 2.2.2).

The firing changes the marking of the Petri Net from a marking denoted as Mi to a marking

denoted as Mi+1. In Figure 2.1, t1 is the only transition existing in the Petri Net, so there is certainly

not a situation of conflict. Consequently, t1 satisfies the firing rules which leads to the firing of t1.

This firing transforms M0 into the marking M1 which is shown in Figure 2.2.

Figure 2.2 shows the marking M1. This is the state of the Petri Net after t1 has been fired. t1

consumes e(p1, t1) = 1 tokens from the input place p1 and produces e(t1, p2) = 2, e(t1, p3) = 1

tokens on the output places p2 and p3, respectively. In practice, the firing removed tokens from the

input places (according to the arc expressions), and instead created new tokens and added them to

the output places (according to the arc expressions).

Figure 2.2 The marking M1

12 Chapter 2 Background and Related work

2.2.2 Properties of Petri Nets

A major strength of Petri Nets is their support for analysis, validation and verification [66]. This

advantage comes in the form of automated methods, which can check if a program (represented

by a Petri Net) performs its goal, and if it has not gotten stuck in a deadlock. Another significant

advantage is that each FSM can be transformed into Petri Nets. It has been shown that all Petri

Net languages are context-sensitive languages [71]. This set of languages contains the regular

languages; it follows from this that every FSM can be translated into a Petri Net but not vice-

versa [23,38,66,71]. The transformation to Petri Net gives better and more explicit representation

of concurrent events [3,40,66]. Furthermore, Petri Net models are generally more compact [23,38].

For example, a composition of two Petri Nets (as will be shown in Figure 3.3) is more compact than

a composition of two FSMs, since the composition of two FSMs is the product of two component

state spaces [3, 40].

However, even though Petri Nets tend to be more compact than FSMs [38], still a major weak-

ness of Petri Nets is their space complexity. Petri Net-based models tend to become too large

for analysis even for modest-size systems [66]. In the next sections we will show how Colored

Petri Nets and Hierarchical Petri Nets may reduce space complexity. In general, Petri Nets can

clearly and graphically represent different types of executions: sequential execution, synchroniza-

tion, merging, concurrency and conflict. In the remainder of the current section we show the

representations of these executions.

Sequential Execution. Petri Net represents a sequential order execution by a sequential order

of firing, i.e., transition ti+1 fires only after the firing of transition ti. An example of sequential

execution is shown in Figure 2.3. Transition t2 can fire only after the firing of t1. This representation

imposes a precedence constraint “t2 fires after t1”.

13 Chapter 2 Background and Related work

Figure 2.3 Sequential order execution (taken from [5])

Concurrency (fork). Petri Net is able to model systems of distributed control with multiple pro-

cesses executed concurrently in time. Petri Net represents multiple different concurrency processes

by multiple output places exiting from a single transition. When this transition fires, at least one

token gets into each of the output places. A placement of at least one token in each of the output

places represents multiple different concurrent processes. Figure 2.4 shows a representation of a

process that forks into two concurrent processes ps1 and ps2 (t1 and t2 are concurrent).

Figure 2.4 Concurrency (taken from [5])

Synchronization. According to Definition 4, a transition t can be enabled only if there is at least

one token at each of its input places. Therefore, a Petri Net can represent synchronization between

multiple executions by representing these executions as input places of a single transition. This

transition can fire only if there is at least one token in its input places, meaning that it can fire only

when the executions are synchronized. Figure 2.5 shows synchronization between two executions.

Transition t1 has two input places and one output place. It can be enabled only if there is at least

one token in each of its input places; then it fires the two tokens from its two input places into a

single token in its output place.

14 Chapter 2 Background and Related work

Figure 2.5 Synchronization (taken from [5])

Conflict. Conflict is a situation in which multiple transitions compete on firing the same tokens.

This means that multiple transitions are enabled at a certain point in time; however, the firing of

each transition causes the other transitions to be disabled. This situation is depicted in Figure 2.6.

Transitions t1 and t3 are both enabled but the firing of t1 causes t3 to be disabled and vice versa.

The resulting conflict can be resolved in three possible ways:

1. By a guard, as will be described later on.

2. In a probabilistic way, i.e. by assigning appropriate probabilities to the conflicting transitions

(e.g. Generalized Stochastic Petri Nets - GSPNs [15]).

3. By assigning time constrains to those conflicting transitions (timed Petri Net [103]).

Figure 2.6 Conflict (taken from [5])

15 Chapter 2 Background and Related work

Note the difference between a conflict and a fork: in a conflict a single token satisfies multiple

transitions (i.e., a token enables multiple transitions) but only a single transition can fire, while in

a fork a single token is split into multiple tokens by the use of a transition that fires this token.

2.2.3 Colored Petri Nets

Colored Petri Nets (CP Nets or CPNs) [2, 4, 42–45] are a generalization of Petri Nets. They are a

part of Petri Net formalisms that extend the basic Petri Net. These extensions are called high-level

Petri Nets. CP Nets are a discrete-event modeling language combining the capabilities of Petri

Nets with the capabilities of a high-level programming language (i.e. variable assignments and

guard predicates) [45].

Although CPNs are computationally equivalent to Petri Nets [44], they offer greater flexibility

in compactly representing complex systems. This is done by coloring the tokens with structured

data. The meaning of this is that every token has attributes, whose values define its color. These

values can change when tokens travel through transitions, and tokens can be directed towards

specific places based on their color. The definition of CP Nets is as follows [45]:

Definition 6. A CP Net is a tuple CPN = (P,T,A,Σ,V,C,G,E,M) where:

1. P,T,A as defined in Definition 1.

2. Σ is a finite set of non-empty color sets.

3. V is a finite set of typed variables such that Type[v] ∈ Σ for all variables v ∈V .

4. C : P→ Σ is a color set function that assigns a color set to each place. This restricts the

color of tokens that can be in a given place.

5. E : A→V is an arc expression function.

6. G : T → boolean is a guard function that assigns a boolean expression to each transition t.

16 Chapter 2 Background and Related work

7. M j = [m j(p1), ..,m j(pn)] represents the marking of the net at time j (similar to Definition

1). Note that, unlike Definition 1, all tokens have colors.

In CP Nets, tokens store complex data structures by their colors. Similar to variables in pro-

gramming languages, this information can be of multiple types (e.g integer. boolean, etc). In CP

Nets the types of data are defined in the color set (denoted as Σ). This set contains all classes of

variables that may be represented by tokens. These classes are called colors. The variables belong

to the set V such that the class (type) of v ∈ V is a member of Σ (denoted as Type[v] ∈ Σ). To

summarize: in CP Nets, tokens represent collections of variables, and each variable has a color in

Σ (Type[v] ∈ Σ).

Each place may contain tokens from a variety of classes defined in Σ. The color set function

(denoted by C) is a function that assigns a color set for each place in the CP Net. As such, it defines

the token colors that can be in p.

Unlike P/T Nets, in CP Nets we have a wide variety of different tokens. Hence, the arc expres-

sions of CP Nets are much more complicated. The arc expression function of a CP Net maps each

arc to a multiset (i.e. a set in which a member may appear more than once) of V . Arc expressions

may involve complex calculation procedures on token variables. For an arc a ∈ A, consisting of

the ordered pair p, t (p ∈ P, t ∈ T), it is required that the type of the arc expression (denoted as

E(a)) is C(p), i.e. Type[a] = C(p). Type[a] is a set of the types of variables that participate in

E(a).

Guards are an additional extension to Petri Nets as introduced by CP Nets. The guard function

G maps each transition t ∈ T to a boolean expression called guard. A guard is a condition on the

transition. In addition to the firing rule defined in Definition 1, a guard must be satisfied in order

for the transition to fire. Each guard consists of variables. The set of variables appearing in a guard

is required to form a subset of V . In principle, all transitions should have a guard. If no condition

is specified for a transition t ∈ T , the guard will be defined as G(t) = true. As an accepted notation

17 Chapter 2 Background and Related work

rule, guards are written in square brackets and positioned above or below the transition [45].

Example illustrating the use of CP Nets. Assume that we have a soccer robot R1 that performs

a simple action: kick. The P/T Net of this example (depicted in Figure 2.7) contains 3 places

P = {p1, p2, p3}. These places represent the situations where R1 is before / now executing / after

the action, respectively. In addition, the P/T Net contains two transitions T = {t1, t2} that represent

the events of starting and terminating the action, respectively.

Figure 2.7 A P/T Net of a kicking action executed by a soccer robot R1

Consider the following, slightly more complicated example: two robots, R1 and R2, perform the

kicking action but R2 also wants to sit down after it kicks the ball. If we would want to represents

this example by the use of P/T Net, we would need to use two separate P/T Nets (one for each

robot) since all P/T Net tokens are identical. Alternatively, we can represent this example using

CP Net in a compact single CP Net (depicted in Figure 2.8). Furthermore, in CP Nets it is possible

to represent constraints (for example: the robots can perform the tasks only if they are both close

enough to the ball) more effectively than in P/T Nets.

Figure 2.8 shows the CP Net of the example described above. It can be seen that the tokens are

distinguished by colors (black and gray) which represent R1 and R2, respectively. This CP Net is

defined follows: P = {p1, .., p5}, T = {t1, .., t4}, A is a set that contains all the arcs in the graph,

and Σ = {ROBOT,NUM} such that each variable of type ROBOT represents a robot identification

and each variable of type NUM is a real number greater than zero. The variables of this CP Net

are V = {r : ROBOT,d : NUM} where r represents the robot ID and d is the distance between the

robot and the ball. R1 and R2 are the possible values of r.

All places in Figure 2.8 contain only tokens of type ROBOT , C(p) = ROBOT , ∀p ∈ P. The

18 Chapter 2 Background and Related work

expressions on the arcs are called arc expressions. Two kinds of arc expressions exist in Figure

2.8: arcs {(p1, t1),(t1, p2),(p2, t2),(t2, p3)} ⊂ A have 1′r = R1∨1′r = R2, expressing that this arc

can move a single token of r = R1 or a single token of r = R2. The remaining arcs have 1′r = R2

arc expressions, meaning that only a single token of r = R2 can move on these arcs. The arcs

expressions represent the constraint that r = R1 and r = R2 perform the kicking, but while robot R1

terminates his job after kick (i.e in place p3), robot R2 continues with the sitting action and finishes

in place p5.

The expression [d < 10] on transition t1 is a guard expressing the constraint that each robot

can start performing his tasks only if the distance between it and the ball is less than 10cm. M0

is the marking represented in the figure. This example presents a Colored Petri Net Plan (CPNP)

at a glance: our novel CP Net-based framework for representing single- and multi-robot systems.

CPNPs will be described in detail in Chapters 3, 5 and 6.

Figure 2.8 A CP Net of: 1) a kicking action executed by R1 and R2; 2) a sit down action
performed by R2 after it kicks the ball

2.2.4 Literature on Petri Net-Based Representations of Robot Plans

There have been recent modeling approaches on specific uses and domains, e.g., conversation

protocols [17–19,36,63,75], exploration and mapping [12,85], artificial tutoring agents [64], man-

19 Chapter 2 Background and Related work

ufacturing systems [27, 95], etc. However, these models are built to a specific domain.

This section presents an overview of the main approaches that have been proposed in the past

for the representation and execution of robotic behaviors and plans using Petri Nets. We discuss

both single-robot and multi-robot representations. In the overview we will focus in particular on

methods for dealing with interrupts (unforeseen events), the use of hierarchies, and the representa-

tion of shared resources. We conclude this section with a comparative discussion of the common

strengths and weaknesses of the approaches.

A Petri Net Plan (PNP) [69, 101, 102] is a framework that can be used for representing single-

robot systems; however, it is mainly associated with representing collaboration and coordination in

multi-robot systems based on Petri Nets. This framework is inspired by joint intentions theory [16].

A PNP is a comprehensive language which consists of elementary building blocks and operators

which allow for intuitive robot and multi-robot behavior design. These building blocks represent

essential robotic developing features including sensing, interrupts and concurrency.

One of the advantages inherent to Petri Net is the ability to get a formal analysis of plans.

Because of this, PNPs purport to be very expressive and easy to use and debug [101]. However,

still there are key weaknesses in PNPs. First, PNPs require the programmer to connect in advance

each place where an interrupt can occur to the corresponding interrupt-handling plan. In addition,

PNPs do not deal with managing of shared resources among multiple robots, and they barely make

use of hierarchies. In contrast, our work deals with the above-mentioned issues by expanding PNPs

through the use of Colored Petri Net, an extension to Petri Nets.

Wang et al. [96] present a Petri Net Coordination Model for an Intelligent Mobile Robot. The

goal of this model is to specify the integration of path planning, supervisory motion control, and

vision systems in a mobile robot architecture. This work explicitly represents task precedence

and information dependency among the individual systems in the Intelligent Mobile Robot System

(IMRS). However, the model’s Petri Nets can become very large and complex due to the lack of

20 Chapter 2 Background and Related work

hierarchies. Furthermore, no interrupt-handling method has been specified in this model.

Costelha and Lima [20, 23] introduce a framework for modeling, analysis and execution of

single robotic tasks based on a Generalized Stochastic Petri Net (GSPN) [6, 48]. They extend this

framework with a multi-robot cooperative task model [21,22]. In this model, events are represented

by stochastic transitions. Places represent primitive actions, subtasks and predicates according to

individual state representation.

Both models allows for the verification of logical properties, such as deadlocks and resource

conservation, and (probabilistic) performance properties such as probability or average time to

reach a desired state. Furthermore, Costelha and Lima introduce a method to identify the pa-

rameters of the Stochastic Petri Net models from real data, and analyze their method through the

analysis methods of Stochastic Petri Nets is introduced. Similar to [96], they do not provide a

method for trying to deal with interrupts.

Kotb et al. [53] introduce a formal framework for robotic cooperation in multi-agent systems

based on sound workflow nets (another extension to Petri Nets). In their work, activities are per-

formed by transitions, and places represent preconditions and effects. The workflow nets extension

allows for dealing with more complex tasks that involve heterogeneous robots. In addition, the au-

thors provide an algorithm to verify similarities among agent capabilities in order to determine the

possibility of cooperation between multiple agents with respect to a desired task. However, in this

model hierarchies are lacking altogether, resulting in very complicated representation when the

system becomes more complex. Also, there is no interrupt-handling ability.

Lacerda and Lima [55] present a method to build Petri Net supervisors for Multi-Agent Sys-

tems (MAS) using linear temporal logic (LTL) formulas to specify acceptable/desirable behaviors

for multi-agent systems. The construction of these supervisors is done by translating the natural

language specification into LTL formulas and then translating these into Petri Net models. Similar

to [20,23], events are associated with transitions; places however are associated with state descrip-

21 Chapter 2 Background and Related work

tions. Lacerda and Lima show that building supervisors according to this method is more efficient

as the number of robots rises. However, this method too does not handle interrupts and unforeseen

events.

Xu et al. [99] present a formal approach for modeling and analyzing multi-agent behaviors us-

ing Predicate/Transition (PrT) Nets (a formalism of Petri Nets). In their work, transitions represent

agent capabilities and places represent predicates. They also provide a reachability analysis and

verification algorithms. This plan representation does not allow for unexpected events (interrupts).

In addition, their modeling works only in centralized cases, as the predicates consist of the statuses

of either a part, or all of the teammates.

We now move on to discuss approaches that make use of Colored Petri Nets. Yen et al. [100]

developed an architecture based on Petri Nets for modeling collaborative teamwork based on a

shared mental model. They used colored Petri Net with two types of places: control places, and

belief places. Their model provides the ability to anticipate the information needs of teammates,

and therefore proactive information exchanges. However, the framework does not deal with the

managing of shared resources. Interrupts and unexpected changes in the environment are handled

at group level, by an algorithm that dynamically changes roles of teammates; the framework does

not provide options for repairing some interrupts by the interrupted robot itself (e.g., robot falls

down).

Moldt el al. [65] introduce a representation of multi-agent systems based on Colored Petri

Nets. They implement Shoham’s paradigm [86] (called Agent-Oriented Programming, or AOP) by

using Colored Petri Nets to better model a society of agents who are working concurrently. They

enlarge the flexibility of the system by suggesting that the agent can be dynamically created and

destroyed. Moreover, they achieve hierarchies by using a mechanism that folds certain behaviors

into a class. However, their representation does not support dynamic changes in the environment,

since a knowledge base that is represented by color cannot change dynamically. In addition, this

22 Chapter 2 Background and Related work

method cannot handle interruptions and unforeseen events nor manage shared resources among

multiple agents.

Jun et al. [60] introduce a new individual state representation to model multi-agent systems

with Hierarchical Colored Petri Nets (HCP Nets). Using of Colored Petri Net’s properties, they

analyze dynamic properties of the MAS such as reachability to goal, and deadlock detection and

avoidance. Unfortunately, this method shares some of the disadvantages with the method used by

Moldt: it cannot handle interruptions and unforeseen events, nor manage shared resources among

multiple agents.

A non-CPN method which does provide for the managing of shared resources, is the mecha-

nism of King et al [50] for programming, control and supervision of multi-agent systems. Plans

are generated for each single robot using POP [83] and then compiled into Petri Nets for analysis,

execution, control and monitoring. To avoid conflicts that may arise from the usage of shared re-

sources among the multiple robots, supervisory control techniques are applied to the PN controller.

Interruptions and unforeseen events are dealt with by replanning in real-time. On the one hand this

makes the framework flexible, but on the other hand the need for replanning significantly increases

the runtime of the system. Also, in cases where many interrupts occur within a short timespan,

the system might encounter an interrupt exactly when it is in the middle of replanning due to a

previous interrupt, leading to the current replanning becoming redundant.

So far, we have mainly discussed representations of multi-agent systems. It must be noted that

there are a wide variety of additional frameworks for representing a specific type of multi-agent

systems, namely multi-agent conversation protocols [17–19,63,75]. However, none of these works

address the control of multi-robot teams. Instead, they focus on inter-agent communications

However, Gutnik and Kaminka’s [36] examination of the scalability and suitability of Petri

Net approaches for representing those conversation protocols is relevant. They show that while

the run-time complexity of monitoring conversations using different approaches is the same, space

23 Chapter 2 Background and Related work

complexity undergoes significant improvements when using Colored Petri Nets with joint state

representation. The authors show how to reduce space complexity by the use of hierarchies and

tokens’ colors. They represent multiple instances by tokens’ colors. Their work is a special case

of our work here.

Summary. There exists a wide variety of Petri Net-based robot architectures or frameworks

which all have their own strengths and weaknesses. However, the key weaknesses of existing

approaches whether single or multi-robot lie in the fact that they do not provide (satisfactory)

solutions for interrupt-handling. Also, most of these approaches do not scale in terms of space

complexity when the system becomes more complex, and in particular when handling multiple

robots. In some cases [60, 65], this problem is dealt with visually through the use of hierarchies,

but without actually reducing the space complexity [45]. In our work, we will analyze the space

complexity of previous approaches and provide a real and comprehensive new approach which

does significantly reduce the actual space complexity. This approach is based on Colored Petri

Nets and makes use of hierarchies in an innovative way in that it changes tokens’ colors instead of

repeatedly creating new instances of the Petri Net.

Chapter 3

Representing the Plans of a Single Robot:

CPNP

Colored Petri Net Plans (CPNPs) are a representation for complex single-robot and multi-robot

plans, based on Colored Petri Nets. This representation is an extension of PNPs [101] utilizing

high-level Petri Nets (i.e, Colored Petri Nets and Hierarchical Petri Nets), for a more efficient

representation of plans composed of complex behaviors. This chapter introduces the CPNP repre-

sentation for single robot plans.

CPNPs will be defined in Section 3.1. We will describe the structure and the basic building

blocks of CPNP (Section 3.2), and then move on to hierarchical decomposition (Section 3.3). In

Section 3.4 we will show how to represent interrupt handling using Colored Petri Net. We will

discuss the representation of resources in Section 3.5, and finally in Section 3.6 we will introduce

the algorithms for executing a single-robot CPNP.

24

25 Chapter 3 Representing the Plans of a Single Robot: CPNP

3.1 Colored Petri Net Plan (CPNP)

A Petri Net is state- and action- oriented, meaning that it simultaneously gives an explicit descrip-

tion of the possible states and actions [44]. It describes the states of the system as well as the

events (transitions) that can cause the system to change state [45]. Usually, events are represented

by transitions and states are represented by markings.

In some of the existing literature on robot representations based on Petri Nets [53, 94, 99],

places are used to represent predicates and transitions to represent actions (behaviors). In these

representations, each marking shows conditions that lead to the execution of different actions.

These formalisms are called Predicate/Transition (Pr/T Nets) which are a type of high-level Petri

Nets.

In other works [22, 23, 50, 55, 101], transitions are chosen to represent events (i.e. the start

and the termination of an action). Places are associated with the execution of actions (in addition,

they can represent other parts of the system such as conditions, connections between parts of the

system, etc). In this way, each marking shows which actions are executed by the robot.

Thus, there are two ways of representing executions of actions by robots:

1. Representing start, execution and termination of an action by a single transition in a Pr/T

Net.

2. Representing start and termination of an action by separate transitions. Execution of an

action will be represented by a place.

Since in this work we want to represent which actions are performed in each state and what

is the state of each action (start, execution or termination), we choose to build our representa-

tion of robotic executions of actions conform the second option. In CPNP the states, actions and

events (starting and terminating the execution of an action) are represented by markings, places

and transitions, respectively.

26 Chapter 3 Representing the Plans of a Single Robot: CPNP

We build on the definition of Petri Net Plans (PNPs, [101]) to which we add the use of token

colors (the significance of this addition will be demonstrated). A CPNP is an augmented CP Net

(Definition 6). CPNP extends CP Nets with a set of desired termination states (goal markings),

denoted as L (similar to [101]).

Definition 7. CPNP is a tuple (P,T,A,Σ,V,C,G,E,M,L), where:

1. P,T,A,Σ,V,C,G,E,M have been defined in Definition 6 (CP Net);

2. L is a set of goal markings (described below).

3. Following PNP [101], places are partitioned into two classes PE ∪PC, as follows:

(a) PE is the set of execution places, which models the execution state of actions in the

CPNP; these types of places will be discussed in detail in Section 3.2.1.

(b) PC is the set of connector places, which are used to connect different CPNPs. There

are two kinds of connector places:

• Initial places;

• Termination places.

These places are used for operators (discussed in Section 3.2.2).

4. Following PNP [101], the transitions of a CPNP are partitioned into three subsets T =

T S∪T T ∪TC, where:

(a) T S is the set of start transitions, which lead into a place representing an execution of

an action.

(b) T T is the set of termination transitions, which lead tokens out of a place representing

an execution of an action.

27 Chapter 3 Representing the Plans of a Single Robot: CPNP

(c) TC is the set of control transitions; these transitions are used for operators (discussed

in Section 3.2.2).

Goal markings are a set of markings which represent the goal states of the robots. Goals

represent the final state of the program. Once a robot gets into one of such states it finishes its

work. States are represented by markings. Once the current marking is equal to one of the goal

markings in L, the algorithm that executes the CPNP halts. This algorithm is described in detail in

Section 3.6.

In CPNP the robot’s knowledge of the environment is encoded in the tokens’ color by the set

of variables V . CPNP assumes the existence of a perception component. The robot’s knowledge is

obtained through the perception component, which sets the values of the variables in V to represent

the knowledge of the robot about the environment. Therefore, the colors of all the tokens are

synchronized and identical.

We defined two types of tokens in CPNP: robotToken and resourceToken (described in detail in

Section 3.5). These types are distinguished by their color. The first type represents the knowledge

of the robot, and the second type represents a specific type of resource.

The color of the tokens from the robotToken type represents the robot’s knowledge about the

environment. It consists of the values for the following variables (defined in the V set):

1. Variables that participate in each guard conditions.

2. Boolean variables that indicate hierarchies (Section 3.3).

3. Boolean variables that indicate occurrences of interrupts (Section 3.4).

The resourceTokens have a single variable type , which indicates the type of resource that is

represented by the token (e.g., battery, camera, etc). The value is taken from a set of predefined

resources. The resourceToken is described in detail in Section 3.5.

28 Chapter 3 Representing the Plans of a Single Robot: CPNP

For modeling the execution of actions a CPNP structure utilizes specific places called execution

places. Each execution place represent the execution state of a specific action; each action has an

execution place pe ∈ PE . M(pe), which defines the marking of the place pe, determines whether

the behavior is active or not. The set of execution places of a CPNP structure is PE . This set

models the execution state of the system.

3.2 Basic Building Blocks

This section introduces the fundamentals of our representation. CPNP is built by actions, con-

nected together using operators. The actions are executed by the robot. The operators connect the

different actions in order to determine their order of execution. We will describe the representation

of actions performed by the robot in Section 3.2.1. Subsequently, we will describe the operators

which connect between the different actions (Section 3.2.2).

An example of CPNP will be incrementally built up in order to illustrate CPNP building blocks.

The example will introduce a single soccer robot player. This soccer robot will be built step by

step, from one building block to the next.

3.2.1 Actions

Atomic actions are actions that cannot be divided into subactions. They constitute the basic build-

ing blocks of a CPNP. Structurally, the representation of actions in CPNP is similar to PNP [101];

however, CPNP is based on CP Nets. Hence, CPNP uses the components of CP Nets (e.g., colors,

guard and arc expressions).

An action (depicted in Figure 3.1) is represented in CPNP by three places (initial, executed and

termination, denoted as pi, pe and pt respectively) and two transitions (start and termination, de-

noted as ts and tt respectively). These transitions represent the starting and terminating events. The

29 Chapter 3 Representing the Plans of a Single Robot: CPNP

start transition begins or activates the actions. The termination transition deactivates the action.

Usually, each termination transition has a guard. Once this guard is satisfied, the termination tran-

sition fires and deactivates the action. If no guard has been specified, the action will be terminated

after a single iteration (e.g., kick). The above describes the basic CPNP structure.

Initial and termination places are connector places (defined in Definition 7). The existence

of a token in the initial place means that the robot is going to start the action. A token in the

execution place means that the robot is currently executing the action. Analogously, a token in the

termination place signifies that the robot finished performing the action.

The outcome of a single action can vary significantly. It is determined during the execution

phase, according to the environmental conditions, the robot’s senses, or the success or failure in

executing the action. The actual outcome can affect the robot’s continued operations.

The outcome is encoded in the variables that build the tokens’ color (i.e the elements of the

set V defined in Definition 7) during the execution phase. The robot makes decisions and changes

them according to the effect of his actions as well as changes in the environment. It does so by

using the choice operator. This operator is explained in detail in Section 3.2.2.

It should be noted that the representation of outcomes in CPNP differs from said representation

in some previous works (e.g., [21, 23, 101]). While in CPNP each action affects by an appropriate

variable with a range of values that include all possible outcomes, in other works outcomes are

represented by splitting the graph according to each possible outcome. The CPNP representation

reduces the space complexity of representing plans.

Figure 3.1 Basic CPNP structure - action

An action is illustrated in Figure 3.2 by an action called go to ball. In this example, the robot

30 Chapter 3 Representing the Plans of a Single Robot: CPNP

moves towards the ball until he gets close enough to it. The elementary structure of this action

contains three places P = {pi, pe, pt} and two transitions T = {ts, tt}. pi and pt are initial and

termination places, respectively. A token in pe signifies that the robot is currently executing the

go to ball action. go to ball is the first step of a bottom up example of building a soccer robot.

Through the construction of the soccer robot we will illustrate each component of the CPNP.

The robot keeps executing the go to ball action until tt fires and terminates the action. ts and tt

are start and termination transitions, respectively. The outcome of the go to ball action is encoded

in the variable d. d is a variable of type real numbers greater than zero. tt has a guard [d < 10].

This guard signifies that once the distance between the robot and the ball is smaller than 10cm, tt

fires and terminates the execution of go to ball.

The CPNP in Figure 3.2 has the following properties: it has one execution place (PE = {pe})

and two connector places (PC = {pi, pt}). In addition, this CPNP has a start transition and a

termination transition (T S = {ts} and T T = {te}). The color set Σ has a single element: NUM,

which indicates a number. This means that the types of variables in V can be only NUM. The V

set contains one variable d; this variable represents the distance between the robot and the ball.

Figure 3.2 Soccer robot: ordinary action - go to ball

3.2.2 Operators

Operators connect between multiple CPNPs in order to build more complex ones. There are five

basic operators: serialization, choice, loop and parallelization (fork and join). Operators are used

as control structures, which order and sequence simpler CPNPs. Operators are thus characterized

by having PE = /0, T S = /0 and T T = /0. In practice, operators map termination places of one CPNP

31 Chapter 3 Representing the Plans of a Single Robot: CPNP

with initial places of another CPNP.

Serialization operator. The serialization operator is used for specifying a sequential order (do-

ing A before B). It combines two structures by merging two of their places. A termination place of

a first CPNP is merged with an initial place of a second one, to obtain a chain of the two CPNPs.

This operator can similarly be extended to create a sequence of multiple CPNPs. Figure 3.3 shows

a sequence of three CPNPs. Each CPNP represents an ordinary action. The highlighted places

are the places that have merged, meaning that these places are the result of merging a termination

place of a previous action with the initial place of the following action.

Figure 3.3 Sequence of three CPNPs

Consider the following, extended soccer robot example (taken from [101]): after the soccer

robot of Figure 3.2 has reached the ball, it should kick it. The CPNP, composed of these two

actions, is built using a serialization operator. It sequences between these two actions by merging

the termination place of the go to ball action with the initial place of the kick action (see Figure

3.4). The actions are denoted by g and k, respectively. The highlighted circle shows the result of

merging the termination place of the go to ball action with the initial place of the kick action.

Figure 3.4 Soccer robot: the sequence of go to ball and then kick

32 Chapter 3 Representing the Plans of a Single Robot: CPNP

Choice operator. Choice operators are used for specifying a decision-making point. The robot

needs to choose which action to perform from among multiple choices, according to the environ-

mental conditions, the robot’s senses and desires, and the success or failure in executing a previous

action (i.e., doing A or B, but not both). The selection of actions is created by merging the initial

places of each optional plan (CPNP structure) and specifying a guard in each starting transition

(tsi).

Figure 3.5 depicts the choice between two different actions. The robot selects either the first

action or the second action according to the guards: g1 and g2 on transitions ts1 and ts2 , respectively.

The highlighted circle shows the result of merging the input places of the first CPNP structure and

the second CPNP structure. Note that the robot does not necessarily need to select between two

actions only. The choice operator can be used for selecting between multiple CPNP structures.

Figure 3.5 A choice between two different actions

Let us revisit the example of the soccer robot. Consider that the robot now should not only

attack (i.e., go to ball and then kick, as shown in Figure 3.4) but also is required to defend in some

cases. In fact, the robot should determine what to do according to the environmental conditions.

For the sake of simplicity, the current example (depicted in Figure 3.6) assumes that the choice

between attacking or defending is influenced only from the distance between the ball and the

robot’s own goal. In order to specify appropriate guards we add another variable dgb of type NUM

to the variables set V of the soccer robot CPNP; V = {d : NUM,dgb : NUM}. The highlighted

33 Chapter 3 Representing the Plans of a Single Robot: CPNP

place pig,id is the result of merging the initial place of the go to ball action with the initial place

of the defend action (denoted by d) in order to create a choice operator that represents the choice

between attack or defend. The robot chooses between these actions according to the guards: [dgb>

200cm] or [dgb≤ 200cm].

Figure 3.6 Soccer robot: a choice between attack or defend

The current example represents a robot which executes the one-time option that he has chosen,

and then ends at Place ptk or ptd . Of course, in a real soccer game things work differently. Players

need to repeat attack and defense actions several times until the game is over. For the purpose of

representing repeated attacks and defenses, we need to use a Loop operator.

Loop operator. A loop is a control structure in which the same CPNP is repeatedly executed until

some condition is reached (shown in figure 3.7). Basically, the input place and the output place of

an action are merged into one place (denoted as pi,t). The termination of the loop resembles the

Choice operator. Two transitions exit from pi,t . Each transition has a guard: one of the transitions

has a guard that continues the loop, and the other has a guard that terminates the loop.

In essence, a loop operator consists of a serialization operator and a choice operator. However,

instead of merging the termination place of one CPNP with the initial place of a second one by a

serialization operator, the loop operator merges the termination place of a CPNP with the initial

place of the same CPNP. In addition, the loop operator consists of a choice operator with at least

34 Chapter 3 Representing the Plans of a Single Robot: CPNP

two guards: a guard on ts (the start transition) with a condition for the start and continuation of

the loop, and a guard with a loop exit condition (the “termination guard”). If the algorithm ends

when the loop is terminated, the termination guard will be on a transition that fires tokens into a

place that terminates the execution of the algorithm, as shown in Figure 3.7. If the algorithm does

not end when the loop is terminated, the termination guard will be on a transition that starts the

execution of a different CPNP component that is part of this CPNP.

Figure 3.7 shows a loop of a single action. pi and pt are merged into pi,t in order to create a

loop. The loop is continued for as long as the guard in ts is satisfied (i.e., while loop). The guard in

ts is marked as [cond], an abbreviation of condition. Once this guard is not satisfied anymore, the

guard [!cond] that indicates the negative of [cond] is satisfied and terminates the loop. Finally, the

token gets into place p f (f indicates finish) and the algorithm that executes this Petri Net is finished.

Note that in this example the algorithm is finished once the loop terminates, but in general the robot

can continue performing other tasks after the loop is terminated (as will be shown in Figure 3.8).

Figure 3.7 A loop of a single action

The Loop operator can also create a loop of multiple actions. For a CPNP structure which

contains a sequence of actions < a1,a2, ..,an > that are connected by a Sequence operator (such

that a1 is the first action, a2 is the second action and an is the last action), the Loop operator creates

a loop from these actions (doing a1, then a2 then . . . an then back to a1). It does so by merging the

places pi1 (the first place in the CPNP structure, i.e., the first place of a1) with pt n (the last place in

35 Chapter 3 Representing the Plans of a Single Robot: CPNP

the CPNP structure, i.e., the last place of an). The Loop operator can create a loop of any order of

actions (i.e., sequences of actions, fork and join actions) provided that this order of actions starts

with a single initial place and terminates with a single termination place.

Back to the soccer robot example. Figure 3.8 represents a soccer robot that plays until the

game’s end. The CPNP consists of two loops: attack (i.e., the sequence of go to ball and kick) and

defend. Each loop is running until the appropriate guard is not satisfied anymore. A new variable t

is added to V : V = {d : NUM,dgb : NUM, t : NUM}. This variable indicates the time that passed

since the beginning of the game. Once t becomes larger than 600 seconds, the game is terminated.

Figure 3.8 Soccer robot - loops

Specifying parallelization. Two operators exist for specifying parallelization: fork and join. The

Fork operator splits a thread of execution into multiple actions to be performed in parallel, while

the Join operator synchronizes multiple parallel actions back into a single thread of execution.

The Fork operator splits a process into multiple parallel processes. In essence, it generates

multiple threads from a single thread of execution. The Fork operator creates new threads by

creating new tokens. The Fork operator is characterized by a new transition, denoted as t f ork ∈ TC.

36 Chapter 3 Representing the Plans of a Single Robot: CPNP

This transition is added to the CPNP. It splits the tokens and fires them into multiple parallel

CPNPs as depicted in Figure 3.9. The input places of this transition are the termination places of

the CPNP before it was split. The output places of this transition are the initial places of the new

parallel CPNPs.

Figure 3.9 shows a fork structure producing two threads of execution from a single one. The

highlighted transition is t f ork. This transition removes a token from pt and generates two tokens:

one for pi1 and one for pi2 . Note that the operator can be extended to generate more threads by

adding new output places.

Figure 3.9 A Fork operator splits a process into two parallel threads

As opposed to the Fork operator, the Join operator merges two or more CPNPs into a sin-

gle one. This allows for the synchronization (merge) of multiple threads of execution. The Join

operator simultaneously consumes multiple threads of execution, and generates a single synchro-

nized thread. Formally, this operator merges the threads by adding a new transition, denoted as

t join ∈ TC. The input places of this transitions are the termination places of each of the multiple

concurrent CPNPs. The output places are merged with the initial places of the following CPNPs

(after the synchronization).

The join structure is shown in Figure 3.10, for the case of two threads that are synchronized

into a single one. The highlighted transition is t join. This transition takes two tokens, one from

each input place (pt1 and pt2), and fires a single token to the output place pi. As with the Fork

37 Chapter 3 Representing the Plans of a Single Robot: CPNP

operator, the Join operator can be generalized to synchronize more threads by adding new input

places.

Figure 3.10 Merging two separate threads into a single one using a Join operator

Again we return to our soccer robot example. In order to succeed in performing the go to ball

action, the robot needs to keep track of the ball as he moves towards it. Hence, the action go to

ball splits into two concurrent actions: walk to ball and track ball. These actions are indicated in

Figure 3.11 by w and t, respectively.

Figure 3.11 shows these concurrent actions. The splitting into two parallel actions (walk to

ball and track ball) is performed by the Fork operator. This operator is expressed by the transition

t f ork. The operator creates two separate threads, one for each action. These threads join again as

the walk to ball action is finished. Then the robot kicks the ball.

The Join operator is performed by transition ttt . Note that in this example the action track ball

should be terminated as the walk to ball action terminates. Hence, transition ttt has two jobs: it

functions as a Join operator and it terminates the execution of track ball.

38 Chapter 3 Representing the Plans of a Single Robot: CPNP

Figure 3.11 Soccer robot - fork and join

3.3 Re-use and Abstraction through Hierarchical Decomposi-

tion

CPNP as a single Petri Net can be created to represent systems which are small and not very

complex. However, drawing a CPNP model of a large system as a single net is impractical, due to

the risk of it becoming extremely large and inconvenient.

Hierarchical Petri Nets [31, 32, 44, 45, 104] provide the ability to organize the Petri Net into

hierarchies of layers. This is done by folding a part of the Petri Net into separate subnets, and

replacing these lower-layer subnets with a single transition (called substitution transition) to create

a higher layer of abstraction in the main Petri Net. According to [32], hierarchical modeling allows

for the following:

• Inspecting the modeled system at varying levels of detail;

• Visualizing selected parts of the system (e.g the subnet of one node);

39 Chapter 3 Representing the Plans of a Single Robot: CPNP

• Facilitating the multiple (re-)use of parts of the model.

Jensen [45] describes how to build Hierarchical Colored Petri Nets by the use of substitution

transitions. Substitution transitions add nothing fundamentally new. These transitions merely rep-

resent an entire piece of the CPN structure. The piece of CPN that is represented by a substitution

transition is executed during the firing of this transition.

According to this method, we can represent a plan for performing an action in a separate CPN,

and the plan will be executed when the substitution transition fires. In CPNP we represent the

execution phase of an action by an execution place and not by a transition (as described in Section

3.1). Therefore, we change the method of constructing hierarchies. Instead of using substitution

transitions, we define special places called substitution places and special variables in V . When a

transition fires a token to a substitution place, the variable that represents this hierarchy is changed,

and the relevant CPNP starts to execute. This methodology will be described in detail in the

remainder of this section.

The current section shows how a CPNP model can be organized as a hierarchy of plans (i.e.,

subplans). Higher (more abstract) plans are called superCPNPs and lower (less abstract) plans

are called subCPNPs. A CPNP can be both a superCPNP (that calls to some subCPNPs) and a

subCPNP (which can be called by some superCPNPs). Since it is rare that a robot will have to run

identical hierarchical actions concurrently, CPNP relies on the assumption that a single instance of

each hierarchical action can be executed by a robot at any given moment.

Again, the CPNP that calls to a subCPNP is called superCPNP. The hierarchical call is repre-

sented as an ordinary action. However, rather than referring to an atomic action of the robot, the

execution place (pe) actually refers to a subCPNP that performs multiple actions. This place is

called substitution place.

The hierarchical calls work as follows: each subCPNP has a representative variable of type

boolean (denoted as h). The value of this variable will always be identical in each token and it will

40 Chapter 3 Representing the Plans of a Single Robot: CPNP

be synchronized with each change. This variable is initially set to 0. Once a subCPNP is called

by a superCPNP this variable is assigned the value 1 (i.e., h = 1 when the appropriate subCPNP

is executed, and 0 otherwise). The assignment of a variable is done by using an arc expression on

the arc that connects from ts to pe (shown in Figure 3.12). Each subCPNP is initially marked with

tokens of h = 0.

Initially, each of the arcs that exit from a place on a subCPNP containing tokens at the initial

marking M0, can move tokens only if h is set to 1. This is expressed by arc expressions, and

signifies that tokens can move only after the subCPNP has been called. Each subCPNP has a

unique start place and goal place. After the subCPNP reaches its goal, it immediately returns to

the start place using a transition which connects the goal place (the last place in the subCPNP) to

the start place. The arc from this transition to the start place has an arc expression which sets h to

0. This means that the tokens are fired back to M0 and h is set again to 0 using transitions and arcs

expressions.

As an ordinary action, a hierarchical call is comprised of pi, ts, pe, tt and pt connected with

arcs (as shown in figure 3.12). In addition, the arc (ts, pe) contains the arc expression h = 1. This

arc expression triggers the appropriate subCPNP. The arc (pe, tt) also contains the arc expression

h = 0. This second arc expression guarantees that a token will be fired only when the hierarchical

action terminates.

Figure 3.12 depicts a hierarchical call. pe is a substitution place. The arc expressions are

illustrated by dashed boxes. Figure 3.13 shows an example of a subCPNP at M0. pi1 and pt2 are

start and goal places, respectively. This CPNP represents two actions in a serial order, using a

serialization operator. Similar to Figure 3.12, the arc expressions are represented by dashed boxes.

The highlighted transition moves tokens from a goal marking to the initial marking.

To illustrate the use of hierarchies, we revisit the CPNP model of the soccer robot and develop

a hierarchical CPNP model for this example. The actions walk to ball, track ball and kick can be

41 Chapter 3 Representing the Plans of a Single Robot: CPNP

Figure 3.12 SuperCPNP - a hierarchy call

Figure 3.13 An example of a subCPNP at the initial marking

folded into a single hierarchical action named attack. In contrast, the defend action should be more

specified.

Let’s define the defend action as follows: if the robot is closer to the ball than his goal, the robot

will go to the ball and kick, using the attack action. Otherwise, he will go to his goal and execute

the play goalie action. For reasons of simplicity we will omit the specification of play goalie.

The hierarchy of our soccer robot example is depicted in Figures 3.14-3.17. Figure 3.14 shows

the play soccer CPNP, this being the main CPNP. The play soccer CPNP hierarchically calls to two

subCPNPs: attack and defend. When the robot executes the attack CPNP, he goes to the ball and

kicks it towards the goal. When the robot executes the defend CPNP he chooses between kicking

the ball to the goal (using the attack CPNP) or defending his goal (as a goalie). For this selection

we define a new variable drg of type NUM. This variable indicates the distance between the robot

and its own goal.

The current version of the soccer robot example shows the re-use of the attack subCPNP. This

subCPNP is called twice: once in the play soccer CPNP and once in the defend CPNP. However,

instead of copying the attack subCPNP twice into the main CPNP, a separate CPNP is assigned for

this part (Figure 3.15). The example illustrates the reducing of space complexity using hierarchical

decomposition.

42 Chapter 3 Representing the Plans of a Single Robot: CPNP

The hierarchical model of this example is shown in Figure 3.17. This model is presented as a

directed tree graph called the instance hierarchy. In this graph, each node represents an instance

of actions and the arcs represent substitution places or execution places.

Figure 3.14 Soccer robot - play soccer CPNP

Figure 3.15 Soccer robot - attack CPNP

Hierarchical Petri Nets facilitate the readability of the graph and make the Petri Net repre-

sentation more convenient to build and use. The existing methods for organizing CP Nets into

hierarchies of layers [31, 32, 44, 45, 104] create a separate instance of each subnet each time that

subnet is called. If a subnet is the value of more than one substitution transition, there will be be

43 Chapter 3 Representing the Plans of a Single Robot: CPNP

Figure 3.16 Soccer robot - defend CPNP

Figure 3.17 Soccer robot - instance hierarchy

multiple instances of the same subnet, one for each substitution transition. As a result, the space

complexity of Hierarchical Petri nets which are constructed by these methods and non-hierarchical

Petri Nets is almost equal.

However, the real power of CPNP in constructing hierarchies lies in the fact that a subCPNP can

be the value of multiple substitution places. This advantage does not only facilitate the readability

of the graph (since it does not create redundant instances), but it also reduces the space complexity.

44 Chapter 3 Representing the Plans of a Single Robot: CPNP

3.4 Interrupting a Running Task

An interrupt is an event that may suddenly occur during execution of the robot system and whose

timing cannot be anticipated. Interrupts can occur at any time during execution. An example

of an interrupt would be a legged robot losing its balance and falling. Broadly speaking, two

interrupt-handling methods are used to deal with unforeseen events in previous Petri Net-based

representations:

1. Re-planning and building a new Petri Net according to the new plan, in execution time [50].

2. Building an interrupt-handling Petri Net for each kind of interrupt and connecting each of the

interrupt plans to each of the places that should lead to the interrupt occurrence [20,23,101].

The first method for interrupt-handling uses planning methods for generating plans and then

compiles them into Petri Nets. Interrupt occurrences lead to a re-planning of the entire system and

its compiling into a new Petri Net. This method is very flexible, but a lot of execution time is spent

during the processes that generate the plans and compile them into Petri Nets. This is a problem in

realtime robot systems. Furthermore, during the execution of these processes, additional interrupts

may occur which could cause the system to fail.

In order to handle action failures and interrupts according to the second method, we must

connect each of the interrupt handling plans (also: recovery plans) to each of the places that should

lead to the interrupt occurrence. The connection between the main plan and the recovery plan is

established by connecting a place of the main Petri Net to the initial place of the recovery plan.

This connection is established by a transition. When this transition is enabled, it fires tokens if the

relevant interrupt has occurred. This constraint is represented by a labeling mechanism.

It should be noted that we rely on the assumption that each interrupt-handling Petri Net has an

initial place and a goal place (similar to workflow nets). The initial place is the only place that is

marked with a token in the initial marking of the interrupt-handling Petri Net, and the goal place

45 Chapter 3 Representing the Plans of a Single Robot: CPNP

is the only place that is marked when the interrupt has been handled. If the interrupt-handling

Petri Net does not have an initial place or a goal place, it should be easy to create these places

by creating one place and one transition. In order to create an initial place, the input place of the

new transition will be the new place and the output places of this transition will be all the places

that participate in the initial marking. In a similar way, we can create a goal place by creating one

more place and transition, and connecting all the places that participate in the goal marking (i.e,

the marking that indicates that the interrupt has been handled) to the new transition as input places.

In addition, we connect the new goal place to the new transition as an output place. More details

can be found in [37, 38, 101].

The second method suffers from a number of problems. Firstly, the method is not robust.

Even if a single place (in which an interrupt might occur) is not properly connected to the suitable

interrupt handling plan, it could cause the whole system to fail.

Secondly, this method can lead to a problematic situation in which an interrupt-handling plan

is executed concurrently in multiple places of the graph. This situation may arise when there is

an interrupt that may occur in multiple places during the execution of those systems that use this

method. It leads to the firing of the transitions labeled with the condition that checks if this interrupt

has occurred. Those transitions fire the tokens at the same time to the relevant interrupt-handling

Petri Net; therefore, multiple tokens will be in the start place of the interrupt-handling Petri Net. As

a result, the interrupt-handling plan will be executed multiple times concurrently, which is highly

undesired.

Thirdly, when the recovery plan (i.e., the interrupt-handling Petri Net) is terminated, usually we

would expect for the execution to continue from the same place in which the interrupt occurred.

In order to guarantee this constraint, we must duplicate each of the recovery plans. The initial

place of each copy should be connected by a transition to a different place, that should lead to the

interrupt occurrence as well as the termination place. The duplicated plans extremely enlarge the

46 Chapter 3 Representing the Plans of a Single Robot: CPNP

space complexity.

Space complexity analysis of interrupt-handling according to the first method: Let C be a Petri

Net representation without recovery plans. In order to handle interrupts we would add recovery

plans (i.e., interrupt-handling Petri Nets) to C according to the second method. In the following

we analyze the space complexity of such an addition. In order to analyze the space complexity of

interrupt handling according to the second method, we define the following notations:

1. I. Number of interrupts that can occur in C.

2. |P|. Number of places in C.

3. |T |. Number of transitions in C.

4. |H|. Number of the places of a single interrupt-handling Petri Net.

5. |F |. Number of the transitions of a single interrupt-handling Petri Net.

Theorem 1. The space complexity of handling interrupts according to the second method is:

O((|P|+ |T |)I(|H|+ |F |)) (3.1)

Proof. The space taken by C is O(|P|+ |T |) (i.e., the number of places and transitions in C). The

space of each interrupt-handling Petri Net is at most O(|H|+ |F |). In order to handle interrupts

according to this method, we must duplicate and connect by a transition each of the interrupt-

handling Petri Nets to each of the places that should lead to the interrupt occurrence (|P|). The

number of the interrupt-handling Petri Nets is I and the size of each one is less or equal to O(|H|+

|F |). In total: O((|P|+ |T |)I(|H|+ |F |)).

In addition, the connection between C and each interrupt-handling Petri Net is established by

adding a new transition for each place that should lead to the interrupt occurrence. That place

47 Chapter 3 Representing the Plans of a Single Robot: CPNP

will be the input place of the new transition, and the output place will be the initial place of the

interrupt-handling Petri Net. Thus, |P| transitions are added. Therefore, the space complexity is:

O((|P|+ |T |)I(|H|+ |F |)+ |P|). Since all the numbers are natural numbers, |P| ≤ (|P|+ |T |)I(H+

F). Therefore: O((|P|+ |T |)I(|H|+ |F |)+ |P|) = O((|P|+ |T |)I(|H|+ |F |)).

Handling Interrupts in CPNP

Through the use of the Colored Petri Net extension, it should be possible to deal with interrupts

more efficiently, without creating duplicate CPNPs. In this section we introduce a clear and ro-

bust method for handling interrupts using Colored Petri Nets, and we will show how this method

reduces space complexity.

CPNPs deal with interrupts by building an interrupt-handling CPNP for each interrupt, and

specifying a unique variable of type boolean for each interrupt. This variable is initially set to

false. The perception component (described in Section 3.1) monitors changes in the environment.

Once an interrupt occurs (such as a case of a robot falling down), it updates the CPNP by

changing the appropriate token color variable to true. This change will trigger the system into

handling the interrupt. When the handling of the interrupt is finished, the variable will return to

false and the system will continue from the same point at which it initially stopped.

The interrupt-handling CPNP is constructed as follows: an interrupt-handling CPNP is built

for each kind of interrupt. Each one of these CPNPs must have at least the following two places:

pstart and pgoal . The initial marking is a single token in the place pstart . The place pstart is the first

place in the CPNP. It connects to a single transition which fires the token only if the appropriate

variable is set to true (indicating an occurrence of the interrupt). This constraint is expressed by

an arc expression on the arc that exits from pstart . A token in the place pgoal indicates that the

interrupt has been handled.

In addition, each interrupt-handling CPNP contains a transition tgoal . This transition has a

48 Chapter 3 Representing the Plans of a Single Robot: CPNP

single input place pgoal and a single output place pstart . tgoal fires a token back to pstart . During

this firing the token’s color is changed, and the relevant variable is set back to false. The variable

is changed by the use of the arc expression on the arc (tgoal, pstart).

Each input arc of each transition in the main CPNP has an arc expression. Arc expressions

signify that tokens can move in these arcs only if the interrupt variables are false. The presence of

these arc expressions causes the main CPNP to stop when an interrupt occurs and to wait until the

interrupt has been repaired.

To summarize, when an interrupt occurs, its appropriate variable is changed to true. This causes

the tokens of the main CPNP to stop (since they do not satisfy the arc expressions anymore), while

at the same time the token at the interrupt-handling CPNP (external to the main system) will start

to move. When a token gets to pgoal , tgoal fires it back to pstart and changes the variable to false

through the arc expression. In fact, tgoal returns the interrupt-handling CPNP back to the initial

marking. At this moment, the token in the interrupt- handling Petri Net stops (since it does not

satisfy the arc expression anymore) and the tokens in the main CPNP can cause transitions to fire

again.

Figures 3.18 and 3.19 describe the treatment of a fallen robot interrupt, with Figure 3.18 rep-

resenting the main program and Figure 3.19 the interrupt-handling CPNP - stand up. In order to

handle this interrupt we define a new variable fall down of type boolean. This variable is initially

set to false. Once the robot falls down this variable is changed to true. The dashed boxes are the

arcs expressions.

The moment the robot falls down, the variable fall down is set to true. This change will cause

the tokens in Figure 3.18 to stop (until they will satisfy the arc expression again) while the token

in Figure 3.19 (which currently satisfies the arc expression), will start to move. The moment the

token gets to pgoal it will be fired by tgoal . Since the arc that exits from tgoal has an arc expression

fall down = false, the value of the variable fall down will change to false. Then the tokens in Figure

49 Chapter 3 Representing the Plans of a Single Robot: CPNP

3.18 will continue running from the point they stopped.

Figure 3.18 An example of a main CPNP

Figure 3.19 An example of an interrupt-handling CPNP

Space Complexity Analysis of Interrupt-Handling According to the New Method

Theorem 2. The space complexity of handling interrupts according to this method is:

O(|P|+ |T |+ I(|H|+ |F |)) (3.2)

Proof. The space complexity of C is O(|P|+ |T |). Since the interrupt-handling CPNPs are external

CPNPs, we should add the space complexity of those CPNPs to O(|P|+ |T |). The space com-

plexity of the interrupt-handling CPNP, is the multiplication of the number of interrupt-handling

CPNPs and the space of each interrupt handling CPNP. Since each interrupt has a single interrupt-

handling CPNP, the number of interrupt-handling CPNPs is equal to I. The length of each interrupt-

handling CPNP is at most O(|H|+ |F |). Therefore, the total size of the interrupt-handling CPNPs

is O(I(|H|+ |F |)). In total, the space complexity is: O(|P|+ |T |+ I(|H|+ |F |)).

50 Chapter 3 Representing the Plans of a Single Robot: CPNP

Theorems 1 and 2 show that the current method reduces the space complexity. It should be

noted that we omit the number of arcs from the space complexity analysis, since it is bounded by

the number of places and transitions. Moreover, the size of each token is omitted too. The reason

is that both methods have a knowledge base and tokens; the size of the knowledge base and each

token is constant and roughly equal in both methods. The analysis of the number of tokens in the

CPNP (in each marking) is part of the boundedness analysis as discussed in Section 6.1.

3.5 Representing Resources

Representing shared resources (i.e. performing operation A only if a particular resource is avail-

able) is necessary in order to model both multi-robot and single-robot systems. The representation

of shared resources in CPNP is similar to the representation shown in [42] for representing two

processes that share three different resources.

In order to represent resources we define additional kinds of places and tokens (called resource

places and resource tokens). These places and tokens signify types of resources. Each resource

place and resource tokens’ color represent different types of resources. Tokens will appear in

resource places when the relevant resources are available. Examples of types of resources are:

battery, camera, fuel tanks, etc. The token’s color represents the type of resource. These types are

taken from a list of predefined types called Resources. The set of variables which is associated

with the resource tokens consists of a single variable type which represents each kind of resource.

The number of tokens from a specific color represents the number of resources from a specific

type. The number of tokens in a resource place is equal to the number of available resources from

the same type.

A robot that wants to use a shared resource should fire a token by a transition from the place

that represents this resource (or multiple tokens, in case it aspires to use multiple resources from

51 Chapter 3 Representing the Plans of a Single Robot: CPNP

the same type). Note that the robot can use the resource only when it is available (i.e., at least one

token exists in the resource place that indicates the type of this resource). When the robot finishes,

a token is fired by a transition to the resource place that indicates the relevant type of resource.

This firing indicates the release of the resource.

An example of a shared resource may be a battery. Two tokens of the type “battery” represent

two batteries. Presence of these two tokens in the resource place “battery” (the place that indicates

the resource of type “battery”) indicates that the batteries which are represented by these two

tokens are available. A firing of one of these tokens from the resource place indicates that one of

these batteries has been allocated. In contrast, a firing of one of these tokens to the resource place

indicates that one of these batteries has been released for use.

Consider another example of using a shared resource. Let’s assume the existence of a soccer

robot that is meant to perform two tasks concurrently: track ball (i.e., track movements of the ball)

and track goal (i.e., observe the goal). In order to perform each one of these tasks, the robot should

use a camera. However, the robot can not use the same camera when it performs these two tasks at

the same time.

Figure 3.20 depicts the CPNP of this example. In this figure the black token indicates the

robot and the white token indicates the camera. The place pc is the resource place of the camera

resource. The existence of a token in this place indicates that there is a camera that is available at

this moment. Transitions tctb and tctg can fire a white token only. This firing indicates an allocation

of a camera for one of the two tasks. In this example only one token exist in pc, which indicates

that the robot has only one camera. Therefore, transitions tctb and tctg can not fire concurrently and

the tasks cannot be performed concurrently. If the robot will get another camera, one more token

will be added to pc and the robot will be able to perform these two tasks concurrently. When one

of these tasks is completed, the camera is released and a white token is fired to pc using transition

trtb or trtg , respectively.

52 Chapter 3 Representing the Plans of a Single Robot: CPNP

Figure 3.20 An example of shared resources modeled by CPNP

3.6 CPNP: Execution Algorithm of a Single Robot

Until now, we have described how to represent a single-robot plan according to CPNP. This section

introduces the algorithms which are used in order to execute a given single-robot CPNP. These al-

gorithms are an extension of the PNP algorithm [101]. The set of algorithms for executing a

single-robot CPNP consists of a main execution algorithm 3.1 and some sub procedures (Algo-

rithms 3.2-3.4) which are called up from Algorithm 3.1 during the execution. In Chapter 6, we

will discuss the possibility of other algorithms, for reasoning and analyzing a given CPNP for

monitoring purposes, and for the validation of plans.

The execution algorithm for single robot-CPNPs is algorithm 3.1 (presented further on in this

section). The algorithm executes a given CPNP. It starts from the initial marking M0 and terminates

when a goal marking Mn ∈ L is achieved. Like the algorithm in [101], the algorithm assumes the

availability of a set of implemented actions Actions = {a1, ..,ak} that the robot can execute.

The algorithm has six structures: input_places, out put_places, Transition, Action, Token and

Marking. These structures are depicted in Figure 3.21. input_places and out put_places are a

transition’s input places and output places, respectively. Each transition t ∈ T is represented by the

Transition structure. This structure is composed of the following:

53 Chapter 3 Representing the Plans of a Single Robot: CPNP

1. type - type of t (start, end or connector).

2. action - an action a ∈ Actions which is associated with t. t should start or terminate a

according to its type. if t is of type connector this field will be empty.

3. input_places - a set of input places of t. Mathematically, this set is denoted as •t.

4. out put_places - a set of output places of t. Mathematically, this set is denoted as t•

Each action a ∈ Actions is represented by the Action structure that contains two methods: start

and end. start is responsible for starting the execution of a and end terminates it. The events

during which a is started or terminated are denoted as t.a.start and t.a.end, respectively, where t

is the transition associated with each event. The start and end methods are executed just after the

transition t fires (as described in Section 3). The characters <,> indicate the beginning and the

termination of a list, respectively.

In Section 3.1 we defined two types of tokens in CPNP: robotToken and resourceToken (de-

picted in Figure 3.21, lines 5-6). These types are distinguished by their color. The first type

represents the knowledge of the robot, and the second type represents a specific type of resource

(denoted as ei). Since the value of each variable is identical for each robotToken, it is wasteful to

maintain a separate data value for each token. Another reason for not maintaining a separate data

value for each token is that any change in the robot’s knowledge leads to the updating of all tokens’

data values.

In light of the above and in order to minimize the space complexity, we define a global knowl-

edge base kb instead of having each token contain all values of the variables in V . This knowledge

base is a data structure that contains the value of each variable in V . Each token has a pointer to

this knowledge base.

The knowledge base kb is a database that contains data about the environment from the per-

spective of the robot (i.e., the robot’s beliefs). It consists of the values of the variables in V (execute

54 Chapter 3 Representing the Plans of a Single Robot: CPNP

procedure, Algorithm 3.1, line 1). At the beginning each variable is initialized with a predefined

value. The knowledge is obtained from the robot’s sensors and it changes according to changes in

the environment. This knowledge defines the tokens’ color. This means that the color is determined

by the value of the variable in V .

Each robotToken is represented by a robotToken structure (Figure 3.21, line 5). This structure

consists of a pointer to the knowledge base kb. The knowledge base kb contains values for each

variable in V . The −→ character indicates a pointer.

As mentioned in Section 3.5, the resourceTokens represent types of resources (e.g., battery,

camera etc), which are taken from a list of predefined types called Resources (Figure 3.21, line

4), by a single variable type. The value of this variable is constant and can not be changed during

the execution. Each marking is represented by a Marking structure. This is a hash table which

maps each place to a list of tokens, where each token is represented by a robotToken structure or a

resourceToken structure.

Domains:
1: Actions = {a1, . . . ,ak}: Set of implemented actions.
2: TrType = {start,end,connector}
3: V = {v1, ..,vl}
4: Resources = {r1, ..,rn}

Structures:
1: input_places: {p1, .., pn} ⊆ P
2: out put_places: {p1, .., pm} ⊆ P
3: Transition: <t ∈ TrType,a ∈ Actions, input_places,out put_places>
4: Action: < start(), end() >
5: robotToken: < o−→ kb >
6: resourceToken: < ei ∈ Resources >
7: Marking = hash table (keys = places, values = list of tokens).

Figure 3.21 CPNP execution algorithm - domains and structures

The main procedure is execute (Algorithm 3.1). This procedure is parameterized by a CPNP.

The procedure starts from M0 and generates new markings until it reaches a marking that belongs to

55 Chapter 3 Representing the Plans of a Single Robot: CPNP

L (lines 2-4). New markings are generated through firing (explained below). The current marking

is represented by the variable currentMarking. This variable is built around a Marking structure

and it changes when the current marking itself is changed.

First, the execute procedure creates a knowledge base kb which contains an initial value for each

variable in V (line 1). Note that some of the variables in V are boolean variables for representing

an occurrence of interrupts, and hierarchies. These variables are initialized with false. The CPNP

execution algorithm assumes that the kb is constantly updated through the robot’s operating system.

For each transition t ∈ T the execute procedure checks whether an interrupt occurs (line 5). If

positive, the procedure sets to true the boolean variable in the kb which indicates an occurrence of

this interrupt (line 6). Then, the execute procedure checks if t is enabled, using the EnableTransi-

tion procedure (line 8). If t is enabled, the execute procedure performs the following steps:

1. Activating or deactivating the action associated with t, according to the type of t, using the

handle transition procedure (line 9).

2. Firing t and generating a new marking, using the fire procedure (line 10).

3. Terminating the execution of the algorithm once a marking that is defined as a goal marking

is obtained (lines 11–12).

The EnableTransition procedure (Algorithm 3.2) is parameterized with a transition t as well as

the current marking, and returns true if the guard on t is satisfied (line 1) and t is enabled (according

to Definition 4) in the current marking (lines 2–10). If this procedure returns true it means that t is

ready to fire.

Lines 2–10 check if t is enabled in accordance with the current marking. The procedure checks

if the list of tokens in pi contains at least the list of tokens that is defined in E(pi, t), for each input

place pi of t (line 2). This is expressed by checking if any place exists that does not contain the list

56 Chapter 3 Representing the Plans of a Single Robot: CPNP

Algorithm 3.1 CPNP execution algorithm - single robot, execute
procedure execute (CPNP (P,T,A,Σ,V,C,G,E,M0,L))

1: create knowledge base kb from V
2: CurrentMarking←M0
3: while CurrentMarking 6∈ L do
4: for all t ∈ T do
5: if an interrupt i occurs and kb.vi 6= true then
6: kb.vi← true // vi is a boolean variable that indicates an occurence of interrupt i
7: end if
8: if EnableTransition(t,CurrentMarking) then
9: HandleTransition (t)

10: CurrentMarking← f ire(t,CurrentMarking)
11: if CurrentMarking ∈ L then
12: exit
13: end if
14: end if
15: end for
16: end while

of tokens defined in the arc expression (line 7). If so, the procedure returns false (line 8). Note that

each arc expression E(pi, t) defines a list of tokens.

Algorithm 3.2 CPNP execution algorithm - single robot, EnableTransition
procedure EnableTransition(t,CurrentMarking)

1: if G(t) = true then
1: // checks if the guard on t is satisfied
2: for all pi ∈ t.input_places do
3: if CurrentMarking(pi) 6⊇ E(pi, t) then
4: return false
5: end if
6: end for
7: else
8: return false
9: end if

10: return true

If the transition t is enabled the HandleTransition procedure is started (Algorithm 3.3). The

procedure activates or deactivates the action related to t (if it exists) according to the type of t.

57 Chapter 3 Representing the Plans of a Single Robot: CPNP

Algorithm 3.3 CPNP execution algorithm - single robot, HandleTransition
procedure HandleTransition(t)

1: if t.t = start (// if the type of t is start) then
2: t.a.start() // activate action a
3: else if t.t = end (// if the type of t is end) then
4: t.a.end() // deactivate action a
5: end if

The fire procedure (Algorithm 3.4) executes the firing of t. In practice, this procedure changes

the current marking according to the firing rules defined in Section 2.2. This means that this

procedure consumes E(pi, t) tokens from each input place pi (lines 1–2) and produces E(t, po) to

each output place po (lines 4–5). The operation CurrentMarking(po)+E(t, po) (line 5) produces

tokens for po according to the arc expression E(t, po). This operation also changes the values of

the variables according to E(t, po).

Note that in a case of hierarchical decomposition, the firing of t starts the execution of the

hierarchical action by changing the tokens’ color. In fact, the arc from t to the substitution place

has an arc expression that changes this color by setting the value of the boolean variable that

represents this hierarchical action to true. Once the execution of the CPNP that represents the

hierarchical action will reach its goal, it will change the boolean variable to false using an arc

expression. Changes in the variables are recorded in the knowledge base. Since each token has a

pointer to the knowledge base, the tokens get notified of any changes in the knowledge base.

Algorithm 3.4 CPNP execution algorithm - single robot, fire
procedure fire (t,CurrentMarking)

1: for all pi ∈ t.input_places do
2: CurrentMarking(pi) =CurrentMarking(pi)−E(pi, t)
3: end for
4: for all po ∈ t.out put_places do
5: CurrentMarking(po) =CurrentMarking(po)+E(t, po)
6: end for

58 Chapter 3 Representing the Plans of a Single Robot: CPNP

Summary. The current chapter introduced the CPNP representation for single-robot architec-

tures. We elaborated on the CPNP basic building blocks; those basic CPNP structures that are

used to represent each action and the operators that are used to connect between the actions. Next,

we presented an efficient method for constructing hierarchies, which does not only facilitate the

readability of the Petri Net but also reduces space complexity.

A mechanism to deal with interruptions was provided. This mechanism is especially robust

since it allows for handling interruptions without connecting any place of the CPNP with the

interrupt-handling CPNP, no matter the CPNP’s state. We proved that the use of this mechanism

reduces space complexity. We showed how to represent shared resources in CPNP. Finally, we

introduced the algorithms for executing a given CPNP.

Chapter 4

Theoretical Analysis of Multi-Robot Petri

Net Plan Representations

Before extending CPNP to handle multi-robot plans, it would be prudent to examine general ap-

proaches to multi-robot plan representations. There are a wide variety of Petri Net-based multi-

robot representations [20–22,50,53,55,60,65,99–101]. Thus far, their relative strenghs and weak-

ness have not been investigated however. This chapter includes an analysis of these representations

that examines their space complexity when representing a given multi-robot plan.

We classify the mentioned multi-robot representations along two dimensions:

1. The type of Petri Net used for representing multi-robot plans (P/T Net or CP Net);

2. Whether individual or joint states are represented.

We will show that choices along these two dimensions involve significantly different space require-

ments. Furthermore, we will show in which cases either individual or joint state representation is

preferable. The analysis reveals that combining Colored Petri Net with the correct choice of state

representation yields the best results on space complexity. Building on the insight gained from this

analysis, Chapter 5 will introduce the CPNP representation for multi-robot systems.
59

60 Chapter 4 Theoretical Analysis of Multi-Robot Petri Net Plan Representations

The current chapter is organized into three sections. Section 4.1 describes the joint and indi-

vidual state representations. In order to analyze the existing representations for a given plan G,

we divide G into three parts. These parts are analogous to the three existing types of robot de-

pendencies that will also be described in this section. Section 4.2 presents the analysis of existing

multi-robot representations and their scalability. Finally, Section 4.3 summarizes the chapter.

4.1 Joint State Representation vs. Individual State Represen-

tation

There are two widespread representation approaches for representing multi-robot systems: indi-

vidual state representation, and joint state representation. The most popular approach is individual

state representation [21, 22, 50, 53, 55, 60, 65, 100, 101]. This approach uses separate symbols to

represent the separate states of separate robots. In contrast, joint state representation [99] uses a

single symbol to represent the state of all participants together.

In individual state representation, each symbol represents the state of a single robot (role).

Particular to Petri Net is that each robot has separate places and tokens in the shared task’s net, and

different markings distinguish the status of the mission. Essentially, the net for each robot is built

separately and merged with the other nets. Figure 4.1 presents two different Petri Nets (a and b),

each one of them executed by a different robot and each independent of the other.

By contrast, in joint state representation one symbol is required for representing the status of

all team members. With joint state representations in Petri Net, multiple robots share the same

place which denotes their joint state in the shared task.

Figure 4.2 shows the joint state representation based on the two individual Petri Nets shown in

Figure 4.1. Each joint place indicates two individual places: one from Petri Net a and one from

Petri Net b. For example: a token in place Pa1 ∧Pb1 represents a token in Pa1 and a token in Pb1 in

61 Chapter 4 Theoretical Analysis of Multi-Robot Petri Net Plan Representations

Figure 4.1 Example of two Petri Nets based on individual state representation

the two individual Petri Nets above. Each transition in Figure 4.2 represents two transitions (one

from each Petri Net) in Figure 4.1. For example: transition ta1(F)∧ tb1(¬F) represents the firing

of the token in the case of transition ta1 having fired the token (in Figure 4.1, Petri Net a) and

transition tb1 not having fired the token yet (in Figure 4.1, Petri Net b). Note that F indicates that

the transition fired, while ¬F indicates the opposite.

Consider the following Open door example: two robots are required to jointly open a door. The

plan of this example consists of a single action Open door. This plan is performed by two robots:

R1 and R2. Figure 4.3 depicts an individual state representation which represents the example’s

plan. This individual state representation is built according to PNP [101]. In individual state

representation, each place represents the status of one of the robots participating in the mission

(individually) and the marking represents the task progress status. The upper and lower Petri Net

components of Figure 4.3 represent the states of R1 and R2, respectively. When the two robots are

ready to open the door, one token appears in place pR11
and one token apears in place pR21

. Only

when each of these places contains at least one token, transition tsync fires the tokens and each of

the two robot starts the Open door action.

Figure 4.4 depicts a joint state representation that represents the plan of the Open door example.

As mentioned previously, in a joint state representation each place represents the status of all

the robots participating in the mission. Hence, each place represents the task progress status.

62 Chapter 4 Theoretical Analysis of Multi-Robot Petri Net Plan Representations

Figure 4.2 Example of joint state representation (base on the two individual Petri Nets of
Figure 4.1).

Therefore, if the two robots are ready to open the door, a token should appear in the place that

indicates that R1 and R2 are ready to open the door (place pR1∧R21). Then the token is fired to place

pR1∧R22 and the robots execute the Open door action. Once the robots finish, the token is fired to

place pR1∧R23 .

Until now, most Petri Net-based multi-robot architectures made use of individual state repre-

sentation [21,22,50,53,55,60,65,100,101]. Gutnik and Kaminka [36] examined the strengths and

weaknesses of each type of state representation for conversation modeling. There, the Petri Nets

represent the communication acts that two or more agents should take, to carry out a conversation

according to a specific protocol. Their analysis showed that for tracking conversations (e.g., for

decision protocols, task allocation between robots, etc.), a joint state representation that is based

63 Chapter 4 Theoretical Analysis of Multi-Robot Petri Net Plan Representations

Figure 4.3 Open door: example of individual state representation

Figure 4.4 Open door: example of joint state representation

on Colored Petri Nets yields significant advantages in space complexity.

However, the overall strengths and weaknesses of individual and joint state representations

regarding different tasks and architectures have not been examined. Figures 4.1-4.4 illustrated

that the two types of state representation for representing the same multi-robot plan involve widely

divergent space requirements with no obvious preferable option. In Figures 4.1-4.2 individual state

representation is preferable in terms of space complexity, while in Figures 4.3-4.4 the same is true

for joint state representation.

Types of Inter-Robot Dependencies. Analysis of individual and joint state representations should

distinguish three existing types of robot inter-dependencies, independence, weak dependency and

strong dependency. The dependencies between these robots define the type of coordination be-

tween them:

1. Independence: each robot acts as individual, without any commitment to the other robots. In

64 Chapter 4 Theoretical Analysis of Multi-Robot Petri Net Plan Representations

practice, a multi-robot plan in which each robot is independent consists only of the union of

the single robot plans of each robot.

2. Weak dependence of robot A on robot B: robot A cannot start an action until robot B reaches

a certain state. Weak dependency presents a precedence relation among the actions of two

plans.

3. Strong dependence: robot A is weakly dependent on robot B and robot B is weakly dependent

on robot A. Robot A and robot B are strongly dependent when they are executing actions C

and D such that the execution of actions C and D is synchronized.

These dependencies have been defined above for two robots, but they can be expanded for

any number of robots. The weak dependence can be expanded, according to the following logical

dependencies:

1. A weak dependence of robot A on robot B and robot E

2. A weak dependence of robot A on either robot B or robot E

A strong dependence of a group of multiple robots, means that the robots should be synchronized

while they are performing their actions. The definition of strong dependence of multiple robots is:

every robot in the group is weakly dependent on all the others.

4.2 An Analysis of Petri Net Representations for Multi-Robot

Systems

This section introduces the space complexity analysis of existing multi-robot representations. As

mentioned, we classify the existing multi-robot representations along two dimensions:

65 Chapter 4 Theoretical Analysis of Multi-Robot Petri Net Plan Representations

1. The technique used for representing multi-robot plans (P/T nets or CP nets).

2. Individual state representations or joint state representations.

Given a multi-robot plan G with R robots, this section will present an analysis of the space

complexity of each type of representation (i.e., individual state representations based on P/T Nets,

individual state representations based on CP Nets, joint state representations based on P/T Nets

and joint state representations based on CP Nets). In some plans multiple robots can have the same

roles. This means that they execute exactly the same part of the plan and perform the same actions.

Definition 8 defines the meaning of role. In our analysis we will regard the number of different

roles in the plan. This number is denoted by L (L≤ R).

Definition 8. Role is the specific part relative to each robot in the common task. If two robots have

the same role, it means that they execute exactly the same actions (they have the same code).

In order to compare representations based on P/T Nets to representations based on CP Nets, first

we should calculate the space complexity of the colors added to the tokens. Although CP Nets are

computationally equivalent to Petri Nets [44] (every P/T Net can be translated to CP Net and vise

versa), the space complexity of a representation of a multi-robot plan based on CP Nets is different

than a representation of the same plan based on P/T Nets. In CP Nets, tokens maintain data (color),

as opposed to P/T Nets. Therefore, instead of one bit which is required to represent a token in a

P/T Net, CP Nets use multiple bits per token. For instance in CP Net based representations for

multi robot plans, each token may contain an ID of a robot. Therefore logR bits are required in

order to differentiate R robots. Despite this in the Sections 4.2.1, 4.2.2 and 4.2.3, we will show that

in some cases, choosing CP Nets to represent multi-robot plans reduces the space complexity.

Sections 4.2.1, 4.2.2 and 4.2.3 introduce the space complexity analysis of the existing repre-

sentations.

66 Chapter 4 Theoretical Analysis of Multi-Robot Petri Net Plan Representations

The analysis is carried out according to the dependencies between the robots. Section 4.2.1

presents the space complexity analysis where the robots are independent. Section 4.2.2 presents the

space complexity analysis for weak dependency and Section 4.2.3 does so for strong dependency.

Finally, Section 4.3 summarizes the space complexity analysis of multi-robot representations by

summing up the space complexity analyses presented in Sections 4.2.1, 4.2.2 and 4.2.3.

4.2.1 Space Complexity Analysis When Each Robot is Independent

This section introduced the space complexity analysis for representations of multi-robot plans, of

R robots in which the robots are independent. In these plans robots act as individuals. They do not

have commitments to the other robots and they do not need to coordinate and cooperate with other

robots in order to perform a mission. The robots are divided into L different roles. The multi-robot

plan consists of L independent single-robot plans (one for each role). In the following analysis we

assume that the representation of a multi-robot plan has K tokens. If the representation is bounded

then K is a finite number bounded by a constant natural number. The boundedness property will

described in Chapter 6.

These multi robots plans consist of a union of all single-robot plans (one for each role). Each

single-robot plan is made of a number of actions and a number of operators. Let P be the size of

the maximal plan with the maximal size for any role. The number of actions in P is denoted as

A, and the number of operators is denoted as E. The size of the representation of a single atomic

action and operator is bounded. Therefore P = O(A+E).

Space complexity of individual state representations

Theorem 3. Given a multi-robot plan G with R robots, the space complexity of an individual state

representation based on P/T Nets is:

O(PR+K) (4.1)

67 Chapter 4 Theoretical Analysis of Multi-Robot Petri Net Plan Representations

Proof. G is composed of a single-robot plan for each role. The size of the representation of each

single robot plan is O(P). In individual state representations which are based on P/T Nets, each

place can represent only a single robot. Therefore the representation of G is composed of R separate

single-robot representations (one for each robot). Thus the size of the representation of G is O(PR).

We should add the size of K tokens to this size. The size of each token in a P/T Net is one bit and

the size of K token is K bits. In total, the space complexity is: O(PR+K)

Theorem 4. Given a multi-robot plan G with R robots, the space complexity of an individual state

representation based on CP Nets is:

O(PL+K logR) (4.2)

Proof. G is composed of a single-robot plan for each role. The size of the representation of each

single robot plan is O(P). In individual state representations which are based on CP Nets, each

place can represent a single role. Therefore the representation of G is composed of L separate

representations (one for each role). Thus the size of the representation of G is: O(PL). In addition,

the representation of G has K tokens (as assumed). Each token requires logR bits (explained

above). In total, the space complexity is: O O(PL+K logR).

Space complexity of joint state representations

Theorem 5. Given a multi-robot plan G with R robots, the space complexity of a joint state repre-

sentation based on P/T Nets is:

O
(
PR +K

)
(4.3)

Proof. In joint state representations which are based on P/T Nets, each place indicates the joint

state of all the robots participating in the system. Because the robots are independent of each

other, each place in a joint state representation represents a possible combination of a single place

from each single-robot representation (i.e. a representation of a single-robot plan). Therefore, the

68 Chapter 4 Theoretical Analysis of Multi-Robot Petri Net Plan Representations

size of the representation of G is: O
(
PR). We should add the size of K tokens which is K bits to

this size (as explain above). In total, the space complexity is: O
(
PR +K

)
Theorem 6. Given a multi-robot plan G with R robots, the space complexity of a joint state repre-

sentation based on CP Nets is:

O
(
PL +K logR

)
(4.4)

Proof. G is divided into L sub plans (one for each role). Each place in a joint state representation

represents a possible combination of the state of each sub plan. Therefore, the size of the repre-

sentation G is: O
(
PL). We should add the size of K tokens which is K logR bits to this size (as

explain above). In total, the space complexity is: O
(
PL +K logR

)
Table 4.1 summarized theorems 3-6. It presents the space complexity of different approaches for

representing the same multi-robot plan. The plan consists of R robots and L roles. The robots are

independent and act as individuals without the need of communication between the robots. From

this table we can infer that the individual state representation is preferable in order to represent

independent robots. Figures 4.1 and 4.2 present an individual state representation and a joint state

representation of a multi-robot plan, which consists of two independent robots respectively. The

figures demonstrate that individual state representations have significantly less space complexity,

when representing a plan of independent robots.

Regarding the choice of either P/T Net or CP Net: The choice of CP Net is preferable in terms

of space complexity for the following reasons:

1. The O(logR) factor can be reduced to O(1), since L ≤ R and in practice, the number of

robots R is bounded.

2. We can reduce the space complexity of the tokens in CP Nets from O(K logR) to O(K−R+R logR)

by the following implementation: in most representations R ≤ K, therefore we can reduce

69 Chapter 4 Theoretical Analysis of Multi-Robot Petri Net Plan Representations

Non CP net CP net

Individual state representation O(PR+K) O(PL+K logR)

(Theorem 3) (Theorem 4)

Joint state representation O
(
PR +K

)
O
(
PL +K logR

)
(Theorem 5) (Theorem 6)

Table 4.1 Space complexity analysis when the robots are independent

the space complexity of the K tokens by building a representation in a way that R tokens

will maintain the ID of all robots (cost: O(R logR)), and the rest will have a pointer to the

relevant ID (cost: O(K−R)). In total, representing K tokens according to this method will

cost: O(K−R+R logR).

3. An additional reason in choosing CP Nets over P/T Nets is that by the use of CP Nets we can

efficiently represent interrupts, hierarchies and shared resources, as described in Section 3.

4.2.2 Space Complexity Analysis of The Weak Dependence Operator

This section discusses multi-robot plans in which weak dependence exists. The part of the rep-

resentation that represents a single weak dependence operator has a bounded size denoted as X ;

this size includes all Petri Net ingredients for a single weak dependence operator. This analysis

regards only the number of sub plans containing weak dependence operators, which exist in total

in a given multi robot plan (denoted as G). The number of unique weak dependence operators in G

is denoted by W . Different weak dependence operators connect between different roles. Consider

the following example: a plan consists of four robots: R1, R2, R3, R4. R1 and R3 have the same

role and R2 and R4 have the same role. The plan consists of a weak dependence operator between

the two different roles (i.e., a weak dependence operator between R1 and R2 and a weak depen-

dence operator between R3 and R4). In this example W = 1, since the plan has two identical weak

70 Chapter 4 Theoretical Analysis of Multi-Robot Petri Net Plan Representations

dependence operators, which equals a single unique weak dependence operator.

Space complexity of individual state representations Figure 4.5 presents an individual state

representation of a weak dependence operator of the following example: two robots R1 and R2

and four actions A, B, C and D. R1 performs Action A, and then performs Action B; and R2

performs Actions C and then it performs Action D, but R2 cannot perform Action D until R1

finishes performing Action A.

Figure 4.5 Individual state representation of weak dependence of R2 on R1

Unlike CP Nets, in P/T Nets, tokens do not have values and we cannot differentiate between

tokens. Therefore, while we can represent two robots with the same role in a single CP Net by two

different tokens (one representing the first robot and the other representing the second), we cannot

do this in a P/T Net based representation. Therefore, in a P/T Net based representation, two robots

with the same role will be represented by two separate but identical P/T Nets.

Back to the example of four robots and two roles and a weak dependence operator between the

two different roles. A P/T Net based representation of this example is depicted in Figure 4.6. This

figure has two identical P/T Net components: the left one represents the weak dependence operator

of R1 and R2, and the right P/T Net component represents the weak dependence operator of R3 and

R4.

71 Chapter 4 Theoretical Analysis of Multi-Robot Petri Net Plan Representations

Figure 4.6 A P/T Net-based individual state representation of weak dependence of R2 on
R1 and weak dependence of R3 on R4

Figure 4.7 presents a more space-efficient CP Net-based representation of this example. The

figure has a single CP Net component that represents the weak dependence operator of the two

roles and four token colors that represent the robots.

Figure 4.7 A CP Net-based individual state representation of weak dependence of R2 on
R1 and weak dependence of R3 on R4

Theorem 7. Given a multi-robot plan G with R robots, L roles, W different weak dependence

operators, and X as the upper bound of the size of a single weak dependence operator, the space

72 Chapter 4 Theoretical Analysis of Multi-Robot Petri Net Plan Representations

complexity of the weak dependence operators in P/T Net-based representations of G is:

O
(

R
L

WX
)

(4.5)

Proof. In individual state representations that are based on P/T Nets, each place can represent only

a single robot. When there are identical (duplicate) weak dependence operators (as described in

the example above), the individual state representation should represent them in separate repre-

sentations (one for each operator). W weak dependence operators connect L roles to each other.

To determine the total number of operators, we need to examine how many duplicates of these

roles exist. In the worst case there would be W operators of each such duplication. The maximal

number of duplicates occurs when the robots are divided uniformly into the L roles, thus R
L dupli-

cates. The worst case number of operators would therefore be O
(R

LW
)
, and the space complexity

is O
(R

LWX
)
. Naturally, a smaller L would result in greater space complexity.

In the example above (Figure 4.6) there are four robots (R = 4), two different roles (L = 2),

and two identical weak dependence operators which equals one unique weak dependence operator

(W = 1). Therefore, the number of the identical (duplicate) weak dependence operators is bounded

by R
L =4

2=2 and the space complexity is O(2X).

Theorem 8. Given a multi-robot plan G with R robots, L roles, W different weak dependence

operators, and X as the upper bound of the size of a single weak dependence operator, the space

complexity of the weak dependence operators in CP Net-based representations of G is:

O(WX) (4.6)

Proof. In individual state representations which are based on CP Nets, only the unique weak de-

pendence operator is represented separately. Therefore, the space complexity required to represent

W weak dependence operators is O(WX).

73 Chapter 4 Theoretical Analysis of Multi-Robot Petri Net Plan Representations

Space complexity of joint state representations

Theorem 9. Given a multi-robot plan G with R robots, L roles, W different weak dependence

operators, and X as the upper bound of the size of a single weak dependence operator, representing

the W weak dependence operators in a joint state representation based on either CP Nets or P/T

Nets does not enlarge the space complexity of the representation of G.

Proof. The weak dependence operator defines precedence order between actions performed by

different robots. In joint state representations, each place represents the joint state of all robots,

meaning that each place indicates the state of all the robots that participate in the system. Therefore

the precedence order between the actions has already been embodied in the representations of those

actions without adding additional symbols (places or transitions) to the representations.

Figure 4.8 demonstrates the proof of Theorem 9 through the example previously described

in this section: assume without loss of generality, that the plan consists of two robots R1 and

R2 and four actions A, B, C and D. R1 performs Action A and then performs Action B and R2

performs Action C, and then it performs Action D, but R2 cannot perform Action D until R1

finishes performing Action A. Figure 4.8 depicts the joint state representation of the plan. The

figure shows that neither additional places nor transitions have been added in order to represent the

weak dependency.

Table 4.2 summarizes theorems 7–9. It presents the space complexity of different approaches

for representing weak dependence operators of the same multi-robot plan. The plan consists of

R robots, L different roles and W weak dependence operators. Even though the representation of

the weak dependence operators in joint state representations does not enlarge the space complexity

of the representation of G compared to individual state representations, these kinds of representa-

tions are not preferable in terms of space complexity, since the representation of the actions that

participate in the operator require exponential space complexity (Theorems 5 and 6).

74 Chapter 4 Theoretical Analysis of Multi-Robot Petri Net Plan Representations

Figure 4.8 Joint state representation of weak dependence of R2 on R1

Regarding the example of a plan which consists of two robots R1 and R2 and four actions A,B,C

and D. R1 performs Action A, and then performs Action B; and R2 performs Actions C and then it

performs Action D, but R2 cannot perform Action D until R1 finishes performing Action A. Figure

4.5 presents a more space efficient individual state representation of this example. Compared to

the joint state representation (depicted in Figure 4.8), it can be seen that even tough no additional

places or transitions have been added in order to represent weak dependence in Figure 4.8, and

an additional place (pm) has been added to Figure 4.5, still the individual state representation in

Figure 4.5 has smaller space requirements.

4.2.3 Space Complexity Analysis of the Strong Dependence Operator

The strong dependence operator defines synchronization between multiple actions performed by

different robots. This section discusses the parts of multi-robot plans in which a strong dependence

operator is used and the actions associated with it. There is no need to add additional symbols

75 Chapter 4 Theoretical Analysis of Multi-Robot Petri Net Plan Representations

Non CP net CP net

Individual state representation O
(R

LWX
)

O(WX)

(Theorem 7) (Theorem 8)

Joint state representation O(1) O(1)

(Theorem 9) (Theorem 9)

Table 4.2 Space complexity analysis when the robots are weakly dependent

(i.e., places and transitions) for representing a strong dependence operator in either individual

or joint state representations. Individual state representations represent this operator by merging

transitions which are associated with the actions and robots that should be synchronized. Joint

state representations represent this operator by merging places and transitions associated with those

actions and robots.

Figures 4.9 and 4.10 show an example of an individual state representation and a joint state

representation representing the following plan: the plan consists of two robots R1 and R2 and

two actions A and B. The robots should perform actions A and B together in synchronization.

Figure 4.9 presents the individual state representation of the example above. The figure shows

that no additional places or transitions have been required in order to represent this example. The

transition before the execution of A by R1 (R1.A) is merged with the transition before the execution

of A by R2 (R2.A), as well as the transition before the execution of B by R1 (R1.B), and the transition

before the execution of B by R2 (R2.B).

A joint state representation of the example above is depicted in Figure 4.10. Like the individual

state representation (Figure 4.9), no additional places or transitions have been required in order to

represent this example. But unlike the individual state representation, in this representation the

places also have been merged. The place that represents the execution of A by R1 has been merged

with the place that represent the execution of A by R2, and the place that represent the execution of

76 Chapter 4 Theoretical Analysis of Multi-Robot Petri Net Plan Representations

B by R1 has been merged with the place that represent the execution of B by R2.

Figure 4.9 An individual state representation of the example above

Figure 4.10 A joint state representation of the example above

This section introduces an analysis of the space complexity of a plan G which consists of R

robots (R1,..,Rn) which are strongly dependent while they are performing a sequence of actions.

The analysis will only focus on the space complexity of the parts in G that contain strong depen-

dence operators. Let Qi be the part of the representation of this sequence of actions that is related

only to Robot Ri; let Q be the Qi that has the maximum length (i.e., Q = maxQi); and let S be the

size of Q. The rest of this section will show the space complexity analysis of individual and joint

state representations which are based on either P/T Nets or CP Nets.

Space complexity of individual state representations

Theorem 10. Given a multi-robot plan G with R robots, L roles, and S being the maximum length

of representing a subplan that refers to a single robot (as described above), the space complexity

77 Chapter 4 Theoretical Analysis of Multi-Robot Petri Net Plan Representations

of the strong dependence operators in P/T Nets based representations of G is:

O(SR) (4.7)

Proof. In individual state representations, which are based on P/T Nets, each place can represent

only a single robot. Therefore, a sequence of actions which is performed by R robots should

be represented in separated places for each robot. For each place in Q there are R places in the

representation of G (one for each robot). Thus the space complexity is: O(SR).

Theorem 11. Given a multi-robot plan G with R robots, L roles, and S being the maximum length

of representing a subplan that refers to a single robot (as described above), the space complexity

of the strong dependence operators in CP Nets based representations of G is:

O(SL) (4.8)

Proof. In CP Nets we can differentiate the robots by the use of the tokens’ color. Therefore,

multiple representation of the same roles can be unified into a single representation (Chapter 5).

The result is that, for each place in Q, there are L places in the representation of G (one for each

role). Thus the space complexity is: O(SL).

Space complexity of joint state representations

Theorem 12. Given a multi-robot plan G with R robots, L roles, and S being the maximum length

of representing a subplan that refers to a single robot (as described above), the space complexity

of the strong dependence operators in either a P/T Nets or CP Nets based representations of G is:

O(S) (4.9)

Proof. In a joint state representation, each place represents the joint state of all robots. When the

robots are strongly dependent, each state should be synchronized between all robots and repre-

sented as a single place in joint state representation. Therefore, the representation Q of each single

78 Chapter 4 Theoretical Analysis of Multi-Robot Petri Net Plan Representations

Non CP net CP net

Individual state representation O(SR) O(SL)

(Theorem 10) (Theorem 11)

Joint state representation O(S) O(S)

(Theorem 12) (Theorem 12)

Table 4.3 Space complexity analysis when the robots are strongly interdependent

robot can be merged into a single representation Q, where each place represents the joint state of

all robots. Thus, the space complexity is O(S) (the length of Q).

Table 4.3 summarizes the theorems 10-12. It presents the space complexity of different ap-

proaches for representing a plan which consists of R robots (in L different roles) and which execute

a sequence of actions in synchronization (strong dependency). The table shows that the joint state

representation is the preferable choice to represent strong dependency among the robots.

The open door example, which has been described in Section 4.1, describes a plan in which

the two robots are strongly interdependent while they perform the open door action. Figure 4.3

presents an individual state representation of this plan and Figure 4.4 presents a joint state repre-

sentation of this same plan. As expected, the figures demonstrate that the joint state representation

(depicted in Figure 4.4 is preferable to the individual one in terms of space complexity.

4.3 Summary

This chapter analyzed the space complexity of existing approaches for representing a given multi-

robot plan (denoted as G). We classified the existing representations under two dimensions:

1. Joint state representations or individual state representations

2. P/T Nets or CP Nets

79 Chapter 4 Theoretical Analysis of Multi-Robot Petri Net Plan Representations

Non CP net CP net

Individual state O
(
PR+ R

LWX +SR+K
)

O(PL+WX +SL+K logR)

representation [21, 22, 50, 53, 55, 101] [60, 65, 100]

(Theorems 3, 7 and 10) (Theorems 4, 8 and 11)

Joint state O(PR +S+K) O(PL +S+K logR)

representation [99]

(Theorems 5, 9 and 12) (Theorems 6, 9 and 12)

Table 4.4 Space complexity analysis of multi robot representations

The analysis is divided into three parts of G: independency, weak dependency and strong depen-

dency. The results of our analysis and the scalability of existing approaches is presented in Table

4.4. The table summarized the total space complexity of each type of representation. In fact,

it sums up the space complexity of the parts where the robots are independent (Section 4.2.1),

weakly dependent (Section 4.2.2) and strongly dependent (Section 4.2.3). The table also cites

relevant previous work (based on Theorems 3-12).

Theorems 3-12 and Tables 4.1-4.3 show that individual state representations based on Colored

Petri Nets are preferable (in terms of space complexity) for representing independent and weakly-

dependent robots, and joint state representations are preferable (in terms of space complexity) for

representing strongly-dependent robots.

Building from this analysis, Chapter 5 will introduce our CPNP representation for representing

multi-robot plans. This is a novel representation that combined individual and join state represen-

tation by representing independency and weak dependency as individual state representation and

representing strong dependency as joint state representation. according to Theorems 4, 8 and 12).

This combination leads to the best space complexity: O(PL+W +S+K logR).

Chapter 5

CPNP Representation for Multi-Robot

Systems

In this chapter, we extend the CPNP representation to allow for representation of multiple robots,

interacting within the same system (i.e., a multi-robot system). We focus on representing a system-

level (group-level) plan, that represents the plans for all robots in the system. We will examine the

use of this representation both in centralized settings (a single robot overseeing others) as well as

distributed settings (multiple robots, each reasoning about others).

The CPNP representation is extended following the insights gained from the analysis of Chap-

ter 4. We combine individual and joint state representation into a hybrid approach, in which a

group of robots acting together use a single symbol and separate symbols are used when robots

break into individualized roles. We call this kind of representation Partial Joint State Represen-

tation. A joint state representation will be used in case of strong dependency between the robots,

and individual state representation will be used otherwise.

The multi-robot CPNPs’ building blocks for centralized and distributed execution will be de-

scribed in Section 5.1. Then we will move on to dynamic task assignment (Section 5.2). Section

80

81 Chapter 5 CPNP Representation for Multi-Robot Systems

5.3 will introduce the algorithms for executing a multi-robot CPNP. Finally, Section 5.4 summa-

rizes the chapter.

5.1 Building Blocks for Multi-Robot CPNPs

The main challenge of representing multi-robot systems is how to represent the interactions be-

tween the robots. CPNP models multi-robot plans as a collection of single-robot plans enriched

with synchronization operators as similar to PNP [101]. But unlike PNP, CPNP is based on Col-

ored Petri Net and models these operators as partial state representations, in order to reduce the

space complexity.

In addition to the use of colors as defined in Chapter 3 (for single robots), in multi-robot

CPNPs token colors distinguish between robots. Each robot has an ID that defines its tokens’

color by a new variable r. This variable is added to the set of variables that define the color.

As described in Chapter 3 there are two types of tokens: tokens that represent robots and tokens

that represent resources (denoted as robotTokens and resourceTokens, respectively). The set of

variables composing the color of the robotTokens is identical to the set of variables as defined

in Chapter 3, with the addition of the variable r. The addition is done in such a way that each

token with a different value in r represents a different robot, while the values of the tokens’ other

variables represent data which is associated with the robot (i.e., hierarchies, interrupts and robot

beliefs).

The representation of shared resources in multi-robot CPNPs extended similarly, with an extra

variable r, which holds the ID of the robot that currently uses the resource. When there is no robot

currently using the resource, the variable is set to null. Whenever the resource is allocated to a

robot, or when it is released, the variable will change. This means that the variable changes when

the token gets out of or gets into the resource place.

82 Chapter 5 CPNP Representation for Multi-Robot Systems

The operators are defined according to the dependencies between the robots (Section 4.1).

Broadly, there are two possibilities for executing a multi-robots plan: centralized execution, and

distributed execution [25, 28, 29, 98]. The multi-robot operators are built according to one of these

approaches.

Centralized execution architectures. Centralized execution architectures are characterized by

a single control robot (master) that has a multi-robot plan and manages all the other robots accord-

ingly. The master sends commands to the other robots (slaves) based on the plan. The slaves do

not have access to the plan.

Distributed execution architectures. A multi-robot plan or a relevant subset of it, is distributed

among a group of autonomous robots. Each teammate is able to see the plan and executes its part

in coordination with the other teammates.

The next sections describe the CPNP’s operators for the centralized and distributed executions.

CPNP models multi-robot coordination by operators which are built according to weak or strong

dependencies. Section 5.1.1 describes multi-robot operators in centralized settings, and Section

5.1.2 discusses these operators in distributed settings. Note that a reliable channel for robot com-

munication is assumed.

5.1.1 Multi-Robot Operators in Centralized Settings

This section introduces the weak dependence and strong dependence operators in centralized set-

tings. The centralized CPNP (i.e., the multi-robot plan) is executed by a single (master) robot. This

robot sends commands to the other robots according to the CPNP execution algorithm (described

in Chapter 6). All the robots in the plan are represented by tokens which are part of the CPNP

that is maintained and executed by the master robot. As explained before, each token holds data

83 Chapter 5 CPNP Representation for Multi-Robot Systems

about a robot or resource. In order to keep this data up-to-date, each robot updates the master robot

regarding changes in its beliefs or any interrupt occurrences, and the master robot in turn updates

the value of the variables.

5.1.1.1 Weak Dependence Operator in Centralized Settings

A weak dependence operator is used to represent a precedence relation among the actions of

different robots. There are two types of weak dependence. The first type represents a situation in

which robot A cannot start an action (denoted as C) until one of its teammates reaches a certain

state. In this case, it does not matter which of the teammates is the robot that reaches this state.

In the second type of dependence, robot A depends on a specific robot. This means that robot A

cannot start an action C until robot B reaches a certain state. This section introduces the weak

dependence operator according to the two types of weak dependency. The operators are built as

individual state representations, since according to Chapter 4 individual state representations based

on CP nets yield the best space complexity. This means that every place in the operator represents

a state of a single robot.

The first type of weak dependence operator is represented by CPNP according to the following

method: we define a boolean variable (denoted as vc) that represents the condition that should

be fulfilled before robot A performs C. This variable is initialized to true or f alse according to

the state of the environment. The master will update all the robotTokens with each change in this

variable. In addition, we will add arc expressions that contain the expression vc=true to those

arcs that move tokens to the transition that start the action C (denoted as tsc). As a result, the arc

expressions will prevent robot A from performing action C while vc is f alse. When one of the

robots reaches the state that is represented by vc, it will set the variable vc to true. Following

this change in vc, robot A will start the execution of action C. Noted that this weak dependency

is represented by individual state representations of the actions performed by each robot and an

84 Chapter 5 CPNP Representation for Multi-Robot Systems

additional variable vc. Therefore, this representation is an individual state representation.

Figure 5.1 Weak dependence operator of the first type

Figure 5.1 shows a weak dependence operator for the case where a robot depends on one of

the other members of the group but is not dependent on a specific member (the first type of weak

dependence operator). The robot that executes the plan that is represented by the CPNP in this

figure cannot start the execution of action C while vc= f alse. Once vc is set to true by one of the

robots, the robot will start to perform C.

Consider the following Organize room example: robot A is a vacuum machine that has to enter

a room in order to clean it. However, the room is locked and robot A does not have the ability to

open the room. Therefore, robot A cannot enter the room until one of the robots that can open this

room does so.

Figure 5.2 illustrates this example. The upper CPNP represents the plan that is executed by

one of the robots in order to open the room (Open room action), and the lower CPNP represents

the plan that is executed by robot A. The variable vroom represents the state of the room, where

true indicates that the door is open and f alse indicates that the door is closed. The robot that

executes the plan which is represented by the upper CPNP, opens the door if the door is closed

(vroom= f alse). When the robot finishes opening the door, the variable vroom is changed to true.

Robot A that executes the lower CPNP, can enter the room only when the door is open. This

condition is expressed by the arc expression vroom=true.

Regarding the weak dependence operator of the second type: this one is taken from [101]. The

operator is depicted in Figure 5.3. The CPNP in Figure 5.3 has two input places PI = {pi1, pi2},

two output places PO = {po1 , po2}, one connector place PC = {pm} and two control transitions

85 Chapter 5 CPNP Representation for Multi-Robot Systems

Figure 5.2 Organize room - weak dependence operator of the first type

TC = {t f , t j}. Consider two robots, R1 and R2. Places pi1 and po1 are part of the plan that is

executed by R1 and places pi2 and po2 are part of the plan that is executed by R2. pm is a connector

place that connects R1 and R2. It represents the state in which R1 finishes executing Action C.

Again we can see that each place represents a state of a single robot (R1 or R2 but not both) as an

individual state representation. If this place contains a token, it indicates that R1 has reached the

desired state that allows R2 to start performing the dependent action (action C). When R2 reaches

the place pi2 , it waits until R1 will reach the state that is indicated by the existence of a token in

pi1 . When R1 reaches this state a token is fired to pm, and R2 can continue to place po2 .

The operator can be expanded to include more than two robots, according to the following

logical dependencies:

86 Chapter 5 CPNP Representation for Multi-Robot Systems

Figure 5.3 Weak dependence operator (taken from [101]), for the case of dependency on
a specific robot (second type of operator)

1. A weak dependence of robot A on robot B and robot D.

2. A weak dependence of robot A on either robot B or robot D.

In order to expand the weak dependence operator to include more than two robots, for each

robot R j we add the places pi j ,po j , the transition t j and the arcs (pi j , t j),(t j, pm),(t j, po j). The

logical dependencies are expressed by the arc expression that is defined on the arc that exits from

place pm. Figure 5.4 shows such an expanded operator for three robots, where R3 is dependent on

R1 and/or R2. If R3 is dependent on R1 and R2, the arc expression on the arc (pm, t3) is 1′r = R1∩

1′r = R2 (meaning that the arc moves a single token of R1 and a single token of R2). Otherwise,

the arc expression is 1′r = R1∪ 1′r = R2 (the arc moves a single token of R1 or a single token of

R2), where r is a variable that indicates the ID of each robot and 1′ indicates a single token.

Now consider the Organize room example with a slight change: instead of the robot being

dependent on a random other robot to open the door, R2 is dependent specifically on R1 to open the

door (leaving aside the reason for this specific dependency). In order to represent this dependency

we should use a weak dependence operator of the second type.

Figure 5.5 depicts the CPNP for this example. This CPNP is built by means of the second

weak dependence operator (dashed box). The upper and lower parts of the CPNP are relevant to

87 Chapter 5 CPNP Representation for Multi-Robot Systems

Figure 5.4 Weak dependence operator for three robots, for the case of dependency on a
specific robot (second type of operator)

R1 and R2, respectively. After R1 finishes opening the door (i.e., finishes performing the Open

room action), a token is fired to place pm. Once R2 terminates the Go to room action it waits for a

token to appear in place pm, before it enters the room and cleans it.

Figure 5.5 Organize room - weak dependence operator of second type

88 Chapter 5 CPNP Representation for Multi-Robot Systems

5.1.1.2 Strong Dependence Operator in Centralized Settings

This section introduces the strong dependence operator for multi-robot CPNP. This operator rep-

resents the plans of n robots which are strongly dependent, meaning that these are interdependent

robots. In this operator places represent states of all robots as a joint state representation, since it

is proven that joint state representation yields the best space complexity when representing strong

dependency (Chapter 4).

A strong dependence operator (shown in Figure 5.6) provides time synchronization between

robots R1, ..,Rn. Such an operator synchronizes the plans of n robots. The operator consists of a

basic CPNP structure enriched by the arc expression 1′r = R1∧1′r = R2∧ ..∧1′r = Rn. This arc

expression expresses that each transition can fire iff for each robot Ri ∈ {R1, ..,Rn}; there is at least

one token with the ID of Ri. The arc expressions in the figure are written as a shortened formula.

Figure 5.6 Strong dependence operator

Each place in this operator represents the joint state of all the robots that participate in the

mission. This representation is a joint state representation (described in Section 4.1). Place pi

represents a state where all the robots are ready to start the synchronized mission, where transitions

ts and tt respectively start and terminate the action of each robot according to the ID of each robot.

Place pe represents the execution phase and place pt represents the termination of the synchronized

mission.

The operator can also be used hierarchically by using hierarchical decomposition (explained in

Section 3.3). Instead of starting each action associated with each robot in ts and terminating the

action in tt , in Figure 5.6 we demonstrate how we can use hierarchical decomposition as described

in Section 3.3 by defining a new variable for each robot. The new variable indicates the hierar-

89 Chapter 5 CPNP Representation for Multi-Robot Systems

chical call. This variable is initially set to 0 and is changed at the start and the termination of the

hierarchical call.

The strong dependence operator that uses hierarchies is shown in Figure 5.7. The upper CPNP

is a superCPNP and the lower is a subCPNP. h1, ..,hn are variables that indicate the hierarchical

calls (i.e., hi is a variable that indicates the hierarchical call of robot Ri). Once ts fires, the values

of these variables are set to 1 due to the arc expression on (ts, pe). tt can only fire when all of these

variables are set back to 0, due to the arc expression on (pe, tt). The subCPNP has n tokens in place

pih; one token from each robot ID, at the initial marking. When the values of h1, ..,hn are changed

to 1, the condition on the arc expression on (pih , tsh) is satisfied and the tokens are split to n CPNPs

by firing tsh . Each CPNP represents the plans of one robot. This means that a token of each robot

ID is fired to the appropriate CPNP according to the arc expression. When all the robots finish

executing these CPNPs, a token will appear in each of the places pt1, .., ptn and the transition tth

will be enabled. Then transition tth fires. This firing changes the variables h1, ..,hn back to 0 and

moves the tokens back to the initial marking of the subCPNP.

Back to the Organize room example: consider that the robots should lift a table once R2 finishes

cleaning the room. In order to perform this action, each robot should navigate to an opposite side

of the table and then the robots should start to lift it together. Figure 5.8 depicts the CPNP that

represents this example. After R1 finishes opening the room it navigates to the right side of the

table and waits for R2. R2 enters the room and cleans it, and then navigates to the left side of the

table. Transition t join connects the two individual CPNPs, thereby creating a joint CPNP (using

the join operator, described in Section 3) that represents the lift operation. This operation needs to

be executed while the two robots are fully synchronized since they should lift the table together.

Therefore, we use the strong dependence operator in order to synchronize between the robots

(Figure 5.8, dashed box).

90 Chapter 5 CPNP Representation for Multi-Robot Systems

Figure 5.7 A strong dependence operator with hierarchies

It should be emphasized that the weak dependence operator is built as an individual state rep-

resentation (a single place represents a state of a single robot). The strong dependence operator is

built as a joint state representation (a single place represents the state of all robots). We call this

combination of representing weak dependency using individual state representation and represent-

ing strong dependency using joint state representation partial state representation. It builds on the

insights gained in Chapter 4.

Centralized execution has several advantages and disadvantages. One major advantage is that

91 Chapter 5 CPNP Representation for Multi-Robot Systems

Figure 5.8 Organize room - strong dependence operator

its representation gives an explicit description of the execution state of the system. This advantage

stems from the fact that the multi-robot CPNP is executed by a single machine (the centralized

robot), and each state (marking) represent the state of all the robots, with no need to synchronize

the placement of the tokens that represent the different robots. Also, this approach reduces the

need for conversation and synchronization protocols between the robots, since a single robot both

executes and manages the multi-robot CPNP (conversations only take place between the master

and each slave). In addition, the centralized execution approach reduces the space complexity of

the multi-robot system, since the whole plan is maintained by a single centralized robot, instead of

each robot in the plan needing to maintain all or parts of it.

One drawback of centralized execution is that this approach has a single point of failure (i.e., the

centralized robot). Also, centralized execution can lead to an extreme overload of the centralized

robot who has to execute the multi-robot CPNP, update the variables that indicate the beliefs of

92 Chapter 5 CPNP Representation for Multi-Robot Systems

each robot in the plan, and communicate with the slaves. Finally, the communication network can

overload since each change in a robot’s beliefs requires communication with the master robot. This

may lead to a bottleneck at the master robot who will consequently need a lot of time for sending

and receiving messages via the network. The overload may slow down the execution of the system,

resulting in a slower response to environmental changes. In light of the mentioned drawbacks of

centralized executions, in the next section we will present the CPNP representation for distributed

multi-robot architectures.

5.1.2 Multi-Robot Operators in Distributed Settings

We now introduce multi-robot CPNPs for distributed architectures. In distributed CPNPs, the

multi-robot CPNP is divided into R parts where R stands for the number of robots in the system.

Each robot Ri maintains that part of the plan which is relevant to it. Such a part includes the

following: all the places that can have a token which represents Ri (i.e., a token in which Ri is the

value of the variable r) during the execution; transitions that are connected to those places; and

resource places. We denote the CPNP which is maintained by robot Ri as RiCPNP.

At the beginning of execution, each RiCPNP is marked with an initial marking. Each robot

Ri executes its RiCPNP separately. The dependencies between the robots are represented by the

weak dependence and strong dependence operators (defined below for distributed executions). The

distributed CPNP assumes the existence of a conversation and synchronization protocol which

synchronizes the state of each RiCPNP.

Weak dependence operator in distributed settings. In Section 5.1.1 two different types of

weak dependence operators were presented. The first type represented a situation in which robot

A could not start an action (denoted as C) until one of his teammates reached a certain state. In

this case, it did not matter which of the teammates was the robot that reached this state. As for the

93 Chapter 5 CPNP Representation for Multi-Robot Systems

second type, it represented a situation where robot A depended on a specific robot, meaning that

robot A could not start an action C until robot B reached a certain state.

The first type of weak dependence operator will be represented in distributed CPNPs as follows.

Similar to the centralized weak dependence operator as described in Section 5.1.1, we define a

boolean variable (denoted as vc) that represents the condition that should be fulfilled before robot

A performs C. This variable is initialized to true or false according to the state of the environment.

The variable will be shared among the robots and it will be synchronized using a synchronization

protocol (i.e., each change in this variable will be broadcast to all robots e.g., [1]). The CPNP as

shown previously in Figure 5.1 will be maintained by robot A. When one of the robots reaches the

state that is represented by vc , it will set the variable vc to true and broadcast the new value of vc

to the other robots in the system. Following this change in vc, robot A will start the execution of

action C.

In order to build a weak dependence operator of the second type, we divide the centralized

weak dependence operator as shown in Figure 5.3 into n pieces (n being the number of robots

that are involved in the dependency). Each robot maintains only that part of the operator that is

relevant to it, in addition to place pm (i.e., there are n instances of place pm). When the execution

algorithm of robot A (the dependent robot) reaches the transition that should fire the tokens from

place pm, robot A starts a conversation with the robots that are involved in the dependency (using

a conversation protocol). Those robots are represented by tokens that appear in the arc expression

on the arc exiting from place pm in the RACPNP (the CPNP of robot A). Robot A waits until

it is confirmed that the other robots have the relevant tokens in the appropriate place pm in each

RiCPNP (where i is the index of the robot IDs involved in the dependency). Then robot A fires the

tokens. This firing is performed using a synchronization mechanism in order to correctly represent

the change in the markings of each RiCPNP of those robots involved in the dependency.

Figure 5.9 presents the distributed weak dependence operator of the second type for a situation

94 Chapter 5 CPNP Representation for Multi-Robot Systems

with two robots, in which robot R2 depends on robot R1. This figure is divided into two parts.

The upper and lower parts are associated with the R1CPNP and the R2CPNP, respectively. When

the algorithm that executes the R2CPNP reaches transition t2 and there is a token in place pi2 , the

algorithm discovers that a token of robot R1 should be in place pm in R2CPNP in order to enable

t2 (this constraint is expressed by the arc expression 1′r = R1 on the arc (pm, t2)). To follow up on

this discovery, robot R2 uses a conversation protocol e.g., [1,17–19,36] to ask robot R1 to notify it

regarding the existence of a said token in place pm in R1CPNP. When a token for R1 exists in place

pm in R1CPNP, the algorithm inserts said token into place pm in R2CPNP as well. As a result,

transition t2 fires and R2 notifies R1 in order for R1 to synchronize the marking of pm in R1CPNP

(i.e., to make MR1CPNP(pm) = MR2CPNP(pm)).

Figure 5.9 A distributed weak dependence operator of the second type, where robot R2 is
dependent on robot R1

Figure 5.9 depicts the distributed weak dependence operator when two robots are involved in

the dependency. This operator is also able to represent weak dependencies of multiple robots (sim-

ilar to the centralized weak dependence operator of Section 5.1.1). When robot A is dependent on

multiple robots, the dependency of robot A on those robots will be expressed by the arc expression

on the arc exiting from place pm in RACPNP.

95 Chapter 5 CPNP Representation for Multi-Robot Systems

Strong dependence operator in distributed settings. As described in Section 5.1.1, a strong

dependence operator provides time synchronization between robots R1, ..,Rn. Figure 5.10 intro-

duces the strong dependence operator in distributed settings. Each robot Ri that is involved in the

strong dependency, maintains the CPNP as depicted in Figure 5.10 as a part of its own RiCPNP.

The operator consists of a basic CPNP. This basic CPNP moves a token representing Ri with each

firing (according to the arc expression r = Ri which means 1′r = Ri). The strong dependence

between the robots is reflected by the guards in transitions ts and tt .

Figure 5.10 A distributed strong dependence operator

Before transitions ts and tt are fired, a conversation protocol starts in order to confirm that the

guards are satisfied. The guard in ts checks if each robot Ri that is involved in the strong dependency

has a token with its ID (i.e., r = Ri) in place pi in RiCPNP, while the guard in tt does the same

with regards to place pe. The guard in ts represents the following expression: [MR1(pi) = R1]∧

[MR2(pi) = R2]∧ ..∧ [MRn(pi)=Rn]. The guard in tt represents a similar expression but with place

pe instead of pi. These expressions are composed of n clauses that all need to be satisfied. Each

clause consists of the term [MRi(p) =Ri] (i= 1..n). This term is the abbreviation of [MRiCPNP(p) =

1′(r = Ri)], and its meaning is that the marking of the RiCPNP in place p has at least one token

representing Ri (i.e., p has a token that represents Ri). Note that p can stand for either place pi

or pe, in accordance with the relevant guard (the one on ts or tt). The guards continue to check

96 Chapter 5 CPNP Representation for Multi-Robot Systems

the term for each robot until the condition is satisfied. Each transition tt in each RiCPNP has

additional guards that check if the actions as represented by each place pe in each RiCPNP have

been terminated.

The relevant transition (either ts or tt) waits until its guard is satisfied. Once each RiCPNP has

a token representing Ri in place pi (or pe) and the guard in ts (or tt) is satisfied, transition ts (or

tt) in each RiCPNP is enabled and fires. Consequently, the token in each RiCPNP moves to either

place pe or pt depending on the case at hand.

Figure 5.11 illustrates the distributed CPNP for the Organize room example. The upper CPNP

is the R1CPNP and the lower is the R2CPNP, executed by R1 and R2, respectively (each robot

maintains and executes its own CPNP). The weak dependence and strong dependence operator are

marked by dashed boxes. At the start of the CPNPs’ execution, R1 and R2 individually execute the

Open door and Go to room operations, respectively. When R1 finishes the Open door operation it

fires a token to place pm (in order to inform R2 through use of the weak dependence operator) and

then navigates to the right side of the table, thus executing the Go to right side operation.

When R2 terminates the Go to room operation, the synchronization mechanism is activated in

order to check for a token in place pm in R1CPNP. In case such a token is present, a token with

the same color (i.e., a token that represents R1) appears in place pm in R2CPNP, thereby enabling

the transition tm. Then, R2 performs the Enter room, Clean room and Go to left side operations.

When R1 and R2 are positioned on their respective right and left sides of the table, they start the lift

operation using the distributed CPNP strong dependence operator in order to synchronize between

them (depicted in the lower dashed boxes of both halves of Figure 5.11).

Using shared resources in distributed CPNP. CPNPs use the synchronization mechanism not

only for weak dependence and strong dependence operators, but also when using shared resources.

When a token that represents a shared resource is fired and the variable r (the variable that indicates

which robot is using the resource) is changed, the synchronization mechanism is executed and

97 Chapter 5 CPNP Representation for Multi-Robot Systems

Figure 5.11 Organize room - distributed CPNP

updates this change in each RiCPNP. In fact, the synchronization mechanism notifies the other

robots that the resource is either occupied or released by Ri.

5.2 Dynamic Roles and Task Assignment

The weak dependence and strong dependence operators as described in Sections 5.1.1 and 5.1.2

assume predefined roles. In order to maximize the flexibility of the multi-robot system, dynamic

98 Chapter 5 CPNP Representation for Multi-Robot Systems

task assignment is required. In this section we will show how to use a dynamic task assignment

mechanism in CPNP. Section 5.2.1 redefines the dependencies that were presented in Section 5.1

to suit situations where it is not known in advance which robot will perform each task. Section

5.2.2 describes the task allocation and the operators in centralized CPNPs when the roles are not

know in advance, while Section 5.2.3 does the same for distributed CPNPs.

For each robot we define variables that represent the status of each task to be assigned to

the robots (success, failure, in progress, or not assigned). Success means that the task has been

completed successfully and failure logically indicates that the task failed to be executed properly.

In progress signifies that the robot has only just started or is still in the process of executing this

task, while not assigned indicates that the task has not been allocated to this robot yet. Each

variable is initialized with the value not assigned. These variables will be synchronized between

the tokens that belong to the same robot.

Furthermore, we define a boolean variable task_alloc which triggers the task allocation. CPNP

assumes the existence of a task allocation mechanism. When the task_alloc variable is assigned

with the value true, the task allocation mechanism will start to run. When a robot wants to activate

the task allocation, it simply sets task_alloc to true; subsequently, the task allocation mechanism

starts and once it finishes, the value of the variable is set back to false. The variable will initially

be set to true because of the need to allocate tasks for each robot at the beginning of the system

run. The task_alloc variable will be synchronized between all robots; therefore, when a robot

decides to start the task allocation, all other robots in the team will become aware of it. It should

be noted that in centralized architectures, the centralized robot is the only one which has access to

this variable and allocates tasks to the other robots.

When the task allocation is active, all the robots participate in the task allocation process (not

all of them get new tasks however). This process is carried out in parallel to the work of the robots.

CPNP assumes that the task allocation mechanism will prefer to assign new tasks to idle robots

99 Chapter 5 CPNP Representation for Multi-Robot Systems

(i.e., robots that have already completed their tasks). If a robot gets a new task while it is currently

performing a previously assigned task, it will stop performing its current task and start executing

the new one. A robot currently performing a task and not being provided with a new one during

the task allocation process, will logically continue towards the completion of its current task.

The task allocation mechanism assigns tasks to robots by changing the values of the variables

that represent the status of those tasks. In order to assign a task i to robot R j, the mechanism will

set the value of the variable that represents task i (denoted as ti) to in progress; this will be done

only for those tokens of robot R j where the the variable ID is set to R j.

Figure 5.12 presents the CPNP of the task allocation. The task allocation is embodied in

transition t1. The initial marking consists of a single token of each robot in place p1. Once the

variable task_alloc is set to true, these tokens are fired by transition t1 and the task allocation

mechanism starts. The task allocation mechanism assigns tasks to robots by changing the values of

the variables of those tasks that haven’t terminated successfully yet (these variables are denoted as

t1, .., tm for m tasks). In practice, the task allocation assigns a single task for each robot each time it

is called. Therefore, while transition t1 fires, the task allocation changes the values of the variables

that represent each task; it follows from the above that one variable for each robot is adjusted. The

rule by which the task allocation assigns a single task for each robot each time, is expressed by the

arc expression on (t1, p2). After the task allocation is completed (a state represented by tokens in

place p2), the tokens are fired back to the initial place p1 by transition t2 and the variable task_alloc

is set back to false.

Each task is represented in a different CPNP. The basic CPNP structure that represents each

task is shown in Figure 5.13. Similar to the CPNP structure as depicted in Figure 3.1, each task

i consists of an initial place p1, an execution place p2, a termination place p3, a start transition t1

and finally a termination transition t2. The variable representing task i is ti. The main difference

between the figures is that the initial place of Figure 5.13 contains n tokens (one token per robot),

100 Chapter 5 CPNP Representation for Multi-Robot Systems

Figure 5.12 CPNP task allocation

as compared to the CPNP structure of Figure 3.1 which represents a single-robot system containing

only one token at the initial marking. In addition, Figure 5.13 adds two arc expressions, one on

(p1, t1) and one on (t2, p3). The arc on (p1, t1) expresses that only the token in which ti has the

value in progress will be fired by transition t1, and that only the robot that is assigned with this task

will start to perform it. Place p3 represents the termination of task i; hence, the arc expression on

(t2, p3) sets the variable ti to success or failure according to the outcome of the task. Also, it sets

the variable task_alloc to true in order to call the task allocation since the robot that performs task

i is now idle and ready to receive a new task.

Figure 5.13 CPNP task representation

The CPNP is also able to represent a situation of dead or resurrected robots, as depicted in

Figure 5.14. In order to do so, two variables are defined. The first variable is a boolean variable

live that indicates whether the robot is “alive” or not. This variable will be synchronized between

all the tokens that represent the same robot. The live variable is initialized with true and it is

updated by an external mechanism which checks if the robot is alive (CPNP assumes the existence

of such a mechanism).

101 Chapter 5 CPNP Representation for Multi-Robot Systems

The second variable is live_robots. This is a numerical variable that represent the number of

“living” robots. When a robot “dies” or becomes not functional, the token that represent this robot

in place p1 moves to place p3 by transition t3 and stays in this place until the robot will come

back to life (e.g., a robot whose battery was drained and subsequently recharged). In addition, the

live_robots variable is decremented by one (represented by the arc expression on (t3, p3)). Since

the dysfunctional robot cannot accomplish his task, reallocation of tasks is required. As a result,

the variable task_alloc is set to true (expressed in the arc expression on arc (t3, p3)). When a

robot is resuscitated, the token representing that robot moves back from place p3 to place p1 and

the live_robots variable is incremented by one (represented by the arc expression on (t4, p1)). In

this situation too reallocation is required in order to assign a task to the revived robot; therefore,

task_alloc is set to true in the arc expression on arc (t4, p1).

Figure 5.14 CPNP task allocation when robots may “die”

In Figure 5.12, a single token of each robot is fired by transitions t1 and t2 in order to allocate

102 Chapter 5 CPNP Representation for Multi-Robot Systems

tasks for all robots. However, if we take into account that robots may “die", we want only the

“living" robots to participate in the task allocation. Therefore, in Figure 5.14 only those tokens

that represent the living robots are fired by transitions t1 and t2. This constraint is represented

by the presence of the live_robots variable on the arc expressions on (p1, t1),(t1, p2),(p2, t2) and

(t2, p1). The meaning of this variable’s presence on the arc expressions is that the number of tokens

that are moved by the associated arcs is equal to the value of live_robots. Consequently, according

to the structure of the CPNP in Figure 5.14, each marking consists of precisely a single token of

each robot. Furthermore, the tokens that represent dead robots are stuck in place p3. Last, the k

tokens (k = live_robots) moved by arcs (p1, t1),(t1, p2),(p2, t2) and (t2, p1) are exactly composed

from a single token of each living robot.

It should be noted that the CPNP of Figure 5.13 assumes that all robots are “alive”. In case of

the possibility that a robot “dies” during the performing of his task, we should add the expression

live = true to the arc expressions on each arc that exits from a place to a transition (i.e., the arcs

(p1, t1) and (p2, t2).

5.2.1 Dependencies When Robot Roles Are Not Predefined

When robot roles are not predefined but are allocated dynamically (meaning that they can change

continuously), the definitions of dependencies are slightly different from those as defined in Sec-

tion 5.1. Instead of defining dependence as robot A being dependent on robot B (where A and B

are robot IDs), the definition of dependency will be as follows: the robot that performs task A is

dependent on the robot that performs task B (where A and B are task IDs). Again, it should be

noted that two kinds of such dependency exist:

1. A weak dependence of a robot that performs task A on a specific state of task B, means

that the robot that performs task A cannot start this task until the robot that performs task B

reaches a certain state.

103 Chapter 5 CPNP Representation for Multi-Robot Systems

2. A strong dependence between a robot that performs task A (denoted as robot R1) and a robot

that performs task B (denoted as robot R2), means that R1 is weakly dependent on R2 and R2

is weakly dependent on R1.

5.2.2 Centralized Execution When Robot Roles Are Not Predefined

In centralized executions, the centralized robot maintains and executes the task allocation CPNP as

part of the multi-robot CPNP. The centralized robot assigns task to the other robots in the system

using the task allocation CPNP (see Figures 5.12 and 5.14), executes the relevant CPNP for each

robot according to the value of each task variable (Figure 5.13), and sends commands to the other

robots in accordance with the CPNP.

As explained previously, the centralized robot activates the task allocation by setting the value

of the task_alloc variable to true. The task allocation CPNP is executed in concurrence with the

other parts of the multi-robot CPNP; the changing of the value of task_alloc to true does not

prevent the firing of any tokens in the multi-robot CPNP.

The weak and strong dependence operators are defined in a similar manner to those presented

in Section 5.1.1, but operators refer to tasks instead of specific robots when robot roles are not

predefined.

Weak dependence operator when robot roles are not predefined. Figure 5.15 shows a weak

dependence operator of a robot (let’s call it A) that should perform a task (denoted as task3) but

cannot do so until the robot that performs task1 and/or the robot that performs task2 will reach a

state that is indicated by a token in pi1 and/or a token in pi2 . The predicates that appear on the

arc expressions in this figure are written in abbreviated formulas: taski means taski is in progress,

i ∈ {1,2,3}. It should be noted that this operator is used in case of robot A being dependent on a

specific state of task1 and/or task2. However, if robot A is dependent only on the termination or

104 Chapter 5 CPNP Representation for Multi-Robot Systems

outcome of one or more tasks, then we can use the weak dependence operator of the first type as

described in Section 5.1.1.

Figure 5.15 A weak dependence operator without a predefined role assignment

Strong dependence operator when robot roles are not predefined. Figure 5.16 depicts a

strong dependence operator of m robots that perform m tasks. Similar to Figure 5.15, the arc

expressions in this figure are written as abbreviated predicates, where taski denotes taski is in

progress. This operator is the same operator as defined in Section 5.1.1, but instead of explicitly

specifying which robots participate in the synchronized mission, the participation is identified by

the tasks associated with the robots.

Figure 5.16 A strong dependence operator without a predefined role assignment

Returning to our Organize room example: in the previous section, the planner determined in

105 Chapter 5 CPNP Representation for Multi-Robot Systems

advance which robot will go to each side of the table. In practice, it is more efficient to dynamically

determine which robot will go to the left side and which robot will go to the right side during the

execution of the plan. Figure 5.17 depicts the Organize room example in such a way that the Go to

right side and Go to left side tasks are allocated to R1 and R2 dynamically, during the execution of

the plan. The centralized robot (which is either robot R1 or R2) maintains and executes the CPNP

illustrated in this figure in addition to the the task allocation CPNP (depicted in Figures 5.12 and

5.14).

The plan starts with the execution of the Open room and Go to room actions, by R1 and R2

respectively. Then R2 performs the Enter room and Clean room actions using the weak depen-

dence operator as described in Section 5.1.1 (without dynamic task allocation). When the Clean

room operation is terminated the task_alloc variable is set to true. This change triggers the task

allocation CPNP to start the task allocation process. Two new variables have been defined for the

task allocation: t1 and t2. These represent the Go to right side and Go to left side tasks, respec-

tively. The robot that is represented by tokens whose variable t1 will be set to in progress, will

get the Go to right side task. Similarly, the robot that is represented by tokens whose variable t2

will be set to in progress, will get the Go to left side task as a result of the task allocation process.

When the robots finish performing these tasks, they start together the lift operation using the strong

dependence operator that allows for dynamic allocating of roles.

5.2.3 Distributed Execution When Robot Roles Are Not Predefined

This section introduces multi-robot CPNPs for distributed execution when robot roles are not

known in advance but are allocated dynamically during system execution. As mentioned previ-

ously, CPNP assumes an existence of a synchronization protocol which synchronizes the state

of each personal robot CPNP. Each time the synchronization protocol is activated, it updates the

markings of each robot CPNP for all the robots involved in the synchronization process. The syn-

106 Chapter 5 CPNP Representation for Multi-Robot Systems

Figure 5.17 Organize room - centralized execution that dynamically allocates the Go to
right side and Go to left side tasks

chronization mechanism updates the state of each robot CPNP as well as the color of each token

(i.e., the values of the variables).

Section 5.1.2 presented the distributed CPNP in such a way that each robot maintains only that

part of the CPNP that is relevant to it. However, when robot roles can be allocated dynamically,

we cannot know in advance which part of the CPNP will be executed by which robot (this depends

on the task allocation). Therefore, in a distributed CPNP in which robot roles can change during

execution, each robot maintains the entire multi-robot CPNP (the whole plan). This means that for

n robots we have n copies of the graph (one for each robot). We denoted the CPNP of robot i as

RiCPNP. At the start of execution, each graph is marked with the initial marking.

In fact, each robot in the distributed architecture maintains the same multi-robot CPNP which is

maintained by the centralized robot in the centralized architecture (Section 5.2.2). Each RiCPNP

107 Chapter 5 CPNP Representation for Multi-Robot Systems

is similar to the multi-robot CPNP which is maintained by the centralized robot and marked by

the same initial marking. Also, the weak dependence and strong dependence operators in each

RiCPNP are the same as the operators introduced in Section 5.2.2.

Each robot Ri executes his RiCPNP separately. There are two possible ways in which the firing

can be executed. First, the firing may consist only of tokens that represent Ri. These are the tokens

that have the value r = Ri (i.e., no resource tokens and no tokens that represent other robots), where

r is the variable that indicates the robot ID in the color. In this case, the firing will be executed

according to the single-robot CPNP rules as described in Section 3. The firing rules do not change

when the arc expressions that are involved in the firing consist solely of tokens that represent Ri.

However, if the arc expressions involved in the firing consist not only of the tokens that repre-

sent Ri, then the firing will consist of two phases. First, a transition t fires, and a synchronization

mechanism is executed which synchronizes the markings of each robot that appears in the arc ex-

pressions of those arcs that either enter or exit t. The synchronization keeps running until t fires.

Then, in the second phase, the transition t fires and the synchronization is terminated. This case

represents a situation where Ri should coordinate and cooperate with other robots.

When a token that represents a shared resource is fired and the variable r (the variable that in-

dicates which robot is using the resource), is changed, the synchronization mechanism is executed

and updates each RiCPNP with this change. As mentioned before, this synchronization in fact

notifies the other robots that the resource is either occupied or released by Ri.

The task allocation process in distributed multi-robot CPNPs will be as follows: when a robot

wants to execute the task allocation process, first it will change the task_alloc variable as defined in

Section 5.2. Then it will execute the synchronization mechanism in order to update the task_alloc

variable in each robot with this change. Following mentioned change, task allocation is executed

in each robot and each robot participates and negotiates in the task allocation process using the

synchronization mechanism. As mentioned previously, the task allocation process is embodied in

108 Chapter 5 CPNP Representation for Multi-Robot Systems

a transition (i.e., transition t1 in the CPNPs which are depicted in Figures 5.12 and 5.14). The task

allocation process is activated when the transition in the task allocation CPNP becomes enabled,

which occurs when task_alloc is set to true. As explained in Section 5.2.2, the task allocation

CPNP can be executed in concurrence with other parts of the CPNP.

The result of the task allocation is an allocation of tasks to the robots that is agreed upon by all

robots. This allocation is represented by the assignment of values to the variables which represent

the tasks in each token (each token represents a different robot). The assignment of values is

synchronized between all robots. This means that at the end of the task allocation process, each

robot maintains the tokens of all the robots in his task allocation CPNP with the correct values in the

variables that represent the different tasks. Each firing in the task allocation CPNP is synchronized

between all robots.

In our representation we chose to represent the task allocation and the synchronization mecha-

nism as a black box embodied in a transition (as opposed to PNP, which represents the entire task

allocation process [101]). Even though this is not an explicit representation, it is still preferable

because it leaves the representation of those protocols to a lower level of hierarchy and does not

limit the planner to a specific task allocation protocol or synchronization mechanism.

Once more we return to the Organize room example. Figure 5.18 illustrates the Organize room

example as described in Section 5.2.2 but does so for distributed execution. That is to say that

instead of maintaining one CPNP in one of the two robots, the CPNP is distributed among the two

robots. The upper CPNP is the CPNP maintained and executed by R1 and the lower is maintained

and executed by R2. In addition, each robot maintains the task allocation CPNP (Figures 5.12

or 5.14). In the current example, the roles for Open room, Go to room, Enter room and Clean

room operations are determined preliminary by the planner before execution, and these roles are

not allocated dynamically during execution. Therefore, the CPNPs that represent these actions are

built according to the description in Section 5.1.2

109 Chapter 5 CPNP Representation for Multi-Robot Systems

The Go to right side and Go to left side operations are dynamically allocated during execution

while the lift operation should be synchronized using the strong dependence operator. In light of

this, each robot maintains the CPNP of all three operations. When R1 finishes executing the Clean

Room operation, it sets the task_alloc variable to true. Subsequently, R1 executes the synchro-

nization mechanism in order to update the task_alloc variable in R2 accordingly. The changes in

the task_alloc variables trigger the task allocation CPNP of both R1 and R2, and each robot starts

executing the task allocation process. The two robots execute the task allocation CPNP and each

firing is synchronized using the synchronization mechanism. The execution of the task allocation

CPNP by each of the robots represents the fact that both robots participate in the task allocation

process.

In the Organize room example of section 5.2.2 two variables were defined: t1, representing the

Go to right side operation, and t2, representing the Go to left side operation. The synchronization

mechanism is executed during the execution of the task allocation CPNPs. The result of the task

allocation is a synchronized assignment of values to t1 and t2. This means that the tokens that

represent R1 and R2 get new values for either their t1 or t2 variables. The changes in the color of

these tokens are synchronized and updated in the CPNPs of both R1 and R2.

When the task allocation is finished, the robots perform the Go to right side and Go to left side

operations according to the values of their t1 and t2 variables (i.e., the robot with t1=in progress in

his tokens executes the Go to right side operation, and the robot with t2=in progress in his tokens

executes the Go to left side operation). When the two robots finish these operations, they execute

together the lift operation using the strong dependence operator.

110 Chapter 5 CPNP Representation for Multi-Robot Systems

Figure 5.18 Organize room - distributed execution that dynamically allocates the Go to
right side and Go to left side tasks

5.3 Execution Algorithm of a Multi-Robot CPNP

This section introduces the execution algorithms of a multi-robot CPNP. We describe the central-

ized and distributed algorithms in Sections 5.3.1 and 5.3.2, respectively. Finally, Section 5.3.3

proves that when relying on a reliable synchronization mechanism, the distributed execution algo-

rithm produces the same results as the centralized one.

111 Chapter 5 CPNP Representation for Multi-Robot Systems

5.3.1 CPNP: Centralized Execution Algorithm Settings

In the following we introduce the execution algorithm of a centralized multi-robot CPNP. The

algorithm consists of the same procedures as Algorithm 3.1, with some additions and changes

which will be described in this section. The algorithm is executed by the centralized robot that

sends commands to the other robots according to the CPNP.

Like Algorithm 3.1, Algorithm 5.1 starts from the initial marking M0 and is terminated when

a goal marking Mn ∈ L is achieved. The algorithm has the same structure as was shown in Figure

3.21, with the addition of a new type to TrType: task allocation. A transition of the type task

allocation, when enabled, executes the task allocation process. Similarly to Algorithm 3.1, Al-

gorithm 5.1 assumes the availability of a set of implemented actions that the robots can execute:

Actions = {a1, ..,ak}.

In addition to the variables that were defined in Section 3.6, new variables will be added to the

variables set (denoted as V) that is associated with the tokens of type robotToken:

1. A variable r that represents the robot ID;

2. A variable for each task that represents the task status (denoted as ti);

3. A boolean variable live that indicates whether the robot is alive;

4. A numeric variable live_robots that represents the current number of living robots in the

system;

5. A boolean variable task_alloc that represents whether an allocation process should be exe-

cuted;

6. Boolean variables that represent conditions that should be fulfilled before performing some

tasks (each variable is denoted as vci and the subset containing all variables of this kind is

denoted as Vc).

112 Chapter 5 CPNP Representation for Multi-Robot Systems

Moreover, a new variable will be added to the variables set of each resourceToken. The new

variable will represent the robot ID of the robot that currently uses the resource. If at the current

moment there is no robot that is using the resource, the value of the variable will be null.

In Section 3.6 we defined a knowledge base kb that contains the robot’s beliefs. In multi-robot

CPNPs we define a knowledge base for each robot (i.e., for n robots, n knowledge bases will be

created). This means that each token that represents a different robot (i.e., has a different value

in the variable r) will have a pointer to a different knowledge base. The live_robots, task_alloc

and Vc variables should be identical in all of the knowledge bases. Therefore, these variables are

maintained in the knowledge base that represents the knowledge of the centralized robot, while all

the other knowledge bases merely maintain pointers to these variables.

The main procedure in a centralized multi-robot CPNP is CMR_Execute (Algorithm 5.1),

which is executed by the centralized robot. This procedure is similar to the equivalent single-

robot execute procedure (Algorithm 3.1). However, instead of creating a single knowledge base, it

creates n knowledge bases (one for each robot, line: 1). The set of the knowledge bases is denoted

as KB. The knowledge base is created separately for each robot and consists of the variables in

V . The same variables make up the knowledge base of each robot, but their values differ from one

robot to the next.

In order to preserve the updates of the knowledge base, the algorithm uses a CMR_Listener

procedure (Algorithm 5.6). The CMR_Execute procedure starts the listener procedure immediately

after the creation of the knowledge bases (in line 2), and terminates it at the end of execution (line

17). The CMR_Listener procedure listens to the messages sent by the robots. Each robot sends a

message to the centralized robot when a variable in his knowledge base has been changed. Once a

new message is received from robot Ri, CMR_Listener updates the kbi.

Similar to Algorithm 3.1, for each transition t ∈ T the CMR_Execute procedure (Algorithm

5.1) does the following:

113 Chapter 5 CPNP Representation for Multi-Robot Systems

Algorithm 5.1 Centralized CPNP execution algorithm - centralized robot, CMR_Execute
procedure CMR_Execute(CPNP (P,T,A,Σ,V,C,G,E,M0,L))

1: for each robot Ri create a knowledge base kbi ∈ KB from V
2: start CMR_Listener(KB)
3: CurrentMarking←M0
4: while CurrentMarking 6∈ L do
5: for all t ∈ T do
6: if ∃ robot Ri which is interrupted by an interrupt (denoted as j) and kbi.v j 6= true then
7: kbi.v j← true // v j is a boolean variable indicating an occurence of interrupt j
8: end if
9: if EnableTransition(t,CurrentMarking) then

10: CurrentMarking←CMR_Fire(t,CurrentMarking)
11: if CurrentMarking ∈ L then
12: exit
13: end if
14: end if
15: end for
16: end while
17: stop CMR_Listener(KB)

Algorithm 5.2 Centralized CPNP execution algorithm - centralized robot, CMR_Listener
procedure CMR_Listener(KB)

1: while the system is executed do
2: Listen to messages from the robots
3: if a new message has been recived from robot Ri then
4: update kbi
5: end if
6: end while

114 Chapter 5 CPNP Representation for Multi-Robot Systems

1. Checking if one of the robots has been interrupted and handle the interruption (lines 6-8);

2. Checking if t is enabled, using the EnableTransition procedure (Algorithm 3.2);

3. Firing by Algorithm 5.3 (line 10). Note that the CMR_HandleTransition procedure is called

from the CMR_Fire procedure to perform the operations which are associated with the tran-

sition (i.e., executing the task allocation process, starting or terminating actions).

The EnableTransition procedure of the execution algorithm of the centralized multi-robot

CPNP is the same as the EnableTransition procedure of the execution algorithm for a single-robot

CPNP (described in Section 3.6, Algorithm 3.2). If the transition t is enabled, the multi-robot fire

procedure is started (Algorithm 5.3).

The CMR_Fire procedure (Algorithm 5.3) executes the firing of t. Logically, this procedure is

similar to the single-robot fire procedure (Algorithm 3.4), albeit with a slight difference: instead

of executing the HandleTransition procedure and then the fire procedure (Algorithm 3.1, lines

10 -11), the CMR_Fire procedure calls the CMR_HandleTransition procedure with the following

parameters: t, as well as a set of tokens (denoted as K) which should be fired by t (lines 4-5).

Algorithm 5.3 Centralized CPNP execution algorithm - centralized robot, CMR_Fire
procedure CMR_Fire(t,CurrentMarking)

1: for all pi ∈ t.input_places do
2: CurrentMarking(pi) =CurrentMarking(pi)−E(pi, t)
3: end for
4: create a set of robotTokens K that contains all the robotTokens which are fired by t
5: CMR_HandleTransition(t,CurrentMarking(pi))
6: for all po ∈ t.out put_places do
7: CurrentMarking(po) =CurrentMarking(po)+E(t, po)
8: end for

The CMR_HandleTransition procedure (Algorithm 5.4) gets an enabled transition t and a set

of tokens that should be fired (denoted as K). Unlike Algorithm 3.3, instead of activating or deacti-

vating the action related to t (if it exists) according to the type of t, the procedure performs the fol-

115 Chapter 5 CPNP Representation for Multi-Robot Systems

lowing: if t is of type task allocation (line 1), then transition t is the transition that executes the task

allocation process (i.e., transition t1 in Figures 5.12 & 5.14) and the procedure executes the task

allocation accordingly (line 2). When the task allocation is finished, the CMR_HandleTransition

procedure assigns values to the tasks variables according to the task allocation. For each token

k ∈ K, the procedure assigns a value to the appropriate task variable in accordance with the task

allocated to the robot that is represented by k (lines 3-4).

When the type of t is start, each robot represented by one of the tokens in K should start the

execution of the action associated with it and with t. In practice, if the type of t is start (line 6),

then for each robotToken k ∈ K (line 8), the procedure (executed by the centralized robot) sends

a command to the robot Ri which is represented by k (i.e., k.r = Ri, the notation k.r indicates the

variable r in the token k, lines 12-13). If the robot represented by k is the centralized robot, then

the robot starts the command associated with it and with t (lines 9-10). When the type of t is end,

each robot represented by one of the tokens in K terminates the execution of the action associated

with it and with t. The termination of the actions is done by sending commands to the robots that

perform them, in a manner similar to the process of starting the actions as described above (lines

18-29).

So far, we have described those algorithms that are executed by the centralized robot. The

following algorithms (Algorithms 5.5, 5.6 & 5.7) are executed by the slave robots. Each slave robot

listens to the changes in its beliefs, informs the centralized robot, and performs the commands that

it receives from the centralized robot. Algorithm 5.5 describes the activity of each slave robot.

First, the slave robot builds a knowledge base kb with initial values that consist of all the variables

in V . Initially, the slave robot sends his entire knowledge base to the centralized robot (lines 1-

3). The values of the variables in V may constantly change under the influence of the slave robot’s

beliefs. The purpose of building a kb is for the slave robot to be able to inform the centralized robot

of each change in the values of its variables. The slave robot simultaneously tracks the changes in

116 Chapter 5 CPNP Representation for Multi-Robot Systems

Algorithm 5.4 Centralized CPNP execution algorithm - centralized robot, CMR_HandleTransition
procedure CMR_HandleTransition(transition t,Tokens K)

1: if t.t = task allocation then
2: executes task allocation
3: for all robotToken k ∈ K do
4: assign values to the task variables according to the task allocation
5: end for
6: else if t.t = start then
7: for all i = 1 : n do
8: for all robotToken k ∈ K do
9: if k.r = centralized robot then

10: t.a.start()
11: else
12: if k.r = Ri then
13: send to Ri a command to start the action ai
14: end if
15: end if
16: end for
17: end for
18: else if t.t = end then
19: for all i = 1 : n do
20: for all robotToken k ∈ K do
21: if k.r = centralized robot then
22: t.a.end()
23: else
24: if k.r = Ri then
25: send to Ri a command to terminate the action ai
26: end if
27: end if
28: end for
29: end for
30: end if

117 Chapter 5 CPNP Representation for Multi-Robot Systems

its beliefs and listens to the messages from the centralized robot (line 4).

Algorithm 5.5 Centralized CPNP execution algorithm - CMR_Slave
procedure CMR_Slave(t,CurrentMarking)

1: build a knowledge base kb that consists of all the variables in V that are influenced from the
slave robot’s beliefs

2: initialize these variables according to the robot’s beliefs
3: send the knowledge base to the centralized robot
4: execute concurrently CMR_ListenerBeliefs(kb) and CMR_ListenerCommands()

The CMR_ListenerBeliefs procedure (Algorithm 5.6) listens to the changes in the slave robot’s

beliefs during the execution of the CPNP (line 2). The procedure updates the kb after each change

in beliefs (line 4) and informs the centralized robot about this change (line 5), albeit without send-

ing the entire kb anew. The CMR_ListenerCommands procedure (Algorithm 5.7) listens to mes-

sages from the centralized robot (line 2) and performs the commands that are received from the

centralized robot (line 4). Note that each message sent by the centralized robot consists solely of

one command.

Algorithm 5.6 Centralized CPNP Execution Algorithm - slave robot, CMR_ListenerBeliefs
procedure CMR_ListenerBeliefs(kb)

1: while the system is executed do
2: Listen to changes in the robot’s beliefs
3: if a variable has been changed then
4: update kb
5: send the new value to the centralized robot
6: end if
7: end while

5.3.2 CPNP: Distributed Execution Algorithm Settings

This section introduces an algorithm for a distributed execution of a multi-robot CPNP. This algo-

rithm consists of the same procedures as Algorithm 3.1, with some additions and changes (similar

118 Chapter 5 CPNP Representation for Multi-Robot Systems

Algorithm 5.7 Centralized CPNP Execution Algorithm - slave robot, CMR_ListenerCommands
procedure CMR_ListenerCommands ()

1: while the system is executed do
2: Listen to messages from the centralized robot
3: if a new message has been received then
4: perform the command that has been sent by the centralized robot
5: end if
6: end while

to the centralized Algorithm 5.1 of Section 5.3.1). Each robot executes its own CPNP (denoted as

RiCPNP for robot Ri) using this algorithm.

Algorithm 5.8 starts from the initial marking M0 and terminates when a goal marking Mn ∈ L

is achieved. The algorithm has the same structures as previously shown in Figure 3.21, with an

addition of a new type of transition known as task allocation to TrType. The algorithm assumes the

availability of a set of implemented actions Actions = {a1, ..,ak} that the robots can execute. The

sets of the variables in distributed CPNPs consist of the same variables as in centralized CPNPs.

Each robot maintains a knowledge base kb that contains its beliefs. Similar to the knowledge

bases which have been defined previously, this knowledge base consists of the values of the vari-

ables in V (the variables which are associated with the type of tokens known as robotToken). The

live_robots, task_alloc and the Vc variables should always be synchronized between all robots.

Therefore, a synchronization mechanism is activated with each change in those variables. This

mechanism informs the robots about each change in the mentioned variables. The variable r in

the resoureceTokens is synchronized between all the robots using the same synchronization mech-

anism, and its value will always be identical for those resoureceTokens that represent the same

resource.

The main procedure is called DMR_Execute (Algorithm 5.8). This procedure acts like the

equivalent single-robot execute procedure (Algorithm 3.1), but has been adjusted to fit the dis-

tributed multi-robot execution. In order to keep the knowledge base and the value of the r variable

119 Chapter 5 CPNP Representation for Multi-Robot Systems

in the resourceTokens updated, a listener procedure is defined called DMR_Listener (Algorithm

5.8). This procedure is executed concurrently with the DMR_Execute procedure during CPNP

execution. In practice, the DMR_Listener procedure is activated by DMR_Execute in line 2 and

deactivated in line 18.

Algorithm 5.8 Distributed CPNP execution algorithm - DMR_Execute
procedure DMR_Execute(CPNP (P,T,A,Σ,V,C,G,E,M0,L))

1: create knowledge base kb from V
2: start DMR_Listener(kb)
3: CurrentMarking←M0
4: while CurrentMarking 6∈ L do
5: for all t ∈ T do
6: if an interrupt i occurs and kb.vi 6= true then
7: kb.vi← true // vi is a boolean variable indicating an occurrence of interrupt i
8: end if
9: if DMR_EnableTransition(t,CurrentMarking) then

10: HandleTransition(t)
11: CurrentMarking← DMR_Fire(t,CurrentMarking)
12: if CurrentMarking ∈ L then
13: exit
14: end if
15: end if
16: end for
17: end while
18: stop DMR_Listener (kb)

The DMR_Listener procedure is executed by each robot separately and listens to messages from

the teammates about changes in the variables that should be synchronized between the robots (line

2). For each robot Ri, it updates the RiCPNP accordingly. If there is a change in one of the values

of the synchronized variables that are part of the kb (i.e., live_robots, task_alloc or one of the Vc

variables), the procedure updates the kb with this change. If there is a change in the variable r of one

of the resourceTokens (meaning that one of the shared resources has been allocated or released),

the procedure changes the value of variable r in the appropriate resourceToken in RiCPNP. The

procedure updates the r variable in all resourceTokens that represent the same resource.

120 Chapter 5 CPNP Representation for Multi-Robot Systems

Algorithm 5.9 Distributed CPNP execution algorithm - DMR_Listener
procedure DMR_Listener (kb)

1: while the system is executed do
2: Listen to changes in synchronized variables
3: if live_robots, task_alloc or one of the Vc variables has been changed by one of the team-

mates then
4: update kb
5: else if the r variable of one of the resourceToken has been changed by one of the teammates

then
6: update the appropriate resourceToken
7: end if
8: end while

Similar to Algorithms 3.1 and 5.1, for each transition t ∈ T the DMR_Execute procedure (Al-

gorithm 5.8) does the following:

1. Checking if one of the robots has been interrupted and handling the interrupt (lines 6-7);

2. Checking if t is enabled, using the DMR_EnableTransition procedure (Algorithm 5.10);

3. Activating or deactivating the action associated with t, according to the type of t, using the

HandleTransition procedure (line 10).

4. Firing t and generating a new marking, using the DMR_Fire procedure (line 11)

The DMR_EnableTransition procedure (Algorithm 5.10) checks if the transition is enabled,

similar to the equivalent single robot EnableTransition procedure (Algorithm 3.2). The procedure

checks if the guard on the transition is satisfied (line 1). Note that in some cases the guards can

contain conditions which are associated with other robots (e.g., strong dependence operator, see

Section 5.1.2). Therefore, the procedure assumes the existence of a conversation protocol which

will be used in order to check for such conditions. Then, the procedure checks if the relevant

tokens exist in each input place according to the arc expression. The arc expressions can consist

of tokens that represent other robots; therefore, the markings of the CPNPs that represent those

121 Chapter 5 CPNP Representation for Multi-Robot Systems

robots should be synchronized (lines 3-6). The procedure returns true if the transition is enabled;

otherwise, it returns false.

Algorithm 5.10 Distributed CPNP execution algorithm - DMR_EnableTransition
procedure DMR_EnableTransition(t,CurrentMarking)

1: if G(t) = true then
1: // checks if the guard on t is satisfied
2: for all pi ∈ t.input_places do
3: if E(pi, t) consists of tokens that represent other robots then
4: synchronize the markings of those robots’ CPNPs
5: update CurrentMarking
6: end if
7: if CurrentMarking(pi) 6⊇ E(pi, t) then
8: return false
9: end if

10: end for
11: else
12: return false
13: end if
14: return true

The HandleTransition procedure for the execution algorithm of a distributed multi-robot CPNP

is the same as the HandleTransition procedure for the execution algorithm of a single robot CPNP

(described in Section 3.6, Algorithm 3.3). The DMR_Fire procedure (Algorithm 5.11) executes the

firing of t. This procedure is similar to the single-robot fire procedure (Algorithm 3.4), albeit with

a slight difference: when at least one of the variables that should always be synchronized between

the robots is changed (task_alloc, live_robots, at least one of the variables in Vc, or the variable

r in a resourceToken) the procedure broadcasts this information to all the other robots (lines 6-8).

These variables are changed when a token is fired from t to one of the output places po through an

arc that has an arc expression that changes these variables.

122 Chapter 5 CPNP Representation for Multi-Robot Systems

Algorithm 5.11 Destributed CPNP execution algorithm - DMR_Fire
procedure DMR_Fire(t,CurrentMarking)

1: for all pi ∈ t.input_places do
2: CurrentMarking(pi) =CurrentMarking(pi)−E(pi, t)
3: end for
4: for all po ∈ t.out put_places do
5: CurrentMarking(po) =CurrentMarking(po)+E(t, po)
6: if the value of task_alloc, live_robots, or at least one of the variables in Vc has been changed,

or the variable r in a resourceToken has been changed according to E(t, po) then
7: inform all the robots about any change in these variables
8: end if
9: end for

5.3.3 CPNP Distributed Algorithm vs. CPNP Centralized Algorithm

In the current section it is proven that the distributed algorithm as introduced in Section 5.3.2

produces the same results as the centralized algorithm of Section 5.3.1. The proof assumes the

existence of reliable conversation and synchronization protocols. As mentioned previously, in

a distributed CPNP each robot Ri maintains and executes its own CPNP (denoted as RiCPNP).

Each RiCPNP is divided into three parts: CPNP components in which Ri acts individually without

commitments to other robots (independency), CPNP components in which Ri is weakly dependent

on other robots, and CPNP components in which Ri is strongly dependent on other robots. We will

prove in this section that the execution of each part of the distributed CPNP produces the same

results as the execution of the equivalent part in the centralized CPNP.

Theorem 13. Given a plan G that is represented by both distributed and centralized CPNP, Algo-

rithm 5.8 for distributed CPNP produces the same results as Algorithm 5.1 for centralized CPNP.

Proof. Assume, without loss of generality, that the multi-robot system consists of at least two

robots Ri and R j. The centralized algorithm sends commands to these robots according to the

executed centralized CPNP. The distributed execution of this system consists of two execution

algorithms (one for each robot). The distributed execution algorithm of Ri executes the RiCPNP

123 Chapter 5 CPNP Representation for Multi-Robot Systems

and the distributed execution algorithm of R j executes the R jCPNP. The proof is divided into three

parts, analogous to the three parts of each RkCPNP (k ∈ {i, j}):

1. CPNP components in which Ri and R j are not dependent on each other. Here, the distributed

algorithm will simply execute these independent parts of the RkCPNP and Rk will perform

the actions according to the RkCPNP.

The centralized algorithm will send the same action commands to both Ri and R j according

to the part of the centralized CPNP that corresponds to RkCPNP.

2. CPNP components in which Ri is weakly dependent on R j. According to the definition of

weak dependence (Section 4.1), Ri is dependent on R j but R j is not dependent on Ri. In a

distributed execution, when R j executes the part which is related to this weak dependency, it

independently fires a token to place pm (according to the weak dependence operator, Section

5.1.2). Ri also executes its RiCPNP until it gets to the transition that should fire a token

from place pm (transition t2 in Figure 5.9). Since this transition has an input arc with an

arc expression that consists of a token that represents R j, robot Ri starts a conversation with

robot R j and synchronizes the markings of place pm until the transition is enabled (according

to DMR_EnableTransition procedure, Algorithm 5.10, lines 3-6).

Analogously, the centralized algorithm is executed according to the centralized weak depen-

dence operator and activates the two robots in the same way.

3. CPNP components in which Ri is strongly dependent on R j. According to the distributed

strong dependence operator (depicted in Figure 5.10), each of the two transitions that par-

ticipate in the distributed strong dependence operator of RiCPNP cannot fire until its guards

are satisfied. Lets denote these transitions as tsRi
and ttRi

, respectively. The two transitions

that participate in the relevant distributed strong dependence operator of R jCPNP will be

denoted as tsR j
and ttR j

, respectively. The guards on tsRi
are not satisfied until tsR j

is enabled

124 Chapter 5 CPNP Representation for Multi-Robot Systems

and the guards on tsR j
are not satisfied until tsRi

is enabled. These guards are checked using a

synchronization mechanism (DMR_EnableTransition procedure, Algorithm 5.10, lines 3-6).

When both tsRi
and tsR j

are enabled, the algorithms of Ri and R j jointly execute the firing of

tsRi
and tsR j

, respectively.

The firing of tsRi
and tsR j

is equivalent to the firing of transition ts in the relevant centralized

strong dependence operator (depicted in Figure 5.6). This firing is executed by the central-

ized algorithm. Similarly, the firing of ttRi
and ttR j

is equivalent to the firing of the transition

tt in the centralized strong dependence operator (Figure 5.6).

The above proof does not take into account the use of shared resources and dynamic task al-

location. When the robots share resources, this is represented by assigning unique tokens to these

resources (resourceTokens). Each such token has a variable that indicates the name of the resource

and a variable that holds the ID of the robot that currently uses the resource. The distributed

algorithm updates the other robots about any change in these variables (DMR_Fire procedure, Al-

gorithm 5.11, lines 6-8), and monitors for upcoming changes from the other robots (DMR_Listener

procedure, Algorithm 5.9, lines 5-6). Therefore, each robot always holds the real and most recent

values for these variables.

In centralized executions, the values of the resourceTokens variables are always up-to-date

thanks to the role of the centralized robot. Since the managing of shared resources relies only

on the values of these variables, the managing of shared resources in the distributed algorithm is

equivalent to the managing of shared resources in the centralized algorithm.

Dynamic task allocation is activated by the task_alloc variable (Section 5.2). This variable is

always synchronized between the robots in the distributed execution (DMR_Listener procedure,

Algorithm 5.9, lines 3-4). This synchronization guarantees that the task allocation mechanism in

the distributed and centralized executions will be activated in the same situations. Since the same

125 Chapter 5 CPNP Representation for Multi-Robot Systems

task allocation mechanism is activated in both the centralized and distributed execution, the results

of the allocation process will be identical.

We proved that for each of the three CPNP components, the distributed execution algorithm

produces the same result as the centralized execution algorithm. Therefore, generally speaking,

the distributed algorithm produces results identical to those of the centralized algorithm.

5.4 Summary

Building on the insights gained from the analysis in Chapter 4, this chapter introduced the CPNP

representation for multi-robot architectures. CPNP combines individual state representation and

joint state representation into a new approach called partial state representation. The Partial Joint

State Representation is responsible for the space complexity of CPNP being superior to that of

other representations. CPNP representations are divided into two categories: CPNP representation

for centralized execution and CPNP representation for distributed execution. For each category,

two operators were defined: a weak dependence operator and a strong dependence operator. These

operators are analogous to the two possible kinds of dependencies (defined in Section 4.1) between

robots coordinating and cooperating in a team. The current chapter also provided a CPNP represen-

tation for a task allocation process. This representation relies on the existence of a task allocation

mechanism (depicted as a black box) in order to provide a generic task allocation representation.

The task allocation process representation also represents a situation in which robots can “die”

or become non-functional. Finally, the current chapter introduced the execution algorithms for

centralized CPNP as well as distributed CPNP and it provided proof that the distributed execution

algorithm produces the same result as the centralized execution algorithm, under the assumption

that a reliable conversation and synchronization protocol exists.

Chapter 6

Reasoning about CPNPs

The previous chapters introduced our CPNP representation for representing either single-robot

plans or multi-robots plans. But after modeling plans with Petri Net, an obvious question is:

What can we do with the model? A major strength of Petri Nets is their support for analysis of

many properties associated with concurrent systems [66]. These properties are called behavioral

properties. Jensen [45] shows how to investigate the behavioral properties by the use of state

space. In this chapter, we will give an overview about the behavioral properties and explain them

in context of robotic systems (Section 6.1). Then, Section 6.2 will describe what is state space and

how to build a state space for a given CPNP.

6.1 Behavioral Properties

This section gives an overview of the basic behavioral properties and explains them in the context

of robotic systems. The description of the behavioral properties is based on [45] and [66]. Jensen

presents some automatic tools that check these properties in CP Nets. He does this by creating a

state space from a given CP Net, and then investigates these properties using the state space. These

tools are specified in detail in [45].

126

127 Chapter 6 Reasoning about CPNPs

Reachability. The reachability properties are concerned with determining whether a marking

M′ is reachable from another marking M, i.e., whether there is an occurrence sequence (firing

sequence) starting from M which leads to the marking M′ [45]. For example, we can use this

property in order to check if each one of the markings that can be defined as a goal marking, can

be reached from M0.

Boundedness. The boundedness properties specify how many and which tokens a place may

hold, when all reachable markings are considered [45]. This property specifies the maximal and

minimal number of tokens that can reside on a place in any reachable marking. This property can

be used in order to check if the number of resources in each reachable marking is correct and to

validate that no new resources were incorrectly “born”, as a result of a transition that fires and

mistakenly creates new resource tokens (tokens that represent resources).

Home marking. A home marking [45] (denoted as Mhome) is a marking which can be reached

from any reachable marking. This means that it is impossible to have an occurrence sequence

starting from M0, which cannot be extended to reach Mhome. In other words, we cannot do things

which will make it impossible to reach Mhome afterwards. An example of home marking, is a

marking in which a token is positioned in place o and all the other places are empty in a work-flow

net [9, 93, 94]. By this property, we can validate that some interrupt-handling CPNPs and goal

markings can be reached from any state.

Liveness. A transition t ∈ T is live [45] if, when starting from any reachable marking, we can

always find an occurrence sequence containing t. In other words, we cannot do things which will

make it impossible for the transition to occur afterwards [45]. A Petri Net PN is live [66] if each

t ∈ T is live. A live Petri Net guarantees a deadlock-free operation, no matter what firing sequence

is chosen [66]. A dead marking [45] is a marking in which no binding elements are enabled. A

128 Chapter 6 Reasoning about CPNPs

transition is dead [45] if there are no reachable markings in which it is enabled. These properties

can help us know if a resource is not stuck in a dead transition, and therefore can not be released.

In addition, we can validate that the robot can not be stuck in an undesirable state.

Fairness. Fairness properties give information about how often transitions occur in infinite oc-

currence sequences [45]. It lists the impartial transitions. A transition t is impartial [45] if it occurs

infinitely often in all infinite occurrence sequences. This property can help us avoid a situation of

starvation.

6.2 CPNP: Building State Spaces

Simulation can only be used to explore a finite number of executions of the system under consid-

eration [45]. Therefore, we cannot guarantee that the simulations cover all possible executions.

Hence, executions that terminate in an undesired state or lead to a deadlock, may still exist after a

set of simulations have been conducted. A state space, in contrast, represents all possible execu-

tions of the system under consideration and can be used to verify, i.e., prove in the mathematical

sense of the word, that the system possesses a certain formally specified property.

A state space is a directed graph in which each possible state of the system is represented

by a vertex. Jensen [45] shows how to build, a state space for a colored Petri Net model in an

automatic way and how to automatically analyze and verify the behavioral properties using state

spaces. Furthermore, Jensen [45] shows advanced methods in order to reduce the space complexity

of state spaces.

This section will describe how to build a state space for CPNPs. Given a state space, it can be

used in order to automatically investigate the behavioral properties using Jensen’s methods [45].

In previous sections, we introduced CPNP as a formal robotic representation based on colored

Petri Nets. However, a CPNP is not a regular CPN. In CPNP, part of the variables in V should be

129 Chapter 6 Reasoning about CPNPs

always synchronized. This means that once a transition fires and changes the value of one of these

variables by firing, all other tokens change this value as well (in the algorithm presented in Section

3.6 the synchronization is expressed by a global knowledge base kb shared by tokens). The vari-

ables that should be synchronized are the variables that indicate hierarchies and interrupts. These

variables can change not only by firing, but also by changes in the environment e.g., when they

trigger interrupts. Therefore, Section 6.2.1 introduces transformation methods that bring CPNPs

to be as close as possible to Colored Petri Nets. Then, Section 6.2.2 presents an algorithm for

building a state space from a given CPNP.

6.2.1 Transformation Methods

As described in [45], each node in a state space represents reachable marking and each arc rep-

resents a transition firing. Since a transition firing is not the only way by which the markings in

CPNP can change (as described above), this section will show some transformation methods on

the CPNP. These transformations will result in a situation in which each marking (except M0) in

the state space will be followed by a firing of a transition. Building on these transformations, the

method for building a state space for CPNP will be shown in the next section (Section 6.2.2).

A state space is a directed graph where we have a node for each reachable marking (a marking

that can be reached from M0) and an arc for each transformation, from one marking to another. In

CPNP, one of the following factors can change the current marking:

1. An occurring binding element (i.e. changes referred to a firing of a transition according to

the CP Nets’ firing rules described in Section 2.2.3)

2. A change in the environment

3. A hierarchical call

4. An interrupt

130 Chapter 6 Reasoning about CPNPs

The current marking can change by the four factors above. In the rest of this section, we will

explain each one of these factors and some transformations on the CPNP which will help us build

a state space of a given CPNP. The method of building a state space for CPNP will be discussed in

the next section (Section 6.2.2).

The trivial way of changing the current marking is an occurring binding element. As described

in [45], when a transition fires, tokens are removed from its input places and are added to its output

places. In this way the current marking is changed. A change in the environment can changes the

current marking only if there is a transition t ∈ T , such that t is enabled in this marking (according

to Definition 4) and has a guard which is influenced by this change (i.e. a change which does or

does not satisfy said guard).

Hierarchical calls change the marking by changing the position and color of tokens. As de-

scribed in Section 3.3, CPNP models hierarchy using substitution places (as shown in Figure 3.12).

A transition fires a token into a substitution place via an arc expression, which changes the value of

the boolean variable that indicates this hierarchy (denoted as h). The current marking is changed

to a marking which has a token in the substitution place with h set to true. In addition, each token

that has a pointer to kb updates his color with h = true.

In order to build a state space, we will make the following transformation: first, we will remove

the transition that connects the goal place with the start place in each of the subCPNPs. Then we

will clone each subCPNP, according to the number of substitution places that refer to this subCPNP.

Each substitution place will be replaced with the relevant subCPNP according to the following

method:

1. Connect each input arc of the substitution place to the start place of the subCPNP.

2. Connect the goal place of the subCPNP to each output arc of the substitution place.

Figure 6.1 depicts the transformation of the hierarchy shown in Figures 3.12 and 3.13. The

dashed box represents the subCPNP as shown in Figure 3.13. Note that the transition th is omit-

131 Chapter 6 Reasoning about CPNPs

Figure 6.1 The result of the transformation of the CPNPs in Figures 3.12 and 3.13

.

ted from the subCPNP as part of the transformation method. The substitution place pe from the

superCPNP described in Figure 3.12, is replaced with the subCPNP (the dashed box).

Interrupt changes the current marking by changing the color of tokens. Once an interrupt takes

place, the flag (boolean variable) that represents this interrupt is changed to true (as described in

Section 3.4). This change is saved in the knowledge base kb. Therefore, all the tokens that have a

pointer to kb are notified of this change. It causes the token in the CPNP that handles this interrupt

to start moving, while the rest of the tokens get stuck. Hence, the current marking (denoted as

Mcurr) is changed to a marking in which all the tokens that have a pointer to kb change their color.

As shown in Figure 3.19, when the recovery CPNP reaches the goal state, a transition fires a token

to the start place via an arc expression, which changes the flag to false and the marking is changed

back to Mcurr.

Algorithm 6.1 is a transformation method that has been used in order to model interrupts in a

state space. The algorithm gets a CPNP and returns this CPNP after transformation. In essence,

the algorithm connects each place with an instance of the recovery CPNPs of the interrupts which

may happen when a token exists in this place. The algorithm assumes an existence of a set of

interrupt-handling CPNPs called I. Each element in this set is a CPNP which handles a specific

kind of interrupt that may occur during the execution.

Lines 4-5 create a choice operator by creating a new transition tstart and connecting p to tstart .

This transition has a guard which checks if the variable vi that represents the interrupt i has been

assigned to true by the world model listener. Note, that we slightly change the variable vi; instead

of a boolean variable that only expresses if the interrupt occurred or not, now vi represents the

132 Chapter 6 Reasoning about CPNPs

status of the interrupt. This change prevents a problematic situation in which the same interrupt

will be handled concurrently, in two different places in the CPNP. While an interrupt handling

CPNP i is executed, tstart fires a token and start the execution of the duplication of i.

Lines 6-7 clone the interrupt handling CPNP i, and then connect tstart to the new instance of

i. As defined in Section 3.4 the first place in each interrupt-handling CPNP is called pstart and

the last place is called pgoal . pgoal is an input place of the transition tgoal . Line 12 replaces the

expression vi = true, with the expression vi = in_handling, in each of the arcs expressions which

contain this expression in the duplicated interrupt-handling CPNP. In the last step of Algorithm

6.1, line 12 connects tgoal to p to ensure that the plan will return to the state that was present before

the interrupt.

Algorithm 6.1 CPNP Transformation Algorithm for Interrupts
procedure transformation (CPNP (P,T,A,Σ,V,C,G,E,M0,L))

1: for all i ∈ I do
2: for all p ∈ P do
3: if the interrupt that i handles can occur when a token exists in p then
4: Create new transition tstart with a guard that checks if vi = true
5: Create an arc (p, tstart) // connect p to tstart
6: Create new instance i′ of i (clone i)
7: Connect tstart to the first place in i′, which is denoted as pstart
8: Set the arc expression vi = in_handling, on the arc (tstart , pstart)
9: for all arc expressions in i′ that contain the expression vi = true do

10: Replace the expression vi = true with the expression vi = in_handling
11: end for
12: Replace the arc (tgoal, pstart), with the arc (tgoal, p) // the new arc contains the same arc

expression as the old one.
13: end if
14: end for
15: end for

133 Chapter 6 Reasoning about CPNPs

6.2.2 State Space Building Method for CPNP

This section introduces how to build state spaces for a CPNP model. The basic idea of state spaces

is to calculate all reachable states (markings) and state changes (firing or changes in colors) of the

CPNP model and to represent this in a directed graph where the nodes correspond to the set of

reachable markings and the arcs move from one marking to another, according to a transition’s

firing.

According to [45], a state space is a directed graph where we have a node for each reachable

marking and an arc for each occurring binding element. There is an arc labeled with t from a node

representing a marking M1 to a node representing a marking M2, iff t is enabled in M1 and the

firing of t in M1 leads to the marking M2. An arc from one marking to another represents only a

single firing.

Algorithm 6.2 builds a state space from a given CPNP. The algorithm starts with creating a

node from M0 (Line 2). Then, it calculates all of the enabled markings. An enable marking is a

marking that is derived from a firing of an enabled transition. Therefore, each node in the state

space will be followed by an arc which indicates a firing of an enabled transition. A node is called

processed, when all of its immediate successor markings have been calculated (Line 15). The

algorithm is continued until all of the reachable markings have been processed (Line 5).

Note that Algorithm 6.2 ignores guards since they are influenced by environmental conditions.

As a result, there can be markings that appear in the state space but will not actually be evalu-

ated during the execution of CPNP. This means that the state space contains all of the reachable

markings that can be reached from M0, but the evaluation of some of these markings during the

execution of CPNP depends upon the environmental conditions.

It should be emphasized that even if a CPNP model has a finite state space, the size of the graph

may still be very large and impossible to store in a computer memory. This problem is called the

state explosion problem [92]. Therefore, methods for reducing the space complexity of state spaces

134 Chapter 6 Reasoning about CPNPs

Algorithm 6.2 CPNP Building a State Space
procedure BuildingSP (CPNP (P,T,A,Σ,V,C,G,E,M0,L))

1: Create new graph G
2: Create a node (in G) that represents M0
3: current_marking←M0
4: Mark current_marking as unprocessed.
5: while ∃ unprocessed node do
6: for all t ∈ T do
7: if t is enabled then
8: if @ a node M which represents the marking after the firing of t then
9: Create new node M (in G) which represents the marking after the firing of t

10: Mark this node as unprocessed.
11: end if
12: Create an arc from current_marking to M, labeled with t
13: end if
14: end for
15: Mark current_marking as processed.
16: if ∃ an unprocessed node M then
17: current_marking←M
18: end if
19: end while
20: return G

135 Chapter 6 Reasoning about CPNPs

are developed, for example: sweep-line method, symmetry method, equivalence method, etc. For

more details refer to [45, 54].

Summary. This chapter described the behavioral properties (Section 6.1). These properties

can be validated automatically in Petri Nets and give important information about the system.

Jensen [45] built automatic tools which analyzes these properties in CP Nets, using state spaces.

Therefore, Section 6.2 showed how to automatically build a state space for a CPNP model and

presented an algorithm for doing so. Given a state space, we can automatically verify and analyze

the behavioral properties using Jensen’s tools. The automatic analysis methods for analyzing these

properties are specified in details in [45]. The existence of these automatic analysis methods is a

significant advantage of modeling robotic systems with Petri Nets.

Chapter 7

Summary and Future Work

7.1 Summary and Conclusions

Our work addresses the following two aspects:

1. Representing single-robot plans.

2. Representing multi-robot plans.

We describe a representation which is comprehensive, represents explicitly single-robot and multi-

robot plans, is readable easily by humans, has minimum space requirements, provides validation

and verification, and is suitable for real time execution (especially providing a satisfactory solution

for dealing with interruptions). Firstly, we introduced our CPNP framework for modeling, analy-

sis and execution of single-robot plans. CPNP is based on Colored Petri Nets. CPNP provides an

explicit and comprehensive graphical representation and specified formal building blocks and op-

erators for modeling robotic plans. CPNP allows modeling controllable events, decisions made by

the robot, multiple concurrent processes and shared resources between multiple processes running

concurrently in the robot. In addition, the framework provides a methodology to modeling robotic

136

137 Chapter 7 Summary and Future Work

plans in hierarchies. Modeling by the use of this methodology not only facilitates the readability

of the representation but also reduces the space complexity.

Handling interrupts and uncontrollable events is a challenging task in Petri Nets based repre-

sentations. The reason is that a Petri Net is a predefined model and the modeler should refer to

each situation that may occur in advance [59]. This methodology can lead to a lot of problems

and mistakes. Therefore, we introduced a smart mechanism to modeling and handling interrupts

through the use of Colored Petri Nets. By changing tokens’ color an interrupt handling plan is

started or terminated. This methodology frees the modeler from specifying the interrupt handling

representation in each state in which it may occur, facilitates the readability of the representation

and reduces the space complexity. Furthermore, we provided an execution algorithm for executing

a given CPNP representation.

The second part discussed the representations of multi-robot plans. Influenced by Gutnik and

Kaminka’s space complexity analysis [36] of representations for conversation protocols, we intro-

duced a space complexity analysis of existing representations frameworks for multi-robot plans.

The analysis examined the scalability of the existing representations. We classified the existing

representations in two dimensions:

1. Representation according to individual state representation or joint state representation.

2. The Petri Net based technique (i.e., P/T Net or CP Net).

Results of the analysis are:

1. The choice of modeling according to individual state or joint state representation should be

according to the dependencies between the robots.

2. CP Nets yield the best results when representing most of the multi-robot plans.

Based on the insights gained from the analysis, we have extended the CPNP framework for rep-

resenting multi-robot plans. CPNP can model both centralized and distributed multi-robot plans

138 Chapter 7 Summary and Future Work

and provides the basic operators for representing multi-robot plans. These operators are built ac-

cording to the result of the space complexity analysis in order to minimize the space requirements.

In addition, CPNP allows for representing shared resources among the robots. Furthermore, a

representation for a task allocation process that supports a situation in which robots can “die" or

become non-functional is provided. Moreover, we provided two algorithms: one for executing

CPNP representation of centralized multi-robot plans and the other for executing CPNP represen-

tation of distributed multi-robot plans.

Finally, we provided an algorithm for transforming a given CPNP representation to state space.

This transformation leads to the ability of using Jensen’s tools [45] in order to validate behavioral

properties of the plan. It gives the CPNP framework the ability to provide a design-analysis-design

approach, which leads to improving the plan even before executing it in simulation or in real robots.

7.2 Open Challenges

We believe that this work can assist and motivate continuing research on representations of single-

robot and multi-robot plans. In the future, we plan to extend the CPNP framework with the ability

to represent temporal constraints (e.g., representing a constraint in which an Action B should start

after Action A, but in parallel). We also plan to extend CPNP to support proactive information

exchange in a dynamic environment (similar to [100]) and start conversations before the robots

reach the states in which they are required. This improvement gives the ability to receive important

information in advance and influences the decision making. In addition, we plan to investigate an

algorithm for translating BDI representations into Petri Nets. This will be a major improvement

for BDI representations since it will give them formal validation of behavioral properties of the

represented plan.

Bibliography

[1] CCNx synchronization protocol. https://www.ccnx.org/.

[2] Colored petri nets. http://www.daimi.au.dk/CPnets/intro.

[3] Petri nets. http://users.abo.fi/lmorel/MoCs/slides/03-pn.slide.pdf, 2006.

[4] Embedded control systems design finite state machines and petri nets.
http://en.wikibooks.org/wiki/Embedded_Control_Systems_Design/Finite_State_Machines_
and_Petri_Nets, 2010.

[5] Computer simulation. http://www.cise.ufl.edu/fishwick/cap4800/, 2012.

[6] M. Ajmone Marsan, G. Conte, and G. Balbo. A class of generalized stochastic petri nets
for the performance evaluation of multiprocessor systems. ACM Transactions on Computer
Systems (TOCS), 2:93–122, May 1984.

[7] R. C. Arkin. A Behavior-based Robotics. MIT Press, Cambridge, MA, USA, 1st edition,
1998.

[8] T. Balch and R. C. Arkin. Behavior-based formation control for multirobot teams. IEEE
Transactions on, Robotics and Automation, 14(6):926–939, 1998.

[9] K. Barkaoui, R. Ayed, and Z. Sbaï. Workflow soundness verification based on structure
theory of petri nets. International Journal of Computing and Information Sciences, 5(1):51–
61, 2007.

[10] P. Bonasso. Issues in providing adjustable autonomy in the 3T architecture. In Proceedings
of the AAAI Spring Symposium on Agents with Adjustable Autonomy, 1999.

[11] B. Browning, J. Bruce, M. Bowling, and M. Veloso. Stp: Skills, tactics and plays for
multi-robot control in adversarial environments. IEEE Journal of Control and Systems En-
gineering, 219:33–52, 2005.

[12] D. Calisi, A. Farinelli, L. Iocchi, and D. Nardi. Multi-objective exploration and search for
autonomous rescue robots. Journal of Field Robotics, 24(8-9):763–777, 2007.

139

140 BIBLIOGRAPHY

[13] J. Capitán, M. T. J. Spaan, L. Merino, and A. Ollero. Decentralized multi-robot coopera-
tion with auctioned POMDPs. International Journal of Robotics Research, 32(6):650–671,
2013.

[14] C. G. Cassandras and S. Lafortune. Petri nets. In Introduction to Discrete Event Systems,
pages 223–267. Springer US, 2008.

[15] G. Ciardo, R. German, and C. Lindemann. A characterization of the stochastic process
underlying a stochastic petri net. IEEE Transactions on, Software Engineering, 20(7):506–
515, July 1994.

[16] P. R. Cohen and H. J. Levesque. Teamwork. Nous, 25(4):487–512, 1991.

[17] R. S. Cost. A framework for developing conversational agents. PhD thesis, University of
Maryland at Baltimore County, Department of Computer Science, 1999.

[18] R. S. Cost, Y. Chen, T. Finin, Y. K. Labrou, and Y. Peng. Using Colored Petri Nets for
Conversation Modeling, volume 1916 of Lecture Notes in AI, pages 178–192. Springer-
Verlag, September 2000.

[19] R. S. Cost, Y. Chen, Y. K. Labrou, and Y. Peng. Modeling agent conversations with colored
petri nets. In Working notes of the Autonomous Agents ’99 Workshop on Specifying and
Implementing Conversation Policies, Seattle, Washington, May 1999.

[20] H. Costelha and P. Lima. Modelling, analysis and execution of robotic tasks using petri
nets. In IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2007,
pages 1449–1454. IEEE, 2007.

[21] H. Costelha and P. Lima. Modelling, analysis and execution of multi-robot tasks using petri
nets. In Proceedings of the 7th international joint conference on Autonomous Agents and
Multi-Agent Systems (AAMAS), volume 3, pages 1187–1190. International Foundation for
Autonomous Agents and Multiagent Systems, 2008.

[22] H. Costelha and P. Lima. Petri net robotic task plan representation: Modelling, analysis and
execution. Autonomous Agents, pages 65–90, 2010.

[23] H. Costelha and P. Lima. Robot task plan representation by petri nets: modelling, identifi-
cation, analysis and execution. Autonomous Robots, 33:337–360, 2012.

[24] L. De Silva and H. Ekanayake. Behavior-based robotics and the reactive paradigm, a survey.
In The 11th International Conference on Computer and Information Technology (ICCIT).,
pages 36–43. IEEE, 2008.

[25] M. de Weerdt and B. Clement. Introduction to planning in multiagent systems. Multiagent
and Grid Systems, 5(4):345–355, 2009.

141 BIBLIOGRAPHY

[26] J. Desel, A. Oberweis, T. Zimmer, and G. Zimmermann. Validation of information sys-
tem models: Petri nets and test case generation. In Systems, Man, and Cybernetics, IEEE
International Conference on Computational Cybernetics and Simulation., volume 4, pages
3401–3406. IEEE, 1997.

[27] K. A. D’Souza and S. K. Khator. A survey of petri net applications in modeling controls for
automated manufacturing systems. Computers in industry, 24(1):5–16, 1994.

[28] E. H. Durfee. Distributed problem solving and planning. In Multiagent systems: A modern
approach to distributed artificial intelligence, pages 121–164. MIT Press, 1999.

[29] E. H. Durfee. Distributed problem solving and planning. In M. Luck, V. Marik,
O. Stepankova, and R. Trappl, editors, Multi-Agent Systems and Applications, volume 2086
of Lecture Notes in Computer Science, pages 118–149. Springer Berlin / Heidelberg, 2006.

[30] X. Fan and J. Yen. R-cast: Integrating team intelligence for human-centered teamwork.
In proceedings of the national conference on artificial intelligence, volume 22, page 1535.
Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999, 2007.

[31] R. Fehling. A concept of hierarchical petri nets with building blocks. In Proceedings of
the 12th International Conference on Application and Theory of Petri Nets, pages 370–389,
June 1991.

[32] R. Fehling. A concept of hierarchical petri nets with building blocks. Lecture Notes in
Computer Science; Advances in Petri Nets 1993, 674:148–168, 1993.

[33] R. E. Fikes and N. J. Nilsson. STRIPS: A new approach to the application of theorem
proving to problem solving. Artificial intelligence, 2(3-4):189–208, 1972.

[34] E. Gat. Integrating reaction and planning in a heterogeneous asynchronous architecture for
mobile robot navigation. ACM SIGART Bulletin, 2(4):70–74, 1991.

[35] C. V. Goldman and S. Zilberstein. Decentralized control of cooperative systems: Catego-
rization and complexity analysis. Journal of Artificial Intelligence Research, 22:143–174,
2004.

[36] G. Gutnik and G. A. Kaminka. Representing conversations for scalable overhearing. Journal
of Artificial Intelligence Research, 25(1):349–387, 2006.

[37] M. Hack. Petri net language. Technical report, Cambridge, MA, USA, 1976.

[38] L. E. Holloway, B. H. Krogh, and A. Giua. A survey of petri net methods for controlled
discrete event systems. Discrete Event Dynamic Systems, 7(2):151–190, 1997.

[39] N. Howden, R. Rönnquist, A. Hodgson, and A. Lucas. Jack intelligent agents-summary of
an agent infrastructure. In 5th International conference on autonomous agents, 2001.

142 BIBLIOGRAPHY

[40] W. Hseush and G. E. Kaiser. Modeling concurrency in parallel debugging, volume 25.
ACM, 1990.

[41] B. Innocenti, B. Lopez, and J. Salvi. Resource coordination deployment for physical agents.
In From Agent Theory to Agent Implementation, 6th Int. Workshop AAMAS, 2008.

[42] K. Jensen. Coloured petri nets. Journal of Petri nets: central models and their properties,
pages 248–299, 1987.

[43] K. Jensen. An introduction to the theoretical aspects of coloured petri nets. In of A Decade
of Concurrency, Lecture Notes in Computer Science, pages 230–272. Springer-Verlag, 1994.

[44] K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use.
Springer, 1997. Three Volumes.

[45] K. Jensen and L. M. Kristensen. Coloured petri nets. Basic Concepts, Analysis Methods
and Practical Use. Berlin: Spring-Verlag, 2009.

[46] G. A. Kaminka and I. Frenkel. Flexible teamwork in behavior-based robots. In Proceedings
of the national conference on artifical intelligence (AAAI), pages 108–113, 2005.

[47] G. A. Kaminka and I. Frenkel. Integration of coordination mechanisms in the bite multi-
robot architecture. In IEEE International Conference on Robotics and Automation, pages
2859–2866, 2007.

[48] D. Kartson, G. Balbo, S. Donatelli, G. Franceschinis, and G. Conte. Modelling with Gener-
alized Stochastic Petri Nets. John Wiley & Sons, Inc., New York, USA, 1st edition, 1994.

[49] V. Khomenko and M. Koutny. LP deadlock checking using partial order dependencies.
Journal of CONCUR 2000 - Concurrency Theory, pages 410–425, 2000.

[50] J. King, R. K. Pretty, and R. G. Gosine. Coordinated execution of tasks in a multiagent
environment. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and
Humans, 33(5):615–619, 2003.

[51] K. Konolige. Colbert: A language for reactive control in sapphira. In KI-97: Advances in
Artificial Intelligence, pages 31–52, 1997.

[52] K. Konolige. Saphira robot control architecture. SRI International, Menlo Park, CA, Tech.
Rep, 2002.

[53] Y. T. Kotb, S. S. Beauchemin, and J. L. Barron. Petri Net-Based cooperation in Multi-Agent
systems. In Fourth Canadian Conference on Computer and Robot Vision, 2007. CRV’07,
pages 123–130, 2007.

[54] L. M. Kristensen. State space methods for coloured Petri nets. PhD thesis, PhD Dissertation,
Department of Computer Science, University of Aarhus, Denmark, 2000.

143 BIBLIOGRAPHY

[55] B. Lacerda and P. U. Lima. Designing petri net supervisors for multi-agent systems from
LTL specifications. In Proceeding of the 10th International Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS), volume 3, pages 1253–1254. International Foun-
dation for Autonomous Agents and Multiagent Systems, 2011.

[56] J. Lee, M. J. Huber, E. H. Durfee, and P. G. Kenny. UM-PRS: An implementation of the
procedural reasoning system for multirobot applications. In Nasa Conference Publication,
pages 842–842. Citeseer, 1994.

[57] M. Loetzsch, H. D. Burkhard, and T. Rofer. XABSL-a behavior engineering system for
autonomous agents. PhD thesis, Diploma thesis. Humboldt-Universität zu Berlin, 2004.
Available online: http://www. martin-loetzsch. de/papers/diploma-thesis. pdf, 2004.

[58] M. Loetzsch, M. Risler, and M. Jungel. XABSL-a pragmatic approach to behavior engi-
neering. In Proceedings of IEEE/RSJ International Conference of Intelligent Robots and
Systems (IROS), pages 5124–5129, 2006.

[59] M. Loewe, D. Wikarski, and Y. Han. Higher order object nets and their application to
workflow modeling. Technische Universität Berlin, Fachbereich 13, Informatik, 1995.

[60] B. Ma. Modeling multi-agent systems with hierarchical colored petri nets. In Artificial
Intelligence Applications and Innovations II: IFIP TC12 and WG12. 5-Second IFIP Con-
ference on Artificial Intelligence Applications and Innovations (AIAI-2005), Sept. 7-9, 2005,
Beijing, China, volume 187, page 167. Springer, 2005.

[61] A. Marino, L. Parker, G. Antonelli, and F. Caccavale. Behavioral control for multi-robot
perimeter patrol: A finite state automata approach. In IEEE International Conference on
Robotics and Automation, 2009. ICRA’09., pages 831–836. IEEE, 2009.

[62] M. Matarić. Behavior-based robotics as a tool for synthesis of artificial behavior and analysis
of natural behavior. Trends in cognitive sciences, 2(3):82–86, 1998.

[63] H. Mazouzi, A. Seghrouchni, and S. Haddad. Open protocol design for complex interac-
tions in multi-agent systems. In Proceedings of the First International Joint Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS-02), pages 517–526, Bologna, Italy,
2002. ACM.

[64] M. Miranda and A. Perkusich. Modeling and analysis of a multi-agent system using colored
petri nets. In Workshop on Applications of Petri Nets to Intelligent System Development,
Williamsburg, USA, 1999.

[65] D. Moldt and F. Wienberg. Multi-agent-systems based on coloured petri nets. Journal of
Application and Theory of Petri Nets, pages 82–101, 1997.

[66] T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the IEEE,
77(4):541–580, apr. 1989.

144 BIBLIOGRAPHY

[67] K. L. Myers. User guide for the procedural reasoning system. SRI International, Menlo
Park, CA, 1997.

[68] J. Mylopoulos, A. Borgida, M. Jarke, and M. Koubarakis. Telos: Representing knowledge
about information systems. ACM Transactions on Information Systems (TOIS), 8(4):325–
362, 1990.

[69] P. F. Palamara, V. A. Ziparo, I. Iocchi, D. Nardi, and P. Lima. Teamwork design based on
petri net plans. In RoboCup 2008: Robot Soccer World Cup XII, pages 200–211, 2008.

[70] L. E. Parker. On the design of behavior-based multi-robot teams. Advanced Robotics,
10(6):547–578, 1995.

[71] J. L. Peterson. Petri net theory and the modeling of systems. Prentice-Hall, Inc., Englewood
Cliffs, N.J 07632, 1981.

[72] C. A. Petri. Communication with automata. PhD thesis, Rome Air Development Center,
Rome, NY, 1966.

[73] P. Pirjanian. Behavior coordination mechanisms-state-of-the-art. Institute for Robotics and
Intelligent Systems, School of Engineering, University of Southern California, Tech. Rep.
IRIS-99-375, 1999.

[74] A. Pokahr, L. Braubach, and W. Lamersdorf. A flexible bdi architecture supporting extensi-
bility. In Intelligent Agent Technology, IEEE/WIC/ACM International Conference on, pages
379–385. IEEE, 2005.

[75] M. Purvis and S. Cranefield. A layered approach for modeling agent conversations. In
Proceedings of the Second International Workshop on Infrastructure for Agents, MAS and
Scalable MAS, the Fifth International Conference on Autonomous Agents, pages 163–170,
Montreal, Canada, 2001.

[76] F. Py, K. Rajan, and C. McGann. A systematic agent framework for situated autonomous
systems. In Proceedings of the 9th International Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS), volume 2, pages 583–590. International Foundation for Au-
tonomous Agents and Multiagent Systems, 2010.

[77] D. V. Pynadath and M. Tambe. An automated teamwork infrastructure for heterogeneous
software agents and humans. Autonomous Agents and Multi-Agent Systems, 7(1):71–100,
2003.

[78] A. S. Rao and M. P. Georgeff. BDI agents: From theory to practice. In Proceedings of
the first international conference on multi-agent systems (ICMAS-95), pages 312–319. San
Francisco, 1995.

145 BIBLIOGRAPHY

[79] M. Risler, M. Loetzsch, M. Jungel, T. Krause, and B. Schmitz. XABSL web site.
http://www.xabsl.de, 2009.

[80] M. Risler and O. von Stryk. Formal behavior specification of multi-robot systems using
hierarchical state machines in XABSL. In International Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS) - Workshop on Formal Models and Methods for Multi-
Robot Systems,(Estoril, Portugal), 2008.

[81] M. Roth, R. G. Simmons, and M. M. Veloso. Reasoning about joint beliefs for execution-
time communication decisions. In Proceedings of the Fourth International Joint Conference
on Autonomous Agents and Multi-Agent Systems (AAMAS-05), pages 786–793, 2005.

[82] S. Russell and P. Norvig. Artificial Intelligence - A Modern Approach. Prentice-Hall, Inc,
Englewood Cliffs, NJ, 1995.

[83] S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach, 2nd Ed. Prentice
Hall, Englewood Cliffs, NJ, 2002.

[84] Y. Sakagami, R. Watanabe, C. Aoyama, S. Matsunaga, N. Higaki, and K. Fujimura. The
intelligent asimo: System overview and integration. In IEEE/RSJ International Conference
on Intelligent Robots and Systems, volume 3, pages 2478–2483. IEEE, 2002.

[85] W. Sheng and Q. Yang. Peer-to-peer multi-robot coordination algorithms: Petri net based
analysis and design. In Proceedings of the IEEE/ASME International Conference on Ad-
vanced Intelligent Mechatronics., pages 1407–1412. IEEE, 2005.

[86] Y. Shoham. Agent-oriented programming. Artificial intelligence, 60(1):51–92, 1993.

[87] J. Sudeikat, L. Braubach, A. Pokahr, and W. Lamersdorf. Validation of BDI agents. In J. D.
A. E. F. S. R. Bordini, M. Dastani, editor, The 4th International Workshop on Programming
Multi-Agent Systems (PROMAS-2006), pages 185–200, Berlin, Heidelberg, 2006. Springer.

[88] M. Tambe. Agent architectures for flexible, practical teamwork. In Proceedings of the
National Conference on Artificial Intelligence, pages 22–28, 1997.

[89] M. Tambe. Towards flexible teamwork. Journal of Artificial Intelligence Research (JAIR),
7:83–124, 1997.

[90] S. Tousignant, E. V. Wyk, and M. Gini. An overview of xrobots: A hierarchical state ma-
chine based language. In Proceedings of the ICRA-2011 Workshop on Software development
and Integration in Robotics, 2011.

[91] I. Toyn and A. Galloway. Formal validation of hierarchical state machines against expec-
tations. In 18th Australian Software Engineering Conference, (ASWEC), pages 181–190.
IEEE, 2007.

146 BIBLIOGRAPHY

[92] A. Valmari. The state explosion problem. Lectures on Petri Nets I: Basic Models, pages
429–528, 1998.

[93] W. van der Aalst. Verification of workflow nets. Application and Theory of Petri Nets 1997,
pages 407–426, 1997.

[94] W. van der Aalst. The application of petri nets to workflow management. Journal of Circuits
Systems and Computers, 8:21–66, 1998.

[95] N. Viswanadham and Y. Narahari. Coloured petri net models for automated manufacturing
systems. In Proceedings of IEEE International Conference on Robotics and Automation,
volume 4, pages 1985 – 1990, mar 1987.

[96] F. Y. Wang, K. J. Kyriakopoulos, A. Tsolkas, and G. N. Saridis. A petri-net coordination
model for an intelligent mobile robot. IEEE Transactions on Systems, Man and Cybernetics,
21(4):777–789, 1991.

[97] M. Winikoff. Jack intelligent agents: An industrial strength platform. In R. Bordini, M. Das-
tani, J. Dix, and A. Fallah Seghrouchni, editors, Multi-Agent Programming, volume 15
of Multiagent Systems, Artificial Societies, and Simulated Organizations, pages 175–193.
Springer US, 2005.

[98] M. J. Wooldridge. An introduction to multiagent systems. Wiley, 2002.

[99] D. Xu, R. Volz, T. Ioerger, and J. Yen. Modeling and verifyiüng multi-agent behaviors using
predicate/transition nets. In Proceedings of the 14th international conference on Software
Engineering and Knowledge Engineering, pages 193–200. ACM, 2002.

[100] J. Yen, J. Yin, T. R. Ioerger, M. S. Miller, D. Xu, and R. A. Volz. Cast: Collaborative agents
for simulating teamwork. In International joint conference on artifical intelligence, pages
1135–1144, 2001.

[101] V. A. Ziparo, L. Iocchi, P. U. Lima, D. Nardi, and P. F. Palamara. Petri net plans. Au-
tonomous Agents and Multi-Agent Systems, 2010.

[102] V. A. Ziparo, L. Iocchi, D. Nardi, P. F. Palamara, and H. Costelha. Petri net plans: a formal
model for representation and execution of multi-robot plans. In Proceedings of the 7th
international joint conference on Autonomous Agents and Multi-Agent Systems, volume 1,
pages 79–86, 2008.

[103] W. M. Zuberek. Timed petri nets and preliminary performance evaluation. In Proceedings
of the 7th annual symposium on Computer Architecture, ISCA ’80, pages 88–96, New York,
NY, USA, 1980. ACM.

147 BIBLIOGRAPHY

[104] W. M. Zuberek and I. Bluemke. Hierarchies of place/transition refinements in petri nets. In
Proceedings of Conference on Emerging on Technologies and Factory Automation, pages
355–360, 1997.

 תקציר

רובוטים צוברות עניין רב הן באקדמיה והן מרובות מערכות המורכבות מרובוט יחיד ומערכות

חשוב בקרה ואימות של תכונות מסוימות הוא , צוג של המערכות הללו לצורך ניתוחיי. היבתעשי

על מערכת עם רובוט יחיד ובין אם מדובר על בין אם ,גם יחדמאוד עבור שני סוגי המערכות

 היתרונות אךל"הנמערכות היצוג י לשיטות רבות הוצעולאחרונה .רכת מרובת רובוטיםמע

 .עדיין לא נחקרוצוג של מערכות רובוטיות י ליתםמידת התאמווהחסרונות של השיטות הללו

ייחס אליהם בעת תצוג טובה צריכה להתמודד איתם ולהיששיטת ירבים ישנם אתגרים , בנוסף

, טיפול יעיל בהפרעות לא צפויות: כגוןטיות בסביבה דינאמית ולא צפויה צוג של מערכות רובויי

ניתוח אוטומטי ואימות של , צוגימקום של היההקטנת סיבוכיות , מידול של תהליכים מקביליים

 . עודמאפיינים מסוימים במערכת ו

 שיטת ייצוג חדשה המבוססת היא מציגה , ראשית. גם יחדל"הסוגיות הנ בשתי מטפלת עבודה זו

 לייצוג המשמשת Colored Petri Net Plans (CPNPs) הנקראת, Colored Petri Netsעל

השיטה החדשה יודעת להתמודד באופן יעיל עם כל האתגרים . מערכות המורכבות מרובוט יחיד

 ניתוח יגה העבודה מצ, שנית. יצוגי לצורך בניית הותשהוצגו לעיל ומציעה אבני בניין מפורש

צוג מערכות י את מידת ההתאמה שלהן ליתסיבוכיות מקום של שיטות ייצוג קיימות ובוחנ

 לצורך ייצוג של מערכות מרובות CPNP - הרחבה ל מציגה העבודה ,לבסוף. מרובות רובוטים

ריכוזיות , כוללת אופרטורים מתאימים לייצוג מערכות מרובות רובוטיםה הרחבה ,רובוטים

ניתוח סיבוכיות המקום שהוצג וכתוצאה מכך הייצוג על פי האופרטורים הללו נבנו . ותומבוזר

 .חסכוני במקוםמובן יותר ו, ברור יותר הוא זוי שיטה "המתקבל ע

 המחלקה מן קמינקא .א גל של פרופסור בהדרכתו נעשתה זו עבודה
 .אילן-בר אוניברסיטת המחשב של למדעי

 ד"בס

:CPNPמערכות ג שיטה לייצו
המורכבות מרובוט יחיד ומערכות

 רובוטיםמרובות

 לימור מרציאנו

 תואר קבלת לשם מהדרישות כחלק מוגשת זו עבודה
 אילן-בר אוניברסיטת של המחשב למדעי במחלקה מוסמך

 ג"תשע גן רמת

