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Abstract The use of autonomous robots is appealing for tasks, which are dangerous to
humans. Autonomous robots might fail to perform their tasks since they are susceptible to
varied sorts of faults such as point and contextual faults. Not all faults can be known in
advance, and hence, anomaly detection is required. In this paper, we present an online data-
driven anomaly detection approach (ODDAD) for autonomous robots. ODDAD is suitable
for the dynamic nature of autonomous robots since it declares a fault based only on data col-
lected online. In addition, it is unsupervised, model free and domain independent. ODDAD
proceeds in three steps: data filtering, attributes grouping based on dependency between
attributes and outliers detection for each group. Above a calculated threshold, an anomaly is
declared. We empirically evaluate ODDAD in different domains: commercial unmanned aer-
ial vehicles (UAVs), a vacuum-cleaning robot, a high-fidelity flight simulator and an electrical
power system of a spacecraft. We show the significance and impact of each component of
ODDAD. By comparing ODDAD to other state-of-the-art competing anomaly detection algo-
rithms, we show its advantages.

Keywords Anomaly detection ·Robotics ·UAV ·UGV ·Unmanned vehicles ·Autonomous
agents · Unsupervised ·Model free · Online · Data driven · ODDAD · AI · Fault detection

1 Introduction

Autonomous robots operate in dynamic environments, where it is impossible to foresee and
impractical to account for all possible faults. Instead, the control systems of the robots must
be complemented by anomaly detection systems that can detect anomalies in the robot’s
systems and trigger diagnosis. To be useful, such a system has to be computationally light so
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that it does not create a computational load on the robot, which itself can cause failures, and
has to detect faults with high degrees of both precision and recall. High rates of false positives
will lead operators to ignore the system [15]; low rates of true alarms make it ineffective.
Moreover, the faults must be detected quickly after their occurrence, so that they can be dealt
before they become catastrophic. In addition, an anomaly detector should be able to detect
contextual failure [2]. A contextual failure occurs when a faulty sensor reports valid readings,
which are invalid given some operational or sensory context. For instance, a sensor can get
physically stuck such that it no longer reports the true value of its reading, but does report a
value which is in the range of valid readings.

The field of anomaly detection has been widely researched. Anomaly detection approaches
are typically divided into three categories: model based, knowledge based and data driven
(machine learning). Model-based algorithms are potentially very accurate. However, these
methods heavily rely on the fidelity of the underlying model which is very hard to con-
struct for complex autonomous systems. Knowledge-based algorithms associate symptoms
with diagnosis by rules (IF-THEN sentences). This approach is usually good in detecting
predefined faults but not unknown ones. Data-driven algorithms usually rely on statistical
information (taken out of the set of the training data) to detect outliers and label them as faults.
These statistical methods rely on the existence of faults which are expressed as outliers in
the training data and usually have to use some dimension reduction techniques to handle all
the available data [2].

In this paper, we apply an online data-driven anomaly detection approach (hereinafter
ODDAD). By online, we mean that with each consumed sampled input, we look at the latest
m samples of input (sliding window) and quickly decide whether or not this online data
present a fault. To determine the occurrence of a fault, we proceed in three steps: (1) The
input is filtered to reduce noise, (2) we apply dimension reduction by splitting the data into
sets of correlated attributes and (3) we use the Mahalanobis Distancecalculation to each set
in order to return the degree of a data instance being an outlier. Above a calculated threshold,
we declare an anomaly.

ODDAD includes the important properties that are necessary for a quick and accurate
anomaly detector in the domain of autonomous systems: (a) model free—no analytical
description of the system is needed (like model-based approaches require), (b) domain inde-
pendent, (c) unsupervised—no training set is needed and (d) completely online—no process-
ing of old and offline large data sets is needed. The last property is especially important for
the following reasons: firstly, current data are used for comparison (rather than obsolete data);
secondly, there is a consideration of the dynamic nature of correlations which are built and
destroyed as the robot operates; and lastly, the computation is kept light since only a portion
of the current online data is used.

ODDAD differs from previous data-driven approaches. For example, in a similar way to
our approach, Lin et al. [16] use the Mahalanobis Distanceto detect faults. However, the
correlations are calculated offline and thus do not consider the dynamic nature of these
correlations. It is important to detect correlated attributes online as we show in the results
section.

The contributions we show in this paper are as follows: (1) We present a novel accurate
anomaly detection algorithm which is lightweight, unsupervised, online, domain indepen-
dent and model free. (2) We enable the use of the Mahalanobis Distancecalculation as an
anomaly detector in the domain of autonomous systems. (3) We present a comprehensive
set of experiments which show the success of ODDAD in various domains of autonomous
systems.
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To evaluate ODDAD, we conduct experiments in four different domains:

– Actual flight data from a commercial unmanned aerial vehicle (UAV), in which simulated
faults were injected by the manufacturer.

– Data from a RV-400 vacuum-cleaning robot that was subjected to physical faults.
– The FlightGear flight simulator, which is widely used for research [4,7,26] and is able to

simulate real faults.
– An electrical power system (EPS), which simulates the functions of a typical aerospace

vehicle power system, provided by the Advanced Diagnostics and Prognostics Testbed
(ADAPT) laboratory at the NASA Ames Research Center [13].

In all, we conducted experiments that show that ODDAD is superior to other state-of-the-
art anomaly detectors. In addition, we show the impact of each one of the components of
ODDAD (sliding window, filtering and online correlation detection). Finally, we show that
the filtering we use also improves other competing approaches.

This paper proceeds as follows: In the next section, we present related work. In Sect. 3,
we present the online anomy detection problem, and in Sect. 4, we describe our online data-
driven anomaly detection (ODDAD) approach. Section 5 specifies the experimental setup of
our domains and presents the results. Section 6 concludes.

2 Related work

Anomaly detection has generated substantial research over past years. Applications include
intrusion and fraud detection, medical monitoring, robot behavior novelty detection, fault
detection in physical systems, etc. (see [2] for a comprehensive survey).

Steinbauer et al. [27] conducted a survey about faults of autonomous robots in the context
of RoboCup [25]. He presents an adapted fault taxonomy suitable for autonomous robots and
gives information on the nature, the relevance and impact of faults in robot systems. All the
surveyed types of faults and failures are expressed as anomalies in the monitored data. An
anomaly detection can be used as a fault detection.

A known approach to anomaly detection relies on a model of the system. Model-Based
approaches for fault detection and diagnosis are studied by two distinct and parallel research
communities, the FDI community [11] and the DX community, e.g., in the work of [33]. FDI
approaches are derived from control theory and statistical decision making. DX approaches
are derived from Computer Science and Artificial Intelligence. Both approaches rely on a
model that describes the system in order to detect faults or anomalies. However, the concepts,
assumptions and techniques of the two approaches are very different.

Trav-Massuys [32] presents in her extensive survey fault detection and diagnosis as it is
understood in the Control (FDI) and Artificial Intelligence (DX) fields, and exemplifies how
different theories of these fields can be synergistically integrated to provide better diagnostic
solutions and to achieve improved fault management in different environments.

Daigle et al. [5] propose an event-based approach for diagnosis of parametric faults in
continuous systems. Their approach is based on a qualitative abstraction of deviations from
the nominal behavior, i.e., expected behavior. Their technique is based on a finite automaton
under the assumption that it is feasible to create a model that captures all relevant system
behavior. Yet, in contrast to ODDAD, their approach isolates only a single fault. Another
model-based approach for anomaly detection is model-based reasoning (e.g., [10,28]). As
most model-based approaches, model-based reasoning requires having a model of the robot
and its interactions with the environment. Such models are complex to build.
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One main direction in anomaly detection uses machine learning methods to model what
constitutes nominal behavior and derive from the representation of the nominal behavior the
abnormal behavior. For example, Eski et al. [6] presented an experimental investigation on
an industrial robot manipulator, using neural network for analyzing the vibration condition
on joints. The use of a neural network requires a training set of samples which is already clas-
sified, i.e., the approach is a supervised approach. Because of the dynamic context in which
autonomous robots operate, classified data sets are not common. In addition, the adaptation
of machine learning algorithms to different contexts requires fine tuning of many parameters
and thresholds. For this reason, an anomaly detection approach should be unsupervised. We
present an unsupervised approach and demonstrate that it can be easily adapted to different
contexts, while preserving high anomaly detection rates.

One-class classification-based anomaly detection methods assume all training data
instances to be of one class label. Such methods learn a discriminative boundary around the
nominal instances using a one-class classification algorithm [2,9]. Any test instance that falls
outside the learnt boundary is considered as anomalous. Support vector machines (SVMs)
[17,29], as other machine learning techniques, need additional computation to calculate this
boundary in the one-class setting [19,24].

However, as we show in Sect. 5.4, contextual anomalies are undetected even by a suc-
cessful and well-known classifier such as SVM. Even under unrealistic favoring conditions,
where both nominal and anomalous data samples are available for training, our proposed
unsupervised method detects such anomalies. When labeled data are scarce both the unla-
beled and labeled data instances are utilized to train and update the classification model [20].
Our approach is unsupervised and hence has no need for updating such a classification model.

The large amount of data of monitored Unmanned Vehicles (UVs) is produced from a
large number of system components comprising of actuators, internal and external sensors,
odometry and telemetry, that are separately monitored at high frequency. The separated
monitored components can be thought of as dimensions, and thus, a collection of monitored
readings, at a given point in time, can be considered a multidimensional point. Therefore,
statistical methods that produce an anomaly score for each given point can use calculations
that consider the points’ density, such as Mahalanobis Distance [16] or K -Nearest Neighbors
[23]. We use such methods in this paper. Statistical approaches usually assume that the data
are generated from a single distribution, which is not the case for high-dimensional real data
sets [2].

To distinguish the inherent noisy data from anomalies, Kalman filters are usually applied
(e.g., [3,8,30]). Since simple Kalman filters, when used alone, might produce a large number
of false positives, additional computation is used to determine an anomaly. For example, Cork
and Walker [3] present a nonlinear model, which together with Kalman filters tries to compen-
sate for malfunctioning sensors of UAVs. We use a simpler filter that significantly improved
the results of our approach. The filter normalizes values using a Z -score transformation.

Laurikkala et al. [14] propose the use of Mahalanobis Distanceto reduce the multivariate
observations to univariate scalars. In this work, we reduce dimensionality with dependency
detection techniques and use the Mahalanobis Distanceto return a scalar which depicts the
degree of anomaly for a given data instance.

Brotherton and Mackey [1] use the Mahalanobis Distanceas the key factor for determining
whether signals measured from an aircraft are of nominal or anomalous behavior. They
describe a limitation arose as a result of the number of dimensions used due to run-time
issues. We address this challenge in this paper by dividing the number of dimensions into
correlated groups.
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Although Mahalanobis Distanceseems fitting for anomaly detection, it is not commonly
used for that aim. The challenge of reducing run-time and false positives must be handled. In
this work, we meet this challenge by applying dimension reduction and noise filtering. Thus,
making the Mahalanobis Distancea successful anomaly detector.

This work is an extension of a previous paper [12]. One extension in this work is in
evaluating our methods on an additional domain of electrical power system (EPS) described
in [13]. In addition, we compare the online approach to the incremental Local Outlier Factor
(LOF) algorithm [23]. We chose to compete with the incremental LOF algorithm since it is
one of the leading online outlier detectors which handles multivariate data and considers the
data distribution in a different way than our proposed online approach. Finally, we compare
ODDAD to the offline anomaly detector proposed in [16].

3 The problem of online anomaly detection

We deal with the problem of online anomaly detection. Let A = {a1, . . . , an} be the set of
attributes that are monitored. The attributes can be collected by internal or external sensors
(e.g., odometry, telemetry, speed, heading, G P Sx , G P Sy , etc.) The data are sampled at some
frequency f . An input vector �it = {it,1, . . . , it,n} is given online, where it, j ∈ R denotes the
value of attribute a j at current time t .

In our model, past data H are also accessible and considered as nominal. H is an m × n
matrix where the columns denote n monitored attributes and the rows maintain the values of
these attributes over m time steps. H can be recorded from a complete operation of the UV
that is known to be nominal (e.g., a flight with no known failures), or it can be created from
the last m inputs that were given online, that is H = {�it−m, . . . ,�it−1}. The online anomaly
detection problem is to decide for each given �it , whether or not �it is anomalous with respect
to H .

The definition of anomalous varies, but is typically given in the form of statistical outlying.
Three common categories of anomalies are described in the literature [2]:

1. Point anomalies: invalid data instances, corresponding to invalid values in �ix .
2. Contextual anomalies: data instances that are only invalid with respect to a specific context

but not otherwise. In our approach, the context is provided by the data of H which changes
over time.

3. Collective anomalies: related data instances that are valid apart, but create an invalid
collection. In our approach, H holds a timeseries of values for each monitored attribute.
An invalid collection may contradict other collections in H .

We demonstrate the anomalies using examples. Consider a UAV that collects and monitors
n attributes, such as: air-speed, heading, altitude, roll pitch and yaw, and other telemetry and
sensors data. The input is provided in a given frequency (usually 10 Hz), when suddenly a
fault occurs.

A point anomaly exists when a data instance shows an invalid value, for instance, a fault
may cause the air-speed indicator to produce values above the maximum air-speed that is
achievable by the UAV. A contextual anomaly exists when a data instance, though valid on
its own, is considered invalid with respect to a certain context. For instance, the air-speed
indicator produces the value of 0, which is a valid value on the ground but not expected while
in flight. A collective anomaly exists when values which may be valid on their own create
together an invalid collection. For instance, the altimeter (measuring altitude) is suddenly
stuck while the UAV is taking off. Each value is valid on its own and is also legitimate within
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the context of the take-off behavior of the UAV. However, the series of unchanged values
is anomalous when the values are expected to grow. Our goal is to detect these failures by
flagging them as anomalies

4 Online data-driven anomaly detection (ODDAD)

In this section, we describe the different components of the our ODDAD approach. Each
subsection describes a different component. We start by describing the flow of the ODDAD
approach in Sect. 4.1. The rest of the Sects. (4.2–4.7) are placed in an order that best describes
the motivation for each component of ODDAD , not necessarily according to ODDAD’s flow.
Finally, in Sect. 4.8, we describe the whole process of ODDAD as an anomaly detector.

4.1 ODDAD approach overview

Figure 1 illustrates the flow of ODDAD. In the first stage, the current online consumed input is
filtered in order to reduce noise that might be falsely interpreted as an anomaly. The filtering
is described in Sect. 4.7.

Then, the last m filtered inputs are kept in a sliding window H , which is described in
Sect. 4.4. We assume that the robot starts by operating normally and an anomaly might occur
after some point in time. Therefore, we assume the data of the sliding window are nominal
and we wish to compare it against the current input to detect anomalies as they occur. For this
comparison, we use the Mahalanobis Distancecalculation because of its multidimensional
nature and consideration of distribution (see Sect. 4.2).

The Mahalanobis Distancecannot be used on its own as an anomaly detector. In order
for the Mahalanobis Distanceto be a successful anomaly detector, it should be applied on
correlated dimensions as we discuss in Sect. 4.2. Therefore, the data in the sliding window
H are split into sets of correlated attributes as explained in Sect. 4.5. In Fig. 1, columns with
the same color are correlated (i.e., attributes {1,4,6} , {2,5} and {3,7} are correlated). Then,
each set is associated with a calculated anomaly threshold as described in Sect. 4.6. These
thresholds are later used for singling out anomalies.

The data of the current input vector are split into subvectors to match the partitioning of
H . In Fig. 1, the input values of attributes {1,4,6}, {2,5}, {3,7} form the subvectors that
match the first, second and third sets of correlated attributes, respectively. Each subvector
is compared to the data of its matching set of correlated attributes using the Mahalanobis
Distancecalculation. Any result that crosses a set’s anomaly threshold triggers an anomaly
alarm. This process of anomaly detection is described in Sect. 4.8.

4.2 Mahalanobis distance as an anomaly detector

Mahalanobis Distanceis an n dimensional Z -score. It calculates the distance between an
n dimensional point to a group of others in units of standard deviations [18]. In contrast
to the common n dimensional Euclidean distance, Mahalanobis Distancealso considers the
points’ distribution. Therefore, if the group of points represents a distribution of observed
sampled data, then the Mahalanobis Distanceindicates whether a new point is an outlier with
respect to this observation. A point with similar values to the observed points is located in the
multidimensional space, within a dense area and will have a lower Mahalanobis Distance.
However, an outlier will be located outside the dense area and will have a larger Mahalanobis
distance.

123

Author's personal copy



Online data-driven anomaly detection

Fig. 1 The outline of the
approach

Fig. 2 Euclidean versus
Mahalanobis Distanceof points
A, B with respect to the gray
points

An example is depicted in Fig. 2. We can see that while A and B have the same Euclidean
distance from the centroid μ, A’s Mahalanobis Distance(3.68) is greater than B’s (1.5),
because an instance of B is more probable than an instance of A with respect to the other
points.
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Fig. 3 Example of Mahalanobis Distanceas an Anomaly Detector. m = how anomalous a black point is with
respect to the distribution of gray points. When the altimeter gets stuck the value of m gets higher

Formally, the Mahalanobis Distanceis calculated as follows: Let �i ′t be a vector containing
the current input values of k correlated attributes at time step t . Let H ′ be an m × k matrix
which contains the values for these k correlated attributes over the last m time steps (i.e.,
t −m, . . . , t − 1); each H ′s,a is the nominal value of attribute a in time step s. We define the
mean of H ′ by μ = (μ1, μ2, . . . , μk) where μ j is the average of the m values of attribute j
stored in H ′. We define S as the covariance matrix of H ′. The Mahalanobis Distance, Dmahal ,
from �i ′t to H ′, is defined as:

Dmahal(
�i ′t , H ′) =

√
(�i ′t − �μ)S−1(�i ′t

T − �μT )

Using the Mahalanobis Distance, we can detect the three common categories of anomalies
discussed above (point, contextual and collective).

A sudden point anomaly of an attribute yields an invalid value in �i ′t which was not observed
in the attribute’s previous valid values stored in H . The invalid value creates a multidimen-
sional point that is a part of the cluster of valid points stored in H resulting in a high
Mahalanobis Distanceand an alarm.

A contextual anomaly yields a multidimensional point where each dimension may be in
the valid scope but the multidimensional point is yet a part of the cluster of points stored in
H . The occurrence of the values in �i ′t together was not observed in H and thus is anomalous
with respect to the context provided by H . For instance, contradicting values for the once
correlated Altimeter and the GPS indicated altitude attributes yields a two-dimensional point,
which is a part of the cluster stored in H where all the two-dimensional points have correlated
dimensions. This results in a high Mahalanobis Distanceand an alarm.

A collective anomaly yields a series of values for an attribute in which their occurrence
together as a collection is anomalous. Given such a series of values, the latest values in the
series create a multidimensional point in �i ′t which is getting farther and farther away from
the cluster of the stored points in H due to the correlation break of the anomalous dimension
(see Fig. 3). This results in a high Mahalanobis Distanceand an alarm.

Figure 3 presents an example of the Mahalanobis Distanceas an anomaly detector. The
data were taken from simulated flights of FlightGear fight simulator [7]. Recall the running
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example (Sect. 3), where the Altimeter was stuck on a legal value, but the GPS Altitude
indicated that the UAV kept on rising. The values of these two attributes supposed to change
together. However, when one of the attributes is stuck, even on a legal value, it is a collective
anomaly with respect to the other attribute. These two attributes are depicted as the two
dimensions in Fig. 3. The square (gray) points present an observation of the values of these
attributes, taken from the sliding window, which we consider to present a nominal flight.
The diamond (black) points present the values of current inputs which are injected with
an anomaly. For a period of time, the GPS Altitude attribute’s values kept on rising while
the Altimeter attribute’s values stayed the same. The Mahalanobis Distanceof several points
from the anomalous flight with respect to the nominal observation is depicted in Fig. 3 as
m. Before the anomaly occurs, the Mahalanobis Distanceis 0.8. During the anomaly time,
the GPS Altitude’s values keep rising while the Altimeter’s values remain the same. The
2D point formed of the current values of these two attributes is being located further away
from a dense area, rising the Mahalanobis Distanceup to 23.47 standard deviations. After the
anomaly time, the Altimeter’s values are nominal again, placing the current 2D point back
in a dense area, decreasing the Mahalanobis Distanceto 0.81.

Using the Mahalanobis Distanceas an anomaly detector is prone to errors without guid-
ance. In this paper, we show that the success of Mahalanobis Distanceas an anomaly detector
depends on whether the dimensions inspected are correlated or not. When the dimensions
are expected to be correlated, a large Mahalanobis Distancemay indicate the result of point,
contextual or collective anomalies. However, when the dimensions are not expected to be cor-
related, the large Mahalanobis Distancemay simply indicate this expected lack of correlation
rather than an unexpected anomaly. An alarm in such case would be a false alarm.

Therefore, it is imperative to use a preprocess that determines correlated dimensions, prior
to the usage of the Mahalanobis Distance. Instead of using the Mahalanobis Distanceonce
on all the n dimensions, the Mahalanobis Distanceis applied several times, once per each set
of k correlated dimensions where k < n. The selection of correlated dimensions (instead of
all dimensions):

1. Reduces false positives and thus enables the use of Mahalanobis Distanceas anomaly
detector.

2. Reduces run-time. It acts as a dimension reduction, which is essential for the Mahalanobis
Distancecalculation to be feasible online.

4.3 The challenge of finding correlated attributes

Finding correlated attributes automatically is a difficult task. Some attributes may be statically
correlated with others, but the correlation may change dynamically. For example, the elevator
value of an aircraft’s stick is correlated with the aircraft’s pitch and with the change of height,
measured in the differences of the values of the altitude attribute (see Fig. 4). However, this
is not always true. There is another dependency on the value of the roll attribute, which is
influenced by the aileron value of the aircraft’s stick. As the aircraft is being rolled, the pitch
axis becomes more vertical. This, in turn, makes the elevator value correlate with the heading
value, rather than the height (see Fig. 5). In the same manner, the rudder is correlated with
the aircraft’s yaw, which usually affects the heading. However, as the aircraft is being rolled,
the yaw axis becomes more horizontal. This, in turn, makes the rudder value correlate with
the altitude value, rather than the heading.

Figure 6 shows a visualization of a correlation change between attributes over time. The
figure shows a matrix sized 71×71, where each cell < i, j > depicts the correlation strength
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Fig. 4 The Alti tude is affected by the Elevator . The Elevator affects the Pitch that affects the Alti tude
when the UAV is leveled

Fig. 5 The Heading is affected by the Elevator . The Elevator affects the Pitch that affects the Heading
when the UAV is rolled

between attributes ai , a j . The stronger the correlation, the darker the color of the cell. Figure 6
displays three snapshots taken from different time periods of a simulated flight in FlightGear,
where 71 attributes were monitored. The correlation change is apparent.

To handle the dynamic nature of correlations between attributes, we consume the online
data in a sliding window fashion as described in Sect. 4.4 and apply a quick correlation
detection on the consumed data as described in Sect. 4.5.
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start of flight middle of flight end of flight

Fig. 6 Visualization of correlation change during a flight. Darker cells present stronger correlation between
attributes

Fig. 7 An illustration of the
sliding window

4.4 The sliding window

To meet the challenge of detecting dynamically correlated attributes, we utilize a sliding
window technique to maintain H—the historical data—online. The sliding window (see
Fig. 7) is a dynamic window of predefined size m which governs the size of past data taken
into account. Thus, every time a new input �it is received, H is updated as the last m online
inputs: H ← {�it−m, . . . ,�it−1}. The data in H are always assumed to be nominal. Based on
H , we evaluate the anomaly score for the current input �it using the Mahalanobis Distance.

Considering the need to reduce run-time and false positives, there are two advantages for
using a sliding window approach for the historical data rather than a complete record of the
past data. First, it allows achieving reduced computation time, which makes it feasible to
be used online. Second, as newer data enter the sliding window, older data are removed and
ignored. Thus, only time-relevant data are maintained in H . If past data were not ignored,
then more false positives would have been derived due to the changing nature of the data
over time1.

4.5 Online correlation detection

We use a fast online correlation detection (see Algorithm 1) that is based on Pearson corre-
lation coefficient calculation [22].

Algorithm 1 calculates the n sets of correlated attributes, one set per each of the n attributes
(∀ai ∈ A). Each set is contained in a tuple < C ⊆ A, at ∈ R > that includes an anomaly
threshold value at for each correlated set C . The algorithm returns C S, the set of all tuples
created by the algorithm.

1 Note that even a data instance that was determined as anomalous automatically enters the sliding window
in the next time step. Otherwise, H will not reflect changes over time.
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Algorithm 1 Correlation_Detector(H, A, ct)
Require: H - m × n matrix, the historical data made of the last m online inputs.
Require: A - the set of attributes
Require: ct - a threshold value between 0 and 1
Ensure: C S - a set of tuples < C ⊆ A, at ∈ R >

1: C S← ∅
2: for each ai ∈ A do
3: C ← {ai }
4: for each a j 	=i ∈ A do
5: if |ρi, j (H T

i , H T
j )| > ct then

6: C ← C ∪ {a j }
7: C S← C S∪ < C, 0 >

8: return C S

The correlation calculation is done as follows: The vectors of the last m values of each two
attributes ai , a j are extracted from H and denoted as H T

i ,H T
j (where T denotes transpose).

We then apply the Pearson correlation on them denoted as ρi, j . If the absolute value of the
result |ρi, j | is larger than a correlation threshold parameter ct ∈ [0, 1], then the two attributes
are declared as correlated and a j is added to ai ’s correlated set C .

The ct parameter governs the size of the correlated attributes set. The higher the value of
ct , the less the attributes are deemed correlated, thereby decreasing the dimensions and the
total amount of calculations. This might also prevent attributes from being deemed correlated
and affect the flagging of anomalies. On the other hand, the lower the value of ct , the more the
attributes are considered correlated, thereby increasing the dimensions and also increasing
the likelihood of false positives, as less correlated attributes are selected.

ct is determined offline by running the anomaly detection algorithm on data known to be
nominal (e.g., nominal flights), where the value of ct is set, once no anomalies are returned.
We use the same correlation threshold ct to construct the different sets of correlated attributes.

Each set C is associated with an anomaly threshold which is set (for now) to 0 and added
to C S (line 7). The threshold per each set is later calculated as described in the next section.

4.6 Anomaly threshold calculation

Once the correlated group is established, an anomaly-threshold value per each set of correlated
attributes should be determined. This is done using the Mahalanobis Distance. Figure 8

Fig. 8 Threshold setting
example. The outer ring is the
threshold for the distribution of
gray points
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demonstrates the threshold setting for the anomaly detector with respect to a set of two
correlated attributes. The gray (2D) points represent the nominal observations of the values
of the two attributes. Each ring around the centroid μ is a standard deviation boundary. Each
point within a ring has an equal or smaller Mahalanobis Distancethan the boundary. The
outer ring is the highest Mahalanobis Distanceof all the nominal points. Thus, the ring acts
as a threshold. Points p1 and p2 have the same value in attribute A, but different values
in attribute B. The Mahalanobis Distanceof p1 is lower than the threshold, and thus, it is
considered as a nominal observation. The Mahalanobis Distanceof p2 is higher than the
threshold, and thus, p2 will cause a declaration of an anomaly.

Algorithm 2 sets a threshold value per each set of correlated attributes. These thresholds
are later used by the Anomaly Detector (Algorithm 3) to declare an anomaly if the anomaly
score of a given input crossed a threshold value.

Algorithm 2 Threshold_Setter(H, C S)
Require: H - m × n matrix, the historical data made of the last m online inputs.
Require: C S - a set of tuples < C ⊆ A, at ∈ R >

Ensure: sets an anomaly-threshold value for each tuple in C S
1: for each < C, at >∈ C S do
2: at ← 0
3: let Hc be a m × |C | matrix, containing the last m values of the attributes in C taken from H
4: for each �p ∈ Hc do
5: if at < Dmahal ( �p, Hc) then
6: at ← Dmahal ( �p, Hc)

Each anomaly-threshold at in each tuple < C, at > is set by the algorithm to be the
highest Mahalanobis Distanceobserved. This observation is based on a distribution of m
points in a |C |-dimensional space representing the last m values of the attributes in C . These
points are held in the rows of a m × |C | matrix denoted as Hc. The values of Hc are taken
from the columns of H that are corresponding to the attributes in C (e.g., for each ai ∈ C
take H T

i ).
Each |C |-dimensional point �p ∈ Hc represents a data instance that is considered to be

nominal with respect to the distribution of the other points in Hc. Hence, any lower Maha-
lanobis Distancethan the Mahalanobis Distanceof �p should not cause an alarm. Therefore, a
threshold is set to be the highest Mahalanobis Distanceobserved.

4.7 Data filtering

Monitoring in robots has special characteristics. Robots monitor their environment using
sensors and create a world’s state. They decide how to act in a way that would indirectly
affect the world’s state such that some goal state will be achieved. In other words, the expected
changes in the environment are a function of the actions selected by the robot.

We, therefore, propose to monitor the difference in the values measured by the sensors
which originates from the robot’s actions, rather than the absolute values. The raw readings
of the sensors usually do not correspond directly to the agent’s actions. For example, an
increase of speed should be correlated with the loss of height generated by the UAV’s action,
rather than correlating a specific speed value with a specific height value. Formally, we use
the difference between the last two samples of each attribute, denoted as �(�it ) = �it − �it−1.
We also denote the history of the differential data as �(H).
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Fig. 9 Illustration of the Z -transformation. Any change is expressed as a “normalized ripple”

In the domain of robotics, the data are sampled at high frequency and might include noise.
When the raw data are sampled at high frequency, the differential data contain values which
are close to 0 because the raw values have not changed very much between samples. A noise,
such as an abrupt high value spike, causes a dramatic change between samples, which is very
anomalous with respect to the other differential data samples which are close to 0. Yet, we
would not want to raise an alarm each time there is a momentary noise. Therefore, we use a
filter that “slows” the changes in the differential data.

We apply a smoothing function using a z-transform. This filter measures changes in terms
of standard deviations based on the sliding window and normalizes all values to use the
same standard deviation units. A Z -score is calculated for a value x and a vector �x using the
vector’s mean value x̄ and its standard deviation σx , that is, Z(x, �x) = x−x̄

σx
.

We apply z-transform to transform each value it, j to its Z -score based on the
last m values extracted from the sliding window H (H T

j ). Formally, Zraw(�it , H) =
{Z(it,1, H T

1 ), . . . , Z(it,n, H T
n )}. The Zraw transformation can be also applied on the dif-

ferential data �(�it ),�(H), i.e., Z�(�it , H) = Zraw(�(�it ),�(H)). If a single raw value is
affected by noise, its Z -value is smoothed by the rest of the raw values.

In our simulations, we experimented with two types of filters that use the
Z -transformations: Zraw and Z�.

When an actuator is idle, its Z -values are all 0s, since each incoming raw value is equal
to the last m raw values. However, as the actuator’s reading changes, the raw values become
increasingly different from one another, increasing the actuator’s Z -values until the actuator
is idle again (possibly on a different raw value). The last m raw values are filled again with
constant values, lowering the actuator’s Z -values. This way, a change is modeled by a “ripple
effect,” causing other attributes that correspond to the same changes to be affected by that
effect too.

Figure 9 illustrates the Z -transformation technique. The data are taken from a segment
of a simulated flight in the FlightGear domain. The figure presents values of two attributes
(Y-axis) through time (X-axis). The aileron attribute stores the left and right movement of the
UAV’s stick. There movements control the UAV’s roll which is sensed using gyros and stored
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in the roll attribute. We say that the aileron and roll attributes are correlated if they share the
same effect of change. The aileron’s raw data are represented by the square points, which
remain almost constant. The roll’s raw data, represented by an upside-down triangle, differ
significantly from the aileron’s data. However, they share a similar ripple effect, illustrated
by their Z -transformed values, shown in the right-side up triangle points and the diamond
points. We can see that even the smallest change is normalized to become a “slow” ripple.

4.8 Anomaly detector engine

This section summarizes the whole process and presents our online anomaly detection engine
(Algorithm 3). It includes four steps: (1) applying filters (Sect. 4.7), (2) correlation detection
(Algorithm 1 in Sect. 4.5), (3) finding an anomaly threshold (Algorithm 2 in Sect. 4.6) and
(4) executing the Mahalanobis Distanceoutlier detector.

Algorithm 3 Anomaly_Detector(�it , A, ct)

Require: �it - the current input vector received online
Require: A - the set of attributes
Require: ct - a threshold value between 0 and 1
Ensure: “Anomaly” if �it is anomalous with respect to previous inputs
1: maintain Hraw as the last m inputs of �it
2: �it z ← Z�(�it , Hraw)

3: maintain Hz as the last m filtered vectors - �it z
4: C S← Correlation_Detector(Hz , A, ct)
5: Threshold_Setter(Hz , C S)
6: for each < C, at >∈ C S do
7: let Hc be a m × |C | matrix, containing the last m values of the attributes in C taken from Hz
8: let �p be the values of the attributes in C taken from �it z
9: if at < Dmahal ( �p, Hc) then
10: return “Anomaly”

The algorithm is invoked with every new consumed online input �it . The last m values
of all attributes are maintained in Hraw—sliding window (line 1). Each input vector that
is obtained online, �it , is transformed to Z�(�it , Hraw) (line 2). The sliding window of the
filtered values Hz is updated as well (line 3). The online preprocess takes place in lines 4–5.
The set of all tuples C S is returned by the Correlation_Detector algorithm (Algorithm
1); one tuple per each attribute a ∈ A, containing a’s set of correlated attributes C and the
anomaly-threshold at for that set (line 4). The anomaly thresholds are calculated in line 5 by
the T hreshold_Setter algorithm (Algorithm 2). For each tuple < C, at >, we extract from
Hz the columns that correspond to the attributes in C and store them in a m × |C | matrix
denoted as Hc (line 7). Hc represents the filtered data of a correlated set of attributes that is
considered to be nominal. We extract the current filtered values of the same attributes from
�it z and store them in �p (line 8). If the Mahalanobis Distanceof �p and Hc is greater than the

anomaly-threshold at , then this means that �p represents a data instance that is anomalous
with respect to the nominal data Hc. Therefore, anomaly is declared (lines 9–10).

5 Evaluation

In this section, we describe the evaluation of ODDAD. We start by describing the different
domains and anomaly detection scenarios (Sect. 5.1). We continue with a description of the
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Fig. 10 An RV-400 robot

evaluation criteria (Sect. 5.2). Next, we evaluate the impact of each component of ODDAD
and show their significance (Sect. 5.3). Finally, we compare ODDAD to other competing
anomaly detection approaches and show that ODDAD is more accurate (Sect. 5.4).

5.1 Domains and scenarios

We use four different domains to evaluate our approach: two different unmanned vehicles, a
flight simulator and a physical electric power supplier of a spacecraft. The first set of data
came from a commercial unmanned aerial vehicle. The UAV is equipped with 55 sensors
and actuators, as well as a communication system. The communication system transmits the
information, along with monitoring information, to the ground station.

The different attributes can be categorized to the following data groups: air data include
telemetry data that the UAV measures, inertial data include information about the inertial
navigation system (INS), engine data include information about the engine’s air and water
temperature, servo information, and other information, including the UAV mass, the air
temperature and other information. The data are measured by the sensors at either 1 Hz or
10 Hz frequencies, yet the whole data set is downloaded from the UAV at a frequency of
10 Hz.

For the UAV, the following errors were recorded:

– Descend: In this recording, one of the sensors is malfunctioning and thus causes the sensor
reading to decrease rapidly from a valid input to a constant value of zero. This is a point
anomaly as described in Sect. 4.2.

– Constant: In this recording, one of the sensors is malfunctioning and reports a constant
value for a given period. This is a contextual anomaly as described in Sect. 4.2.

The second set of experiments was conducted on a commercial vacuum-cleaning mobile
robot (the Friendly Robotics RV-400, Fig. 10), used in our laboratory and fitted with our own
control software.

The RV-400 robot (hereinafter UGV) is equipped with fewer sensors and actuators than
the UAV. It has 22 attributes measured, including: ten sonar sensors which measure range,
four bumper sensors and various other measurements including the target velocity and the
actual velocity (based on wheel motor encoder data), etc. The data itself are recorded at 10 Hz
frequency.

For the UGV, the following errors were recorded:

– Weight Drag Halt: In this recording, the robot was attached to a cart with a string which
was loose. Then, the robot started its movement away from the cart, causing the string to
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Fig. 11 RV-400 tangled with a
string connected to a heavy cart

Table 1 Description of experimental data in the UAV and UGV

Data Type Description

Nominal UAV A Nominal flight behavior

Nominal UAV B Nominal flight behavior

Descend UAV C An error in a sensor, which rapidly decreases its value until a constant zero.
The error is between seconds 1,599 and 1,605

Constant UAV D An error in a sensor, which value is stuck constant. The error is between
seconds 810 and 820

Nominal UGV A Nominal driving behavior

Weight drag halt UGV An error in the nominal driving behavior: The UGV attempts to drag a
heavy load, which causes to comes to a complete halt at 10 s

Direction deviation UGV An error in the nominal driving behavior: the UGV has an object stuck in
one of its wheels, causing it to bounce every 5 s

stretch, until it was completely stretched. This caused the robot to completely halt (see
Fig. 11). This scenario also presents the challenge of having little data (only 96 s of data).

– Direction Deviation: In this recording, a coin was attached to one of the robot’s wheels.
This caused the robot to divert from nominal behavior every time the coin touched the
floor (which was about every 5 s). It also changed its heading.

The experimental data sets of the UAV and UGV are summarized in Table 1.
To further test our approach, on more types of faults and on various conditions, we use a

third domain, the FlightGear flight simulator (see Fig. 12). FlightGear models real-world
behavior and provides realistic noisy data. “Instruments that lag in real life, lag correctly in
FlightGear, gyro drift is modeled correctly, the magnetic compass is subject to aircraft body
forces”[7]. Furthermore, FlightGear also accurately models many instrument and system
faults that can be injected into a flight. For example, “if the vacuum system fails, the HSI
gyros spin down slowly with a corresponding degradation in response as well as a slowly
increasing bias/error” [7].

In the FlightGear simulation, we programmed an autonomous UAV based on the simulated
platform of the Cessna 172p aircraft. We planed the following behaviors: a take-off, an altitude
maintenance, a turn and eventually a landing. During a flight, 4–6 faults were injected into
three different components: the airspeed-indicator, altimeter and the magnetic compass. The
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Fig. 12 FlightGear flight
simulator

faults and their time of injection were both randomly selected. Each fault could be a contextual
anomaly [2] with respect to the UAV’s behavior, and a collective anomaly [2] with respect
to the measurements of different instruments such as the GPS airspeed, altitude indicators
and the Horizontal Situation Indicator.

The measured attributes of a robotic system are typically low grained, in the sense that a
single attribute can express the state of multiple components of a subsystem. For example, the
values of the attribute power supply are affected by the work of the complex components of
the electrical power system. Each of these components might be faulty. To test our approach
on a complex subsystem which is more fine grained, and where all the components affect
each other, we use an additional domain. The fourth domain is an electrical power system
(EPS), which simulates the functioning of a typical aerospace vehicle power system (see
Fig. 13). The data set was generated from an EPS in the Advanced Diagnostics and Prognostics
Testbed (ADAPT) laboratory at the NASA Ames Research Center [13]. Eighty-one attributes
are monitored in 2 Hz; they store data from sensors that measure system variables such as
voltages, currents, temperatures and switch positions. Faults were injected into the EPS using
physical or software means. Some components were stuck on legal values or drifted, switches
failed to open or close [13].

The lines in Table 2 summarize the characteristics of each domain (by order): the type of
data used, the type of anomalies (i.e., real or simulated), the number of faults and nominal
scenarios, the duration of each scenario in seconds, the number of attributes sampled, the
frequency the data were sampled, the number of anomalies per scenario and the duration of
each anomaly in seconds. In total, the experimental setup covers a comprehensive and varied
range of domains and characteristics of both simulated and real-world data and anomalies.

5.2 Evaluation criteria

We evaluate different anomaly detectors by the detection rate and false alarm rate. To this
aim, we define four counters, which are updated for every input �it . A “True Positive” (TP)
refers to the flagging of an anomalous input as anomalous. A “False Negative” (FN) refers to
the flagging of an anomalous input as nominal. A “False Positive” (FP) refers to the flagging
of a nominal input as anomalous. A “True Negative” (TN) refers to the flagging of a nominal
input as nominal. Table 3 summarizes how these counters are updated.

For each evaluated approach, we calculate the detection rate = tp
tp+ f n and the false alarm

rate = f p
f p+tn . An efficient anomaly detector should maximize the detection rate and minimize
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Fig. 13 The electrical power system diagram. The system contains batteries (on the left side), circuit breakers,
invertors, capacitors and other electrical components. The circles in the different colors are sensors for current,
voltage and temperature. In the right, there are two instruments that act as load banks

Table 2 Tested domains and their characteristics

Domain UAV UGV FlightGear EPS

Data Real Real Simulated Real

Anomalies Simulated Real Simulated Real + simulated

Fault scenarios 2 2 15 16

Nominal scenarios 2 1 1 1

Scenario duration (s) 2,100 96 660 120 to 300

Attributes 55 25 23 81

Frequency 4 Hz 10 Hz 4 Hz 2 Hz

Anomalies per scenario 1 1 4 to 6 1 to 3

Anomaly duration (s) 100, 64 30 35 Until the end of the input
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Table 3 Scoring an anomaly
detector

ScoreDescription

TP Counts 1 if at least one “anomalous” flagging occurred during a
fault time

FN Counts 1 if no “anomalous” flagging occurred during a fault time

FP Counts every “anomalous” flagging during nominal time

TN Counts every “nominal” flagging during nominal time

the false alarm rate. The perfect anomaly detector has a detection rate of 1 and a false alarm
rate of 0.

Some competing anomaly detection approaches only return an anomaly score and have
no policy for determining whether or not the returned score is high enough (i.e., above a
threshold) to declare an anomaly. Yet, we wish to evaluate these approaches with terms of
false alarm and detection rates. Therefore, we use an optimization algorithm (hereinafter
OPT ) as follows: After an anomaly detector returns, the anomaly scores for the entire input,
OPT retrospectively calculates the highest threshold possible such that all anomalies would
have been detected by the anomaly detector. Thus, OPT selects the theoretical best threshold
that minimizes the false alarm rate given a detection rate of 1. In other words, OPT applied
on an anomaly detector represents the theoretical best anomaly detector. With OPT applied
to ODDAD and to other competing approaches which only return anomaly scores, we can
compare the approaches in an unbiased way. To be successful, an anomaly detector must
return a high anomaly score for true anomalies and a low score for none anomalies, i.e., to
be very distinctive. An optimized anomaly detector which is originally distinctive yields a
low rate of false positives. Thus, the optimized anomaly detector with the lowest false alarm
rate is the winner.

Figure 14 illustrates an example of the OPT threshold selection. After an anomaly detector
has returned the anomaly scores for the entire input, and an oracle reported that the anomalies
were injected in time steps 6, 8 and 15 that are marked in red in the figure, OPT selects the
highest threshold such that all anomalies would have been detected by the anomaly detector.
OPT selects the threshold to be just below the anomaly score of time step 6. Thus, all
anomalies can be detected, and now we can count the number of false positives. Since the
highest threshold was chosen, OPT did its best to minimize the false alarm rate given the
requirement of a detection rate of 1.

5.3 The impact of the components of ODDAD

ODDAD is based on three key features: first, a comparison to a sliding window, rather than a
complete record of past data. Second, the use of an online preprocess to find pairs of correlated
attributes instead of offline full n-attribute dependencies. Third, the use of differential filtered
data. To demonstrate the independent contribution of each feature, we test each feature in
the FlightGear domain. We chose the FlightGear domain since it is the richest domain (see
Table 2). We begin by testing the following online anomaly detectors that are described by
three parameters (Nominal Data, Preprocess and Filter), as summarized in Table 4. The bold
line is our recommended ODDAD approach when using Z� as the f ilter .

The f ilter can be raw, �, Zraw, Z� as described in Sect. 4.7. CD denotes the use of
a complete record of past data. SW denotes the use of a Sliding Window. For instance,
(SW,Tcd,Zraw) uses data that were filtered using the Z-transformation on the raw val-
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Fig. 14 OPT threshold selection example. The Red bars indicate anomalies. We set the highest threshold
such that every anomaly will be detected (TP). Then, we can count the number of false alarms, marked as
“FP” for false positives

Table 4 Tested anomaly detectors

Name Nominal Data Correlation detector Threshold setter Online detection

(CD, none, f ilter ) Complete past data Not applied Applied offline On one set of attributes

(SW, none, f ilter ) Sliding window Not applied Applied online On one set of attributes

(CD, Tcd, f ilter ) Complete past data Applied offline Applied offline on n sets of correlated
attributes

(SW, Tcd, f ilter ) Sliding window Applied offline Applied online On n sets of
correlated attributes

(SW, Tsw, f ilter ) Sliding window Applied online Applied online on n Sets of correlated
attributes

ues (Zraw), to compare the input to the data of a sliding window (SW), applied on sets
of correlated attributes that were determined offline (Tcd). Following the same principle,
((SW, T sw, Z�)) uses data that were filtered using the Z-transformation on the differential
values (Z�) to compare the input to the data of a sliding window (SW), applied on sets of
correlated attributes that were determined online—on the data of the sliding window (Tsw).

Each of these algorithms detects anomalies online. However, there is a difference when
and if the correlation detector is applied and when the threshold setter is applied. Whenever
the correlation detector is applied, the anomaly detector is applied on n sets of correlated
attributes, otherwise only one set containing all attributes is used. When the correlation detec-
tor is applied online (on the sliding window’s data), the correlations are built and destroyed
dynamically, otherwise they are fixed. The threshold setter is always applied on the nominal
data; if it is the sliding window’s data, then thresholds are found online, otherwise offline.

(SW, T sw, f ilter) is our proposed ODDAD approach when the filter is Z� (see Algo-
rithm 3 in Sect. 4.8). (C D, T sw, f ilter) is not displayed in Table 4. This anomaly detector
executes the preprocess on the sliding window, and thus, the thresholds are calculated online
each time that different correlated sets are returned. However, the comparison of the online
input is made against a complete record of past data, and thus, thresholds are calculated on
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Fig. 15 FlightGear: detection rate. Higher is better

Fig. 16 FlightGear: false alarm Rate. Lower is better

the data of C D, which is considerably larger than the data of SW . Therefore, the anomaly
detection of (C D, T sw, f ilter) is not feasible online.

In the first test suite, we present the influence of the different filters on our algorithm.
Figures 15 and 16 present the average detection rate and false alarm rate, respectively, of 15
flights in the FlightGear simulator. The scale ranges from 0 to 1, where 0 is the best possible
score for a false alarm rate and 1 is the best possible score for a detection rate.

We begin with the first anomaly detector, (CD,none). Both Figs. 15 and 16 show a value of
1, indicating a constant declaration of an anomaly. In this case, no improvement is achieved
by any of the filters. This accounts for the fact that the comparison is made to a complete
record of past data. Since once a new point is sampled from a different flight, it is very
unlikely for it be observed in the past data, resulting in a higher Mahalanobis Distancethan
the threshold, and the declaration of an anomaly.
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Table 5 Feature contributions

Feature Contribution Reason

Sliding window Decreases FP Similarity of �it to H

Preprocessing Increases TP Correlated dimensions→ more conspicuous anomalies

Online preprocessing Increases TP Correspondence to dynamic correlation changes

Filters Decreases FP Better correlations are found

Increases TP

The next anomaly detector we examine is (SW,none). This detector decisions are based
on a sliding window. Since data are collected at a high frequency, the values of �it and the
values of each vector in H are very similar. Therefore, the Mahalanobis Distanceof �it is
not very different from the Mahalanobis Distanceof any vector in H . Thus, the threshold is
very rarely crossed. This explains the very low false alarm rate for this algorithm shown in
Fig. 16. However, the threshold is not crossed even when anomalies occur, resulting in a
very low detection rate as Fig. 15 shows. The reason is the absence of a correlation detection
preprocess. The Mahalanobis Distanceof a contextual or collective anomaly is not higher
than Mahalanobis Distances of points with uncorrelated dimensions in H .

The next two anomaly detectors introduce the use of offline preprocessing. The first
(CD,Tcd) uses a complete record of past data, while the second (SW,Tcd) uses a sliding
window. In both anomaly detectors, the preprocessing is done offline on a complete record
of past data. Yet, (CD,Tcd) compares the input to the past offline record, while (SW,Tcd)
compares the input to the data of the sliding window. When no filter is used, (CD,Tcd)
declares an anomaly most of the times. This is illustrated in the square dots in Figs. 15 and
16. When filters are used, more false negatives occur, expressed in the extremely low false
alarm rates and the decreased detection rate. However, when a sliding window is used, even
with no filters, (SW,Tcd) gets better results: a detection rate of 1, and less than 0.5 false
alarm rate, which is lower than (CD,Tcd)’s false alarm rate. The filters used with (SW,Tcd)
decrease the false alarm rate to almost 0, but the detection rate, though decreased, remains
high. Comparing (SW,Tcd) to (CD,Tcd) shows the importance of a sliding window, while
comparing (SW,Tcd) to (SW,none) shows the crucial need of preprocessing.

The final anomaly detector is (SW,Tsw) which differs from (SW,Tcd) by the preprocess-
ing mechanism. (SW,Tsw) applies an online preprocess on the sliding window. This allows
achieving a very high detection rate. Each filter used allows increasing of the detection rate
closer to 1, until Z� gets the score of 1. The false alarm rate is very high when no filter is used.
When using filters, we are able to reduce the false alarm rate closely to 0. (SW, T sw, Z�)

achieves a detection rate of 1, and a low false alarm rate of 0.064.
These results show the main impact of each feature variant, summarized in Table 5. The

sliding window causes the decrease of false positives since H and �it are kept similar when H
is updated. The correlation detection preprocessing phase increases the true positives since
when correlated dimensions are used, outliers present a break in the expected correlation
and hence are found to be anomalous; the anomalies are more conspicuous. The online
preprocessing further increases the true positives since the challenge of finding dynamically
correlated attributes is met. The use of filters increases the true positives and decreases
the false positives since differential data can now be used, free of noise, and thus, better
correlations are found.
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Fig. 17 The Anomaly Detection ROC chart. The configuration (SW,Tsw,Z�) is the closest to the theoretical
perfect score

Fig. 18 The influence of the correlation threshold

Figure 17 demonstrates the receiver operating characteristic (ROC) chart describing the
entire space of our anomaly detectors. The X -axis is the false alarm rate, and the Y -axis is
the detection rate. An anomaly detector is expressed as a 2D point. The perfect anomaly
detector is located at point (0,1), representing a point that has no false positives and detects
all the anomalies. Figure 17 illustrates that when the features of our approach are applied,
they allow the results to approximate the perfect anomaly detector.

Figure 18 focuses on the best anomaly detector in the ROC space—(SW, T sw, Z�)

(ODDAD), the one with the highest detection rate and lowest false alarm rate. Note that the
X -axis scales differently than in Fig. 17, it ranges between [0, 0.2] in order to zoom in on the

123

Author's personal copy



Online data-driven anomaly detection

effect. To evaluate the impact of the correlation threshold ct ∈ {0..1} (described in Sect. 4.5),
we test a variation of values for ct .

When ct equals 0, all the attributes are selected for each correlated set, resulting in false
alarms. As ct increases, fewer uncorrelated attributes are selected, reducing the false alarms,
until a peak is reached. The average peak of the 15 FlightGear’s flights was reached when
ct equals 0.5. ODDAD averaged a detection rate of 1 and a false alarm rate of 0.064. As ct
increases above that peak, fewer attributes that are crucial for the detection of an anomaly
are selected, thereby increasing the false negatives, which in turn lowers the detection rate.
When ct reaches 1, no attributes are selected, resulting in a constant false negative.

5.4 Comparing ODDAD against competing methods

In this section, we evaluate ODDADs accuracy against other anomaly detection approaches
in all the domains. We first compare it against the support vector machine (SVM) algorithm
[29] since it is considered to be a very successful classifier. Next, we compare ODDAD to the
anomaly detector presented by Lin et al. [16] because of its use of Mahalanobis Distanceand
offline dependency detection. Finally, we compare ODDAD against the Incremental Local
Outlier algorithm (incremental LOF) [23] because of its similarity to ODDAD by being online
and density based.

Support vector machines are considered very successful classifiers when examples of
all categories are provided [29]. We ran the SVM algorithm [31] on the data from Flight-
Gear domain. We generated a training set of samples from both categories, i.e., normal and
anomalous. All of the 23 monitored attributes were used as features since no manual feature
selection was made for any of the competing algorithms. We tested linear, polynomial and
radial kernels for the SVM, and yet, to our surprise, the SVM did not detect any anomaly,
i.e., it produced a detection rate of 0.

The ODDAD and LOF algorithms on the other hand had a detection rate of 1. Apart of
their automatic feature selection, i.e., correlation or neighborhood based, we believe that the
main reason is that these algorithms compare recent online inputs while the SVM is based on
an offline training set. The tested anomalies can only be regarded as anomalies with respect
to the dynamic context of the current stage of the active flight. ODDAD and LOF create a
boundary around the current context and thus are able to accurately detect these anomalies.
On the other hand, an offline training data set may include a lot of these contexts, which
makes the SVM to set high boundaries which do not allow it to detect anomalies online.
This shows how elusive these contextual anomalies are. Even under unrealistically favorable
conditions, where both nominal and anomalous data samples are available for the training,
the SVM is unable to detect anomalies.

Hence, we continue evaluating with other competing approaches that are able to detect
anomalies. The previous approach (hereinafter (CD,MSDD,none)) presented in [16] uses
an offline dependency detection preprocess that selects dependent attributes. Each online
consumed input is compared to a past record of nominal data by using the Mahalanobis Dis-
tancecalculation on sets of dependent attributes. The (CD,MSDD,none) approach is similar
to (CD,Tcd,none) described in Sect. 5.3. However, the dependency detection is different from
the correlation detection procedure of ODDAD. While ODDAD uses the Pearson Correla-
tion calculation on pairs of attributes, the competing (CD,MSDD,none) approach uses the
MSDD algorithm [21] to detect dependencies between values of groups of attributes. For
example, the MSDD can find that at a given time during a flight, the values of attitude-related
attributes (e.g., pitch, yaw, roll, etc.) are dependent on the previous values of control-related
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Table 6 Optimized results (CD,MSDD,none) versus ODDAD

Domain OPT(CD,MSDD,none) OPT(ODDAD)

Detection rate False alarm rate Detection rate False alarm rate

UAV 1 0.044 1 0.0014

UGV 1 0 1 0.005

FlightGear 1 1 1 0.0013

EPS 1 1 1 0.001

attributes (e.g., elevator, rudder, aileron, etc.). The level of dependencies found by the MSDD
is governed by the search depth, which needs to be deep enough to find good dependencies.

The main drawback of the (CD,MSDD,none) approach is the fact that the MSDD is heavy
on system resources (CPU and Memory) and impractical to be run online. In theory, the
MSDD is a stronger tool than the Pearson Correlation in finding attributes’ dependencies.
However, since it must be run offline, it does not address the dynamic nature of correlation
between attributes, which has a great impact on the anomaly detection accuracy.

(CD,MSDD,none) returns an anomaly score and has no policy on how to determine a
threshold above which an anomaly is declared. Therefore, we compare OPT(CD,MSDD,none)
with OPT(ODDAD) and present the best theoretical results for each approach. Table 6 summa-
rizes these results on the four domains described in Sect. 5.1. The detection rate of both algo-
rithms is 1. The false alarm rate measure is more challenging. Except for the UGV domain,
where there is a slight difference in the false alarm rates, in all other domains, ODDAD
outperforms (CD,MSDD,none). In the FlightGear and EPS domains, the (CD,MSDD,none)
approach failed. Every input was declared as anomalous. This shows the problem of not select-
ing attributes while they are dynamically correlated but rather rely on previously recorded
data.

The two approaches have advantages and disadvantages that affect the results. (CD,MSDD,
none) finds dependencies between n-dimension attributes while ODDAD finds correlations
between pairs. On the other hand, this enables ODDAD to apply the correlation detection
process online and thus address the dynamic nature of correlation between attributes while
(CD,MSDD,none) cannot. Moreover, ODDAD compares the online input to recent data (slid-
ing window) while the (CD,MSDD,none) compares the online input to past recording of data.
The comparison to recent data makes any anomaly to become more obvious, and thus, it gives
an advantage for ODDAD. Finally, ODDAD uses filters that reduce noise and therefore help
in reducing false positives.

We continue with a run-time comparison. While the ODDAD approach has no offline
phase, the (CD,MSDD,none) approach’s offline run-time is significantly long. It is determined
by the search depth of the MSDD algorithm, which needs to be deep enough to return good
results. The offline run-time can take hours and even days depending on the search depth, the
number of attributes and the data size. The run-time of the online preprocess of the ODDAD
approach scales in the number of attributes being measured; it is usually a matter of a few
milliseconds—faster than the frequency of the input. If the number of attributes is too large,
and causes the run-time of the online preprocess to be slower than the frequency of the input,
then the data can be sampled in a lower frequency or the size of the sliding window can be
reduced.

We further evaluate ODDAD in the context of an online and a density-based anomaly
detector. We compared it to the incremental Local Outlier Factor algorithm [23]. As in our
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Fig. 19 False alarm rates of ODDAD versus LOF in different domains

approach, the incremental LOF returns a density-based anomaly score in an online fashion.
The incremental LOF uses K -Nearest Neighbors technique to compare the density of the
input’s “neighborhood” against the average density of the nominal observations [23]. A
detection rate of 1 was the result for both ODDAD and the incremental LOF algorithm,
making the incremental LOF algorithm a better competitive approach to ours than the SVM.

Since ODDAD has a detection rate of 1 in every domain we tested, and since the incre-
mental LOF returns an anomaly score rather than an anomaly label, we again compare the
two approaches using the OPT comparison. Figure 19 shows, for every domain tested, the
false alarm rate of the following:

1. ODDAD
2. OPT(ODDAD)—theoretical best for ODDAD.
3. OPT(LOF)—theoretical best for the incremental LOF approach.

The comparison between ODDAD and OPT(LOF) does not indicate which approach is
better in anomaly detection. The comparison between OPT(ODDAD) and ODDAD indicates
how much better ODDAD can theoretically get. The comparison between OPT(ODDAD)
and OPT(LOF) does indicate which approach is better, since both are optimized.

In all the domains, OPT(ODDAD) achieves the lowest false alarm rate. Naturally,
OPT(ODDAD) has a lower false alarm rate than ODDAD. But more significantly, it presents
a lower false alarm rate than OPT(LOF), making our approach a better anomaly detector than
the incremental LOF algorithm.

In the UGV domain, there is a surprising result. ODDAD, which is not optimized, had a
lower false alarm rate than incremental LOF, although the latter is optimized. This is explained
by the fact that in the UGV domain, there are very little data, and therefore, each datum has
only a few neighbors. Recall that incremental LOF utilizes a K -Nearest Neighbors approach
which usually fails when nominal or anomalous instances do not have enough close neighbors
[2]. On the other hand, the Mahalanobis Distanceuses all the points in the distribution, which
is enough data to properly detect the anomalies.

The ODDAD approach uses a sliding window for comparison against the online input.
The size of the sliding window affects the false alarm rate. The anomaly threshold chosen
by ODDAD is set to be the highest Mahalanobis Distancewhen applied to all points in the
sliding window. Thus, the bigger the window size, the more the points there are, and the
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Fig. 20 The effect of the sliding window’s size. As the size gets bigger, the ODDAD gets fewer false alarms.
Not optimized ODDAD can match the low false alarm rate of the optimized LOF. This demonstration was
made in the FlightGear domain

higher the anomaly threshold is likely to be. As the anomaly threshold gets higher, fewer
false alarms are returned by ODDAD. Figure 20 depicts ODDAD’s reduction of the false
alarm rate as the sliding window size gets bigger. An unlimited sliding window size would
contain all data points from the beginning of the robot’s (or system’s) operation, and the
anomaly threshold would have been so high such that no input would have been detected as
an anomaly: a detection rate of 0 as well as a false alarm rate of 0.

In addition, Fig. 20 depicts the effect of the sliding window size on the LOF approach.
While Mahalanobis Distanceuses the distribution of all the points in the sliding window,
incremental LOF uses only a neighborhood within the window, thus unaffected by its size.
Note that there is a window size where the false alarm rates of ODDAD and OPT(LOF)
converge, even though the LOF is optimized.

Figure 20 also depicts the effect of sliding window size on the OPT(ODDAD). There is very
little effect since the anomaly-threshold choice is done independently of the sliding window—
offline, by an oracle selection of the highest threshold possible such that all anomalies would
have been detected. However, a small window size has some effect on OPT(ODDAD) since
the size does affect the correlation detection. The smaller the size is, the more likely it is to
choose uncorrelated attributes.

Finally, to evaluate the influence of the filters used in the second approach on another
density-based technique, we also implemented the incremental LOF algorithm with those
filters. Figure 21 shows the decrease of the false alarm rate of OPT(LOF), when the filters
are used, averaged over 15 flights of the FlightGear’s domain. While the raw data produce
a false alarm rate of 0.037, diff produces only a half, and Zraw and Zdiff produce a rate of
0.027. The last results are very close to the optimal results of ODDAD which had only 3 false
positives. This shows the benefit of a differential filtered data.

6 Conclusions and future work

In this paper, we presented a novel approach for detecting anomalies in autonomous robots.
The approach uses the Mahalanobis Distanceto detect anomalies and thus benefits from its
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Fig. 21 False alarm rate of OPT(LOF) when our filter are applied

model-free nature. Experiments in both simulated and physical domains show ODDAD’s
domain independent quality and its ability to accurately detect anomalies in the real world.
ODDAD uses an online preprocess that makes the approach work completely as an online
anomaly detector for robots. Therefore, the ODDAD approach has the qualities of a “plug
and play” mechanism for different robotic platforms. We showed how essential a preprocess
is to the success of the online anomaly detector. Moreover, the experiments also show the
benefits of:

– The comparison of the current data input to the data of the sliding window.
– Finding dynamic correlations between attributes (online).
– Filtering the data.

We showed that this approach is superior to the incremental LOF algorithm and that
the approach succeeds where other well-known classifiers, such as SVM, have failed even
under unrealistic favorable conditions. We compared ODDAD with our previous approach
that used the MSDD algorithm offline to detect dependencies between attributes and found
that ODDAD is more effective. Finally, we showed that filtering can improve other anomaly
detection techniques, thereby showing its independent contribution.

In the future, we plan to add a diagnostic process once a fault has detected. A diagnosis
will try to isolate the root causes of the fault. In addition, the ODDAD approach works well
where there are attributes of redundant systems. There are systems where the number of
redundant sensors is very low. This arises a new challenge to our algorithm.
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