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Abstract

To make good decisions in a social context, humans often need to recognize the plan un-
derlying the behavior of others, and make predictions based on this recognition. This process,
when carried out by software agents or robots, is known as plan recognition, or agent modeling.
Most existing techniques for plan recognition assume the availability of carefully hand-crafted
plan libraries, which encode the a-priori known behavioral repertoire of the observed agents;
during run-time, plan recognition algorithms match the observed behavior of the agents against
the plan-libraries, and matches are reported as hypotheses. Unfortunately, techniques for auto-
matically acquiring plan-libraries from observations, e.g., by learning or data-mining, are only
beginning to emerge.

We present an approach for automatically creating the model of an agent behavior based on
the observation and analysis of its atomic behaviors. In this approach, observations of an agent
behavior are transformed into a sequence of atomic behaviors (events). This stream is analyzed
in order to get the corresponding behavior model, represented by a distribution of relevant
events. Once the model has been created, the proposed approach presents a method using a
statistical test for classifying an observed behavior. Therefore, in this research, the problem of
behavior classification is examined as a problem of learning to characterize the behavior of an
agent in terms of sequences of atomic behaviors. The experiment results of this paper show
that a system based on our approach can efficiently recognize different behaviors in different
domains, in particular UNIX command-line data, and RoboCup soccer simulation.

Keywords: agent modeling, plan recognition, activity recognition, user modeling.
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1 Introduction

To make good decisions in a social context, humans often need to recognize the plan underlying
the behavior of others, and make predictions based on this recognition. This process, when carried
out by software agents or robots, is known as plan recognition, or agent modeling [6, 11, 19, 27, 35].

One of the key tasks in agent modeling is behavior classification in which a stream of observations
is categorized into pre-determined classes. The focus here is on recognizing patterns (possibly,
multiple patterns) in the stream, that would allow its classification. This is in contrast to other
agent modeling tasks, where the entire sequence of observed actions is to be recognized and matched
against the plan library (e.g., to predict goals [22], or identify the sequence of actions that compose
a plan [10, 11, 19, 27, 30, 31, 35, 40, 42]).

To carry out the classification, activity recognition algorithms rely on a plan library that en-
codes the patterns to be matched against the incoming observations. Successful matches indicate
possible classifications. Such plan libraries may be built by hand, or automatically acquired. For
instance, within the domain of robot soccer, Riley and Veloso [37] use hand-built models of ideal
opponent behavior to classify opponent types in robot soccer. In contrast, Han and Veloso [20]
use Hidden Markov Models (HMMs) trained to classify specific robot motions as specific behaviors
(e.g., approach a ball). A HMM is a statistical technique for modeling based on the assumption
that the process is a Markov process with hidden parameters. Indeed, HMMs and their many
variants [33, 36] are a common tool in state-of-the-art activity recognition [8, 16].

This paper presents an alternative approach to behavior classification, based on sequence classi-
fication. The presented approach is called ABCD (Agent Behavior Classification based on sequence
Distribution). It is based on representing the behavior of an agent as a distribution over sequences
of observed atomic, where such sequences have been identified during training as statistically sig-
nificant. When a new set of observations is given, the distribution of sequences in it is compared to
the distribution of sequences in each of the classes, and the most closely matching model is selected.
ABCD is appropriate for domains in which recognizing the atomic behaviors of agents is a tractable
task, but the space of sequential combinations of these behaviors is practically unexplorable.

The approach presented in this paper is fully implemented and empirically evaluated in several
domains. In the first, we use ABCD to recognize UNIX users based on previous traces of the
commands they typed in a shell. In this environment, the goal is to develop a model or profile of
the normal working state of a UNIX user with which its behavior can be recognized. We show that
ABCD works successfully in two extensive UNIX command-line data sets, one with nine users, and
one with 50 users. Moreover, ABCD is shown to be superior to the use of HMMs in these data-sets.
We additionally use ABCD to recognize patterns used in the RoboCup Soccer Coach Simulation [2],
which uses a simulated soccer domain [34].

This paper is organized as follows. First, Section 2 provides a brief overview of the background
and related work relevant to this work. The approach (ABCD) is explained in detail in section
3. The different phases of the approach and its complexity are described. Section 4 describes the
experiments and their results. Finally, section 5 contains future work and concluding remarks.

2 Background and Related Work

There are many different areas in which it is very useful to model, recognize, or classify the behavior
of other agents. The literature of agent modeling is truly vast. We thus focus here only on the
most related work in behavior classification.

Han and Veloso [21] recognize behaviors of robots using Hidden Markov Models and their
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approach is evaluated in a real world scenario. In this case, states in the HMMs correspond
to an abstracted decomposition of a robot’s behavior. The observations of a robot represent its
physical state and the corresponding set of Markov states represents its mental state. Then, as the
intermediate states probabilities of a HMM indicate a behavior in progress, they can be used in
anticipating the future behavior (states) of the robot. However, this approach makes a Markovian
assumption (the probability of moving from the current state to another is independent of its
previous states) in modeling an agent, whereas our proposal takes into account a short sequence of
events to incorporate some of the historical context of the agent.

Riley and Veloso [37] propose a classification of the adversary behavior into predefined adversary
classes in the domain of simulated robotic soccer. The behavior of the opponent is modeled by
useful features (as determined by the developer) based on the areas in which the soccer events
occur (i.e., spatial features). During classification, the system accumulates adversary position
information in grids and then a decision tree is used for classifying it. In contrast, ABCD (presented
here) examines the temporal ordering of events, but for the most part ignores their location. It is
therefore a complementary approach.

Instead of describing the complete opponent behavior, Steffens [40] presents a feature-based
declarative opponent-modeling (FBDOM ) technique which identifies tactical moves of the opponent
in multi-agent systems. In this case, the models built need distinct and stable features which
describe the behavior of opponents. As in our approach, FBDOM is not restricted to any specific
domain. However, it does not discover sequences. Instead, any temporal orderings are a-priori
defined as features.

Time series and decision tree learning are used by Visser and Weland [44] to induce rules that
describe the behavior of a team. The key idea of that research differs from ours. In their case,
an object in a complex environment is seen as a time series. A qualitative abstraction of those
time series is applied and an approach is used to discretize these time series in order to use the
results for learning by C4.5, which cannot capture the temporal ordering of events (instead, the
temporal ordering is captured by the qualitative abstraction of the time-series). In contrast, our
work directly tackles the temporal ordering of events. A discretization (if needed) is applied to
each point in the time series; ABCD is used to directly learn sequences of discrete events.

Work in plan recognition differs from classification, in that the entire sequence of observation
must match the model. Tambe and Rosenbloom [42] infer opponent actions by using an agent’s own
behavior representation. Laird [30] uses the same idea in Quake, a real-time computer game. Once
a complete sequence of behaviors matches, it can be used to distinguish the matching behavior
from another. However, a key issue in plan recognition is that more than one model may match,
and thus ambiguous matches are to be expected. AHMM [8] is an HMM variant that consists
of a number of interacting Markov chains. Bui describes approximate-inference policy recognition
algorithms for this model. A key difference with all of these methods is that they do not have a
learning component, so the sequences must be manually constructed.

Carmel and Markovitch [9] propose a method to infer a model of the opponent’s strategy which
is represented as a Deterministic Finite Automaton. They provide a learning procedure, and show
that the use of the model leads to improved results, due the model’s predictions. In contrast, we
focus on domains in which the behavior of the observed agent is non-deterministic, and likely too
complex to model by a reasonably-sized finite automaton. Moreover, the technique we describe in
this paper allows only classification of behavior, rather than predictions of actions.

Kaminka et al. [25] recognize basic actions based on descriptive predicates, and learn relevant
sequences of actions using a statistical approach. Horman and Kaminka [23] expanded on this
approach. A similar process is also used in [24] to create frequent patterns in dynamic scenes.
However, these previous works focused on unsupervised learning, with no ability to classify behav-
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iors into classes.

As the main goal of this research is to classify an observed behavior, we consider that the actions
performed by an agent (user) are usually influenced by past experiences. This aspect motivates the
idea of automated sequence learning for behavior classification; if we do not know the features that
influence the behavior of an agent, we can consider a sequence of past actions to incorporate some
of the historical context of the agent.

Indeed, sequence learning is arguably the most common form of human and animal learning.
Sequences are absolutely relevant in human skill learning [41] and in high-level problem solving and
reasoning [4]. Taking this aspect into account in this paper, the problem of behavior classification
is examined as a problem of learning to characterize the behavior of an agent in terms of sequences
of atomic behaviors. Therefore, the behavior classification problem is transformed into a sequence
classification problem where a sequence represents a specific behavior. This transformation can be
done because it is clear that any behavior has a sequential aspect, as actions are performed in a
sequence.

As in this research, there are many other areas in which sequential data need to be analyzed
in order to solve a problem. In general, the sequence learning problem can be categorized in four
basic categories: sequence prediction, sequence generation, sequence classification and sequential
decision making. In this paper, the sequence classification is the category analyzed and developed.

Considering the sequence classification, the main reason to need to handle sequential data is
because of the observed data from some environments are inherently sequential. An example of
these data is the DNA sequence. Ma et al. [32] present new techniques for bio-sequence classification.
Given an unlabeled DNA sequence S, the goal in that research is to determine whether or not S is
a specific promoter (a gene sequence that activates transcription). Also, a tool for DNA sequence
classification is developed by Chirn et al. [13]. In a very different problem (computer intrusion
detection problem), Coull et al. [14] propose an algorithm that uses pair-wise sequence alignment
to characterize similarity between sequences of commands. The algorithm produces an effective
metric for distinguishing a legitimate user from a masquerader. Schonlau et al. [39] investigate a
number of statistical approaches for detecting masqueraders.

A very important issue in sequence learning is temporal dependencies. The following aspect is
essential in our research: A current situation or the action that an agent performs usually depends
on what has happened before. This aspect is taken into account in our research and in models
such as HMMs; however, there are some other models which have problems dealing with such
dependencies. For example, recurrent neural network models [18] or reinforcement learning cannot
manage efficiently the long-range dependencies.

We focus in this research on learning segments of sequences whose frequency (support) within
the training data is sufficiently high [3]. In addition, there exist other techniques ([43]) which can
be combined with support. However, as we want to provide a general approach which can represent
and handle different behaviors in a wide range of domains, those methods which require human
expert guidance have been ignored.

3 ABCD: Agent Behavior Classification based on sequence Dis-
tribution

In this section, we present our approach for modeling and classifying agent behavior (where an
agent could be a software agent, a robot or a human being). In order to recognize an observed
behavior, our approach (as other learning-based agent modeling methods [37, 40]) uses a behavior-
library in which all the different possible behaviors are stored; during run-time, the observing agent
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matches observations against the different behaviors in the behavior-library. However, we depart
from previous work in that we will be looking at classification across multiple libraries (to identify
different agents, represented by different libraries).

Thus, as we show in Figure 1, our approach is divided in two main phases: Construction of
Behavior Models (each model represented by a behavior library, one for each agent), described in
Section 3.1 and Behavior Classification (Recognition), preferring one of the models over the others
(Section 3.2). In addition, there are important questions of the complexity of the processes we
introduce. We discuss those in Section 3.3.

3.1 Construction of Behavior Models

In many application domains, the actions performed by an agent are inherently sequential, and thus
their ordering within the sequence should be considered in the modeling process. For example, in
a human-computer interaction by commands, the specific ordering of commands within a sequence
is essential for the result of the interaction1.

Because of this, our focus in this paper is on behavior models that specifically encode the
observed sequences of actions executed by the observed agents. In other words, the behavior
library associated with an agent A encodes sequences of actions that capture different behaviors
which A exhibits. The behavior library is then considered the model of A.

Construction of a behavior model is based on a stream of observed atomic discrete events,
describing the behavior of the agent in its environment. Each event is an atomic observation that
occurs in a certain place during a particular interval of time and defines a specific act of an agent.
The kind of events and its features have to be determined by the designer taking into account the
environment, and is beyond the scope of this paper; we note in passing that in general this capability
exists even for domains in which observations are of continuous states, rather than discrete actions
(e.g., [25] for RoboCup).

Once a sequence of events—representing the behavior of the agent—has been obtained, the
Creating Model Module (CMM) constructs the corresponding agent model. The first step in the
CMM is to extract the significant pieces of the sequence that can represent a repeating pattern
of behavior. In many domains of interest, the temporal (non-Markovian) dependencies are very
significant and we consider that a current event might depend on the events that have happened
before it, and is possibly related to the events that will happen after it is observed.

We use the following example sequence to explain in detail the construction of behavior models.
Let us consider we are observing an agent and its behavior is represented by the following sequence:
{A → B → A → B → C} where each different capital letter represents a different atomic event.
We describe the process of constructing of a model from a single sequence of events. The sequence
is then segmented into sub-sequences, and these are stored.

The event sequence needs to be segmented into several sub-sequences which will be inserted
in the same model separately. This segmentation can be done by using some environment charac-
teristic that can separate efficiently the sequence in several sub-sequences of uninterrupted events
(for example, if we are modeling the behavior of a player in a soccer game, its sequence of events
during a game can be divided by considering series of uninterrupted actions while he is the ball
possessor). Otherwise, the sequence can be segmented by defining an appropriate maximum length
and obtaining every possible ordered sub-sequence of that specific length. The length of these
sub-sequences is an important aspect because it modifies both the size of the model and the final
results quite significantly.

1For instance, consider the difference between the UNIX command sequence “rm a.txt ; mv b.txt a.txt”, and
the sequence “mv b.txt a.txt; rm a.txt”.
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For example, we can divide the example sequence (A→ B → A→ B → C) into sub-sequences
of equal size. Let 3 be the sub-sequence length, then we obtain: A → B → A and B → A → B
and A→ B → C.

The sequences are stored in a trie data-structure [17, 28]. This follows in the footsteps of
[23, 25]. When a new model needs to be constructed, we create an empty trie, and insert each
sub-sequence of events into it, such that all possible sub-sequences are accessible and explicitly
represented. Every trie-node represents an event appearing at the end of a sub-sequence, and
the node’s children represent the events that have appeared following this event. Also, each node
keeps track of the number of times an event has been inserted on to it. When a new sub-sequence
is inserted into the trie, existing nodes of the trie are modified and/or new nodes are created.
As the dependencies of the events are relevant in an agent behavior, the sub-sequence suffixes
(sub-sequences that extend to the end of the given sequence) are also inserted.

To illustrate, consider the previous example. The first sub-sequence ({A → B → A}) is added
as the first branch of the empty trie (Figure 2-a). Each event is labeled with the number 1
that indicates that the event has been inserted in the node once (in Figure 2, this number is
enclosed in square brackets). Then, the suffixes of the sub-sequence ({B → A} and {A}) are also
inserted (Figure 2-b). Finally, after inserting the three sub-sequences and its remaining suffixes,
the completed trie is obtained (Figure 2-c).

Once the trie is created, the sub-sequences that characterize the behavior have to be obtained
(where a sub-sequence is a path from the root node to any other node of the trie). Thus, the
trie is traversed to calculate the relevance of each sub-sequence. For this purpose, frequency-based
methods [3] are used. In particular, in this approach, to evaluate the relevance of a sub-sequence,
its relative frequency or support [3] is calculated. This value is the number of occurrences of a
particular sub-sequence (of length n) divided by the total number of sub-sequences of equal length
(n). As the sub-sequences in a trie are the different paths from the root to a node, the support
value of a sub-sequence is stored in its last node. Therefore, in this step the trie is transformed
into a set of sub-sequences labeled with a value (support). Note that this step does not necessarily
have to be carried out separately, after the creation of trie. Rather, support counts can be updated
during the insertion of every sub-sequence.

In the previous example, the trie consists of 9 nodes; therefore, the model consists of 9 different
sub-sequences which are labeled with its support. Figure 3 shows the distribution of these sub-
sequences.

The model of an agent, encoded by the behavior library, is then the distribution of sub-sequences
within the library (stored in a trie). Agents then differ not in the sequences of action they produce,
but in the relative likelihood of generating these sequences. Once a behavior model (distribution
of relevant sub-sequences) has been created, it is stored in the Behavior Model Library (BMLib)
(similar to the plan-libraries used in the plan recognition). Different created models are stored
and labeled in the library with a name that identifies each model. In Section 3.3 we consider the
complexity of this approach (a separate trie for each agent), in contrast to an approach utilizing a
single trie for all agents.

3.2 Behavior Classification

Once a set of models is available, a new stream of observations is classified. First, the stream of
observations is segmented and leads to a new model stored in a new trie, as described in the previous
section. This creates a distribution of sub-sequences, based on the observations (which serve as a
sample) of the observed agent’s behavior. Then, the model is matched with the models stored in
the BMLib. Then, the behavior model (distribution of observed sub-sequences) is matched with all
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the behavior models stored in BMLib. Thus given an observed agent and a set of agent behavior
models ({ab1, ab2,..., abn}) stored in the BMLib, the goal of this phase is to determine which model
best fits the observed agent’s action sequence. In Figure 1, this is the process in Behavior Matching
Module (BMM).

The matching of the new observed model to the models in the BMLib is done by a non-
parametric (distribution-free) statistical test for comparing distributions. The choice of a distribution-
free test is used so as to not bias the test in any way. We chose the two-sample Chi-Square test for
this purpose.

To apply the Chi-Square test, the behavior model to classify is considered as an observed sample
and all the behavior models stored in BMLib are considered as the expected samples. Then, this
test compares the observed distribution with all the expected distributions objectively and evaluates
whether a deviation appears. This is done by the comparison of two sets of support values, available

in the trie; the Chi-Square is the sum of the terms (Obs−Exp)2

Exp calculated from the observed (Obs)
and expected (Exp) distributions (models). Considering this sum of terms, the expected values
(from one of the models stored in the BMLib) have to be compared with the observed values (from
the model of the agent behavior to classify).

If an observed value is not represented in the expected distribution, it is not considered. Also,
the amount of sub-sequences in an expected distribution is usually very large, so this kind of
comparison can be very time-consuming. In order to solve this problem and to analyze all the
observed sub-sequences, the way to compare the two distributions is modified to the sum of the

terms (Exp−Obs)2

Obs . Figure 4 represents graphically the idea of the proposed novel comparing method.

The key idea here is that the support value of each sub-sequence of the observed distribution is
compared with the support value of the corresponding sub-sequence of the expected distribution.
With this comparison, we obtain a value that indicates the difference (deviation) between the two
distributions in terms of support (i.e., relative to the overall number of sequences). The lower
the value, the higher the similarity between the two behaviors. An important advantage of the
proposed test is its efficiency because only the observed sub-sequences are evaluated. However,
there is no penalty for the expected relevant sub-sequences which do not appear in the observed
distribution.

This comparison test is applied once for each behavior model stored in BMLib. The model
obtaining the lowest value is considered as the most similar one. As the observed agent behavior is
only classified in one of the behavior previously analyzed, it is not necessary to define a threshold
for this process. Also, the number of terms to sum in each comparison is always the same: number
of sub-sequences in the observed behavior model. It means that the degrees of freedom (dof ) are
the same in all the comparisons with the expected behavior models. Otherwise, a normalization of
the results according to the dof should be done.

As an example, let’s consider the sequence that represents the observed behavior: {A → B →
D}. Once its model (distribution) is created, it is compared to the distributions of the BMLib
(Expected Distributions). We compare the two sets of frequencies using the sum of the terms
(Exp−Obs)2

Obs . Figure 5 shows the comparison between the previous expected distribution (Expected
Behavior Model 1 ) and the observed distribution (Observed Behavior Model). The comparison

value in this example is: (0,42−0,33)2

0,33 + (0,5−0,5)2

0,5 + (0,42−0,33)2

0,33 + (0−1)2

1 + (0−0,5)2

0,5 + (0−0,33)2

0,33 =
1,88. This comparison is done with all the models stored in BMLib, and the observed model is
classified into the model with obtains the lowest value.
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3.3 The complexity of ABCD

In the BMLib described earlier, each behavior is represented by a distribution which is stored in a
trie (a method that we call K-Tries-Library because the number of tries in the library depends on
the number of behavior classes). However, the library could consist of a single trie in which all the
behavior models are stored together, with appropriate annotation to distinguish classes. We call
this method One-Trie-Library.

In the One-Trie-Library method, a new trie is created with the first sequence (behavior) to
insert and the other sequences (behaviors) are added in the same trie. Therefore, each trie-node
must contain information about the agents it represents, and the support for this specific node, for
each of the agents. The fact that a sub-sequence could have already been inserted in the trie for
other behaviors needs to be taken into account when the trie is being created.

Considering that k is the number of behaviors to model; a trie node that stores an event in which
k models are represented is k times bigger than the trie node that stores one behavior. Therefore,
the disk space needed for a K-Tries-Library always will be bigger than the space needed for One-
Trie-Library. However, the time consumed for creating the different libraries and for classifying a
given agent behavior using the two libraries is very different. In the following sections, these two
aspects are studied.

3.3.1 K-Tries-Library vs One-Trie-Library : Creating the Library

Given the function TimeInsert (n, l) that returns the time consumed for inserting n events in a
trie using sub-sequences of length l and assuming that all the behaviors have the same amount of
sequence events: The Equation 1 gives the time consumed for creating a trie per behavior modeled.
However, if we consider only a trie for representing all the behaviors, the new sub-sequences are
always inserted in the same trie, so the time consumed for inserting the events in a single trie is
represented in Equation 2.

T (InsertKTries) = O(k × TimeInsert(n, l)) (1)

T (InsertOneTrie) = O(TimeInsert(kn, l)) (2)

where n is the number of events to insert (using sub-sequences of length l) per behavior, and k is
the number of different behaviors.

For comparing these two equations, we have to consider that the more events inserted in the trie,
the more time consumed for inserting a new event. Therefore, as the time for inserting a new event
grows exponentially depending of the events already inserted, the creation of a One-Trie-Library
is more time consuming than the creation of a K-Tries-Library.

Nevertheless, the creation of the library (BMLib) is done just once and the classification process
is applied once per agent behavior to recognize. Hence, the time consumed for recognizing an agent
behavior (studied in the next section) is an aspect more important in our approach.

3.3.2 K-Tries-Library vs One-Trie-Library : Using the Library

Given a new sub-sequence of length l to compare with the sub-sequences stored in BMLib: In a
K-Tries-Library ; the sub-sequence has to be searched separately in all the tries. Then, the time
consumed, in the worst case, for searching the sub-sequence in the trie is:

T (SearchKTries) = O(lk). (3)
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On the other hand, using a One-Trie-Library, the time consumed, in the worst case, is the time
of access to the corresponding node plus the time of access to the event of the different models
represented in the current node:

T (SearchOneTrie) = O(l + k). (4)

Considering these 2 equations, the time for searching a sub-sequence in a single trie is shorter.
In ABCD this action is used several times in the classification process, so this aspect has been
taken into account. Therefore, the experiments for this research have been performed by using a
One-Trie-Library.

4 Experiments

In order to evaluate ABCD, we conducted extensive experiments in two different environments:
UNIX User Data (Section 4.1) and RoboCup Soccer Coach Simulation (Section 4.2).

4.1 UNIX User Data

In this domain, the observed behavior of a UNIX user consists of the UNIX commands he/she
typed during a period of time. The goal is to classify a given sequence of UNIX commands (user
behavior) in one of the behavior models previously created and stored. This task is very useful in
different application areas such as computer intrusion detection, intelligent tutoring systems, and
more.

To evaluate ABCD in this environment, we have used two different sources of UNIX data with
different number of users to classify:

• Set of 9 UNIX Users: Data2 drawn from the command histories of 9 UNIX computer users
at Purdue University over 2 years [15]. Each user file contains from about 10000 to 60000
commands and represents a specific UNIX users profile.

• Set of 50 UNIX Users: Data3 used in the masquerade-detection studies done by Schonlau
et al. [39]. In Schonlau research, commands from other users are interspersed as masqueraders
data. However, in this research, the data of the 50 users are used without these commands
interspersed. Each user file contains 15000 commands.

In both cases, the data is drawn from tcsh history files and pre-processed to remove file names,
user name, directory structures, etc. Command names, flags, and shell meta characters have been
preserved. This analysis is only based on two fields: Command name and User. Thus, a user is
identified by a set of commands concatenated by date order; for example the first 10 commands of
the User1 in the 50 Users set are: cpp, sh, xrdb, cpp, sh, xrdb, mkpts, env, csh, csh.

4.1.1 Experiment Design

In order to measure the performance of the proposed classifier using the above data, we use 10-fold
cross-validation. Thus, the commands typed by a user (training set) are divided into 10 disjoint
subsets with equal size. Each of the 10 subsets is left out in turn for testing. The remaining 9
subsets, in each round, is used for training. The process is repeated 10 times, each time with a
different training and testing sets. The average results over these 10 rounds are reported.

2Available from http://archive.ics.uci.edu/ml/datasets/UNIX+User+Data (UCI Machine Learning Repository)
3Available from the Schonlau web page: http://www.schonlau.net/intrusion.html
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In each round the training sets for all users are used to create new models (as explained in
Section 3.1). Each of the test sets is then classified using ABCD, using the statistical method
explained in Section 3.2. The user is classified into the most similar distribution (lowest result of
the comparisons).

The number of UNIX commands analyzed per user is very relevant for the result of the classifica-
tion. Therefore, we have performed several experiments with different number of UNIX commands
(50, 100, 500, 1000, 5000 and 10000) per user. These commands are selected from the last commands
typed by a user. Also, in the phase of behavior model creation, the length of the sub-sequences in
which the original sequence is segmented (used for creating the trie) is a relevant parameter: Using
a longer length, the time consumed for creating the trie and the number of relevant sub-sequences
in the corresponding distribution increase drastically. In the experiments presented in this paper,
three different segmentation values for the sequence (sub-sequence lengths) are evaluated: 3, 5 and
10.

4.1.2 Results

The UNIX command sequence (Test Distribution) is classified into the user behavior (Training
Distribution) with the smallest deviation in the comparison process. Also, this process generates a
ranked list with the most likely user at the top. There are users whose behavior is quite similar and
the comparison result could be similar too. However, in the proposed experiments, the classification
is correct only if the user who typed the sequence of commands to classify holds the first position
of the ranking list. Thus this is a very conservative test.

The results are listed in Table 1. Each major row corresponds to a test-set size (from 50
commands, to 10,000). Each such row is further subdivided into experiments with different segment
lengths (3, 5, and 104). The columns show the average classification success and the standard
deviation, for the 10-fold cross validation experiments, in the 9-user and 50-user data sets. Each
cell therefore corresponds to the results of 10 runs, and overall, the table shows the results of 34
experiments, each consisting of 10 runs.

The results for the Set of 9 Users show that even with 50 commands (45 per training and 5
per testing), the classification rate is very high (around 80%). However, the results obtained with
different sub-sequence lengths for creating the trie (3, 5 and 10) show that the higher classification
rates are not obtained using a higher length. From the results for Set of 50 Users, we can see
that the classification rate is smaller because of the large number of users to classify. In this case,
this rate increases considerably with increasing the number of commands to analyze. Using 10000
commands (9000 for testing and 1000 for testing), the classification rate is close to 80%.

4.1.3 ABCD vs HMMs in the UNIX Environment

To put these results in context, we compare this table to a similar table, in which the classifica-
tion results were obtained using a standard HMM technique. Recent works have demonstrated
the effectiveness of Hidden Markov Models (HMM s) for information extraction, in particular in
classification of sequential data (see, e.g., [21, 33]).

We thus compare ABCD with a classifier based on HMMs. An HMM consists of a finite set
of states, each of which is associated with a probability distribution. Transitions among the states
are governed by a set of probabilities called transition probabilities. In each particular state, an
observation can be generated, according to the associated probability distribution (it is only the

4The results for 50 commands using a sub-sequence length of 10 for creating the trie cannot be calculated because
the testing file has only 5 commands (10%).
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observation, not the state visible to an external observer). See [7, 36] for more details on HMMs.

To define a HMM completely, the following elements are need: (1) the number of states of
the model, N ; (2) the number of observations symbols in the alphabet, M ; (3) a state transition
probabilities matrix, A; (4) an observation probability distribution in each of the states, B; and (5)
the prior state distribution, Π. To use this technique for classifying the behavior of UNIX users, a
HMM is created for each user where the number of observations symbols is the number of different
commands typed by the user. Also, in order to compare the obtained ABCD results to the HMM
results, the number of states of a HMM corresponds with the length of the sub-sequences used to
create the trie.

The toolkit UMDHMM [26] has been used to create each UNIX user behavior model from the
corresponding training data files. Once the HMMs that represent the different UNIX user behaviors
have been created, the Forward Algorithm is used to calculate the probability of an observed UNIX
user sequence given a HMM. Finally, the sequence of commands is classified into the HMM with
the highest likelihood.

Table 2 shows the results obtained using a classifier based on HMMs and using the same data
than in the previous experiments. It follows the same structure as Table 1.

A careful comparison of the two tables reveals that the ABCD technique is superior to HMMs
when used in smaller data-sets, i.e., when the number of examples is small. However, HMMs
are superior to the ABCD when the data-set is very large (somewhere between 5000 and 10000
commands).

Figures 6 and 7 show the relevant differences between the classification rates obtained using
both ABCD and HMMs for classifying UNIX users. It is remarkable the high classification rate
obtained by ABCD with a low number of commands for training and classifying. For areas such
as computer intrusion detection, this aspect is really important because the detection can be done
when the user only have typed a few commands.

4.2 RoboCup Soccer Coach Simulation

To further challenge ABCD’s scope of application, we further evaluated the use of ABCD in classify-
ing simulated robot behavior, in the RoboCup soccer simulation. The simulated soccer environment
is very different from the UNIX domain used above. The Soccer Server System [34] is a server-
client system which simulates a soccer game, and has been used annually in the RoboCup soccer
world-cup competitions. Software agents interact in a complex and noisy multi-agent environment.
Eleven players (agents) can only perceive objects that are in their field of vision and both the visual
information and the execution of the actions are noisy. Additionally, the server allows an agent to
connect as a coach client [38] who has a global view of the world without noise, and whose only
action is to send messages to the players while the ball is out of play. In particular, in this research
we use the environment of the RoboCup Coach Competition. The first Coach Competition was held
in 2001, but the goal of this Competition changed recently in order to emphasize opponent-modeling
approaches.

4.2.1 RoboCup Soccer Team Behavior Classification

The main goal in this environment is to classify the behavior of a soccer simulation opponent team
by observing its actions (there is an underlying assumption that the behavior of the players does
not vary significantly over the course of the game). In this domain, a team behavior consists of the
sum of the behavior of its individual players: The team of agents cooperates to achieve a common
goal. Therefore, the changes made to the environment are not the result of the behavior of a single

11



agent, but the interaction of the agent with each other and the world in which they act. As a
consequence, the emergent behavior is usually hard to understand because the global behavior is
not the sum of the local behaviors of the agents.

As in the previous environment, the observed behaviors are initially analyzed, and then its
corresponding models are stored in the BMLib. After that, a new game is observed and the behavior
models (from BMLib) followed by the team members must be recognized. The construction of
models is done considering only the behavior followed by a few players (usually 1, 2 or 3 players),
what we call player behavior. However, the behavior to classify is the sum of several player behaviors,
what we call team behavior.

The construction of models is done by analyzing several game log files (Game Training files) in
which different player behaviors are followed by a few players (a priori we do not know the players
that follow the behavior). Then, it is observed a new game in which several player behaviors
(usually 4 or 5) are activated at the same time (team behavior). The goal in this environment is to
classify the game by reporting the player behaviors activated in the observed game.

Construction of Behavior Models. The first step in this process is to create a sequence of
atomic behaviors from a given game. Kaminka et al. [25], and later Kuhlmann et al. [29] describe
a procedure to identify high-level events in a soccer game (an event represents a recognized atomic
behavior). Based on that work, in order to create the sequence of events that characterizes the
behavior of a group of players (obtained from the log file game), two stages are used: features
extraction and event recognition.

Features extraction: The important features over all the information of the game are processed
from the log files. The necessary information to identify high-level events is extracted: Cycle (value
that enables arranges the events), Ball and Players position (in the Cartesian coordinate system),
Ball Possessor (value that indicates who the owner of the ball is).

Event Recognition: With the previous data, what events have occurred must be inferred. We
follow [25, 29] in recognizing eight different events: Pass, Dribble, Intercept pass, Steal, Goal,
Missed shot, Foul and Hold. Also, each event is characterized by the players that have executed
the action and its team (L-Left or R-Right). In this work, we have used the same recognition of
events, and the result of this phase is a sequence of events ordered by time. This sequence is called
behavior sequence and it may look as follows: {Pass1to2(R) → Dribble2(R) → Steal3(L) → ...}

After recognizing all the events of a game, the sequence is segmented considering only the ac-
tions performed by the team to analyze its behavior (opponent team). Therefore, in order to divide
the behavior sequence into different sub-sequences, we consider as a sub-sequence the list of events
executed by the opponent team while it is possessor of the ball. Using these sub-sequences from
the different log files, the corresponding tries are created and the models obtained by using ABCD.

Classification of an observed team. In this phase, a new team is observed online by the coach
agent. Then, the team behavior model is created and matched to the models of the player behaviors
stored in the BMLib using the ABCD statistical methods. This process returns a ranked list with
the most likely player behavior model at the beginning.

4.2.2 Results

For the experiments in this domain, we have used the rules from the RoboCup 2006 Coach Com-
petition [1] and the experiments have been performed in the same way that this competition. The
competition consists of 3 different rounds with different player behaviors to analyze and different
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team behaviors to classify. We report here on the results of the first round obtained using ABCD
for being the most representative.

In this first round, 17 different player behaviors are analyzed (available from [2]) and stored
in BMLib by using a full program (coach) implemented based on ABCD. The games analyzed
(Training Files) in this case are around 1000 to 3000 cycles games (in our case, the number of
atomic behaviors identified for each game is usually around 150). Then, in each iteration of the
round, a different game where four or five different player behaviors have been activated is observed
(team behavior) by the coach which is connected to the Soccer Server. For these experiments, in
order to recognize better the player behaviors, 3 games with the same team behavior (same player
behaviors activated) have been observed. After observing the 3 games, a ranking list with the most
likely player behavior is reported. For evaluating the result, we consider the order in the list of the
player behaviors activated.

Table 3 shows the ranking list obtained for the 3 iterations of the first round. As it is indicated
with the number in brackets, in the first round there are 4 player behaviors activated and 5 in the
second and third iterations. The player behaviors are identified with a number (from pattern00
to pattern16) and in table 3 the player behaviors that have been activated are marked with an
asterisk. As we can see, the result are very promising since in the five first places of the 3 rounds,
there are 3 player behaviors that have been correctly identified as activated.

Analyzing these results, the player behaviors named pattern04 and pattern16 have been clas-
sified correctly in first position. Although the way to define these player behaviors is using a
special language called CLang [12] (with which the behavior of the simulated soccer player can be
modified), we describe these player behaviors as follows:

• Pattern04: The players 6, 7 and 8 always pass the ball to a specific point in the field.

• Pattern16: Player 1 always pass to player 3 or 4. Player 3 and 4 always dribble to a fix
space.

However, the following player behaviors are not recognized correctly:

• Pattern14: The player 3 dribbles to the space where the player 5 is situated. The player 5
dribbles to the space where the player 9 is situated. The player 9 dribbles to the space where
the player 3 is situated.

• Pattern08: If the ball is situated in a defined area, player 8 dribbles to a fix space. Otherwise,
player 8 passes to player 0.

As we can see from the results, ABCD works successfully when the player behavior to recognize
is related to the actions of the players. Other types of player behavior (related to the different field
regions in which the action occurs or the cycle when it occurs) could not be detected. Although
there are player behaviors that are not related to actions, some of them are recognized for the way
they play.

5 Conclusions and Future Works

This paper presents a novel approach for modeling and classifying behaviors from observation
(called ABCD - Agent Behavior Classification based on Distributions of relevant events). The
underlying assumption in this approach is that the observed behavior can be transformed into a
sequence of ordered atomic behaviors. If this transformation can not be done or the defined events
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do not capture the observed behavior properly, the proposed approach is not useful. The obtained
sequence is segmented and stored in a trie and then the relevant sub-sequences are evaluated by
using a frequency-based method. The main aspect in ABCD is that the model of an agent behavior
is represented by a distribution of relevant sub-sequences. Finally, for classifying a given behavior,
the Chi-square Test for two samples is proposed.

Also, an important aim in this work is to provide a general approach which can represent
and handle different behaviors in a wide range of domains. Therefore, ABCD is generalizable
to modeling and classifying behaviors represented by a sequence of events (such as GUI events,
network packet traffic and so on). In order to demonstrate this generalization, ABCD performance
has been experimentally evaluated in two very different domains: UNIX User Classification and
RoboCup Soccer Coach Simulation. A large set of experiments were conducted in both domains.

The experiments show that a system based on ABCD is very effective for classifying a UNIX
user, even with a very limited number of training examples, and testing data. For areas such as
computer intrusion detection, these results are very encouraging. On the other hand, HMMs proved
superior to ABCD in this domain, when the number of examples was 2-3 orders of magnitude larger.

In the real-time multi-agent domain of RoboCup Soccer Coach Simulation, the results of using
ABCD are very satisfactory (similar or even better than those obtained by the RoboCup 2006 Coach
Competition champion). In this environment, a correct and rapid classification of the opponent
can be very advantageous. However, these results are dependent on the events defined. When such
events do not capture salient information of some agents, their behavior was unrecognizable.

An important aspect that has not been tackled in this paper is to consider that many agents
change their behavior and their preferences over time, which means that their models should be
frequently revised to keep it up to date. This aspect could be solved by using Evolving Systems [5]
and it is proposed for future work. Also, to use the result of the classification for carrying out
effective actions in the environment (implementation of the Reasoning Module) will be considered
in our future work.
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Table 1.Classification Results using ABCD. 9 and 50 Users.

ABCD Classifier Results
Set of 9 UNIX Users Set of 50 UNIX Users

Number of Subseq Classification Standard Classification Standard
commands Length rate % Deviation rate % Deviation

50 3 80,00 1,40 48,20 8,99
5 78,89 1,34 48,80 7,73

3 80,00 0,96 53,40 8,42
100 5 76,67 1,08 51,40 9,81

10 78,89 0,83 54,80 6,99

3 90,00 1,08 64,00 9,16
500 5 91,11 1,27 64,20 10,17

10 86,67 1,49 63,80 12,48

3 87,78 1,53 72,00 10,14
1000 5 87,78 1,30 71,20 10,49

10 81,11 1,84 69,00 11,69

3 85,56 1,23 75,80 12,05
5000 5 87,78 1,30 76,60 12,26

10 84,40 1,54 75,00 12,64

3 88,87 1,53 76,20 12,14
10000 5 90,00 1,40 78,80 13,14

10 91,40 1,66 79,00 13,39
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Table 2.Classification Results using HMMs. 9 and 50 Users.

HMMs Classifier Results
Set of 9 UNIX Users Set of 50 UNIX Users

Number of Subseq Classification Standard Classification Standard
commands Length rate % Deviation rate % Deviation

3 52,22 2,23 30,40 14,08
50 5 54,44 2,06 32,40 14,72

10 54,44 2,08 34,80 15,02

3 64,44 1,49 39,40 8,72
100 5 61,11 1,53 40,00 8,58

10 62,22 1,60 40,40 8,94

3 63,33 1,22 42,20 6,19
500 5 68,89 1,30 48,20 6,03

10 66,67 1,26 51,20 5,86

3 63,33 1,20 46,20 4,69
1000 5 68,89 1,32 49,20 4,55

10 66,67 1,09 53,20 4,47

3 80,00 1,05 54,20 3,89
5000 5 82,22 0,90 58,20 3,53

10 88,89 0,97 62,20 3,45

3 89,90 1,22 76,40 3,35
10000 5 93,11 1,32 78,80 3,41

10 93,32 0,97 80,20 3,29
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Table 3.Results for the RoboCup Coach Competition. Round1

Round1-Iter1 (4) Round1-Iter2 (5) Round1-Iter3 (5)

pattern04 (*) pattern16 (*) pattern04 (*)
pattern16 pattern01 (*) pattern02 (*)

pattern00 (*) pattern00 pattern13
pattern12 pattern13 (*) pattern05

pattern15 (*) pattern05 pattern12 (*)
pattern03 pattern09 pattern00 (*)
pattern09 pattern07(*) pattern01
pattern05 pattern03 pattern06 (*)
pattern01 pattern10 pattern03
pattern06 pattern08(*) pattern10
pattern08 pattern16 pattern07
pattern13 pattern15 pattern16
pattern10 pattern02 pattern11
pattern11 pattern12 pattern08

pattern14 (*) pattern04 pattern15
pattern02 pattern11 pattern09
pattern07 pattern14 pattern14
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Figure captions:

Fig. 1: Agent Behavior Classification based on Distributions of relevant events (ABCD): Frame-
work. The process “Construction of Behavior Models” is described in Section 3.1. The “Behavior
Classification” process is described in Section 3.2.

Fig. 2: Steps of creating an example trie.

Fig. 3: Distribution of sub-sequences.

Fig. 4: Agent Behavior Classification Process.

Fig. 5: Observed and Expected Comparison Example.

Fig. 6: ABCD vs HMMs. Set of 9 Users.

Fig. 7: ABCD vs HMMs. Set of 50 Users.
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