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Abstract. Increasingly, multi-agent systems are being designed for a variety of
complex, dynamic domains. Effective agent interactions in such domains raise some
of the most fundamental research challenges for agent-based systems, in teamwork,
multi-agent learning and agent modelling. The RoboCup research initiative, partic-
ularly the simulation league, has been proposed to pursue such multi-agent research
challenges, using the common testbed of simulation soccer. Despite the significant
popularity of RoboCup within the research community, general lessons have not
often been extracted from participation in RoboCup. This is what we attempt to
do here. We have fielded two teams, ISIS97 and ISIS98, in RoboCup competitions.
These teams have been in the top four teams in these competitions. We compare
the teams, and attempt to analyze and generalize the lessons learned. This analysis
reveals several surprises, pointing out lessons for teamwork and for multi-agent
learning.
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1. Introduction

Increasingly, multi-agent systems are being designed for a variety of
complex, dynamic domains. Effective agent interactions in such do-
mains raise some of most fundamental research challenges for agent-
based systems. An agent may need to model other agents’ behaviors,
learn from its interactions, cooperate within a team, etc. For each
of these research problems, the presence of multiple cooperative and
non-cooperative agents, only compounds the difficulty.

Consider for instance the challenge of multi-agent teamwork, which
has become a critical requirement across a wide range of multi-agent
domains[16, 10, 17]. Here, an agent team must address the challenge
of designing roles for individuals (i.e., dividing up team responsibilities
based on individuals’ capabilities), doing so with fairness, and reor-
ganizing roles based on new information. Furthermore, agents must
also flexibly coordinate and communicate, so as to perform robustly
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despite individual members’ incomplete and inconsistent view of the
environment, and despite unexpected individual failures. Learning in a
team context also remains a difficult challenge — indeed, the precise
challenges and possible benefits of such learning remain unclear.

To pursue research challenges such as these and stimulate research
in multi-agents in general, the RoboCup research initiative has pro-
posed simulation and robotic soccer as a common, unified testbed for
multi-agent research[5]. The RoboCup initiative has proved extremely
popular with researchers, with annual competitions in several different
leagues. Of particular interest in this paper is the simulation league,
which has attracted the largest number of participants. The research
goals of the simulation league are to investigate the areas of multi-
agent teamwork, agent modelling, and multi-agent learning[6]. Research
in these areas benefits from an international community of over 40
simulation league research groups actively engaged in designing teams
and thus providing a varied set of opponent teams against which to
evaluate research.

However, the lessons learned by researchers participating in RoboCup,
particularly the simulation league, have not often been reported in a
form that would be accessible to the research community at large (there
are notable exceptions, e.g., [13]). Extracting general lessons in areas
of teamwork, agent modelling and multi-agent learning is a critical
task for several reasons: (i) to meet the stated research goals of the
RoboCup effort (at least the simulation league); (ii) to establish the
utility of RoboCup and possibly other common testbeds for conducting
such research; (iii) to enable future participants to evaluate some of the
types of research results to be expected from RoboCup.

This paper attempts to address the above concern by extracting the
general lessons learned from our experiences with RoboCup. We have
fielded two different teams in RoboCup simulation league competitions,
ISIS97 and ISIS98, which competed in RoboCup97 and RoboCup98,
respectively. ISIS97 won the third place prize in over 30 teams in
RoboCup97 (and was also the top US team), while ISIS98 came in
fourth in over 35 teams in RoboCup98. As one of the top teams, there
is indeed an increased responsibility to report on the general lessons
extracted.

Our focus in this paper is not on any one specific research topic, but
rather on all aspects of agent and team design relevant to the RoboCup
research challenges. Our methodology is one of building the system first,
and then attempting to analyze and generalize why it does or does not
work. Fortunately, the presence of two RoboCup teams, ISIS97 and
ISIS98, often with contrasting design decisions, aids in this analysis.
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ISIS97 is an earlier and much simpler team compared to ISIS98, but is
often able to compensate for its weaknesses in novel ways.

The analysis does reveal several general lessons in the areas of team-
work and multi-agent learning. With respect to teamwork, in the past,
we have reported on our ability to reuse STEAM, a general model of
teamwork, in RoboCup[15]. This paper takes a step further, evaluating
the effectiveness of STEAM in RoboCup, to improve our understanding
of the utility of general teamwork models. It also provides an analysis
of techniques for the division of team responsibilities among individ-
uals. For instance, compared to ISIS98, ISIS97 agents had relatively
little preplanned division of responsibility. Yet, it turns out that via a
technique we call competition within collaboration, ISIS97 agents com-
pensate for this weakness. A similar situation arises in team monitoring.
Compared to ISIS98, ISIS97 agents have a significantly limited capabil-
ity for maintaining situational awareness or monitoring surroundings.
However, ISIS97 agents illustrate that this weakness can be overcome
via relying on distributed monitoring. The techniques discovered in
ISIS97 were unexpected, and they only became clear when compared
with ISIS98. However, they provide an insight into design techniques
more suitable for simpler agent teams.

With respect to multi-agent learning, we focused on a divide-and-
conguer learning approach in designing agents. With this approach,
different modules (skills) within individual agents were learned sep-
arately, using different learning techniques. In particular, one of the
skills, to pick a direction to shoot into the opponents’ goal while avoid-
ing opponents, was learned off-line using C4.5[9]. Another skill, to
intercept the ball, relied on on-line learning. One of the key surprises
here was the degree to which individual agents specialized in their indi-
vidual roles. Thus, sharing experiences of individuals in different roles
or equivalently training individuals by letting them execute different
roles would appear to be significantly detrimental to team performance.
Indeed, this lesson runs contrary to techniques of cooperative learning
where experiences are shared among agents.

2. Background: Simulation League

The RoboCup simulation league domain is driven by a public-domain
server which simulates the players’ bodies, the ball and the environment
(e.g., the soccer field, flags, etc). Software agents provide the “brains”
for the simulated bodies. Thus, 22 agents, who do not share memory,
are needed for a full game. Visual and audio information as “sensed”
by the player’s body are sent to the player agent (“brain”), which
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can then send action commands to control the simulated body (e.g.,
kick, dash, turn, say, etc.). The server constrains the actions an agent
can take and the sensory information it receives. For instance, with
the server used in the 1997 competition, a player could only send one
action every 100 milliseconds and received perceptual updates only
every 300 milliseconds. The server also simulates stamina: If a player
has been running too hard, it gets “tired”, and can no longer dash as
effectively. Both actions and sensors contain a noise factor, and so are
not perfectly reliable. The quality of perceptual information depends
on several factors, such as distance, view angle, and view mode (ap-
proximating visual focus). All communication between players are done
via the server, and are subject to limitations such as bandwidth, range
and latencies. Figure 1 shows a snapshot of the soccer server with two
competing teams: CMUnited97 [13] versus our ISIS team.

Figure 1. The Robocup synthetic soccer domain.

In RoboCup97, ISIS97 won the third place prize (out of 32 teams).
It won five soccer games in the process, and lost one. In RoboCup98,
ISIS98 came in fourth (out of 37 teams). It won or tied seven soccer
games in the process, and lost two. Some interesting observations in
the tournaments have been that ISIS has never lost a close game.
That is, ISIS’s wins are either by large goal margins or sometimes by
narrow, nail-biting margins (in overtime). However, the three games
that ISIS has lost in competitions have been by large margins. Another
key observation has been that individual ISIS97 or ISIS98 players have
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often been lacking in critical skills, even when compared to opponents
where ISIS97 or ISIS98 won. For instance, ISIS98 players had no offside
skills (a particular soccer skill), yet it won against teams that did check
for offside. Thus, teamwork in ISIS appears to have compensated for
its lacking skills.

3. The ISIS Architecture

An ISIS agent uses a two-tier architecture. The lower-level, developed
in C, processes input received from the simulator, and together with its
own recommendations on turning and kicking directions, sends the in-
formation up to the higher level. For instance, the lower level computes
a direction to shoot the ball into the opponents’ goal, and a micro-plan,
consisting of turn or dash actions, to intercept the ball.

The lower-level does not make any decisions. Instead, all decision-
making rests with the higher level, implemented in the Soar integrated
AT architecture[16]. Once the Soar-based higher-level reaches a decision,
it communicates with the lower-level, which then sends the relevant
action information to the simulator. Soar’s operation involves dynam-
ically executing an operator (reactive plan) hierarchy. The operator
hierarchy shown in Figure 2 illustrates a portion of the operator hi-
erarchy for ISIS player-agents. Only one path through this hierarchy
is typically active at a time in a player agent. The hierarchy has two
types of operators: Individual operators represent goals/plans that the
player makes and executes as an individual. Team operators constitute
activities that the agent takes on jointly as part of a team or subteam
and are shown in square brackets, [].

[Win-Game]

[Play] [Interrupt]

[Attack] [De\fend] [Midfield] [Defend-Goal]
[Simﬁe/\[ﬁank [Carefm—goal

Advance]  Attack] defense] defense]

Scoe/—goa| Xass Intercept ki\cb—out Jeposition

Figure 2. A portion of the operator hierarchy for player-agents in RoboCup soccer
simulation. Bracketed operators are team operators, others are individual operators.

ISIS97 and ISIS98 share the same general-purpose framework for
teamwork modelling, STEAM[15]. STEAM models team members’ re-

agjourn.tex; 15/11/1999; 11:43; p.5



6

sponsibilities and joint commitments[2] in a domain-independent fash-
ion. As a result, it enables team members to autonomously reason about
coordination and communication, improving teamwork flexibility. The
[Defend-Goal] team operator demonstrates part of STEAM.! Tt is ex-
ecuted by the goalie subteam. In service of [Defend-Goal], players in
this subteam normally execute the [Simple-goal-defense| team operator
to position themselves properly on the field and to try to be aware of
the ball position. Of course, each player can only see within its limited
cone of vision, and can be unaware at times of the approaching ball.
If any one of these players sees the ball as being close, it declares the
[Simple-goal-defense] team operator to be irrelevant. Its teammates now
focus on defending the goal in a coordinated manner via the [Careful-
defense] team operator. Specifically this includes intercepting the ball
(the Intercept Operator) and then clearing it (the Kick-Out operator).
Should any one player in the goalie subteam see the ball move suffi-
ciently far away, it again alerts its team mates (that [Careful-defense]
is achieved). The subteam players once again execute [Simple-goal-
defense] to attempt to position themselves close to the goal. In this
way, agents coordinate their defense of the goal. All the communication
decisions are handled automatically by STEAM.

4. Analysis of Teamwork

4.1. LESSONS IN (RE)USING A TEAMWORK MODEL

In past work, we have focused on STEAM’s reuse in our ISIS teams[15],
illustrating that a significant portion (35-45% when measured in terms
of the rules) was reused, and that it enabled reduced development
time. The use of the teamwork model is a shared similarity between
ISIS97 and ISISY8. However, a key unresolved issue is measuring the
contribution of STEAM to ISIS’s performance. This issue goes to the
heart of understanding if general teamwork models can actually be
effective.

To measure the performance improvement due to STEAM, we exper-
imented with two different settings of communication cost in STEAM.
At “low” communication cost, ISIS agents communicate “normally”.
At “high” communication cost, ISIS agents communicate no messages.
Since the portion of the teamwork model in use in ISIS is effective only
with communication, a “high” setting of communication cost essentially
nullifies the effect of the teamwork model in execution.

! Another part of STEAM deals with team reorganization, which is not used in
ISIS.
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Table I below shows the results of games for the two settings of
communication cost, illustrating the usefulness of STEAM. It compares
the performance of the two settings against Andhill97 and CMUnited97
in approximately 60 games. Performance is measured by goal difference,
the difference in the number of goals scored by each side in a game.
Thus, trends toward more positive values indicate improved ISIS per-
formance. The table shows that the mean value of goal difference (mean
goal difference) in the games between ISIS97 and Andhill97 was -3.38
per game for “low” cost, and was -4.36 per game for “high” cost. This
difference in the means is significant using a t-test (null hypothesis
p=0.032). It also shows a similar comparison for 30 games between
ISIS97 and CMUnited97. The mean goal difference between ISIS97
and CMUnited97 for “low” was 3.27, and was 1.73 for “high” (again,
using a t-test, p=0.022). That is, STEAM’s communication (low cost)
helped to significantly improve ISIS’s performance in both cases. Thus,
general teamwork models like STEAM can not only reduce development
overhead, but can contribute to team performance.

Table 1. ISIS97: Mean goal difference with/without STEAM.

Comm Mean goal difference | Mean goal difference
‘ cost against Andhill97 against CMUnited97
‘ Low ‘ -3.38 ‘ 3.27 ‘
‘ High ‘ -4.36 ‘ 1.73 ‘
‘ p(null hypo) ‘ 0.032 ‘ 0.022 ‘

4.2. LESSONS IN TEAM MONITORING

In designing individual ISTS98 players, we provided them with compre-
hensive capabilities to locate their own x,y positions on the RoboCup
field, as well as the x,y position of the ball. This was an improvement
in design over ISIS97, where individuals did not even know their own
or the ball’s x,y location. That is, ISIS97 players estimated all of these
positions heuristically, and often inaccurately. Thus, for instance, in-
dividual ISIS97 players on the defender subteam may not know if the
ball is far or near the goal. In contrast, ISIS98 players were individually
more situationally aware of their surroundings. The expectation was
that this would lead to a significant improvement in their performance
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over ISIS97, particularly in those behaviors where situational awareness
is important.

The surprise in actual games however was that in behaviors which
appeared to require good situational awareness, ISIS97 players ap-
peared to be just as effective as ISIS98 players! A detailed analysis
revealed an interesting phenomena: ISIS97 players were compensating
for their lack of individual monitoring (and situational awareness) by
relying on their teammates for monitoring. In particular, while indi-
viduals in ISIS97 were unaware of their x,y locations, their teammates
acted as reference points for them, and provided them the necessary
information.

Consider for instance the [Careful-defense] team operator discussed
earlier. This operator is terminated if the ball is sufficiently far away. As
a team operator, it also requires that the defenders inform each other
if the ball is sufficiently far away. In ISIS98, players were easily able
to monitor own x,y location and ball x,y location, so that they could
usually quickly recognize the termination of this operator. In ISIS97,
individually recognizing such termination was difficult. However, one of
the players in the subteam would just happen to stay at a fixed known
location (e.g., the goal). When it recognized that the ball was far away,
it would inform the teammates, due to its joint commitments in the
team operator. Thus, other individuals, who were not situationally well-
aware, would now know about the termination of the team operator.
(This technique failed if the player at the fixed location moved for some
reason.)

Table II shows the means of goal differences for ISIS98 with dif-
fering communication costs and different opponents (over 170 games
against CMUnited97, 60 against Andhill97). STEAM’s communication
(“low” communication cost) does not provide a statistically significant
improvement over no-communication (using a two-tailed t-test). This
indicates decreased reliance on communication among teammates, and
contrasts with results for ISIS97 from Table 1.

The key lesson to take away is that in a multi-agent system, there
is a tradeoff in monitoring. One approach is to design an agent, with
complex monitoring capabilities, that is situationally well-aware of its
surroundings. Another is to design a much simpler monitoring agent,
but rely on teammates to provide the necessary information. In the
first case, agents are more independent, while in the second case, they
must rely on each other, and behave responsibly towards each other.

Another key lesson is that the design of a team’s joint commitments
(via team operators) has a significant impact on how individual skills
may be defined. For instance, given the definition of [Careful-defense],
with its accompanying joint commitments, individual players need not
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Table II. Impact of STEAM in ISIS98.

Comm Mean goal difference | Mean goal difference
‘ cost against Andhill97 against CMUnited97
‘ Low ‘ -1.53 ‘ 4.04 ‘
‘ High ‘ -2.13 ‘ 3.91 ‘
‘ p(null hypo) ‘ 0.13 ‘ 0.58 ‘

be provided complex monitoring capabilities. Similarly, definition of in-
dividual skills should impact the design of a team’s joint commitments.
Thus, for instance, for ISIS98 players, given their individual situational
awareness, the commitments in [Careful-defense] to inform each other
when the ball is far or near may not be as useful.

4.3. LESSONS IN DESIGNING ROLE RESPONSIBILITIES

In teamwork, role responsibilities are often designed so as to achieve
load balancing among individuals, and to avoid conflicts among them.
With these goals in mind, when defining roles for ISIS98 players, we
provided them detailed, non-overlapping regions in which they were
responsible for intercepting and kicking the ball. Essentially, each player
was responsible for particular regions of the field. Furthermore, these
regions were flexible. The players would change regions if the team
went from attack mode to defense mode, i.e., if the ball moved from
the opponent’s half to own half. This ISIS98 design was a significant
improvement over our earlier ISIS97 design. There, players have regions
of the fields that are their responsibility, but the division is very relaxed
with considerable overlap. So effectively, multiple players will share the
respounsibility of defending a specific area of the field, and thus could
conflict, for instance, by getting in each other’s way.

Again, the expectation was that ISIS98 would perform significantly
better than ISIS97, given that ISIS98 had a carefully laid out, but flex-
ible, plan for division of responsibilities. This division of responsibility
was intended to have an additional side-effect of an overall conservation
of stamina, which was particularly desirable because stamina was a
more critical issue in RoboCup98.

The surprise when we played ISIS97 and ISIS98 against a com-
mon opposing team was that ISIS98 was not outperforming ISIS97
as expected. The analysis revealed that ISIS97 managed to attain a
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reasonable division of responsibilities, by hitting upon a style of play
that can be characterized as competition within collaboration. Essen-
tially, multiple players in ISIS97 may chase after the ball, competing
for opportunities to intercept the ball. Players that were out of stamina
(tired), players that got stuck, lost sight of the ball etc., would all fall
behind. Thus, the ISIS97 player that was best able to compete (i.e.,
get close to the ball first), would get to kick the ball. This technique in
some cases attained a more dynamic load-balancing, when compared
to the planned division of responsibilities in ISIS98. For instance, in
ISISY8, a player, even if very tired, would still have to continue to
assume responsibility for its region. In ISIS97, that player would be
unable to get to the ball, and another one with more stamina would
take control.

This competition in ISIS97 arises because the responsibility for in-
tercepting the ball is not explicitly modeled as a team operator and
each individual thereby makes the decision to intercept the ball on
their own. The price of this competition is that more individual agents
may waste their resources chasing after the same opportunity. Another
important item is that in ISIS98, the agents followed the roles designed
by the human. In ISIS97, the agents’ behavior was more unpredictable,
as they were not following particular role definitions.

One key lesson learned is the contrasts among the techniques for
role responsibility design, which bring forth some novel tradeoffs. In
particular, for simpler teams, the technique of competition within col-
laboration, would appear to be a reasonable compromise that does not
require significant planning of division of responsibilities.

5. Analysis of Learning

We focused on a divide-and-conquer learning approach in designing
agents. With this approach, different modules (skills) within individual
agents were learned separately, using different learning techniques. To
date, learning has been applied to (i) learning of goal shots, to shoot
when attempting to score a goal (using C4.5) and (ii) selection of a
plan to intercept an incoming ball (using reinforcement learning).

5.1. OFFLINE LEARNING OF GOAL SHOTS

Shooting a ball to score a goal is clearly a critical soccer skill. However,
our initial hand-coded, approaches to determining a good direction to
kick the ball, based on heuristics such as “shoot at the center of the
goal”, or “shoot to a corner of the goal”, failed drastically. In part, this
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was because heuristics were often foiled by the fact that small variations
in the configuration of players around the opponent’s goal or a small
variation in the shooter’s position may have dramatic effects on a good
shooting direction.

To address these problems, we decided to rely on automated, offline
learning of the shooting rules. A set of 3000 shooting situations were
generated and a human specialist labeled each situation with the best
shooting direction: UP, DOWN or CENTER region of the goal. The
decision was based on actually having the ball be kicked in each direc-
tion with a fixed velocity and judging which shot was best, factoring
in the other players’ fixed location and the randomizations associated
with kicking (e.g., wind). The learning system trained on 1600 of these
situations randomly chosen and the other 1400 examples were used for
testing. C4.5[9] was used as the learning system, in part because it has
the appropriate expressive power to express game situations and can
handle both missing attributes and a large number of training cases.
In our representation, each C4.5 training case has 39 attributes, such
as the recommended kicking direction, the shooter’s facing direction,
and the shooter’s angles to the other visible players, the 12 flags, the 4
lines, the ball, and the opponent’s goal.

The result was that given a game situation characterized by the
39 attributes, the decision tree selected the best of the three shooting
directions. The resulting decision tree provided a 70.8%-consistent set
of shooting rules. These learned rules for selecting a shooting direction
were used successfully in RoboCup’97.

The C4.5 rules were a dramatic improvement over our original hand-
coded efforts. However, there were still cases under actual playing con-
ditions where the shooting direction calculated by these rules seemed
inappropriate. Particularly, in some cases, the C4.5 rules would attempt
very risky shots on the goal, when a more clear shot seemed easily
possible. The reason this occurred was that offline learning was done
using the human expert’s labeling which was based on assumptions
about opponents’ level of play in RoboCup matches — the expert tended
to assume the worst. However, in practice, especially against weaker
teams, easy opportunities appeared to have been thrown away by taking
some unnecessary risks.

Thus, one key lesson learned here is that it was possible to approach
the agent design problem via a divide-and-conquer learning technique.
Another key lesson is that off-line learning in dynamic multi-agent
contexts must be sensitive to the varying capabilities of other agents.
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5.2. ONLINE LEARNING OF INTERCEPTS

Intercepting the ball is another critical basic skill. However, it is not
a simple, static skill. Whether in human soccer or RoboCup, there
are many external and internal playing conditions that can impact a
player’s intercept. The opposing side may kick/pass/run harder than
normal, thereby requiring a player to run harder, modify the path they
take or forgo interception. Properties of the ball’s motion or visibility
can also dramatically impact play. Human players, at least, fluidly
adapt to these conditions. However, unlike real soccer players, our ISIS
players’ intercept skills were not adapting very well to differing internal
and external factors.

One could address this problem by a precise re-engineering approach,
by using all of the parameters available from the server, and then trying
to precisely handcode the intercept. We have taken a different approach,
driven by the question: what would happen if players in ISIS98 are
allowed to learn plans themselves, and what would that learning tell us?
In particular, would there be differences in what is learned across differ-
ent players? Would there be differences across different opponents? We
therefore pursued a reinforcement learning approach [14, 3] to enable
players to adapt their intercept online, under actual playing conditions
using just the perceptual information provided by the server to the
player: the ball’s current direction and distance, plus the changes in
direction and distance.

Although our concern is more on what is learned online as opposed
to how it is learned, any approach to the online learning of intercept
must deal with several difficulties. One key difficultly revealed in ap-
plying reinforcement learning is that in the course of a game, there
are not many opportunities to intercept the ball. Furthermore, even
within those opportunities, an agent is often unable to carry through
the full intercept, since other players may happen to kick the ball, or the
ball may simply go outside the field, etc. Whereas the above suggests
the need for rapid adaptation, it is also the case that inappropriate
adaptations can have dire consequences.

To address these concerns, it was important to design intermediate
reinforcement, occurring as an intercept plan was in progress and not
just when the plan completed. Specifically, ISIS98 uses the same simple
intercept micro-plan structure used in ISIS97. A player intercepts the
ball by stringing together a collection of micro-plans, where each micro-
plan consists of a turn followed by one or two dashes. For every step in a
micro-plan, ISIS98 has an expectation as to what any new information
from the server should inform it as to the ball’s location. Failure to meet
that expectation results in a learning opportunity. To allow transfer
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to similar states, the input conditions are clustered. (The clustering is
fixed, but automated dynamic approaches may be applicable here (e.g.,
[8])- Repeated failures lead to changes in the micro-plan assigned to an
input condition. In particular, the turn increment specific to that input
condition is adjusted either up or down upon repeated failure. For most
input conditions, the actual turn is calculated from the turn increment
in the following fashion:

Turn = BallDir + (TurnIncrement x ChangeBall Dir)

5.2.1. Online Learning Ezperiments

We have performed several preliminary experiments in which ISIS made
online adjustments to the turn increment factor. These experiments
involved six extended length games between ISIS and two other teams,
CMUnited97 (team of Stone and Veloso of Carnegie Mellon) and And-
hill97 (team of T. Andou of NTT labs). In each experiment, each player
started with a default value of 2.0 for their turn increment across all
input conditions.

The results we observed show several interesting trends and dif-
ferences in what is learned. Overall, the learning could result in turn
increment values that range from +5 down to -1, across input condi-
tions. While these may appear to be small numbers, because of the
multiplicative factors, and because the intercept plan is invoked re-
peatedly, these changes are overall very significant and considerably
different from the default value used in ISISY97. For any particular
input condition, the trend in the learning tended to be uniform in its
direction across teams and positions. Against these two teams, if one
player playing Andhill97 increased the turn increment under a certain
input condition then all the players with sufficient training examples
would tend to show an increase whether in games with Andhill97 or
CMUnited97. There were however striking differences in magnitude.
Below, we consider two illustrative examples.

Test 1: Same player against different Teams

In particular, lets consider the case of what a player in a particular
position learns while playing a game against CMUnited97 as opposed to
what the same player learns playing against Andhill97. In Figure 3, the
mean results for Player 1, a forward, are graphed against the mean for
all players, at 3000 ticks of the game clock until the end of the game
at 15000 (RoboCup games normally run to 6000, here the time has
been lengthened to simplify data collection). This particular data is for
the input condition of balls moving across the player’s field of vision, a
middling-to-close distance away. Figure 3 shows that against Andhill97,
the player is learning a turn increment similar to the mean across all
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players for this input condition. However, against CMUnited97, the
player is learning a much larger increment. The difference between
the means for CMUnited97 and Andhill97 at 15000 ticks is significant
(using a t-test, p-value = .0447).

5

Player 1 vs. CMU ——
45 L Player 1vs. Andhill -
’ All Players -
All Players vs. CMU

2 1 1 1 1
0 2000 4000 6000 8000 10000 12000 14000

Figure 8. Player 1 (forward) against CMUnited97 contrasted with Player 1 against
Andhill97 under same input condition. Means across all players provided for
comparison.

Test 2: Different Players Against Same Team

It is also the case that different players against the same team
do learn different increments. Consider Figure 4. It plots mean turn-
increments for Player 1 and Player 10 (a fullback) for the the same
input condition as above, against CMUnited97. The differences in the
means are significant (using a t-test, p-value = 6.36e-06).

5.2.2. Lessons Learned

The key point, and surprise, in these results was the specialization
by role and opponent. Player 1 distinctly tailors its intercept to its
role and its particular opponents. There is a domain level analysis,
which clarified why Player 1 had specialized its behavior so signifi-
cantly — CMUnited97’s defenders often cleared the ball with a strong
sideways kick, which Player 1, because of its role, continuously faced.
Without learning, this clearing kick catches ISIS forwards offguard and
as a result their interception path would consistently lag the ball’s
travel. ISIS’s low-level learning was compensating by turning more to
cut the ball off. However, there is a larger point. These results argue
for the specialization of skills according to both role and the specific
conditions under which the skill is exhibited. Thus, sharing experiences
of individuals in different roles or equivalently training individuals by
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Figure 4. Player 1 (forward) contrasted with Player 10 (goal defender) both against
CMUnited97, under same input condition.

letting them execute different roles would appear to be detrimental to
an agent’s performance.

While the magnitude differed significantly, the trends of the changes
were shared across players. This suggests there is still benefit to so-
cial learning, or cross-agent communication of learning experiences. In
particular, in the case of goalees, which do not get as many chances
typically to intercept the ball during the game, we have found it par-
ticularly useful to transfer mean values from the other players. However,
the key is to recognize that there are interesting limits to such social
learning. Hence, learn socially, but with real caution!

Finally, the role and opponent specialization was not the only sur-
prise. The general variations in magnitude across input conditions, as
well as the variation from the set initial value used in ISIS97, were
also unexpected. This underscores a more general issue. The designer
of an agent team is typically outside the multi-agent environment in
which the team must perform. As such, it is often very difficult to
model appropriately the agents’ experiences inside the environment
and therefore difficult to design for those experiences.

6. Related Work

Within RoboCup-based investigations, ISIS stands alone with respect
to investigation of a general, domain-independent teamwork model to
guide agents communication and coordination in teamwork. Some re-
searchers investigating teamwork in RoboCup have used explicit team
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plans and roles, but they have relied on domain-dependent commu-
nication and coordination. A typical example includes work by Chng
and Padgham(1]. They present an elaborate analysis of roles in moti-
vating teamwork and team plans. In this scheme, agents dynamically
adopt and abandon roles in pre-defined tactics. The responsibilities and
actions of each agent are determined by its current role in the current
plan. Unlike ISIS agents, whose team-related responsibilities are part of
the general domain-independent STEAM model, Chang and Padghams
roles include both team-level responsibilities as well as personal re-
sponsibilities — and so there is no separation of the domain-dependent
from the domain-independent responsibilities. A similar scheme is used
by Stone and Veloso [12]. They offer an approach to managing flex-
ible formations and roles within those formations, allowing agents to
switch roles and formations dynamically in a domain-dependent man-
ner. Their agents synchronize their individual beliefs periodically in a
fixed manner, in contrast with ISIS’s STEAM in which communications
are issued dynamically and can be parameterized based on the domain
of deployment. Other investigations of teamwork in RoboCup have
used implicit or emergent coordination. A typical example is Yokota
et al.[18].

Our application of learning in ISIS agents is similar to some of the
other investigations of learning in RoboCup agents. For instance, Luke
et al.[7] use genetic programming to build agents that learn to use their
basic individual skills in coordination. Stone and Veloso[13] present
a related approach, in which the agents learn a decision tree which
enables them to select a recipient for a pass.

With respect to research outside of RoboCup, the use of a teamwork
model remains a distinguishing aspect of ISIS teams. The STEAM
teamwork model used in ISIS, is among just a few implemented general
models of teamwork. Other models include Jennings’ joint responsibility
framework in the GRATE* system[4] (based on Joint Intentions the-
ory), and Rich and Sidner’s COLLAGEN]11] (based on the SharedPlans
theory), that both operate in complex domains. STEAM significantly
differs from both these frameworks, via its focus on a different (and
arguably wider) set of teamwork capabilities that arise in domains
with teams of more than two-three agents, with more complex team
organizational hierarchies, and with practical emphasis on communi-
cation costs (see [15] for a more detailed discussion). The other imple-
mentations of teamwork model emphasize different capabilities, e.g.,
COLLAGEN focuses on human-agent collaboration, and brings to bear
capabilities more useful in such a collaboration.

agjourn.tex; 15/11/1999; 11:43; p.16



17

7. Lessons Learned from RoboCup

Challenges of teamwork and multi-agent learning are critical in the
design of multi-agent systems, and these are two of the critical re-
search challenges of the RoboCup simulation league. As participants
in the RoboCup competitions, it is critical that researchers extract
general lessons learned, so as to meet the goals of the RoboCup research
initiative. This is what we have attempted in this paper.

Our research in RoboCup began with the foundation of a general
model of teamwork, STEAM. Using STEAM, ISIS can operate flexibly
in the highly dynamic environment of RoboCup. The fact that STEAM
has served the research well has been demonstrated both empirically
and in the pressure of the RoboCup97 and RoboCup98 competitions.
Here are some of the key lessons learned via our analysis of ISIS97 and
ISIS98:

— Reuse of general teamwork models can lead to improved perfor-
mance.

— Interesting tradeoffs exist in individual and team situational aware-
ness (monitoring) in multi-agent systems. In particular, responsi-
ble team behavior enables the design of simpler situational aware-
ness (monitoring) capabilities for individuals.

—  Competition within collaboration can provide a simple but powerful
technique for designing role responsibilities for individuals.

— Divide-and-conquer learning can be used to enable different learn-
ing techniques to co-exist and learn different skills in designing
individual agents. This can reduce the complexity of the learning
problem.

— Some multi-agent environments can lead to a significant role spe-
cialization of individuals. Thus, sharing experiences of individuals
in different roles or equivalently training individuals by letting
them execute different roles can sometimes be significantly detri-
mental to team performance. That is, there has to be a check on
social learning.

— For the human designer, outside of the multi-agent environment,
it is often very difficult to comprehend the agents’ experiences
inside the environment and therefore difficult to design for those
experiences.

— RoboCup simulations are capable of providing a surprise.

agjourn.tex; 15/11/1999; 11:43; p.17



18

Acknowledgment

This research is supported in part by NSF grant IRI-9711665, and in
part by a generous gift from the Intel Corporation.

10.

11.

12.

13.

14.

15.

References

Ch’ng, S. and L. Padgham: 1998, ‘Team description: Royal Merlbourne
Knights’. In: RoboCup-97: The first robot world cup soccer games and
conferences. Springer-Verlag, Heidelberg, Germany.

Cohen, P. R. and H. J. Levesque: 1991, ‘Teamwork’. Nous 35.

Dean, T., K. Basye, and J. Skewchuk: 1993, ‘Reinforcement Learning for
planning and Control’. In: Machine Learning Methods for Planning. Morgan
Kaufman, San Francisco, pp. 67-92.

Jennings, N.: 1995, ‘Controlling cooperative problem solving in industrial
multi-agent systems using joint intentions’. Artificial Intelligence 75.

Kitano, H., M. Asada, Y. Kuniyoshi, I. Noda, and E. Osawa: 1997a, ‘RoboCup:
The Robot World Cup Initiative’. In: Proceedings of the first international
conference on autonomous agents.

Kitano, H., M. Tambe, P. Stone, S. Coradesci, H. Matsubara, M. Veloso, I.
Noda, E. Osawa, and M. Asada: 1997b, ‘The RoboCup Synthetic Agents’
Challenge’. In: Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI).

Luke, S., H. C., J. Farris, G. Jackson, and J. Hendler: 1998, ‘Co-Evolving
Soccer Softbot Team Coordination with Genetic Programming’. In: RoboCup-
97: The first robot world cup soccer games and conferences. Springer-Verlag,
Heidelberg, Germany.

Mahadevan, S. and J. Connel: 1991, ‘Automatic Programming of Behavior-
based Robots using Reinforcement Learning’. In: Proceedings of the National
Conference of the American Association for Artificial Intelligence (AAAI).
Quinlan, J. R.: 1993, C4.5: Programs for machine learning. San Mateo, CA:
Morgan Kaufmann.

Rao, A. S., A. Lucas, D. Morley, M. Selvestrel, and G. Murray: 1993, ‘Agent-
oriented architecture for air-combat simulation’. Technical Report Technical
Note 42, The Australian Artificial Intelligence Institute.

Rich, C. and C. Sidner: 1997, ‘COLLAGEN: When agents collaborate with
people’. In: Proceedings of the International Conference on Autonomous Agents
(Agents’97).

Stone, P. and M. Veloso: 1998a, ‘Task Decomposition and Dynamic Role
Assignment for Real-Time Strategic Teamwork’. In: Proceedings of the
international workshop on Agent theories, Architectures and Languages.
Stone, P. and M. Veloso: 1998b, ‘Using Decision Tree Confidence Factors for
Multiagent Control’. In: RoboCup-97: The first robot world cup soccer games
and conferences. Springer-Verlag, Heidelberg, Germany.

Sutton, R. S.: 1988, ‘Learning to predict by the methods of temporal
differences’. Machine Learning 3, 9-44.

Tambe, M.: 1997, ‘Towards flexible teamwork’. Journal of Artificial Intelligence
Research (JAIR) 7, 83-124.

agjourn.tex; 15/11/1999; 11:43; p.18



16.

17.

18.

19

Tambe, M., W. L. Johnson, R. Jones, F. Koss, J. E. Laird, P. S. Rosen-
bloom, and K. Schwamb: 1995, ‘Intelligent agents for interactive simulation
environments’. AI Magazine 16(1).

Williamson, M., K. Sycara, and K. Decker: 1996, ‘Executing decision-theoretic
plans in multi-agent environments’. In: Proceedings of the AAAI Fall
Symposium on Plan Ezecution: Problems and Issues.

Yokota, K., K. Ozako, M. A., T. Fuyjii, A. H., and I. Endo: 1998, ‘Cooperation
Towards Team Play’. In: RoboCup-97: The first robot world cup soccer games
and conferences. Springer-Verlag, Heidelberg, Germany.

agjourn.tex; 15/11/1999; 11:43; p.19



agjourn.tex; 15/11/1999; 11:43; p.20



