On being a teammate: Experiences acquired in the design of RoboCup teams

Stacy Marsella, Jafar Adibi, Yaser Al-Onaizan,

Gal A. Kaminka, lon Muslea, Milind Tambe
Information Sciences Institute and Computer Science Department
University of Southern California
4676 Admiralty Way
Marina del Rey,CA 90292
robocup-sim@isi.edu

Abstract

Increasingly, multi-agent systems are being designed for a
variety of complex, dynamic domains. Effective agent inter-
actions in such domains raise some of the most fundamental
research challenges for agent-based systems, in teamwork,
multi-agent learning and agent modelling. The RoboCup
research initiative, particularly the simulation league, has
been proposed to pursue such multi-agent research chal-
lenges, using the common testbed of simulation soccer. De-
spite the significant popularity of RoboCup within the re-
search community, general lessons have not often been ex-
tracted from participation in RoboCup. This is what we
attempt to do here. We have fielded two teams, ISIS97 and
IS1S98, in RoboCup competitions. These teams have been
in the top four teams in these competitions. We compare
the teams, and attempt to analyze and generalize the lessons
learned. This analysis reveals several surprises, pointing out
lessons for teamwork and for multi-agent learning.

1 Introduction

Increasingly, multi-agent systems are being designed for a
variety of complex, dynamic domains. Effective agent inter-
actions in such domains raise some of most fundamental re-
search challenges for agent-based systems. An agent in such
domains must model other agents’ behaviors, learn/adapt
from its interactions, form teams and act effectively in a
team, negotiate with other agents, and so on. For each of
these research problems, the uncertainty and the presence of
multiple cooperative and non-cooperative agents, only con-
spires to exacerbate the difficulty.

Consider for instance the challenge of multi-agent team-
work, which has become a critical requirement across a wide
range of multi-agent domains[14, 9, 15]. Here, an agent team
must address the challenge of designing roles for individuals
(i.e., dividing up team responsibilities based on individu-
als’ capabilities), doing so with fairness, and reorganizing
roles based on new information. Furthermore, agents must
also flexibly coordinate and communicate, so as to perform
robustly despite individual members’ incomplete and incon-

sistent view of the environment, and despite unexpected in-
dividual failures. Learning in a team context also remains
a difficult challenge — indeed, the precise challenges and
possible benefits of such learning remain unclear.

To pursue research challenges such as these and stimu-
late research in multi-agents in general, the RoboCup re-
search initiative has proposed simulation and robotic soc-
cer as a common, unified testbed for multi-agent research[53]
(www.robocup.org). The RoboCup initiative has proved ex-
tremely popular with researchers, with annual competitions
in several different leagues. Of particular interest in this pa-
per is the simulation league, which has attracted the largest
number of participants. The stated research goals of the
simulation league are to investigate the areas of multi-agent
teamwork, agent modelling, and multi-agent learning[6].

Yet, the lessons learned by researchers participating in
RoboCup, particularly the simulation league, have largely
not been reported in a form that would be accessible to the
research community at large. There are just a few notable
exceptions[11]. However, extracting such general lessons in
areas of teamwork, agent modelling and multi-agent learning
is a critical task for several reasons: (i) to meet the stated
research goals of the RoboCup effort (at least the simulation
league); (ii) to establish the utility of RoboCup and possibly
other common testbeds for conducting such research; (iii) to
enable future participants to evaluate some of the types of
research results to be expected from RoboCup.

This paper attempts to remedy the above situation by
extracting the general lessons learned from our experiences
with RoboCup. We have fielded two different teams in
RoboCup simulation league competitions, [SIS97 and ISIS98,
which competed in RoboCup97 and RoboCup98, respec-
tively. ISIS97 won the third place prize in over 30 teams in
RoboCup97 (and was also the top US team), while ISIS98
came in fourth in over 35 teams in RoboCup98. As one of
the top teams, there is indeed an increased responsibility to
report on the general lessons extracted.

Our focus in this paper is not on any one specific re-
search topic, but rather on all aspects of agent and team
design relevant to the RoboCup research challenges. Our
methodology is one of building the system first, and then
attempting to analyze and generalize why it does or does
not work. Fortunately, the presence of two RoboCup teams,
[SIS97 and ISIS98, often with contrasting design decisions,
aids in this analysis. ISIS97 is an earlier and much simpler
team compared to [SIS98, but is often able to compensate
for its weaknesses in novel ways.

The analysis does reveal several general lessons in the
areas of teamwork and multi-agent learning. With respect



to teamwork, in the past, we have reported on our ability to
reuse STEAM, a general model of teamwork, in RoboCup[13].
This paper takes a step further, evaluating the effectiveness
of STEAM in RoboCup, to improve our understanding of
the utility of general teamwork models. It also provides an
analysis of techniques for the division of team responsibili-
ties among individuals. For instance, compared to [SIS98,
ISIS97 agents had relatively little preplanned division of re-
sponsibility. Yet, it turns out that via a technique we call
competition within collaboration, ISIS97 agents compensate
for this weakness. A similar situation arises in team mon-
itoring. Compared to ISIS98, ISIS97 agents have a signifi-
cantly limited capability for maintaining situational aware-
ness or monitoring surroundings. However, 1SIS97 agents
illustrate that this weakness can be overcome via relying on
distributed monitoring. The techniques discovered in [SIS97
were unexpected, and they only became clear when com-
pared with [SIS98. However, they provide an insight into
design techniques more suitable for simpler agent teams.

With respect to multi-agent learning, we focused on a
divide-and-conquer learning approach in designing agents.
With this approach, different modules (skills) within indi-
vidual agents were learned separately, using different learn-
ing techniques. In particular, one of the skills, to pick a
direction to shoot into the opponents’ goal while avoiding
opponents, was learned off-line using C4.5[8]. Another skill,
to intercept the ball, used a mix of off-line and on-line learn-
ing. One of the key surprises here was the degree to which
individual agents specialized in their individual roles. Thus,
sharing experiences of individuals in different roles or equiv-
alently training individuals by letting them execute different
roles would appear to be significantly detrimental to team
performance. Indeed, this lesson runs contrary to techniques
of cooperative learning where experiences are shared among
agents.

2 Background: Simulation League

The RoboCup simulation league domain is driven by a public-
domain server which simulates the players’ bodies, the ball
and the environment (e.g., the soccer field, flags, etc). Soft-
ware agents provide the “brains” for the simulated bodies.
Thus, 22 agents, who do not share memory, are needed for
a full game. Visual and audio information as “sensed” by
the player’s body are sent to the player agent (“brain”),
which can then send action commands to control the sim-
ulated body (e.g., kick, dash, turn, say, etc.). The server
constrains the actions an agent can take and the sensory in-
formation it receives. For instance, with the server used in
the 1997 competition, a player could only send one action
every 100 milliseconds and received perceptual updates only
every 300 milliseconds. The server also simulates stamina:
If a player has been running too hard, it gets “tired”, and
can no longer dash as effectively. Both actions and sensors
contain a noise factor, and so are not perfectly reliable. The
quality of perceptual information depends on several factors,
such as distance, view angle, and view mode (approximating
visual focus). All communication between players are done
via the server, and are subject to limitations such as band-
width, range and latencies. Figure 1 shows a snapshot of
the soccer server with two competing teams: CMUnited97
[11] versus our ISIS team.

In RoboCup97, I1SIS97 won the third place prize (out of
32 teams). It won five soccer games in the process, and
lost one. In RoboCup98, ISIS98 came in fourth (out of 37
teams). It won or tied seven soccer games in the process, and

Figure 1: The Robocup synthetic soccer domain.

lost two. Some interesting observations in the tournaments
have been that ISIS has never lost a close game. That is,
ISIS’s wins are either by large goal margins or sometimes
by narrow, nail-biting margins (in overtime). However, the
three games that ISIS has lost in competitions have been
by large margins. Another key observation has been that
individual ISIS97 or ISIS98 players have often been lacking
in critical skills, even when compared to opponents where
ISIS97 or ISIS98 won. For instance, ISIS98 players had no
offside skills (a particular soccer skill), yet it won against
teams that did check for offside. Thus, teamwork in ISIS
appears to have compensated for its lacking skills.

3 The ISIS Architecture

An ISIS agent uses a two-tier architecture. The lower-level,
developed in C, processes input received from the simulator,
and together with its own recommendations on turning and
kicking directions, sends the information up to the higher
level. For instance, the lower level computes a direction to
shoot the ball into the opponents’ goal, and a micro-plan,
consisting of turn or dash actions, to intercept the ball.

The lower-level does not make any decisions. Instead,
all decision-making rests with the higher level, implemented
in the Soar integrated Al architecture[14]. Once the Soar-
based higher-level reaches a decision, it communicates with
the lower-level, which then sends the relevant action infor-
mation to the simulator. Soar’s operation involves dynam-
ically executing an operator (reactive plan) hierarchy. The
operator hierarchy shown in Figure 2 illustrates a portion
of the operator hierarchy for ISIS player-agents. Only one
path through this hierarchy is typically active at a time in
a player agent. The hierarchy has two types of operators:
Individual operators represent goals/plans that the player
makes and executes as an individual. Team operators con-
stitute activities that the agent takes on jointly as part of a
team or subteam and are shown in [].

IS1S97 and ISIS98 share the same general-purpose frame-
work for teamwork modelling, STEAM[13]. STEAM mod-
els team members’ responsibilities and joint commitments[3]
in a domain-independent fashion. As a result, it enables
team members to autonomously reason about coordination
and communication, improving teamwork flexibility. The
[Defend-Goal] team operator demonstrates part of STEAM.!

! Another part of STEAM deals with team reorganization, which



[Win-Game]

[Play] [Interrupt]

[Attack] [Déend] [Midfield] [Defend-Goal]
[Simﬁe/\ﬁank [Carefu/%—goal

Advance]  Attack] defense] defense]

SCOZQON anS Intercept ki}*OUt Jeposition

Figure 2: A portion of the operator hierarchy for player-
agents in RoboCup soccer simulation. Bracketed operators
are team operators, others are individual operators.

It is executed by the goalie subteam. In service of [Defend-
Goal], players in this subteam normally execute the [Simple-
goal-defense] team operator to position themselves properly
on the field and to try to be aware of the ball position. Of
course, each player can only see within its limited cone of vi-
sion, and can be unaware at times of the approaching ball.
If any one of these players sees the ball as being close, it
declares the [Simple-goal-defense] team operator to be ir-
relevant. Its teammates now focus on defending the goal
in a coordinated manner via the [Careful-defense] team op-
erator. Specifically this includes intercepting the ball (the
Intercept Operator) and then clearing it (the Kick-Out op-
erator). Should any one player in the goalie subteam see the
ball move sufficiently far away, it again alerts its team mates
(that [Careful-defense] is achieved). The subteam players
once again execute [Simple-goal-defense] to attempt to po-
sition themselves close to the goal. In this way, agents co-
ordinate their defense of the goal. All the communication
decisions are handled automatically by STEAM.

4 Analysis of Teamwork

4.1 Lessons in (Re)using a Teamwork Model

In past work, we have focused on STEAM’s reuse in our
ISIS teams[13], illustrating that a significant portion (35-
45% when measured in terms of the rules) was reused, and
that it enabled reduced development time. The use of the
teamwork model is a shared similarity between ISIS97 and
ISIS98. However, a key unresolved issue is measuring the
contribution of STEAM to ISIS’s performance. This issue
goes to the heart of understanding if general teamwork mod-
els can actually be effective.

To measure the performance improvement due to STEAM,
we experimented with two different settings of communica-
tion cost in STEAM. At “low” communication cost, SIS
agents communicate “normally”. At “high” communication
cost, ISIS agents communicate no messages. Since the por-
tion of the teamwork model in use in ISIS is effective only
with communication, a “high” setting of communication
cost essentially nullifies the effect of the teamwork model
in execution.

Tables below shows the results of games for the two set-
tings of communication cost, illustrating the usefulness of
STEAM. Table 1 compares the performance of the two set-
tings against Andhill97. It shows the goal difference between
ISIS97 and Andhill97 was -52 at 15 games (mean -3.46 per
game) for “low” cost, and the goal difference was -66 (mean

is not used in ISIS.

-4.40) for “high” cost. Table 2 shows that the goal dif-
ference between ISIS97 and CMUnited97 for “low” was 49
at 15 games (mean 3.26), and it was 26 (mean 1.73) for
“high”. In both cases, the difference in the means of the
goal-differences were seen to be significant under a T-test.
That is, STEAM’s communication (low cost) helped to sig-
nificantly improve ISIS’s performance in both cases. Thus,
general teamwork models like STEAM can not only reduce
development overhead, but can contribute to team perfor-
mance.

Comm | Total | Total score | Total Goal | Mean goal
cost games in goals difference difference
Low 15 4-56 -52 -3.46
High 15 0-66 -66 -4.40

Table 1: STEAM in ISIS97 against Andhill97.

Comm | Total | Total score | Total Goal | Mean goal
cost games in goals difference difference
Low 15 50-1 +49 3.26
High 15 31-5 +26 1.73

Table 2: STEAM in ISIS97 against CMUnited97.

4.2 Lessons in Team Monitoring

In designing individual [SIS98 players, we provided them
detailed capabilities to locate their own x,y positions on the
RoboCup field, as well as the x,y position of the ball. This
was an improvement in design over ISIS97, where individuals
did not even know their own or the ball’s x,y location. That
is, ISIS97 players estimated all of these positions heuristi-
cally, and often inaccurately. Thus, for instance, individual
ISIS97 players on the defender subteam may not know if
the ball is far or near the goal. Thus, ISIS98 players were
individually more situationally aware of their surroundings.
The expectation was that this would lead to a significant
improvement in their performance over ISIS97, particularly
in those behaviors where situational awareness is important.

The surprise in actual games however was that in behav-
iors which appeared to require good situational awareness,
ISIS97 players appeared to be just as effective as [SIS98
players! A detailed analysis revealed an interesting phe-
nomena: [SIS97 players were compensating for their lack of
individual monitoring (and situational awareness) by relying
on their teammates for monitoring. In particular, while in-
dividuals in ISIS97 were unaware of their x,y locations, their
teammates acted as reference points for them, and provided
them the necessary information.

Consider for instance the [Careful-defense] team opera-
tor discussed earlier. This operator is terminated if the ball
is sufficiently far away. As a team operator, it also requires
that the defenders inform each other if the ball is sufficiently
far away. In ISIS98, players were easily able to monitor own
x,y location and ball x,y location, so that they could usu-
ally quickly recognize the termination of this operator. In
ISIS97, individually recognizing such termination was diffi-
cult. However, one of the players in the subteam would just



happen to stay at a fixed known location (e.g., the goal).
When it recognized that the ball was far away, it would
inform the teammates, given its joint commitments in the
team operator. Thus, other individuals, who were not situa-
tionally well-aware, would now learn about the termination
of the team operator. (This technique failed if the player at
the fixed location moved for some reason.)

The key lesson to take away is that in a multi-agent
system, there is a tradeoff in monitoring. One approach is
to design an agent, with complex monitoring capabilities,
that is situationally well-aware of its surroundings. Another
is to design a much simpler monitoring agent, but rely on
teammates to provide the necessary information. In the
first case, agents are more independent, while in the second
case, they must rely on each other, and behave responsibly
towards each other.

Another key lesson is that the design of a team’s joint
commitments (via team operators) has a significant impact
on how individual skills may be defined. For instance, given
the definition of [Careful-defense], with its accompanying
joint commitments, individual players need not be provided
complex monitoring capabilities. Similarly, definition of in-
dividual skills should impact the design of a team’s joint
commitments. Thus, for instance, for ISIS98 players, given
their individual situational awareness, the commitments in
[Careful-defense] to inform each other when the ball is far
or near may not be as useful.

4.3 Lessons in Designing Role Responsibilities

In teamwork, role responsibilities are often designed so as to
achieve load balancing among individuals, and to avoid con-
flicts among them. With these goals in mind, when defining
roles for ISIS98 players, we provided them detailed, non-
overlapping regions in which they were responsible for in-
tercepting and kicking the ball. Essentially, each player was
responsible for particular regions of the field. Furthermore,
these regions were flexible. The players would change re-
gions if the team went from attack mode to defense mode,
i.e., if the ball moved from the opponent’s half to own half.
This ISIS98 design was a significant improvement over our
earlier ISIS97 design. There, players have regions of the
fields that are their responsibility, but the division is very
relaxed with considerable overlap. So effectively, multiple
players will share the responsibility of defending a specific
area of the field, and thus could conflict, for instance, by
getting in each other’s way.

Again, the expectation was that ISIS98 would perform
significantly better than ISIS97, given that [SIS98 had a
carefully laid out, but flexible, plan for division of respon-
sibilities. This division of responsibility was intended to
have an additional side-effect of an overall conservation of
stamina, which was particularly desirable because stamina
was a more critical issue in RoboCup98.

The surprise when we played ISIS97 and [SIS98 against
a common opposing team was that [SIS98 was not out-
performing [SIS97 as expected. The analysis revealed that
ISIS97 managed to attain a reasonable division of respon-
sibilities, by hitting upon a style of play that can be char-
acterized as competition within collaboration. FEssentially,
multiple players in ISIS97 may chase after the ball, compet-
ing for opportunities to intercept the ball. Players that were
out of stamina (tired), players that got stuck, lost sight of
the ball etc., would all fall behind. Thus, the ISIS97 player
that was best able to compete (i.e., get close to the ball
first), would get to kick the ball. This technique in some

cases attained a more dynamic load-balancing, when com-
pared to the planned division of responsibilities in ISIS98.
For instance, in ISIS98, a player, even if very tired, would
still have to continue to assume responsibility for its region.
In ISIS97, that player would be unable to get to the ball,
and another one with more stamina would take control.

This competition in [SIS97 arises because the responsi-
bility for intercepting the ball is not explicitly modeled as
a team operator and each individual thereby makes the de-
cision to intercept the ball on their own. The price of this
competition is that more individual agents may waste their
resources chasing after the same opportunity. Another im-
portant item is that in [SIS98, the agents followed the roles
designed by the human. In [SIS97, the agents’ behavior was
more unpredictable, as they were not following particular
role definitions.

One key lesson learned is the contrasts among the tech-
niques for role responsibility design, which bring forth some
novel tradeoffs. In particular, for simpler teams, the tech-
nique of competition within collaboration, would appear to
be a reasonable compromise that does not require significant
planning of division of responsibilities.

5 Analysis of Learning

We focused on a divide-and-conquer learning approach in
designing agents. With this approach, different modules
(skills) within individual agents were learned separately, us-
ing different learning techniques. To date, learning has been
applied to (i) learning of goal shots, to shoot when attempt-
ing to score a goal (using C4.5) and (ii) selection of a plan to
intercept an incoming ball (using reinforcement learning).

5.1 Offline Learning of Goal Shots

Scoring goals is a critical soccer skill. However, our initial
hand-coded, approaches to determining a good direction to
kick the ball, based on heuristics such as “shoot at the cen-
ter of the goal”, or “shoot to a corner of the goal”, failed
drastically. In part, this was because heuristics were often
foiled by the fact that small variations in the configuration
of players around the opponent’s goal or a small variation
in the shooter’s position may have dramatic effects on the
right shooting direction.

To address these problems, we decided to rely on au-
tomated, offline learning of the shooting rules. A human
expert created a set of shooting situations, and selected
the optimal shooting direction for each such situation. The
learning system trained on these shooting scenarios. C4.5[8]
was used as the learning system, in part because it has the
appropriate expressive power to express game situations and
can handle both missing attributes and a large number of
training cases.

In our representation, each C4.5 training case has 39 at-
tributes, such as the recommended kicking direction, the
shooter’s facing direction, and the shooter’s angles to the
other visible players, the 12 flags, the 4 lines, the ball, and
the opponent’s goal. The system was trained on over roughly
1400 training cases, labeled by our expert with one of UP,
DOWN, and CENTER (region of the goal) kicking direc-
tions. The decision was based on actually having the ball
be kicked in each direction with a fixed velocity and judging
which shot was best, factoring in the other players’ fixed lo-
cation and the randomizations associated with kicking (e.g.,
wind).



The result was that given a game situation characterized
by the 39 attributes, the decision tree selected the best of
the three shooting directions. The resulting decision tree
provided a 70.8%-consistent set of shooting rules. These
learned rules for selecting a shooting direction were used
successfully in RoboCup’97.

The C4.5 rules were a dramatic improvement over our
original hand-coded efforts. However, there were still cases
under actual playing conditions where the shooting direc-
tion calculated by these rules seemed inappropriate. Par-
ticularly, in some cases, the C4.5 rules would attempt very
risky shots on the goal, when a more clear shot seemed easily
possible. The reason this occurred was that offline learning
was done using the human expert’s labeling which was based
on assumptions about opponents’ level of play in RoboCup
matches — the expert tended to assume the worse. However,
in practice, especially against weaker teams, easy opportu-
nities appeared to have been thrown away by taking some
unnecessary risks.

Thus, one key lesson learned here is was that it may be
possible to approach the agent design problem via a divide-
and-conquer learning technique. Another key lesson is that
off-line learning in dynamic multi-agent contexts must be
sensitive to the varying capabilities of other agents.

5.2 Online Learning of Intercepts

Intercepting the ball is another critical basic skill. However,
it is not a simple, static skill. Whether in human soccer
or RoboCup, there are many external and internal playing
conditions that can impact a player’s intercept. The op-
posing side may kick/pass/run harder than normal, thereby
requiring a player to run harder, modify the path they take
or forgo interception. Properties of the ball’s motion or vis-
ibility can also dramatically impact play. Human players,
at least, fluidly adapt to these conditions. However, unlike
real soccer players, our ISIS players’ intercept skills were not
adapting very well to differing internal and external factors.

One could address this problem by a precise re-engineering
approach, by using all of the parameters available from the
server, and then trying to precisely handcode the intercept.
We have taken a different approach, driven by the ques-
tion: what would happen if players in ISIS98 are allowed to
learn plans themselves, and what would that learning tell us?
In particular, would there be differences in what is learned
across different players? Would there be differences across
different opponents? We therefore pursued a reinforcement
learning approach [12, 4] to enable players to adapt their in-
tercept online, under actual playing conditions using just the
perceptual information provided by the server to the player:
the ball’s current direction, change in direction, distance.

Although our concern is more on what is learned online
as opposed to how it is learned, any approach to the online
learning of intercept must deal with several difficulties. One
key difficultly revealed in applying reinforcement learning is
that in the course of a game, there are not many opportuni-
ties to intercept the ball. Furthermore, even within those
opportunities, an agent is often unable to carry through
the full intercept, since other players may happen to kick
the ball, or the ball may simply go outside the field, etc.
Whereas that suggests the need for rapid adaptation, it is
also the case that inappropriate adaptations can have dire
consequences.

To address these concerns, it was important to design in-
termediate reinforcement, occurring as an intercept plan was
in progress and not just when the plan completed. Specifi-

cally, ISIS98 uses the same simple intercept micro-plan struc-
ture used in [SIS97. A player intercepts the ball by stringing
together a collection of micro-plans, where each micro-plan
consists of a turn followed by one or two dashes. For every
step in a micro-plan, ISIS98 has an expectation as to what
any new information from the server should inform it as to
the ball’s location. Failure to meet that expectation results
in a learning opportunity. To allow transfer to similar states,
the input conditions are clustered. Repeated failures lead to
changes in the micro-plan assigned to an input condition. In
particular, the turn increment specific to that input condi-
tion is adjusted either up or down upon repeated failure. For
most input conditions, the actual turn is calculated from the
turn increment in the following fashion:

Turn = BallDir 4+ (TurnIncrement «+ Change Ball Dir)

5.2.1 Online Learning Experiments

We have performed several preliminary experiments in which
ISIS made online adjustments to the turn increment fac-
tor. These experiments involved six extended length games
between ISIS and two other teams, CMUnited97 (team of
Stone and Veloso of Carnegie Mellon) and Andhill97 (team
of T. Andou of NTT labs). They have illustrated several
interesting trends. In each experiment, each player started
with a default value of 2.0 for their turn increment across
all input conditions. The learning could result in turn in-
crement values that range from +5 down to -1, across input
conditions. While these may appear to be small numbers,
because of the multiplicative factors, and because the in-
tercept plan is invoked repeatedly, these changes are overall
very significant.

The results we observed were that for any particular in-
put condition, the trend in the learning seems uniform in
its direction across teams and positions. Against these two
teams, if one player playing Andhill97 increased the turn
increment under a certain input condition then all the play-
ers with sufficient training examples would tend to show an
increase whether in games with Andhill97 or CMUnited97.
There however can be striking differences in magnitude. Be-
low, we consider two illustrative examples.

Test 1: Same player against different Teams

In particular, lets consider the case of what a player in
a particular position learns while playing a game against
CMUnited97 as opposed to what the same player learns
playing against Andhill97. In Figure 3, the mean results
for Player 1, a forward, are graphed against the mean for
all players, at 3000 ticks of the game clock until the end of
the game at 15000 (RoboCup games normally run to 6000,
here the time has been lengthened to simplify data collec-
tion). This particular data is for the input condition of
balls moving across the player’s field of vision, a middling-
to-close distance away. Figure 3 shows that against And-
hill97, the player is learning a turn increment similar to the
mean across all players for this input condition. However,
against CMUnited97, the player is learning a much larger in-
crement. The difference between the means for CMUnited97
and Andhill97 at 15000 ticks is significant (under a t-test).

Test 2: Different Players Against Same Team

It 1s also the case that different players against the same
team do learn different increments. Consider Figure 4. [t
plots mean turn-increments for Player 1 and Player 10 (a
fullback) for the the same input condition as above, against
CMUnited97. The differences in the means are significant.



Player 1 vs. CMU ——

45 L Player 1vs. Andhill - |
’ All Players -

All Players vs. CMU

25 r

2 1 1 1 1
0 2000 4000 6000 8000 10000 12000 14000

Figure 3: Contrast of Player 1 versus CMUnited97 with
Player 1 versus Andhill97 under same input condition.
Means across all players provided for comparison. Player
1 is a forward.

5 \ T \

Player 1 vs. CMU ——
Player 10 vs. CMU -
45 t+ |

35 b

2 ¥ I I I
0 2000 4000 6000 8000 10000 12000 14000

Figure 4: Contrast of Player 1 versus CMUnited97 with
Player 10 versus both CMUnited97, under the same input
condition. Player 1 is a forward and Player 10 is a goal

defender.

5.2.2 Lessons Learned

The key here is that Player 1 distinctly tailors its intercept to
its role and its particular opponents. There is a domain level
analysis, which clarified why player 1 had specialized its role
so significantly — CMUnited97’s defenders often cleared the
ball with a strong sideways kick, which player 1 continuously
faced. However, there is a larger point. These results argue
for the specialization of skills according to both role and
the specific conditions under which the skill is exhibited.
Thus, sharing experiences of individuals in different roles
or equivalently training individuals by letting them execute
different roles would appear to be detrimental to an agent’s
performance.

While the magnitude differed significantly, the trends of
the changes were shared across players. This suggests there
is still benefit to social learning, or cross-agent communi-
cation of learning experiences. In particular, in the case of
goalees, which do not get as many chances typically to inter-

cept the ball during the game, we have found it particularly
useful to transfer mean values from the other players. How-
ever, the key is to recognize that there are interesting limits
to such social learning. Hence, learn socially, but with real
caution!

6 Related Work

As outlined earlier, we as RoboCup researchers, particu-
larly in the simulation league, have not communicated our
research in general terms to the multi-agent or agent com-
munity at large (there are some notable exceptions).

Within RoboCup-based investigations, ISIS stands alone
with respect to investigation of a general, domain-independent
teamwork model to guide agents communication and coor-
dination in teamwork. Some researchers investigating team-
work in RoboCup have used explicit team plans and roles,
but they have relied on domain-dependent communication
and coordination. A typical example includes work by Chng
and Padgham[2]. They present an elaborate analysis of roles
in motivating teamwork and team plans. In this scheme,
agents dynamically adopt and abandon roles in pre-defined
tactics. The responsibilities and actions of each agent are
determined by its current role in the current plan. Un-
like ISIS agents, whose team-related responsibilities are part
of the general domain-independent STEAM model, Chang
and Padghams roles include both team- level responsibili-
ties as well as personal responsibilities — and so there is
no separation of the domain-dependent from the domain-
independent responsibilities. A similar scheme is used by
Stone and Veloso [10]. They offer an approach to manag-
ing flexible formations and roles within those formations,
allowing agents to switch roles and formations dynamically
in a domain-dependent manner. Their agents synchronize
their individual beliefs periodically in a fixed manner, in
contrast with ISIS’s STEAM in which communications are
issued dynamically and can be parameterized based on the
domain of deployment. Another RoboCup effort focusing
on explicit team plans and roles is [1]. They define levels of
teamwork, starting at basic roles (which are static through-
out the game), and building on top of those with formations
and team plans for carrying out more complex tactics. These
teamwork levels determine the agents coordination respon-
sibilities and prioritize its actions. Other investigations of
teamwork in RoboCup have used implicit or emergent coor-
dination. A typical example is Yokota et al.[16].

Our application learning in [SIS agents is similar to some
of the other investigations of learning in RoboCup agents.
For instance, Luke et al.[7] use genetic programming to build
agents that learn to use their basic individual skills in coor-
dination. Stone and Veloso[11] present a related approach,
in which the agents learn a decision tree which enables them
to select a recipient for a pass.

7 Lessons Learned from RoboCup

Challenges of teamwork and multi-agent learning are critical
in the design of multi-agent systems, and these are two of
the critical research challenges of the RoboCup simulation
league. As participants in the RoboCup competitions, it is
critical that researchers extract general lessons learned, so as
to meet the goals of the RoboCup research initiative. This
is what we have attempted in this paper.

Our research in RoboCup began with the foundation of
a general model of teamwork, STEAM. Using STEAM, [SIS

can operate flexibly in the highly dynamic environment of



RoboCup. The fact that STEAM has served the research

well
sure

has been demonstrated both empirically and in the pres-
of the RoboCup97 and RoboCup98 competitions. Here

are some of the key lessons learned via our analysis of ISIS97

and

[S1S98:

Reuse of general teamwork models can lead to im-
proved performance.

Interesting tradeoffs exist in individual and team situa-
tional awareness (monitoring) in multi-agent systems.
In particular, responsible team behavior enables the
design of simpler situational awareness (monitoring)
capabilities for individuals.

Competition within collaboration can provide a simple
but powerful technique for designing role responsibili-
ties for individuals.

Divide-and-conquer learning can be used to enable dif-
ferent learning techniques to co-exist and learn differ-
ent skills in designing individual agents. This can re-
duce the complexity of the learning problem.

Some multi-agent environments can lead to a signifi-
cant role specialization of individuals. Thus, sharing
experiences of individuals in different roles or equiva-
lently training individuals by letting them execute dif-
ferent roles can sometimes be significantly detrimental
to team performance. That is, there has to be a check
on social learning.

For the human designer, outside of the multi-agent en-
vironment, it is often very difficult to comprehend the
agents’ experiences inside the environment and there-
fore difficult to design for those experiences.

RoboCup simulations are capable of providing a sur-
prise.

Acknowledgment

This research is supported in part by NSF grant IRI-9711665,

and

in part by a generous gift from the Intel Corporation.

References

(1]

T. F. Bersano-Begey, P. G. Kenny, and E. H. Durfee. Agent
teamwork, adaptive learning, and adversarial planning in
robocup using a prs architecture. In RoboCup-97: The
first robot world cup soccer games and conferences. Springer-
Verlag, Heidelberg, Germany, 1998.

S. Ch’ng and L. Padgham. Team description: Royal merl-
bourne knights. In RoboCup-97: The first robot world cup
soccer games and conferences. Springer-Verlag, Heidelberg,
Germany, 1998.

P. R. Cohen and H. J. Levesque. Teamwork. Nous, 35, 1991.

T. Dean, K. Basye, and J. Skewchuk. Reinforcement learn-
ing for planning and control. In Machine Learning Methods
for Planning, pages 67-92. Morgan Kaufman, San Francisco,
1993.

H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, and E. Osawa.
Robocup: The robot world cup initiative. In Proceedings
of the first international conference on autonomous agents,
1997.

H. Kitano, M. Tambe, P. Stone, S. Coradesci, H. Matsubara,
M. Veloso, I. Noda, E. Osawa, and M. Asada. The robocup
synthetic agents’ challenge. In Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence (IJCAI),
August 1997.

(7]

(10]

(11]

12]
(13]

(14]

(15]

(16]

S. Luke, Hohn C., J. Farris, G. Jackson, and J. Hendler.
Co-evolving soccer softbot team coordination with genetic
programming. In RoboCup-97: The first robot world cup
soccer games and conferences. Springer-Verlag, Heidelberg,
Germany, 1998.

J. R. Quinlan. C4.5: Programs for machine learning. Mor-
gan Kaufmann, San Mateo, CA, 1993.

A. S. Rao, A. Lucas, D. Morley, M. Selvestrel, and G. Mur-
ray. Agent-oriented architecture for air-combat simulation.
Technical Report Technical Note 42, The Australian Artifi-
cial Intelligence Institute, 1993.

P. Stone and M. Veloso. Task decomposition and dynamic
role assignment for real-time strategic teamwork. In Pro-
ceedings of the international workshop on Agent theories,
Architectures and Languages, 1998.

P. Stone and M. Veloso. Using decision tree confidence fac-
tors for multiagent control. In RoboCup-97: The first robot
world cup soccer games and conferences. Springer-Verlag,
Heidelberg, Germany, 1998.

R. S. Sutton. Learning to predict by the methods of temporal
differences. Machine Learning, 3:9-44, 1988.

M. Tambe. Towards flexible teamwork. Journal of Artificial
Intelligence Research (JAIR), 7:83-124, 1997.

M. Tambe, W. L. Johnson, R. Jones, F. Koss, J. E. Laird,
P. S. Rosenbloom, and K. Schwamb. Intelligent agents for
interactive simulation environments. AI Magazine, 16(1),
Spring 1995.

M. Williamson, K. Sycara, and K. Decker. Executing
decision-theoretic plans in multi-agent environments. In Pro-
ceedings of the AAAI Fall Symposium on Plan FErecution:
Problems and Issues, November 1996.

K. Yokota, K. Ozako, Matsumoto A., T. Fujii, Asama H.,
and I. Endo. Cooperation towards team play. In Robo Cup-

97: The first robot world cup soccer games and conferences.
Springer-Verlag, Heidelberg, Germany, 1998.



