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Abstract— This paper considers the problem of multi-robot
patrol around a closed area with the existence of an adversary
attempting to penetrate into the area. In case the adversary
knows the patrol scheme of the robots and the robots use
a deterministic patrol algorithm, then in many cases it is
possible to penetrate with probability 1. Therefore this paper
considers anon-deterministicpatrol scheme for the robots, such
that their movement is characterized by a probability p. This
allows computing the point with the minimal probability of
penetration detection, therefore the strong adversary will choose
to penetrate through this point. We offer a polynomial-time
algorithm for finding the probability p such that the minimal
probability of penetration detection throughout the area is
maximized. We describe three robotic motion models, defined
by the movement characteristics of the robots. The algorithm
described herein is suitable for all three models.

Therefore in this paper we analyze non-deterministic pa-
trol paths for a team of homogenous mobile robots patrolling
around an area, under the assumption of an observing adver-
sary trying to pass into the area. We first divide the perimeter
into segments such that each robot monitors one segment per
time cycle. When the robots patrol around a closed area, a
robot placed in segmerithas a choice of going to segment
i+ 1, 4, or remaining at the same segment.

We consider three movement models of robots, charac-
terized by different movement abilities of the robots. In the
first, DN'CP, the robot has directionality associated with its
movement, therefore if the robot is headed towards segment
7+ 1 it will go straight to segment + 1 with probability p

and turn backwards to segment 1 with probability 1 — p.
|. INTRODUCTION If it is directed towards segment-1, then the probability of

This paper discusses the problem of patrolling arounidl going to segment —1 is p, and to segmenit+1 is 1 —p.
a closed area by a team of robots (perimeter). The patrbhe second modelDCP, is a more realistic version of the
problem requires to visit a target area repeatedly in ordd?A/CP model, in which the robot has cost related to turning
to monitor some change in state of that area. We considground, i.e., if the robot turns around it stays in segmient
adversarial settings, in the sense that the adversary triesTibe last model is similar to a random walk, in which there
pass into the closed area. The problem of patrolling arourisl no directionality associated with the movement, i.e., the
an area with the existence of an adversary is applicable inbot goes to segme#t-1 with probability p and to segment
many security applications. This problem can be applicable— 1 with probability 1 — p.
in cases one wishes to model the worst case scenario that thén the strong adversarial model we consider, in which
system should deal with, for example toxic waste observandde adversary knows the patrol scheme of the roots, it will

The problem of multi-robot patrol is derived from thechoose to penetrate through the segment in which it has
fundamental problem of multi-robot coverage [4], and hakwest probability of being detected. We therefore describe a
received growing interest of its own (e.g. [1], [6]). Currentpolynomial time algorithm for maximizing this probability,
patrol solutions offer deterministic algorithms for generating.e., the maximin probability of penetration detection. We
a patrol path for a team of robots and maintaining the patratonsider mainly the most realistic robotic modéCP,
Analysis of these algorithms concentrated on assuring soratthough this algorithm works in all three models under
frequency criteria in the patrolled area [6] (e.g., to monitominor modifications. This algorithm was implemented and
changes). we show some interesting results obtained from running the

However, in adversarial settings the frequency criterigrogram.
becomes less relevant. Consider the following scenario. We
are given a cyclic fence of lengtf)0 meters and robots are
required to patrol around the fence while moving in velocity Systems of multiple robots or agents cooperating in order
1m/sec. Clearly, the optimal possiblérequencyof visits to patrol in some designated area have been studied in
at each point around the fence ig25, i.e., each location various approaches and contexts. Theoretical and empirical
is visited once ever®5 seconds. Assume that it takes ansolutions were proposed in order to assure quality patrol.
adversan20 seconds to penetrate the area through the fencéhe definition of quality depends on the context. Most
If the robots move in a deterministic path, then the adversastudies concentrate on the frequency of visits throughout
can guarantee penetration if it simply enters through #he designated area. Efficient patrol, in this case, is a patrol
position that was currently visited by the patrolling robotguaranteeing high frequency of visits in each part of the area.
On the other hand, if the robots move non-deterministicallyn case the robots work in an adversarial environment, then
then the choice of penetration position becomes less triviatfficient patrol is one that deals efficiently with intruders.

Il. RELATED WORK



Closely related to our research, is the work of Paruchudne patrol cycle that visits all points in the area in minimal
et. al. [9], [8]. Similar to our assumptions, they assume thdaime, and the robots simply travel equidistant around this
their agents work in an adversarial environment in whiclpatrol path.
the adversary can exploit any predictable behavior of the pa-
trolling agents. They use policy randomization in the agents I1l. MODELS
behavior in order to maximize their rewards. However, this
problem even for a single agent is solved in exponential tim
Therefore they providbeuristicpolynomial time algorithms a
for the single and multi agent case. In our work, we simplify
the problem suc_h that it is reason_ablg and implementable @ ropotic computational model
one hand, yet still we are able to fiogtimalstrategy for the ) o )
robots in polynomial time. Paruchuri et. al. further study ([8]) Ve consider a system consistinglohomogenous mobile
this problem in case the adversarial behavior is unknowfQPOtS, required to patrol around a closed afedhe robots
They again provide heuristic algorithms for optimal strategfPerate in cycles, where each cycle consists of two stages.
selection by the agents. 1) Compute: Execute the given random algorithm, result-

Theoretical work based on stochastic processes that is ing in a goal pointpg.
related to our work is theat and mousgroblem [5], also 2) Move: Move towards the poinpg.

known as thepredator-prey[7] or pursuit evasion11]. In This model is synchronous, i.e. all robots execute each
this problem, a cat is attempting to catch a mouse in a grapfycle simultaneously. We consider patrol in a circular path,
The mouse is mobile, and so is the cat. As far as the catyjghich is similar to a one dimensional graph.
concerned, the mouse performs something similar to a simpleTpe path aroundP is divided into segments of length
random walk on the graph, as it has no knowledge aboyt \yhere | corresponds to the distance one robot travels
its movement. \We, on the other hand, have worst case agyd monitors the area in one cycle. Hence each robot
sumptions about the adversary. We considertmtic model, travels through one segment per cycle while covering it.
in which the movement is correlated to the movement of gpjs division into segments makes it possible to consider
robot, specifically with possible directionality of movementpatrols in heterogenous terrains. In such areas, the difficulty
and possible cost of changing directions. Moreover, we Worgt nassing through terrains vary from one terrain to another,
around a perimeter, rather than a graph or an area. for example driving in muddy tracks vs. driving on a road.
Other theoretical work by Shieh and Calvert [10], based o aqdition, riding around corners requires a vehicle to slow
computational geometry solutions, attempts to find optimg{own. Figure 1 demonstrates a transition from a given area
viewpoints for patrolling robots. Here, they try to maximizeyg 5 discrete cycle. Note that if the path is divided idto

the view of the robots in the area. They show that the problegegments, then the distandebetween every two robots is
is N'P-Hard, and therefore find approximation algorithms fok;mp|y N/k.

the problem. _ _ _ At each cycle a robot that resides in segmehgs three
The first theoretical analysis of multi-robot patrol prOblembptions as to where to go - segment 1, segment + 1 or

was given by Chevaleyre [3]. He introduces the notion ofgmain in segment We assume the robots are coordinated,
idlenesswhich is the duration each point in the patrolled areas 5| robots decide simultaneously to move in the same
is not visited. In his work, he analyzes two types of multi-yirection. We also require that the robots are initially placed
robot patrol schemes with respect to the idleness Cme”ﬁhiformly around P with distanced between every two

partitioning the area into subsections, each section is visite\secutive robots. The motivation for these assumptions is
continuously by one robot, and the cyclic scheme in whicBhown in Lemma 3.

a patrol path is provided along the entire area, and all robots
visit all parts of the area, consecutively. He proves that in
the latter approach, the frequency of visiting points in the
area is considerably better. An empirical survey by Almeida
et. al. [2] offers a discussion concerning different approaches

towards patm"mg with regards to the idleness criteria. The i& 1. An example for creating discrete segments from a circular path
the

compare paths bas_ed on ma_Ch_ine learning, agents USIR property that the robots travel through one segment per cycle.
negotiation mechanisms, heuristic agents and ones going

along one cycle (described in [3]). Their empirical results
show as well great advantage to the cycle based approacbefinition: Let ¢ be a discrete segment of a perimeter
Elmaliach et. al. [6] offer new frequency optimizationwhich is patrolled by one robot or more. Then th@bability
criteria used for evaluation of patrol algorithms. In theirof Penetration Detectiofppd) in ¢, is the probability that a
work, they provide an algorithm for multi-robot patrol thatpenetrator going through is detected by some robot going
is proven to have optimal frequency as well as unifornthroughe. In other wordsppd is the probability that a patrol
frequency, i.e., each point in the area is visited with the sanpath of some robot will pass through segmerduring the
highest-possible frequency. Their work is based on creatirtgne that a penetrator is going through that segment.

In this section we describe some basic definitions concern-
?ng the assumptions on the robots’ behavior and coordination
nd the influence of these attributes on the patrol mission.

equivalent



B. Robotic movement model D. Problem definition

The execution of the patrol differs from one model 10 gjnce we assume the existence of a strong adversarial
the other in the Compute step. As mentioned previously, W&ogel, we assume the adversary will choose to penetrate
consider three different patrol models, based on movemefp\trough the weakest spot in the cycle. Therefore we wish

abilities of the robots. to find p such that the minimal probability of detection
1) Bidirectional Movement Patrol{MP) throughout the patrol path is maximized. First, we define how
2) D!rect!onal Zero-Cost Patrd{\'CP) p characterizes the movement of the robots in the different
3) Directional Costly-Turn PatrolRCP) movement models. We then provide a formal definition of

The BMP patrol is intended for robots which movementthe generic problem.
pattern is similar to movement on train tracks or a camera assyme a robot is currently located in segménin the
going back and force along a fixed course. In this modep \(p model, it moves one step to the right (segmietl)
the robots have no movement directionality in the sense thaki, probabilityp and one step to the left (segmentl) with
switching directions — right to left and vice versa — doesprobabilityq = 1—p. This model is similar to a random walk.
not require physically changing the direction of the robogge Figure 2a for an illustration. In both tHRAVCP and
(turning around). o DCP models, we assume directionality of movement, hence

In the other two models the robots’ movement is directeqpe rohot continues its movement in its current direction with
and turning around is a special operation that might have §iobapility p, and turns around (rewinds) with probability
attached cost in time. THBA'CP patrol is used for robots |, _ | _ p. Therefore in theDA'CP model, if the robot
which have directionality of movement, but turning aroundg facing segment + 1, then it has probability of going
does not consume extra time. TEE'P patrol model is a  gyrajght to it and probabilityt — p for turning around and
more realistic version of th NCP model, where if the reaching celli — 1. Similarly, if it faces segment— 1, then

robot turns around, it remains in its current position, i.. has probabilityp or reachingi — 1 and probabilityl — p
rewinding costs the system extra time. An example for thigs reaching segmenit+ 1. The DCP model is similar, only
kind of robots are the differential drive robots commonlyinat if the robot turns around it remains in segmenSee

used in research labs. For simplicity reasons, we assume t'ft‘?éures 2b. and 2c. for illustration of tlRA'CP and DCP
turning around costs one time cycle. models, respectively.

C. Adversarial model

We assume the system works with the existence of an time t time t+1
adversary that controls the behavior of the penetrators. We
assume the adversary is strong in the sense that it has full i
knowledge of the system. Specifically, the adversary has the ; P -10 1
following information. a Wq<
1) Number of robots, the distance between them and their %
current position. -
2) the movement model of the robots and any character- E
ization of their movement. b < 1o 1
This information can be learned by the adversary by ' -1 1 q i
observing the behavior of the robots for sufficiently long to 1
enough time. Note that in security applications, such strong —
adversary exists. In other applications, the adversary models I
the behavior of the system in the “worst case scenario” from c. < o (: !
the patrolling robots point of view. -1 1 q I
The adversary, having all the information it obtained, 10 1
has to decide at tim® through what segment is wishes _ , L
to penetrate. Therefore it will choose to pass through th%g' 2. lllustration ofp’s characterization of the three models of movement.
segment in which it is less likely for it to be detected by the

robots. Border penetration detection (3PD) problem: Given a

Note that we assume the adversary tries (0 penelrigig,ce of lengthi divided into N segments, and: robots
once through some segment and the robots try to deteffyjired to patrol around the fence. Denotebip) the ppd
it. We assume the robots are responsible onlydetecting segment number, 1 < i < d— 1 given that the movement

penetration; and not handling the penetration (WhiCh rgquir%§ the robots is determined by the probabilily Assuming
task-allocation methods). Therefore the case in which the: it takes time units to penetrate, find the optimalp,y:.

adversary issues multiple penetrations is similar to handling,., that:

a single penetration, as the robots detect, report and continue

their monitoring through the rest of the path, according to Popt = Mmax min
their algorithm. 1<i<d—1, 0<p<l

Sdbey 1
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IV. PRELIMINARIES show thatppdﬁ > ppd,lc, for all 1 < k < w, and for at least
2 1
Following, we justify our motivation for considering mod- ©N€ segment,,, ppd.,, > ppd,,,.

els in which robots are placed uniformly arouftland are Denote_ the probability that the intruder will be detected by
coordinated in the sense that they all move together in tH8POt /2 in segmentc,., sequencé by P, (k);. Therefore,
same direction and switch directions simultaneously. for any segment; € S;, ppdy, = Pr, (k); + Pr,(k);. Note
Recall that we assume the number of time units it take§at eitherPr, (k);, Pr,(k); or both can be equal to.
the penetrator to enter is Recall that the time between First, forc,, ppd; =1 asR; is presently on segmert,,
every two consecutive robots arourtlis d. Therefore we in S2. Thereforeppd?, = 1 > ppd,,.
considert values between the boundarigh| <t < d — 2. For every other segment, Pr, (k); remains the same (as
The reason for this is that in case< | 2], then there is at there is no change in its relative location), hence we need to
least one segment wigipd = 0, therefore a strong adversary €xamine the change iz, (k);. From Lemma 1 we know
will always manage to penetrate successfully regardless 8tat P’r,(k); is a monotonic decreasing function. Therefore
the actions taken by the patrolling robots. On the other hanfr eachk, Pg, (k)2 = Pr,(k):. We need to show that for
if t > d— 2 then all segments can happd = 1 simply by ~ at least one segmeiitz, (k); > P, (k):.
using a deterministic algorithm. Robot R; may influence thepd in segments that are up
In order to find theppd in segmentc, we need to find t© distance from it, as it has probability of arriving at any
the probability that that is visited duringt time units. Segment with greater distance withiime units. Robotfz;
The ppd of ¢ is determined only by thdirst visit to ¢, May add to theppd of segments located left and right to its
since once the intruder is detected then the detection missigrrent position. Denote the number of influenced segments
was successful. Therefore tped is actually the probability 1O its right by s (note thats may be equal t®). If s > 0,
that a segment will be visitedt least onceduring ¢ time thenPg,(w—s+1)2 > P, (w—s)2. In other words 2, has
units. This probability is a function op (the probability Probability0 to reach the segment with distance- 1 from
that characterizes the movement of the robot). Denote tHeln S1, but in S it is s segments away from it, therefore
probability of detecting a penetrator by robBf, in segment s has probability greater thainto reach it.

c; aftert time units by Pg (). If s =0, thenppd? =1 > ppd.,, asR, lies exactly on
Note that theppd in segmentc; after ¢ time units is S€gmeniCl, in S, and Pr, (k)1 = 0 sinces = 0. L
exactly>"" | Pt (j). Also, the value of thepd is calculated ~ Lemma 3:A group of k£ mobile robots engaged in a

regardlesé of the actions of the adversary patrol mission maximizes minimagppd if the following

Lemma 1:For a givenp, the functionP%, (i) : N = [0, 1] two conditions are satisfied. The time distance between
for constantt and R, residing in segmemg is a monotonic €very two consecutive robots along the path is edudlhe

decreasing function, i.e., as the distance between a robot difp0ts are coordinated in the sense that they constantly walk

a segment increases, the probability of arriving in it duringogether in the same direction. _
¢ time units decreases. ote that conditionb does not mean that they walk in

Proof: We need to show that for all i € N, Pt, (i) > Some direction throughout the patrol, but if they change

P% (i + 1). The movement of the robots is coherent i.e direction, then allk robots change their direction together.
in order to move from segmeritto segmenti + 2, it has Proof: Following Lemma 2, it is sufficient to show that the

to move through segmeiitt 1. Therefore the probability of combination of conditiona andb yield the minimal distance

arriving at segment given that we have arrived at segment?&fween two consecutive robots along the cyclic path. Denote
i+1is1,i.e., P, (i|i+1) = 1. By conditional probability the number of segments in the path By and the number

law, if P}, (i+ 1) > 0 then of robots byk. There are(}) possibilities of initial placing
“ L _ of robots along the cycle (robots are homogenous, so this is
PLo(i]i+1) = Pp (i+1M1i) _ regardless of their order). If the robots are placed uniformly
Ra Pp (i+1) along the cycle, then the time distance between each pair of

consecutive robots iV/k. This is the minimal value that

can be reached. Therefore, clearly, conditwrguarantees

If Pf, (i+ 1) = 0, then sinceP’s value can not be lower this minimality.

than0, then necessarily’;, (i) > P} (i +1). [ | If the robots are not coordinated, then it is possible that for
Lemma 2:As the distance between two consecutivawo consecutive robots along the cyde and R;; to walk

robots along a cyclic patrol path is smaller, thyed in each in opposite directions. Therefore the distance between them

segment is higher and vice versa. grows from% to % +2, and by Lemma 2 thepd smaller.

Proof: Consider a sequencg of segmentsy,...,c,, If R; andR;,; move towards one another, then the distance

between two adjacent robots?, and R;, where ¢; is between them ié,g — 2 and theppd becomes higher. On the

adjacent to the current location @t, and ¢, is adjacent other hand, there exists some p&ly and R;;, where the

to the current location oR,. Let S, be a similar sequence, distance between them grows, as the total sum of distances

but with w — 1 segments, i.e., the distance betwdenand between consecutive robots remaiNs hence the totappd

Ry, decreases by one segment. Denotepd in segment around the cycle becomes smaller.

c, € S byppdl, 1 <k <w,je {1,2}. Itis required to Therefore the only way of achieving minimal distance

= Ph (i+1)=Ph (i+1n4i) < Pk (4)



(hence maximappd) is by assuring that conditioa is sat- (T[]
isfied, and maintaining it is achieved by satisfying condition
b. [ |

Following Lemma 3, we assume that the robots are coor- T T il B B il
dinated, and placed uniformly along the patrol path.

CO‘qp DDP P P PP co
RRP o_ ¢ q q q q q q ©)
V. BASIC ALGORITHM Mwﬁpppppq.
After establishing the preliminary assumptions, we wish
to find a solution to the3PD problem. The solution to the * @EaEaal=a el ©
- L o e o B 8B g 00 g
problem is twofold. First, it is necessary to find equations PO O<O<O<O<o<0<0
representing the detection probability in each segment along v
the patrol pa_th. At the s_econd stagef the equat_i(_)ns are RWP 5
manipulated in order to find the required probability, in AL
our case the maximin point. In this section we describe ﬁg. 3. Converting the initial segments and robot locations to a graphical

polynomial time algorithm for solving théPD problem  model for the three possible robotic modeRAVCP, DCP and BMP.
optimally.

A. Finding the equations arises is that asreaches! = %, it leads to a computational

In order to analyze thppd achieved by a patrol algorithm, complexity exponential in the input size.
it is enough to consider only one segment of the path that lies Therefore we use the following dynamic-programming
between two consecutive robots, without loss of generalitynspired rule. We determine the probability of reaching a
R, and R,. This segment has two extreme robots, and isertain state in time by the sum of probabilities of reaching
of lengthd. We use a Markov chain in order to model thec; from any other state; multiplied by the probability of
states the system can be in. We describe herein the modelinging in state; at timet — 1. Therefore in order to compute
under theDCP movement model. The cases of tBeMP  the probability of reaching absorption statetitime cycles
andDNCP models are similar, and will be described brieflystarting from state:;,,;;, we simply initialize c;,;; with the
later on. valuel at¢ = 0, and compute the values for=1,... ¢,

In order to calculate the probability of detection in eactand extract the probability at the absorption stajg,. See
segment along time cycles, we use the graphic mod&l ProcedureFindFunc(d,t) for a detailed description of the
illustrated in Figure 3. For each segment1 < i < d—  method.

1, in the original path we create two statesGh One for
going in clockwise direction«™), and the other going in | Procedure FindFunc(d,t)

counterclockwise directionc{®). As mentioned previously, | For eachcin; = ci € {c1,...,ca—1} do: Create the matrix/
if R, or R, reach one of the segmentswithin ¢ time units, of size (2d+2) x (t+1), initialized with 1 in Mo (cins¢) @and0s

. L . . . herwi i he followi les.
then the intruder is discovered, i.e., it does not matter if theOt erwise, using the fo O\glng ruies

segment is visited twice or more during theséme units. D gzrfle?cc;:fntryMt(cZ ) set value top - M;—1(ci{1) +q-
Therefore we consider only the probability of the first visittq  2) For each entryM, (¢5¢) set value top - My_1(c{¢1) +q -
each segment, and this is done by defining the statesd M1 (c57).

c,, as absorbing states. The edgesiofire as follows. There 3) For absorbing states, set enth; (caps) = Mi—1(cabs) +

exists one outgoing edge fronf* to ¢ with probability P [Me-1(e1®) + Mi-a(cq)].
q for turning around, and one outgoing edgedt; with Report rowt of M.
probability p for continuing straightforward. Similarly, there

exists one outgoing edge fromf® to ¢ with probability Fig. 4. Description ofFindFunc algorithm.
q for turning around, and one outgoing edgedg, with
probability p for continuing straightforward. The time complexity of ProceduréindFunc is d - (2d +

If using theDA/CP model, then the chain is similar to the 2) - (¢ + 1). Sincet is bounded byl — 1 andd = N/k, then
one above, only that the probabilityedges are froms to  the complexity isO((%)?).
c5¢1 and fromeg© to ¢§*,. When usingBMP, the chain is
simple: probabilityp from ¢; to ¢;+; andg from ¢; to ¢;—;
(with no related direction). See Figure 3 for an illustration After establishing thed — 1 equations representing the
of DN'CP and BMP as a Markov chain. probability of detection in each segment, it is left to find the
The straightforward way of finding the probability of value p that maximized the minimal possible value in each
arriving at an absorbing vertex is as follows. First, we creatsegment, where < [0, 1]. Denote these equations By(p),
a stochastic matrix\/ which represents the probability of 1 < i < d — 1. The maximal minimal value is the maximal
transition between states. In order to find the probabilityalue that lies inside the intersection of all integralsfaf
of absorption aftert cycles starting from each statg, Observing the problem geometrically, consider a vertical
1 <i < d-1, we computeM*. A major problem that sweep line that sweeps the secti¢iy 1] and intersects

B. Finding the maximin point



with all d — 1 curves. It seeks the poing in which the thatt > L%J, it follows that in all models we consider, for
minimal intersection point between the sweep line and thé < p < 1 the ppd # 0. Note that ifp = 0 or p = 1, then
curves, f*(p), is maximal. Thisp is the maximin point. ppd is either0 or 1, but this does not contradict the fact that
Since the segmeni0, 1] is continuous and the functions we have a point guaranteeind (p) > 0. [ |
f1,--., fqa_1 are continuous, this sweep line solution cannot Algorithm FindP finds this point by scanning all possible
be implemented. We observe that a maximin point is actuallyoints satisfying the conditions given in Lemma 4, and
the maximal point that lies inside the integral of all curvesteporting thex-value (corresponding to the value) that its
We prove in the following lemma that this point is either any-value is dominated by alf;. The input to the procedure
intersection point of two curves, or a local maxima of onés a vector of functionsf;, 1 < i < d — 1 and the value.
curve (see Figure 5). The time complexity of AlgorithnFindP is the complexity
of ProcedureFindFunc, O((£)3) plus O(d®) = O((£)?)
(the algorithm itself), i.e., togethed((£)?).

) y ) y
1 s T
T~ 7 B — // - -
. /%\X/////// i ) Algorithm FindP(d, t)
os //” - ¢/ os yd // /
04 — B N 04 “ / .
N - AN N a4 1) F « ProcedureFindFunc(d, t).
- ////7/// \ d AN 2) Setpopr — 0. “
v = \ wy A e\ 3) For Fpivot < Fi,...,a—1 do:
R o a) Compute local Maxima(pmas, Fyivot(pmas)) OF
Fpivot In the range(0, 1).
Fig. 5. An illustration of two possible maximin points. On the left, the b) For eachF;, 1 < i < d — 1, compute intersectior]
point is created by the intersection of two curves, and on in the right it is point p; of F; and Fy;,0: in the range((), 1),
the local maxima of the lowest curve. C) If Fpivot(Di) > Fpivot(Pmaz) and Fpiwot(pi) <
Fy(ps)Vk, thenpopt «— p;.
Following, we prove that AlgorithniindP finds the point d) It Fpivot(Pmaz) > Fpivot(pi) and Fpivor(pi) <
p such that maximin property is satisfied. Fie(pi)Vk, then sepope — pmaa-
Lemma 4:A point p yields a maximin valuef*(p) if the 4) Retumn(pmaz, Fpivot (Pmaz))-
following two properties are satisfied.
a. f*(p) < fv(p) Vi<i<d-—l. Fig. 6. Description ofFindP algorithm.

b. One of the two following conditions holdsf*(p) is an
intersection of two curves; (p) and f;(p) or a local maxima
of curve fi(p).

Proof: Propertya. is derived from the definition of a

Theorem 6:Algorithm FindP(F,¢) finds the pointp
yielding maximin value ofppd.
Proof: Algorithm FindP checks both all intersection

o . . . points between pair of curves, and points of local maxima
maximin pomt.. Therefore we are !ookmg for the maX|m§1I0f curves. It then checks the dominance of these points,
point thft sa’_usﬂes property a. It is Ief_t to sho_vv that th'?.e., whether in that location these points have lower value
point, f (p.)' is obtained .by either an |nterse_ct|on Of_ two ompared to all other curves, and picks maximal between
curves or is a local maxima. Clearly, a maximal point o hem. Therefore, if such a point is found, by Lemma 4, this

?hn mtegra!t |s|ffo1L_Jrr]1d on theh_bﬁrc.ier. oIhthg tlntegr?I, "e(')&oint is exactly the maximin point. Moreover, by Lemma 5
e curve itself. The area which is in the intersections s it exists. -

all curves lies beneath parts of curves,,..., f;,., such
that f; is the minimal curve in the sectiofi’,r/] and VI. RESULTS

UjZi [, 7] = [0,1]. By finding the maximal point in each  we have fully implemented AlgorithnFindP in order
section 7, ., = max{f(z),z € [I/,77]}, and choosing the to find the optimal maximirp for pairs of d’s andt's. In
maximal between them, i.emax{f},,,,1 < j < m}, we the following section, we describe a few interesting results
obtain f*(p). In each sectioil’, ] the maximal point can that we got when running the program. Recall that when
be either inside the section or on the borders of the sectiofunning a deterministic patrol algorithm in all scenarios we
The former case satisfies the definition of a local maximpandle, the minimappd is 0. In all cases directionality is

of a function, i.e., a local maxima of curvg,. The latter considered, we assume that the robots are initially heading
is exactly the intersection point of two curvgs_,, fi, or  to the clockwise direction. We first show results of (REéP

Jijs fijin- B model, then an example of the difference between the three
Lemma 5: There exists a poini yielding a maximin value models.
f*(p) > 0. First of all, we have seen that the minimgbd achieved
Proof: In order to prove the lemma, we need to showafter runningFindP was always more thaf. As ¢/d — 1,
that the intersection of all integralf, ..., f4—1 in thez i.e., ¢t grows, then the value of the maximppd is higher,
section[0, 1], and they section(0, 1] is not empty. It suffices and vice versa, i.e., as/d — 1/2, then the value of the
to show that for everyf;, fi(z) > 0,0 < x < 1. maximinppd is lower. This can be seen clearly in Figure 7.

Each functionf;,1 < ¢ < d — 1 represents th@pd in In this case, we have fixed the value tofo 8 and checked
a segmentC; between two robots. From our requirementhe maximinppd for 9 < d < 15. Whent/d is close to



1 (d = 9,t = 8) the maximinppd = 0.423, and the value dramatically around the value @fand then increases back
decreases t0.05 whent/d is close tol/2 (d = 15,t = 8).  again. Recall that here there is no directionality of movement,
Similar results are seen if we fix the value @fand check therefore the probability of going right i6.707 and going

for different values oft. left is 1 — 0.707 = 0.293, which explains this phenomena.
/ 09 L\\ ——DNCP, p=0.822 |

2 2. / o \ \\ -=-DCP,p=0817 |

i — i - / O; A\ —+ BMP, p=0.707
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Fig. 7. On the left, results of maximippd for fixed ¢ = 8 and different 04 \ //
values ofd: the possible maximippd is smaller asi grows. On the right, \*\\\‘\,_@/.\9// /

results of maximinppd for fixed d = 16 and different values of: the : .\\.//\Q/-\@/ 7
possible maximirppd grows ast grows. 02 \\\ /
. /
In Figure 8, we bring the values of thepd in all 16 \@@y‘/
segments, for all different possible valuestdd < d < 15). S

It is seen clearly, that the value ppd usually decreases as
the distance from the left robot increases, until it reaches th®y. 9. Results of maximippd values ford = 16 andt = 12 for all three
Segment W|th max|m|rppd, then the Value rlses agaln untll modeIsD./\/'CP, DCP and BMP. The maXImlnppd values are circled.
reaching the current location of the robot to the right. The
reason lies ;]” rt]he fact t_hatdthe ;egmentsdto thel let];t 0:] théy||. W ORKING UNDER OTHER ADVERSARIAL MODELS
ment wi maximi re influen m . . . .
segment with the maximippd are influence . ostly by t € Until now we have discussed the case in which the
robot on the left, and the segments to the right of that point , :
. . . adversary has full knowledge of the robots’ policy, and
are mostly influenced by the robot to the right. Sincejilse .
- . o . fdemdes to penetrate through the least protected segment.
yielding the maximin point in this example have value o

greater thar).8 for all ¢'s, the segment having the maximin In case the adversary has partial knowledge, or for some
value is to th.e right of tr,le midpoint other reason decides to choose the penetration location

at random, findingp,,: has to be done differently. This
0s case is interesting, since we might obtain higher values of

/ ppd considering weaker adversaries. The advantage of our

method, is that the first part of finding the equations is
/ similar for all methods. Finding the optimal is done by

replacing the second stage with a more suitable function
to the given scenario. This scenario depends, for instance,
" on the knowledge of the adversary and/or its preferences
/ and on the preferences of the robots. For example, if the
| adversary has no knowledge on the robots’ behavior, then it
might choose to enter through any point currently unoccupied
° . " . . “ “ by a robot with uniform probability. In this case thewe
would choose would correspond to théhat maximizes the
Fig. 8. ppd values in allL6 segments whed is fixed to 16 and¢ varies  €XPectedopd over all segments. One might want to minimize
from 9 to 15. the standard deviation of thppd through all segments,

_ _ . _ or create some weighted function taking into consideration
Last, we bring an illustration of the difference betweemmyltiple requirements.

the values of th@pd obtained by all three model®NCP,

DCP and BMP in all 16 segments, in case = 12. It VIII. CONCLUSIONS AND FUTURE WORK

is clearly noticeable that th&®CP model yields less or  This paper discusses the problem of multi-robot perimeter
equal values oppd compared taDA/CP model throughout patrol around a closed area in adversarial settings. We assume
the segments. The reason is because when turning arouadstrong adversarial model, in which the adversary knows
in the DCP model, the operation costs an extra cyclethe location of the robots and the patrol scheme. We show
therefore the probability of arriving at a segment decreasethat in this case, if the time it takes the adversary to
compared to the case in which turning around is not costlpenetrate is less than the minimal duration between two
Another interesting phenomena is that thpd values of visits of some robot, then it can penetrate with probability
the BMP are considerably higher (and closelfpthan the 1 even through an optimadeterministicpatrol algorithm.
values obtained by other models for segments closer to tAderefore we consider a non-deterministic patrol algorithm,
location of the righthand side robot. The value then decreasedth probability p characterizing the robots’ movement. We

PPD




assumestrongadversary, that has full knowledge of the patrol
scheme. It will therefore decide to penetrate through the point
in which it has minimal probability of being detected. We
offer a polynomial-time algorithm for finding the probability
p of the robots, such that the minimal probability of pen-
etration detection is maximized. We have implemented this
algorithm, and showed that this probability is always greater
thanO for various values of penetration time of the adversary
we consider and for three robotic models we propose.
There are various points we wish to address as future work.
First, we would like to find a solution for the continuous
case, rather than the discrete model we consider here. We are
interested in more realistic movement models, mainly ones
with arbitrary turning time. We would also like to consider in
depth other adversarial models, and also the case of unknown
adversary similar to Bayesian games. Last, we would like to
see how this algorithm can be adapted to patrol in other
domains (area patrol, for example).
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