
Towards Robust On-line Multi-Robot Coverage
Noam Hazon, Fabrizio Mieli and Gal A. Kaminka

�
The MAVERICK Group, Computer Science Department

Bar Ilan University, Israel�
haoznn,mielif,galk � @cs.biu.ac.il

Abstract— Area coverage is an important task for mobile
robots, with many real-world applications. In many cases, the
coverage has to be completed without the use of a map or
any apriori knowledge about the area, a process referred-to as
on-line coverage. Previous investigations of multi-robot on-line
coverage focused on the improved efficiency gained from the use
of multiple robots, but did not formally addressed the potential
for greater robustness. We present a novel multi-robot on-line
coverage algorithm, based on approximate cell decomposition.
We analytically show that the algorithm is complete and robust,
in that as long as a single robot is able to move, the coverage
will be completed. We analyze the assumptions underlying the
algorithm requirements and present a number of techniques for
executing it in real robots. We show empirical coverage-time
results of running the algorithm in two different environments
and several group sizes.

I. INTRODUCTION

Area coverage is an important task for mobile robots, with
many real-world applications. In this task, a single or multiple
robots are given a bounded work-area, possibly containing
obstacles. Each robot is assumed to have an associated tool
of a given shape —often corresponding to the robot’s relevant
sensors’ and/or actuator range— that must visit every point
within the work-area [6]. Since the tool size is typically
smaller than the work-area, the robot must find a path that
will take the tool over the entire work-area.

Many coverage applications must utilize on-line coverage
algorithms [4], [9], [10]. Here, the robots cannot rely on apriori
knowledge of the work-area, and must construct their move-
ment trajectories step-by-step, addressing discovered obstacles
(and/or collisions, in the case of multiple robots) as they move.
This is in contrast to off-line coverage, where the robots are
given a map of the work-area, and can therefore plan their
paths ahead of deployment [3].

We focus in this paper on on-line coverage by multiple
robots. Previous work has often pointed out that one advantage
of using multiple robots for coverage is the potential for more
efficient coverage [3]. However, another potential advantage of
using multiple robots is that they may offer greater robustness:
Even if one robot fails catastrophically, others may take over
its coverage subtask. Unfortunately, this important capability
has been neglected in existing work on on-line algorithms.

We present a guaranteed robust multi-robot on-line cover-
age algorithm. The algorithm is based on the use of spanning
tree coverage paths [6]. It runs in a distributed fashion, using
communications to alert robots to the positions of their peers.
�
This work is partially supported by ISF Grant #1211/04.

Each robot works within a dynamically-growing portion of
the work-area, constructing a local spanning-tree covering this
portion, as it moves. It maintains knowledge of where this
spanning-tree can connect with those of others, and selects
connections that will allow it to take over the local spanning
trees of others, should they fail.

We also address the challenge of using the robust on-line
multi-robot coverage algorithm with physical vacuum cleaning
robots. We present techniques useful in approximating the
assumptions required by STC algorithms (e.g., known posi-
tions, within an agreed-upon coordinate system). We show
the effectiveness of our implemented algorithm in extensive
experiments.

II. BACKGROUND

Recent years are seeing much interest in multi-robot cov-
erage algorithms, thanks to two key features made possible
by using multiple robots: (i) robustness in face of single-robot
catastrophic failures, and (ii) enhanced productivity, thanks to
the parallelization of sub-tasks.

Choset [3] provides a survey of coverage algorithms, which
distinguishes between off-line algorithms, in which a map of
the work-area is given to the robots in advance, and on-line
algorithms, in which no map is given. The survey further
distinguishes between Approximate cellular decomposition,
where the free space is approximately covered by a grid of
equally-shaped cells, and exact decomposition, where the free
space is decomposed to a set of regions, whose union fills the
entire area exactly.

We focus in this paper on an on-line multi-robot coverage
algorithm based on an approximate cellular decomposition.
Previous work by Gabriely and Rimon [6] developed online
and offline STC (Spanning-Tree Coverage) algorithms, but
only for a single robot. Our own previous work introduced
multi-robot coverage algorithms (MSTC—Multi-robot Span-
ning Tree Coverage), but only for offline usage [8]. Acar and
Choset [1] presented a robust on-line single robot coverage
algorithm while their robustness quality is the ability to filter
bad sensors readings.

There have been additional investigations of on-line multi-
robot coverage, but these do not guarantee a complete coverage
if one of the robots failed. Wagner et al. [14] proposes a
series of multi-robots ant-based algorithms which use approxi-
mate cellular decomposition. The algorithms involve simulated
pheromones for communications. Some of these algorithms
solve only the discrete coverage problem and the others can
not guarantee robustness due to their heuristic nature.

Rekleitis et al. [11] uses two robots in on-line settings, using
a visibility graph-like decomposition (sort of exact cellular
decomposition). The algorithm uses the robots as beacons to
eliminate odometry errors, but does not address catastrophic
failures (i.e., when a robot dies). In a more recent article,
Rekleitis et al. [12] extends the Boustrophedon approach [3] to
a multi-robot version. Their algorithm also operates under the
restriction that communication between two robots is available
only when they are within line of sight of each other, but has
many points of failure, i.e., it could stop functioning if one of
the key robots fails.

Butler et al. [2] proposed a sensor-based multi-robot cov-
erage, in a rectilinear environment, which based on the exact
cellular decomposition. They do not prove their robustness,
and the robots could cover the same area many times.

III. AN ON-LINE MSTC ALGORITHM

We focus in this paper on the on-line coverage case, in
which the robots do not have apriori knowledge of the work-
area, i.e., the exact work-area boundaries and all the obstacles
locations (which are assumed to be static). The robots only
know their absolute initial positions. Each robot has an asso-
ciated square-shaped tool of size � . The objective is to cover
the work-area using this tool. In real-world applications, the
tool may correspond to sensors that must be swept through the
work-area to detect a feature of interest, and the size � may be
determined by the effective range of the sensors. Or, in vacuum
cleaning application, the tool may correspond to the opening
of the vacuum itself, typically underneath the robot. As with
previous work [6], [8], we assume robots can move (with the
tool) in the four basic directions (up/down, left/right), and can
locate themselves within the work-area to within a � -size cell.

We divide the area into square cells of size ��� , each one
consists of four (4) sub-cells of size � . Denote the number
of cells in the grid by � , and denote the number of sub-cells
by � ,i.e., �
	���� . The area occupancy in the beginning is
unknown so every cell is initially considered to be empty.

The starting point is the work-area and
 robots with their
absolute initial positions: ��������������������� . The initial position
of every robot is assumed to be in an obstacle-free cell, and
the robot should know its position. Indeed, one assumption
the algorithm makes—as previous work [6], [8] does—is
that robots can locate themselves within an agreed-upon grid
decomposition of the work area. In practice, of course, this
assumption is not necessarily satisfied. Section IV below dis-
cusses methods for approximating this assumption in practice,
which we utilize in our work with physical robots.

We seek algorithms that are complete, non-redundant, and
robust. An algorithm is complete if, for
 robots, it produces
paths for each robot, such that the union of all
 paths
complete covers the work area. An algorithm is non-redundant
if it does not cover the same place more than one time. The
robustness criteria ensures that as long as one robot is still
alive, the coverage will be completed.

The algorithms below are run in a distributed fashion, and
generate on-line coverage that is complete, non-redundant,

and robust. Each robot runs the initialization algorithm first
(Algorithm 1), and then executes (in parallel to its peers) an
instance of the ORMSTC (On-line Robust Multi-robot STC,
Algorithm 2). Each ORMSTC instance generates a path for its
controlled robot on-line, one step at a time. It is the union of
these paths that is guaranteed to be complete, non-redundant,
and robust.

We begin by describing Algorithm 1. The initialization
procedure constructs the agreed-upon coordinate system un-
derlying the grid work area. It then allows each robot to locate
itself within the grid, and update its peers on the initial position
of each robot.

Algorithm 1 On-line MSTC initialization()
1: Decompose the working area into ����� �!� cells (grid),

agreed among all the robots.
2: Decompose each �!�"�#��� cell into 4 sub-cells (size �)
3: $&% my robot id ID
4: if ��')(the middle of a sub-cell then
5: *�'+% the closest sub-cell
6: Move to *�'
7: else
8: * ' %,� '
9: - ' % the cell that contains * '

10: Announce - ' as your starting location to the other robots
11: Receive -/. , where 0#(1$, starting cells of other robots
12: Update map with - � ����������- �2�3�
13: Initialize 4�52�3��624879$952�;: <=�����>
@?BA�C9: <D��A�CD%,�3E/FGF

Once the grid is constructed and robots know their initial
positions, Algorithm ORMSTC (Algorithm 2) (executed in a
distributed fashion by all robots) carries out the coverage. This
recursive algorithm receives two parameters: H , the new cell
that the robot just entered, and I , the old cell from which the
robot has arrived. We denote a cell with an obstacle in one (or
more) of its 4 sub-cells, or one that contains the robot’s own
spanning tree edge, as a blocking cell. In the first recursive
call to the algorithm, the argument H is the robot’s starting
cell -3' . I is chosen such that it is consistent with future calls
to the algorithm—closest to *2' (Figure 1).

W

W

W

W

Fig. 1. The 4 possible initial positions (marked with a dot), and their
respective recommended J .

The idea behind algorithm 2 is that each robot gradually
builds a local spanning tree of uncovered cells that it discovers,
while tracking the state of any of its peers whose path it has
met. The spanning tree is built by a depth-first-like procedure:
Scan for a non-occupied neighboring cell (Lines 1–2), build
a tree edge to it (Line 15), enter it (Line 16) and continue
recursively with this cell (Line 17). If there is no free cell, the

Algorithm 2 ORMSTC(I , H)
1: �@�8KLK M�%,H ’s neighboring cells in clockwise order, ending

with IN	1�OM
2: for $&%PA to Q do
3: if � ' 	 blocking cell then
4: continue to the next $
5: if � ' has a tree edge of robot 0R(S$ then
6: check whether robot 0 is alive
7: if robot 0 is alive then
8: if 4�52�3��624879$T52�;: 0�CT: <UC/	1�3E/FGF then
9: 4�52�3��624879$952�;: 0�CT: <UC/% the edge from H to �V'

10: 4�52�3��6�4�79$T52�;: 0�CT:WA�C/% the edge from H to �V'
11: continue to the next $
12: else

�
robot 0 is not alive �

13: remove robot 0 from connections array and broad-
cast it

14: mark 0 ’s cells as empty on the map and broadcast
it

15: construct a tree edge from H to � ' and broadcast it
16: move to a sub-cell of � ' by following the right side of

the tree edge
17: execute ORMSTC(H , � ')
18: if HX(Y-3' then
19: move back from H to I along the right side of the

tree edge
20: return from recursive call
21: if IZ(blocking cell then
22: execute ORMSTC(H , I)
23: move to sub-cell *2' along the right side of the tree edge
24: broadcast completion of work
25: while not all the robots announced completion do
26: if [!0 , s.t. 4�52�3��624879$952�;: 0�C9: <!C�(\�3E/FGF and robot 0 is not

alive then
27: mark 0 ’s cells as empty on the map and broadcast it
28: broadcast withdrawal of completion
29: decide which connection: 4�52�3��624879$952�;: 0�C9: <!C or

4�52�3��624879$952�;: 0!C9:WA�C is closer to *�' when moving in
clockwise or counter-clockwise direction along your
tree edges

30: move to this connection in the appropriate direction
31: H]% your connection cell
32: ^_% robot 0 ’s connection cell
33: remove robot 0 from connections array and broadcast

it
34: construct a tree edge from H to ^ and broadcast it
35: move to a sub-cell of ^ by following the right-side

of the tree edges
36: execute ORMSTC(H , ^)

robot goes back along its local spanning tree to the previous
covered cell, exiting the recursion (Lines 18–20).

During this gradually-expanding coverage process, the first
time a robot $ meets a cell with robot 0 ’s tree-edge ($�(`0), it
examines its peer’s state (Lines 5–6). If robot 0 is still alive,
robot $ saves the edge which connects its tree to robot 0 ’s tree
as 4�52�3��624879$952�;: 0�C9: <!C (Lines 7–9). From this point on, robot
$ will update 4�52�3��624879$952�;: 0!C9:WA�C to save the last edge which
connects its tree to robot 0 ’s tree, i.e., whenever robot $ meets
a cell with robot 0 ’s tree edge (Lines 10–11).

If, during this phase, robot $ discovers that robot 0 is not
alive anymore, it announces to the other robots that robot 0 is
dead. Then all robots delete the entries for robot 0 from their
4�52�3��624879$952� arrays, and the cells which robot 0 was responsible
for are marked empty (Lines 12–14). Robot $ and the other
robots can now build their spanning tree edges to these cells
and cover them (see below for a discussion of the case where
two robots want to enter the same cell).

When a robot has no neighboring cells to cover, and it is
back in its initial position, it makes sure that I (this is the
initial I given as input) is covered (Lines 21–22). Then the
robot finishes covering its starting cell and announces to the
other robots that it has completed its work (Lines 23–24).

However, the coverage process is not completed until all
the robots announce completion of their work. Until then, a
robot who finishes its work monitors the state of all the robots
for whom it has a non-empty 4�52�3��624879$952� entry (Lines 25–
26). If such a robot 0 is not alive, the robot sets all cells
assigned to 0 in the map to empty, and updates the other
robots (Line 27). It then turns to cover robot 0 ’s cells, thus
withdrawing its previously-declared completion of its work
(Line 28). The robot has two possibilities to reach robot 0 ’s
cells: Along the left side of its spanning tree edges, till it
reaches 4�52�3��6�4�79$T52�;: 0�CT: <UC , the first connection edge between it
and robot 0 ’s path; or in an opposite direction along the right
side of the spanning tree edges, till it reaches 4�52�3��624879$952�;: 0�C9:aA�C ,
the last connection edge between it and robot 0 . The robot
chooses the best option and moves to the chosen connection
edge (Lines 29–30). Now it can delete robot 0 from the
connection array (line 31), and continue to construct the
spanning tree edges for the new cells by recursively calling
the algorithm (Lines 32–36).

Algorithm 2 makes several assumptions about the robots’
capabilities. First, in lines 1–2, each robot explores its three
neighboring cells. To do this, each robot must have the ability
to sense and determine if its three neighboring cells are
free from obstacles. If the cell is partially occupied with an
obstacle it will not be covered. Second, the algorithm requires
reliable communication. Each informative message that a robot
receives (a cell that is now occupied with a tree edge, a dead
robot, etc.) updates the map and overall world state (in the
memory of its peers). Obviously, there is also an assumption
here that robots are cooperative, in that when a robot is asked
if it is alive, it broadcasts truthfully if it can.

In lines 15 and 34 the robot constructs a spanning-tree edge.
A synchronization problem could occur if more than one robot

wants to construct a tree edge in the same cell. This can
be solved by any synchronization protocol. For instance, we
can require robots to notify the others whenever they wish to
construct an edge to a cell b . If a conflict over b is detected,
robots can use their distinct IDs to select who will construct
the edge (e.g., highest ID), or they may allow the robot with
the smallest number of covered cells to go first (intuitively,
this is the most underutilized robot). The other robots treat b
as a cell with another robot’s spanning tree edge and continue
with the algorithm.

We prove the completeness of the ORMSTC algorithm
(Theorem 3.1). Each robot constructs its own spanning tree
and circumnavigates it to produce a closed curve which visits
all the sub-cells of the tree cells. Completeness is achieved by
ensuring that every cell (within the area boundaries) will have
a tree edge connection from one of the trees.

Theorem 3.1 (Completeness): Given a grid work-area I ,
and
 robots, Algorithm 2 generates
 paths
c' , such thatd
'
�'e	fI , i.e., the paths cover every cell within the the

work-area.
Proof: By induction on the number of robots
 .

Induction Base (
g	hA). with only one robot, ORMSTC
operates exactly like the On-line STC Algorithm which was
proven to be complete (Lemma 3.3 in [6]).
Induction Step. Suppose it is known that
B?iA robots
completely cover the area. We will prove it for
 robots.
Without loss of generality, let us consider robot $. Executing
ORMSTC, $ will build its local spanning tree edges, and
generate a path to cover some cells. The other robots treat
these cells as occupied, exactly as if they were filled with
obstacles. Therefore all the other cells will be part of
j?kA
paths and covered by the
l?mA robots, according the induction
relaxation. Robot $ treat all the cells of the other
+?VA robots as
occupied cells, so it will completely cover its cells according
to the induction base case.

We now turn to examining ORMSTC with respect to
coverage optimality. Previous work has discussed several opti-
mization criteria [8], one of which is redundancy, the number
of times a sub-cell is visited.

ORMSTC can be shown to be non-redundant. Theorem
3.2 below guarantees that the robots visit all the cells only
once (if no failure has occurred—see below for a discussion
of robustness). This guarantee is in fact a feature of many
spanning-tree coverage algorithms, as circumnavigating a tree
produce a closed curve which visits all the sub-cells exactly
one time [6].

Theorem 3.2 (Non-Redundancy): If all robots use Algo-
rithm 2, and no robot fails, no cell is visited more than once.

Proof: If no robot fails, then each robot only covers
the cells for which it builds a tree edge. If there is already a
tree edge to a cell, the robot will not enter it (Line 5). Thus
every cell is covered only by a single robot. Since robots never
backtrack, every point is only covered once.

As key motivation for using multiple robots comes from
robustness concerns, we prove that Algorithm 2 above is robust
to catastrophic failures, where robots fail and can no longer

move. Lines 12–14 and 25–36 guarantee the robustness. If one
robot fails, there is always at least one robot that will detect it
and will take the responsibility to cover its section (see below
for formal proof). Conflicts over empty cells are handled as
described above.

Theorem 3.3 (Robustness): Algorithm 2 guarantees that the
coverage will be completed in finite time even with up to
&?eA
robots failing.

Proof: Based on the completeness theorem (Theorem
3.1), any number of robots can cover the work area. Thus if
one or more robots fail, all the cells that were not occupied by
tree edges of the failing robots and are accessible to other live
robots will be covered. So all we have to prove is that cells
with tree edges of a dead robot, or cells which are accessible
only to a robot that has died will be covered by another robot.
It can be possible to have such cells because of the work area
structure, or because the robot can create a line of covered
cells which blocks the access of other robots to a group of
free cells.

Cells with existing tree edges of a robot are treated by
the other robots as cells with obstacles. According the com-
pleteness theorem, there is at least one robot that will cover
a neighboring cell of one of these cells, thus will have a
connection to this cell. There are two possible cases:

1) A robot failed before a robot that has a connection with it
reached the connection. In this case, lines 13–14 ensures
that the dead robot’s covered cells will be declared free
so they will be covered by other robots.

2) A robot fails after all the robots that have a connection
with it reached the connection. In this case, lines 27 and
33 apply, to ensure that the robot’s covered cells will be
declared free so they will be covered by other robots.

In both possible cases, the freeing of cells previously-covered
by the dead robot also makes any cell which was only
accessible to the dead robot accessible to others. Based on the
completeness theorem, at least one other robot is guaranteed
to reach all these cells. Thus the algorithm is proved robust.

IV. FROM THEORY TO PRACTICE

In real-world settings, some of the assumptions underlying
ORMSTC can not be satisfied with certainty, and can only be
approximated. This section examines methods useful for such
approximations, and their instantiations with physical robots.

In particular, we have implemented the ORMSTC algo-
rithms for controlling multiple vacuum cleaning robots, the
RV-400 manufactured by Friendly Robotics [5]. Each commer-
cial robot was modified to be controlled by an small Linux-
running computer, sitting on top of it. A generic interface
driver for the RV-400 robot was built in Player [7], and a
client program was built to control it. Each robot has several
forward-looking sonar distance sensors, as well as sideways
sonars. One robot is shown Figure 2.

The ORMSTC algorithm (indeed, many of the STC algo-
rithms) make several assumptions. First, there are assumptions
as to the work area being provided as input. ORMSTC

Fig. 2. RV-400 robot used in initial experiments.

assumes, for instance, that the work-area has known bounds,
and that it is divided into a grid that is known by all robots
(i.e., all robots have the same division). ORMSTC assumes
robots can communicate reliably, and locate themselves within
a global coordinate system. Finally, ORMSTC makes assump-
tions about the sensory information available to the robots. In
particular, ORMSTC makes the assumption that each robot
can sense obstacles within the front, left, and right ��� cells.

One challenging assumption is that of a global coordinate
system that all robots can locate themselves within. In outdoor
environments, a GPS signal may in principle be used for such
purposes (note that the position only has to be known within
the resolution of a sub-cell). However, in circumstances where
a global location sensor (such as the GPS) is unavailable, a
different approach is needed. In particular, this is true in the
indoor environments in which the vacuum cleaning RV-400 is
to operate.

For the purposes of the experiments, we have settled on
letting the robots know their initial location on an arbitrary
global coordinate system. Once robots began to move, how-
ever, they relied solely on their odometry measurements to
position themselves. In the future, we hope to experiments
with alternative approaches.

One advantage of ORMSTC in this regard is that its
movements are limited to turns of no<cp left or right, and to
moving forward a fixed distance. This offers an opportunity
for both reducing errors by calibration for odometry errors
specific to this limited range of movements, and by resetting
after each step, thus avoiding accumulative errors. Indeed, this
was the approach taken in the experiments (see next section).

Given a global coordinate system, ORMSTC also requires
robots to agree on how to divide up the work-area into a grid.
This agreement is critical: Differences in the division may
cause grids created by different robots to be mis-aligned, or
overlap. To do this, the bounds of the grid have to be known,
in principle. Once the bounds are known, the robots only
have to decide on the origin point for the approximate cell
decomposition.

Here again a number of approximating solutions were
found to be useful. First, one can have the robots use a
dynamic work-area. During the initialization phase, the robots
determines the maximal distances, Hjq=r8s and ^/q)r�s (along the
X- and Y- axes, respectively), over all pairs of robots. They
then build a temporary rectangular work-area around them,
with sides greater or equal to H q=r8s �t^ q)r�s . As the robots move
about, they will push the boundaries of the work-area into

newly discovered empty cells that lie beyond the bounds, or
they will encounter the real bounds of the work area, which
will be regarded as obstacles. A related approximation is to
provide the robots with an initial work-area that is known to
be too big, and allow the robots to discover the actual bounds.
This was the technique we utilized.

Robustness against collisions is an additional concern in
real-world situations. Normally, as each robot only covers
the path along its own tree, Theorem 3.2 guarantees that
no collisions take place. This separation between the paths
of different robots decreases the chance of collisions. In
practice, localization, movement errors, and the way the grid
is constructed may cause the robot to move away from its
assigned path, and thus risk collision. We utilized our bumps
sensors to cope with this problem as they are often used as
a key signal in vacuum-cleaning robots. Our heuristic is to
simply respond to a bump by moving back a little, waiting
for a random (short) period of time trying again. If bumps
occur three times in a row in the same location, the location
is marked as a bound or obstacle. A more complicated solution
which requires more communication is to coordinate between
the robots that have adjacent tree edges when a collision is
likely to occur.

A final challenge was offered by the robots’ limited sensor
range. The robot is equipped with ten sonar sensors which
are not capable of sensing all three neighboring cells of the
robot cell at the same time as described in the algorithm
requirements before. We solved this problem by dividing the
original sensing and movement phases to three steps. The robot
first senses its first cell by turning its sensors towards it. If it
is empty, it continues with the regular algorithm flow. If not,
in moves forward to be as close as possible to the border of
the next require-sensing cell and only then it turns to sense
it and continues with the algorithm. The same procedure is
performed to the third neighboring cell. Although it slowed
down the algorithm performance this fix enabled us to run
the algorithm in the simulation with the robots constraints, so
it can be applied also to run the algorithm on different real
robots with limited sensors.

V. EXPERIMENTAL RESULTS

We conducted systematic experiments with our implemen-
tation of the ORMSTC algorithm, to measure its effectiveness
in practice with the RV400 robot. The experiments were
conducted using the Player/Stage software package [7], a
popular and practical development tool for real robots. Initial
experiments were carried out with physical RV400 robots, to
test the accuracy of the simulation environment used. However,
to measure the coverage results accurately, the experiments
below were run in the simulation environment. Figure 3 shows
a screen shot of running example with six robots in the one
of the simulated environments used in the experiments.

In the experiment, we focused on demonstrating that the
ORMSTC algorithm—and our implementation of it for real
robots—indeed manages to effectively use multiple robots in
coverage. We ran our algorithm with 2,4,6,8 and 10 robots.

Fig. 3. Simulation screen shot of six robots covering the Cave environment

Each team was tested on two different environments. The Cave
environment had irregularly-shaped obstacles, but was relative
open. The Room environment had many rectangular obstacles,
and represents a typical indoor office room. For each team size
and environment type, 10 trials were run. The initial positions
were randomly selected.

The results are shown in Figure 4. The X-axis measures
the number of robots in the group. The Y-axis measures the
coverage time. The two curves represent the two different
environments. Every data point represents the average ten
trials, and the horizontal line at each point shows the standard
deviation in each direction.

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 2 4 6 8 10

A
ve

ra
ge

 c
ov

er
ag

e
tim

e
(s

ec
on

ds
)

Number of Robots

Cave
Room

Fig. 4. Overall coverage time

The results show that in both environments, coverage time
decreases in general when increasing the group size. However,
we can also see that the marginal coverage decreases with the
addition of new members. This is a well-known phenomenon
(in economics, but also in robotics [13]). It is due to the
overhead imposed on a bigger group of robots, in collisions
avoidance and communication load. The overhead cost can be
also seen when comparing the two overage times of the two
environments. Although the indoor environment is smaller,
the coverage time is almost the same because there are more
obstacles and doors to pass and there is a greater chance of
collision with walls or other robots.

VI. CONCLUSION AND FUTURE WORK

Many real-world coverage applications require multiple
robots to completely cover a given work-area, with no apriori
knowledge of the area. We presented the ORMSTC, a multi-
robot coverage algorithm which is able to cover an unknown
environment. We analytically showed that ORMSTC algorithm
is complete and robust in face of catastrophic robot failures.
As there is always a gap between theory and practice, we
analyzed the assumptions underlying the algorithmic require-
ments. We discuss various approximation techniques for these
requirements, to allow the algorithm to work in real world
situations. Based on early trials with real-robots, we conducted
systematic experiments with our implementation, to measure
the ORMSTC’s effectiveness in practice. The results show that
the algorithm works well in different environments and group
sizes. For future work, We intend to improve the algorithm to
generate paths with less turns and to cover also cells which
are partially covered by obstacles.

Acknowledgments. We thank Noa Agmon, Yair Hershkovitz,
Gilad Asharov, Asa Yohai, and Ido Ikar for their assistance.
Special thanks to K. Ushi and Shira Hazon.

REFERENCES

[1] E. U. Acar and H. Choset. Robust sensor-based coverage of unstructured
environments. In International Conference on Intelligent Robots and
Systems, pages 61–68, Maui, Hawaii, USA, 2001.

[2] Z. Butler, A. Rizzi, and R. L. Hollis. Complete distributed coverage of
rectilinear environments. In Workshop on the Algorithmic Foundations
of Robotics, March 2000.

[3] H. Choset. Coverage for robotics—a survey of recent results. Annals
of Mathematics and Artificial Intelligence, 31:113–126, 2001.

[4] J. Colegrave and A. Branch. A case study of autonomous household
vacuum cleaner. In AIAA/NASA CIRFFSS, 1994.

[5] Friendly Robotics u , Ltd. Friendly robotics vacuum cleaner.
http://www.friendlyrobotics.com/friendly vac/.

[6] Y. Gabriely and E. Rimon. Spanning-tree based coverage of contin-
uous areas by a mobile robot. Annals of Mathematics and Artificial
Intelligence, 31:77–98, 2001.

[7] B. P. Gerkey, R. T. Vaughan, and A. Howard. The player/stage project:
Tools for multi-robot and distributed sensor systems. In Proceedings
of the International Conference on Advanced Robotics, pages 317–323,
Coimbra, Portugal, Jul 2003.

[8] N. Hazon and G. A. Kaminka. Redundancy, efficiency, and robustness
in multi-robot coverage. In ICRA-05, 2005.

[9] S. Hedberg. Robots cleaning up hazardous waste. AI Expert, pages
20–24, May 1995.

[10] Y. Huang, Z. Cao, and E. Hall. Region filling operations for mobile
robot using computer graphics. In Proceedings of the IEEE Conference
on Robotics and Automation, pages 1607–1614, 1986.

[11] I. Rekleitis, G. Dudek, and E. Milios. Multi-robot exploration of an
unknown environment, efficiently reducing the odometry error. In Inter-
national Joint Conference in Artificial Intelligence (IJCAI), volume 2,
pages 1340–1345, Nagoya, Japan, August 1997. Morgan Kaufmann
Publishers, Inc.

[12] I. Rekleitis, V. Lee-Shue, A. P. New, and H. Choset. Limited communica-
tion, multi-robot team based coverage. In IEEE International Conference
on Robotics and Automation, pages 3462–3468, New Orleasn, LA, April
2004.

[13] A. Rosenfeld, G. A. Kaminka, and S. Kraus. Adaptive robot coordination
using interference metrics. In Proceedings of the European Conference
on Artificial Intelligence (ECAI), pages 910–916, 2004.

[14] I. Wagner, M. Lindenbaum, and A. Bruckstein. Mac vs. pc determinism
and randomness as complementary approaches to robotic exploration
of continuous unknown domains. International Journal of Robotics
Research, 19(1):12–31, 2000.

