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Abstract—We present an approach for learning models that
obtain accurate classification of large scale data objects, collected
in spatiotemporal domains. The model generation is structured
in three phases: pixel selection (spatial dimension reduction),
spatiotemporal features extraction and feature selection. Novel
techniques for the first two phases are presented, with two
alternatives for the middle phase. Model generation based on
the combinations of techniques from each phase is explored. The
introduced methodology is applied on datasets from the Voltage-
Sensitive Dye Imaging (VSDI) domain, where the generated
classification models successfully decode neuronal population re-
sponses in the visual cortex of behaving animals. VSDI currently
is the best technique enabling simultaneous high spatial (10,000
points) and temporal (10 ms or less) resolution imaging from
neuronal population in the cortex. We demonstrate that not
only our approach is scalable enough to handle computationally
challenging data, but it also contributes to the neuroimaging field
of study with its decoding abilities.

Index Terms—classification; spatiotemporal; application; brain
imaging; neural decoding; visual cortex;

I. INTRODUCTION

Recently, there is much interest in applying machine lear-
ning in domains with large scale spatiotemporal characteris-
tics. Examples range from discriminating cognitive brain states
using functional Magnetic Resonance Imaging (fMRI) [1], [2],
[3], [4], [5], to developing techniques for classification of brain
signals in Brain Computer Interfaces (BCI) [6], [7], [8], [9],
performing automated video classification [10] and more.

However, many existing techniques prone insufficient when
the data is temporal (spanned over a time course) and spa-
tially exhaustive (consists of a large number of locations in
space). Classification often becomes computationally intensive
and unfeasible. Raw data collected along the time course in
a high-resolutional space results in hundreds of thousands
of data-points, for which classical, straightforward machine
learning approaches become practically ineffective. Studies
presented in [3], [11] face these obstacles, discuss why the
existing methods fail and present possible solutions (which
either produced medium accuracy results, or were applied to
moderately scaled datasets).

In this work we present a methodology for both overcoming
the scalability challenge and exploiting the spatiotemporal
properties of the data for classification. Our methodology
is comprised of three phases. First, we present a greedy
pixel selection technique, i.e. choosing the most discriminative
spatial characteristics within the full spatial range in a sample’s
space, based on the random subspace method [12]. Second, we
provide two alternatives for feature extraction, applied on the
spatially-reduced samples produced by the first phase: features
as pixels in time and spatial averaging of pixel groups based
on inter-pixel correlation. Finally, we employ a simple and yet
effective feature selection based on information gain filtering.

We apply our methodology in the neuroimaging domain,
and demonstrate how it helps to decode neuronal population
responses in the visual cortex of monkeys, collected using
Voltage-Sensitive Dye Imaging (VSDI)[13]. VSDI is capable
of measuring neuronal population responses at high spatial
(10, 000 pixels of size 60 × 60 to 170 × 170µm2 each)
and temporal (10ms or less) resolutions. The produced data
consists of tens of thousands of numeric values, correlated to
locations in space, rapidly changing during the time course.
Our methodology makes it possible to process this massive
amount of data in a computationally feasible manner. It serves
as a tool that aids to decode these responses, as we show
how to carefully pick and process those specific properties of
the data that carry the most discriminative nature. While first
attempts to decode neuronal population responses collected
using VSDI were performed in [14], no machine learning
methods were used—a proprietary statistical approach of
pooling rules was developed (relying on the amplitude of the
response and other neuronal characteristics). To the best of
our knowledge, this is the first time where machine learning
techniques are applied in this field.

II. RELATED WORK

Much research for decoding of cognitive brain states, em-
ploying machine learning methods, has been done in fMRI.
While being the most common non-invasive technique for



brain study in humans, its deficiency is that it measures
metabolic changes: the hemodynamic response occurring few
seconds after the onset of the visual stimulus. Whereas the
temporal resolution of neuronal activity is within tens of ms,
the resolution of the fMRI signal is at least two orders slower.
For this reason, fMRI studies don’t usually take advantage of
the temporal aspect. Such studies include picking the top n
most active voxels based on t-test [15] or on average between
the voxels [16]; picking the top n most discriminating voxels,
based on training a classifier per each voxel [1]; or, picking the
n most active voxels per Region Of Interest (ROI) [1]. While
they manage to produce moderate to high accuracy results,
they rely on relatively small resolutions of data (where training
a classifier per voxel is admissable), or on expert knowledge
(defining an ROI). The methods we present in our work are
domain independent (require no prior knowledge), aimed at
very high resolutional data, and exploit both temporal and
spatial dimensions.

As for fMRI exploiting the temporal dimension, [2] employs
the following heuristic: features are defined as voxel-timepoint
pairs, ranked by how well they individually classify a training
set, and the top 100 features for the final classifier are chosen.
While individual training of classifiers for all time-space
combinations is totally unfeasible in large scale domains, we
do adopt the time-space combination approach in our work.
Additional work that has inspired us is [3], in which one of the
introduced techniques for feature selection is defining voxel-
specific time-series analysis, by ranking features by mutual
information with respect to the class variable. From the ranked
features, the n highest ranked are selected, and closeness of
each pair of voxels’ time series is measured. Despite the high
reported success rates, the techniques in [3] are subject to be
computationally expensive in large scale domains.

A different spatiotemporal domain which is fundamentally
based on techniques for classification of brain-emitted signals
is BCI. Here, brain-controlled computer systems are developed
in order to operate the machine (e.g. prostheses, communi-
cation) by brain activity (e.g. imagining a hand movement
will cause a prosthetic computer-controlled arm to move). For
example, the method presented in [8] maintains the correlation
information between spatial time-series items by utilizing the
correlation coefficient matrix of each such item as features
to be employed for classification. Then Recursive Feature
Elimination (RFE, as proposed in gene selection problem [17])
is used for feature subset selection of time-series datasets.
Applying RFE in a similar manner on our type of data is com-
putationally expensive—however, we do adopt the approach of
correlation between spatial elements in our feature extraction.

A last example from spatiotemporal domains is automated
video genre classification [10]. In this case, the problem is
investigated by first computing a spatiotemporal combined
audio-visual “super” feature vector (of very high dimensional-
ity). Then, the feature vector is further processed using Princi-
pal Component Analysis (PCA) to reduce the spatiotemporal
redundancy while exploiting the correlations between feature
elements. However, the PCA-based techniques in multivariate

time-series datasets are known to be problematic in regard to
scalability, which is more than evident in our domain.

III. SPATIOTEMPORAL CLASSIFICATION MODELING

In this section, we present the three phase methodology for
building scalable models for spatiotemporal data classification.
To describe our methodology, we first need to formalize the
problem. A spatiotemporal domain contains n pixels that
constitute the global pixel set P = {p1, p2, . . . , pn}. Every
pixel pi, i ∈ {1, . . . , n} represents a concrete location in
space, in which a series of m contiguous values in time is
measured. The intervals between each two consequent values
in time are equal. In turn, pt

i, i ∈ {1, . . . , n} , t ∈ {1, . . . ,m}
indicates the specific timeframe t along the time course, at
which the value of pi is measured. In fact, pt

i represents the
pixel-in-time combination of pixel pi and time t.

That being the case, the finite training samples set of
size k in the spatiotemporal domain is defined as: S =
{s1, s2, . . . , sk}, where a single sample sl, l ∈ {1, . . . , k}
is a set of vectors: sl = {p1, . . . , pn}, where a vector
pi =

〈
vi
1, . . . , v

i
m

〉
, vi

t ∈ R, t ∈ {1, . . . ,m} denotes the
actual m values along the time course, measured for the pixel
pi in the sample sl. Each training sample sl ∈ S is labeled with
a class label c ∈ C. For an infinitely large universal set U of
all possible unlabeled samples u = {p1, . . . , pn} , u ∈ U , the
classification problem is to build a model that approximates
classification functions of the form f : U −→ C, which map
unclassified samples from U to the set of class labels C.

In the next subsections we describe each of the phases
in detail. Subsection III-A presents a technique for selecting
the pixels that have the most discriminative characteristics
among the global pixel set P . Next, in III-B, we introduce
two alternative techniques for extracting the features from the
pixels selected by the first phase. The third phase described in
III-C shows an effective application of feature selection on the
product of the second phase, to further improve the abilities
of the remaining features that constitute the generated models.

A. Pixel selection via greedy improvement of random spatial
subspace

The technique described here uses common machine lear-
ning tools in order to reveal the most informative pixels,
which will define the features to be used with our model.
The discriminative nature of the selected pixels stems from
analyzing their measured values along the time course. Due
to the high spatial and temporal resolutions of the domains in
question, our data is comprised of hundreds of thousands of
basic data-points. Hence, using the most granular, basic values
of the sample’s space as features will lead to an extremelly
high dimensional feature space, rendering classification, or
even feature dimensionality reduction techniques, unfeasible.
We present here a greedy approach based on the random
subspace method [12] for selecting by iterative refinement,
the set of pixel subsets from which we can eventually derive
the sought-after pixel set.



In Algorithm 1, we randomly generate r pixel subsets of a
requested size u (number of pixels in a subset). Handling small
pixel subsets yields an easier handling of a reduced spatial
dimension. However, in order to cover a large portion of pixels
(inherently, features) in the data and to establish credibility
for the selected pixels, we need to rely on a wide-enough
selection of such subsets1. Each generated pixel subset’s
classification capabilities are roughly evaluated (Algorithm
2): pixel values in time are defined as features (step 2), as
was done in [2]. Then an Information Gain (InfoGain) based
feature selection [18] is applied to select only the features
with positive InfoGain scores (step 3). Our usage of InfoGain
for ranking features by mutual information with respect to the
class is insipired by [3], an fMRI study exploiting the temporal
dimension. The resulting feature set is cross-validated using
linear-kernel SVM (WEKA’s implementation of the SMO
algorithm, [18]) to obtain an evaluation score (accuracy of the
evaluated set). The scores are then ordered in a descending
order, and the greedy phase begins.

During the greedy phase, we maintan a set Γ of pixel
subsets, of which the desirable pixel set can be derived at any
time. Initially, Γ is initialized with the highest-ranked pixel
subset (along with its evaluation score). In each iteration over
the ranked pixel subsets list, the next subset in the list joins Γ.
A set of pixels of size u is then extracted from Γ (Algorithm
3), and evaluated (using Algorithm 2). The greedy step: if the
resulting evaluation score is higher than the existing evaluation
score of Γ, the current pixel subset remains in Γ. Otherwise,
it’s discarded. Finally, when the iteration over the pixel subsets
is over, the desirable set of pixels is extracted from Γ to serve
as the pixel selection. The extraction of the pixel set from
Γ (Algorithm 3) is done as follows: each individual pixel
subset in Γ is turned into a feature set, where pixel values
in time are defined as features (step 2a). An InfoGain based
feature selection is applied on this feature set, and the InfoGain
scores for each feature are taken (step 2b). The score for each
individual pixel is calculated by averaging (along the number
of pixel instances) the weighted averages of InfoGain scores
(along the pixel’s time course in each of the feature sets) (step
2c). The evaluation score of each pixel subset in Γ is used as
the weight for computing the grand-average, effectively giving
higher weight to pixels and features stemmed from highly
evaluated pixel subsets.

B. Feature extraction

Methods described here are applied on the pixel selection
results of the first phase (Subsection III-A). We present two
alternative feature extraction approaches in order to cope with
variability evident in different spatiotemporal datasets. Even
when the datasets originate from the same domain, they can
bear different spatial characteristics, expressed in the noise

1From our experience, having u · r ≈ 1.5n, u and r being of about the
same order of magnitude (see Table I), is usually more than enough—as it
provides a broad coverage of the pixels space, and at the same time a fast-
enough handling of individual subsets (of course, sensitivity analysis for these
two parameters is due when refining our technique).

Algorithm 1 Greedy Improvement of Random Spatial
Subspace—GIRSS (S,C, u, r)
Input: Sample set S, label set C, size of random spatial subspace u, number
of random spatial subspaces r

1) Initialize pixel subsets evaluation scores vector: Z [1 : r]←− 0
2) for i = 1 to r do:

a) Generate the random permutation vector:
ni = permute ({1, 2, . . . , n})

b) Generate the index vector: di =
{
ni1, n

i
2, . . . , n

i
u

}
c) Select pixel subset (random spatial subspace) indicated by:

di : P̃ d
i ⊂ P

d) Save the pixel subset’s evaluation score:
Z [i]←− evaluateP ixelSet

(
S, Y, P̃ d

i
, u
)

3) Produce sorted indices vector:
IZ [1 : r] ←− indices (sort (Z [1 : r])) to contain indices of
Z [1 : r] in the order matching the sorted scores of Z [1 : r] (highest
scores leading).

4) Initialize the set of pixel subsets Γ with the highest-ranked pixel subset:
Γ←−

{
P̃ d

IZ [1]
}

5) Initialize z with the score of the highest-ranked pixel subset:
z ←− Z [IZ [1]]

6) for j = 2 to r do:

a) Γ
′ ←− Γ ∪

{
P̃ d

IZ [j]
}

b) P
′ ←−

extractHighestRankedP ixels
(
S,C,Γ

′
, |Γ′ |, Z [1 : r]

)
c) z

′ ←− evaluateP ixelSet
(
S,C, P

′
, u
)

d) if z
′
> z, update the Γ and its score: z ←− z′ , Γ←− Γ

′
.

7) P ∗ ←− extractHighestRankedP ixels (S,C,Γ, u, Z [1 : r])

Output: Pixel set P ∗ =
{
p∗1, p

∗
2, ..., p

∗
u

}
(top u spatial subspace represen-

tatives).

Algorithm 2 Pixel Set Evaluation—
evaluateP ixelSet

(
S,C, P

′
, u

)
Input: Sample set S, label set C, sorted pixel set P ′, size of the random
spatial subspace u.

1) P
′′ ←− pi ∈ P

′ | i ∈
{

1, . . . ,min
(
u, |P ′ |

)}
.

2) Extract feature-set: F =
{
ptj | t ∈ {1, . . . ,m} , ∀pj ∈ P

′′
}

over the
sample set S.

3) Perform feature-selecton in F to obtain reduced feature set F
′
, using

InfoGain (S, F,C), producing scores: IG
(
ptj

)
, ∀ptj ∈ F . Select

only features having IG
(
ptj

)
> 0.

4) z ←− Accuracy score of a 10-fold cross-validation of F
′

applied on
S using SVM

(
S, F

′
, C
)

.

Output: Evaluation score z.

level and the resolution of the signal collected during the
dataset construction. The alternatives provided here are each
aimed at a different datasets sector.

1) Features as pixels in time: The straightforward ap-
proach for extracting a feature set F from a given
pixel set P ∗ = {p∗1, p∗2, . . . , p∗u} over the sample set S,
is to define it as all pixel-in-time combinations F ={
pt

j | t ∈ {1, . . . ,m} , ∀pj ∈ P ∗}, yielding u ·m features. We
used this approach in Subsection III-A for ranking pixel
subsets and feature sets. While for simpler classification tasks
this is satisfactory—fast, simple and effective (Section IV), a
method described next is suggested for more complex tasks.



Algorithm 3 Highest Ranked Pixels Extraction—
extractHighestRankedP ixels (S,C,Γ, u, Z [1 : r])
Input: Sample set S, label set C, set of pixel subsets Γ = {P1, P2, . . .},
size of the random spatial subspace u, pixel subsets score vector Z [1 : r].

1) Initialize pixels score vector: ρ [1 : n] ←− 0 and pixels instances
vector: ι [1 : n]←− 0.

2) for ∀Pi ∈ Γ do:
a) Extract feature-set F over the sample set S:

F =
{
ptj | t ∈ {1, . . . ,m} , ∀pj ∈ Pi

}
b) Rank features in F using InfoGain (S, F,C) producing

scores: IG
(
ptj

)
, ∀ptj ∈ F .

c) for ∀pj ∈ Pi do:

i) ρ [j] =
ρ[j]·ι[j]+Z[i]·

∑m
t=1 IG

(
ptj

)
m

ι[j]+1
ii) ι [j] = ι [j] + 1

3) Produce sorted pixel indices vector:
Iρ [1 : n] ←− indices (sort (ρ [1 : n])) to contain indices of
ρ [1 : n] in the order matching the sorted scores in ρ [1 : n] (highest
scores leading).

Output: Top u ranked pixels pIρ[l] ∈ P, l ∈ {1, . . . , u}.

2) Spatial averaging of pixel groups based on inter-pixel
correlation: The motivation for this method is to overcome
the negative effects of a possibly noisy data by performing a
spatial-level averaging of pixels that share a common nature.
This requires that the trends of their change along the time
course will have similar characteristics. Two questions raised
here are how to measure similarity, and how to choose “sim-
ilar” pixels in space, designated for averaging. The way we
measure similarity is by employing Pearson’s product moment
coefficient [19] between pairs of pixels. We then perform
pixel averaging within groups of “similar” neighboring pixels.
The reason for this lies in the nature of our data—a non-
trivial negative correlation exists between all pixel-pairs cor-
relations and all pixel-pairs distances2, showing that higher
distances between pixels lead to lower correlations between
them. Therefore, choosing neighboring groups of pixels as a
whole, having a high inter-group similarity, has the potential
to reveal stronger discriminative characteristics—rather than
picking individual pixels from the same group.

In Algorithm 4 we show how the neighborhood formation
for pixel groups generation is done. This formation is based
on a given pixel set, a product from the previous phase
(III-A)—we refer to this set as “seeds”. First, we calculate
a correlation coefficient matrix C and a distances matrix
D between all pixel pairs (step 3). Then we define the set
of pixel subsets ∆, which will eventually hold the groups
of neighboring pixels that share a similar nature. Next we
employ a graded group formation phase (step 5), where the
correlation strength dictates the group formation order: groups
having the strongest inter-similarity are generated first, ensur-
ing that the eventually formed groups exploit the similarity
property to its full extent (only positive correlation coefficient

2During the experimental evaluation of all datasets (Section IV), the
coefficient between all pixel-pairs correlations and all pixel-pairs distances
was within the range of ≈ −0.45± 0.5.

Algorithm 4 Inter-Pixel COrrelation based Spatial
Averaging—IPCOSA (S,C, P ∗, τ)
Input: Sample set S, label set C, seeds pixel set P ∗ of size u, correlation
threshold step τ ∈ [0, 1].

1) Set neighboring distance threshold µ (e.g. for spatially grid-
formatted domains: µ =

√
2). p1 and p2 are neighbors iff

distance (coords (p1) , coords (p2)) ≤ µ.
2) Initialize correlation coefficient matrix: C = 0n×n and distance

matrix: D = 0n×n (symmetric).
3) for ∀pi ∈ P do:

a) Vectorize all pi values of pi over the sample set
S = {s1, s2, . . . , sk} to produce super-vector of length m · k
with all of concatenated pi values:
qi =

〈〈
vi1, . . . , v

i
m

〉
s1
· · ·
〈
vi1, . . . , v

i
m

〉
sk

〉
b) for ∀pj ∈ P, pi 6= pj do (for every pair pi, pj ):

i) Vectorize all pj values of pj over the sample set
S = {s1, s2, . . . , sk} to produce super-vector of length
m · k with all of concatenated pj values:

qj =

〈〈
vj1, . . . , v

j
m

〉
s1
· · ·
〈
vj1, . . . , v

j
m

〉
sk

〉
ii) Compute correlation coefficient:

C(i,j) = correlation (qi, qj).
iii) Compute distance:

D(i,j) = distance (coords (pi) , coords (pj)).
4) Initialize ∆, the set of pixel subsets: ∆ ←− ∅, and R, the retaining

pixel set: R←− P .
5) for r ∈ {1, 1− τ, 1− 2τ, . . . , τ} do:

a) while ∃p ∈ R s.t. p ∈ P ∗ (p is a seed) and ∃p̂ ∈ R s.t.
C(p̂,p) ≥ r − τ and D(p̂,p) ≤ µ:
i) Initialize G, pixel subset group, G←− {p}.

ii) R←− R \ {p}
iii) while ∃p′ ∈ R and ∃p̃ ∈ G s.t. C(

p̃,p
′) ≥ r − τ and

D(
p̃,p

′) ≤ µ:

A) G←− G ∪
{
p
′
}

B) R←− R \
{
p
′
}

iv) ∆←− ∆ ∪ {G}
6) for ∀p ∈ R s.t. p ∈ P ∗ (p is a remaining seed in R) do:

a) R←− R \ {p}
b) G←− {p}
c) ∆←− ∆ ∪ {G}

7) Initialize feature-set F ∗ over the sample set S, F ∗ ←− ∅.
8) for ∀G ∈ ∆ do:

a) for t = 1 to m do:
i) Define f t—the average of values of all pixels in G at time

t: f t =
∑|G|
i=1 v

i
t

|G| , s.t. pi =
〈
vi1, . . . , v

i
m

〉
, vit ∈ R, t ∈

{1, . . . ,m} , ∀pi ∈ G
ii) F ∗ ←− F ∗ ∪

{
f t
}

Output: Feature set F ∗ over the sample set S.

thresholds are used)3. The group formation is subject to the
following guidelines: a group of pixels must contain at least
one seed within it to base the group on. Once chosen, the
seed’s proximate neighbors’ correlation scores are examined.
Neighbors with scores that fit the graded correlation threshold
join the seed’s group. Recursively, the correlation scores of
the neighbors of each of the newly-joined group members
are tested, and additional pixels conforming to the correlation
and the proximity requirements join the group. Eventually,
a group stops expanding once none of the group members’

3Our choice of τ was 0.05 in all our experiments.



neighbors fits the requirements. At this step, a formed group
joins ∆, and its members are no longer available for formation
of new groups. A group may consist of a sole seed (step 6).
At the end of the group formation phase, ∆ contains groups
of neighboring pixels, each based on one or more seeds. Some
groups have stronger inter-similarity than the others, but due to
our graded group formation phase, even the weaker groups are
generally based on non-negligible positive correlation scores4.
At the final phase of our algorithm, the feature extraction is
based on ∆’s pixel groups: pixel values at each of the points
in time are averaged along their spatial dimension—across all
pixels within each of the groups of ∆. The resulting features
represent the average-in-time of similar pixels, as opposed to
the pixel-in-time approach presented in III-B1. For seeds pixel
set of size u, there will be at most u ·m features (number of
formed groups will not exceed the number of seeds, as each
group must contain at least one seed).

C. Feature selection

To further improve model quality and reduce the feature-
space dimensionality, feature selection is applied on the
extracted features. InfoGain-based feature selection [18] is
applied on the given feature set F , producing scores:
IG (f) , ∀f ∈ F . Then, only the features with positive
InfoGain scores: IG (f) > 0 are selected. The motivation:
the features produced in III-B are based on pixel selection
from III-A, where the whole time-spectrum of pixels or pixel
groups is preserved. However, points along the time course
exist, during which the spatial discriminative nature is not
realized (e.g. long before the onset of the signal in VSDI). Not
only that these points in time are ineffective for the emphasis
of the spatial characteristics, but they sometimes obscure
their discriminating potential. InfoGain filtering drops those
unwanted features with negligible scores, whose contribution
is neutral or negative.

IV. EXPERIMENTAL EVALUATION

The primary goal in our work is to suggest a combination
of effective techniques for obtaining scalable and accurate
classification in large scale spatiotemporal domains. To reach
this goal, we demonstrate how our techniques are evaluated in
the VSDI domain and applied to VSDI datasets. The accuracy
of the classification is validated by the evaluation of our
classification performance. The scalability of our methods
is shown by exploring their feasibility from the run-time
perspective. This is done by emphasizing the lessons learned
from the experience we had with applying approaches similar
in nature to the ones reviewed in Section II. Many of these
approaches use the most granular values of the sample’s space
for feature selection and classification, which eventually leads
to an extremelly high dimensional feature space. Our failure
in employing these approaches is compared to the success of
showing the feasibility of our methodology. We additionaly
compare our results to those achieved by an Oracle—a

4As our experimental evaluation shows (Section IV), in most cases the
weakest formed groups are based on correlation coefficient of at least 0.4.

domain expert—faced with the same tasks, and validate their
credibility.

A. Datasets

Each evaluated dataset is based on a single imaging ex-
periment performed in the visual cortex of one animal and
composed from multiple trials. In each experiment, the mon-
key was shown a set of different visual stimuli, one specific
stimulus per trial. Each stimulus presentation was repeated 20-
30 times. Neuronal population responses in the visual cortex
evoked by the stimulus, were recorded using VSDI. The
imaged area was divided into a grid of pixels, and popula-
tion response (summed membrane potentials of all neuronal
elements) of each pixel was recorded during the time window
of the trial [13]. Each trial in an experiment is a sample in our
sample space. A sample consists of all pixels of the recorded
area, where a pixel is a time-series of values collected along
the time course of the trial. These values represent the rawest
possible data-points—with no averaging across trials, whether
in time or space, therefore directly reflecting unprocessed
measurement points. Hence, the VSDI decoding we did was
performed at a single trial level. Each sample is labeled with
a class that represents the appropriate stimulus. The datasets
differ in the number and the type of the presented stimuli,
both affecting the complexity of the decoding. Being able to
perform successful classification of these datasets, is being
able to “read” what the monkey has seen without seeing it
ourselves.

1) Dataset 1: Oriented Gratings (simple): The monkey
was presented with two different drifted square gratings at
horizontal and vertical orientations, and a blank control image
with no stimulus (Fig. 1). Each of the 293 samples in the
dataset had 2162 pixels (a 46×47 matrix) along 51 time points.
The three classes had almost uniform distribution where the
mode class consitutes 34.13% of the population (setting the
baseline accuracy, i.e. ZeroR [18]).

2) Dataset 2: Gabors (complex): The monkey was pre-
sented with five different Gabor based orientations in space
and a blank control image (Fig. 2). Each of the 153 samples
had 10, 000 pixels (a 100 × 100 matrix) along 51 time
points. The six classes had almost uniform distribution where
the mode class consitutes 18.95% of the population (ZeroR
baseline accuracy).

3) Dataset 3: Contours (hard): The monkey was presented
with four different Gabor-based Contours in space and a blank
control image (Fig. 3). The four Gabor-based Contours divide
into two pairs, where the differences between the classes in
each pair are very subtle and hardly noticeable. Each of the
124 samples had 10, 000 pixels (a 100×100 matrix) along 61
time points. The five classes had almost uniform distribution
where the mode class consitutes 23.39% of the population
(ZeroR baseline accuracy).

B. Experimental methodology

As a part of the evaluation methodology for the pixel
selection technique presented in III-A, we define the Oracle: a



Figure 1. Stimuli for the Oriented Gratings dataset: (1) Drifted square
gratings at vertical orientations; (2) Drifted square gratings at horizontal
orientations; (3) Blank control image (not presented).

Figure 2. Stimuli for the Gabor dataset (the numbers and the degrees on
the white axes are not part of the stimuli; blank control image not presented).
The circle represents the fixation point location.

Figure 3. Example of stimuli for the Contours dataset: (1) Circle 1; (2)
Masked circle 1; (3) Circle 2; (4) Masked circle 2; (5) Blank control image
(not presented).

pixel selection method, a best-effort attempt by a human expert
who was asked to provide a pixel set which, in her professional
opinion, has the most potential to successfully discriminate
between the different classes of the training samples set. The
human expert, or the Oracle, manually picked a set of pixels
of some size: Ω = {p1, p2, . . .} , Ω ⊆ P , also known as the
ROI (Region Of Interest). This set is referred to as the “gold
standard”, where the aim is to build an accurate classification
model using the most discriminating pixels. The success rates
achieved by using Ω for pixel selection are compared to the
success rates of using the pixel set selected by GIRSS, our
pixel selection technique.

In the experimental setup, the domain expert was requested
to provide an ROI of pixels for each dataset. In the case
of Gabors, we were given an improved ROI, based on the
results of using the original ROI5. In the case of Contours,
three different ROIs of pixels were given in advance, each for
individual evaluation by our techniques. We built models using
both pixel selection techniques as the first phase, in combina-
tion with the two feature extraction methods as the second:
{Oracle,GIRSS} × {PixelInT ime, IPCOSA}, with ap-
plication of the feature selection phase (III-C). The resulting
models were evaluated using a 10-fold cross-validation of the
multi-class SMO implementation of SVM with linear kernel
[18]. Each model’s evaluation was performed a number of
times (each trial yielding a different random 10-fold division),
as specified in the results Table I.

C. Results

In regard to the classification performance, besides aspiring
to achieve the most accurate results, it also was as much as
important for us to show that the results we acquire are not
inferior to the ones achieved by exploiting the domain expert’s
guidelines. Indeed, we’ve shown that for two types of data
(Oriented Gratings, Contours), our pixel selection technique is
capable of producing pixel sets having as good dicriminative
abilities as the best of provided ROI sets. Moreover, for the
Gabors data type, our results were superior not only to the
initially provided ROI1, but also to the revised ROI2. In this
case, we see major difference when our selected pixel sets
are compared to the ROI pixel sets (please refer to Fig. 4
and 5 for example comparison). While both of the ROI sets
were defined within the V1 area (primary visual cortex), our
sets (of the same size) show a wide spread of pixels among
numerous sites, including V2 (secondary visual cortex). One
can claim that the comparison is not adequate, since the ROI
was limited to V1. Nevertheless, we claim the opposite—our
results reveal that while the initial working hypothesis of a
neuroimaging expert can be restricted to a specific cortical
site (e.g. V1 activity is sufficient for decoding the Gabors’
visual stimuli), in practice, a collaboration between the repre-
sentative populations from numerous sites shows much higher
contribution to classification.

5See results of ROI2 pixel set of Gabors dataset in Table I, compared to
the results of ROI1.



Table I
THE RESULTS OF APPLYING EACH OF THE COMBINATIONS:

{Oracle,GIRSS} ×
{
PixelInT ime

(
1
)
, IPCOSA

(
2
)}

ON EACH
DATASET. ROIx (y) IS AN ROI PIXEL SET x OF SIZE y. THE NUMBERS IN
BRACKETS FOR u (NUMBER OF PIXELS IN A RANDOM PIXEL SUBSET) AND

r (NUMBER OF RANDOM PIXEL SUBSETS) ARE THEIR RESPECTIVE
VALUES. THE RESULTS OF THE FORM µ± σ% (n) HAVE µ REPRESENTING
THE AVERAGE ACCURACY BETWEEN THE TRIAL RUNS, σ REPRESENTING

THE STANDARD DEVIATION AND n REPRESENTING THE NUMBER OF TRIAL
RUNS.

ORIENTED GRATINGS
BASELINE: 34.13%

Oracle GIRSS
ROI1 (154) u (154) , r (20)

1 95.4± 0.4% (10) 94.9± 1.3% (10)
2 79.3± 3.2% (10) 88.5± 4.0% (10)

GABORS
BASELINE: 18.95%

Oracle
ROI1 (104) ROI2 (218)

1 55.0± 1.5% (10) 68.8± 1.1% (10)
2 57.2± 3.3% (10) 71.0± 2.4% (10)

GIRSS
u (100) , r (150) u (100) , r (125) u (100) , r (100)

1 79.1± 1.7% (10) 78.5± 1.8% (6) 78.6± 1.5% (7)
2 81.8± 1.4% (10) 81.4± 2.7% (6) 80.6± 1.8% (7)

CONTOURS
BASELINE: 23.39%

Oracle
ROI1 (151) ROI2 (227) ROI3 (155)

1 44.9± 2.3% (10) 50.6± 2.4% (10) 73.3± 1.6% (10)
2 40.2± 3.1% (10) 47.6± 3.0% (10) 65.7± 1.8% (10)

GIRSS
u (151) , r (100) u (500) , r (100)

1 71.9± 2.8% (10) 69.6± 2.8% (10)
2 72.4± 2.7% (10) 73.1± 2.1% (10)

The high accuracy of the Oriented Gratings dataset is
somehow expected due the apparent differences between its
visual stimuli, but it’s not for granted considering the baseline
of 34.13%. Due to the high resolution of the signal in the Ori-
ented Gratings, we see that the spatial averaging only worsens
the results instead of improving them. This is an expected
result—the signal in this case arises from small orientation
columns, while averaging over space smears them out, causing
the loss of signal—hence, the loss of the data’s essential
properties. However, with the Gabors and the Contours, we
see quite the opposite—spatial averaging provides additional
enhancement to the classification abilities. Being much harder
to distinguish than with the first dataset case, the types of
the visual stimuli of these two datasets lead to collection
of data in which the activation has, at least partially, low
spatial frequency characteristics, as opposed to the Oriented
Gratings (some of the information in this case has to do with
the retinotopic activation). In conclusion, the spatial averaging
role depends on the size of the neuronal spatial modules that
encode it, leaving space for improvement by the advanced
feature extraction technique in datasets characterized by low
spatial frequency.

As for the feasibility of construction and evaluation of our
models—all early attempts to handle the data before basing our

pixel selection on random subspace [12], such as employing
techniques that base their feature extraction, selection and
classification on the full spatial range (resembling methods
proposed in [15], [16], [1], [2]), ended with impractical
running times (waiting for weeks with no end in prospect) and
memory requirements. However, GIRSS and IPCOSA were
able to build models using a single-threaded Java application
on a Core 2 Duo machine with 2GB of RAM, in less than
2 hours for the Oriented Gratings, roughly 8 hours for the
Gabors, and between 8 to 13 hours for the Contours datasets.
Truly, our proposed models are not only feasible, but practical.

D. Validation of the results

To further establish the credibility of our results and dis-
proof the likelihood of “free of charge” high accuracy rates or
of possible overfitting, we proceeded with additional validation
of the results produced by using our three phase methodology.
In VSDI data in particular, the significance of each of the
stimuli conditions is realized only after the visual stimulus
onset, that is to say—the discrimination between the different
stimuli (i.e. the classification of the different classes), is only
possible after the stimuli were shown to the monkey, and the
appropriate neuronal population responses were provoked. Had
we observed the responses of the same neuronal populations,
solely before the onset of the stimuli, we wouldn’t expect to
have the ability to discriminate between them—simply because
of the fact that the behaviour of these responses is expected to
be similar to the ones provoked by the blank control image,
where no stimulus is presented (which is exactly the case).

The logic discussed above lays the foundations of our
validation procedure. We carried the same experiments as
detailed in Section III, with two differences. First, in all
our datasets, the time course was reduced to only the first
consecutive points in time where we know for sure that the
onset of the stimuli was not present. Second, pixel selection
via the Oracle wasn’t included in this procedure—knowing
that GIRSS has at least as good classification capabilities as
the Oracle, such type of comparison at this stage is redundant.

That being the case, we would expect the classification
results to be close to baseline accuracies of each of the
datasets. Indeed, we can safely say that the results of this
stage were as expected—roughly the same as the chance level.
In our validation procedure, the time course was reduced
to the first 10 points in time before the visual stimulus
onset for the Oriented Gratings and the Gabors datasets,
and to the first 3 points in time for the Contours. For the
Oriented Gratings, GIRSS with u (154) , r (20), applied with
PixelInT ime, produced the average accuracy of 31.6%; the
application of IPCOSA instead of PixelInT ime yielded the
average accuracy of 34%. In the Gabors case, GIRSS with
u (100) , r (150) and PixelInT ime, produced the average ac-
curacy of 17.5%, while using the IPCOSA generated roughly
the same outcome. Applying GIRSS with u (151) , r (100) on
the Contours produced the accuracy of 21% when used along
with the PixelInT ime, and the accuracy of 22.7% when
used with the IPCOSA. Using GIRSS with u (500) , r (100)



Figure 4. Gabors dataset, ROI2(218)—the best performing Oracle’s ROI
pixel set. The imaged area of pixels is depicted on the grid (all pixels are in
V1, the primary visual cortex).

Figure 5. Gabors dataset, sample fold result—the imaged area of pixels
depicted on the grid. Applied GIRSS with u(100) and r(125) to produce
“seeds” pixel set (large circles). Applied IPCOSA to improve the accuracy
of PixelInT ime from 87.67% to 100%. Neighborhoods of pixels for
averaging are formed around the seeds (small circles, having the seeds’
shades). The different sizes of pixels between the neighborhoods express the
inter-correlation strength within each neighborhood, compared to the other
ones.

for the Contours dataset, generated the results of 19% and
22.4% when using the PixelInT ime and the IPCOSA,
respectively.

E. Neuroimaging implications

Some questions arise in light of these results with respect
to the neuroimaging perspective and neural decoding in par-
ticular. Our results show that machine learning can definitely
be applied on fields such as VSDI for decoding and possibly

other tasks. Without prior knowledge in neuroimaging, we
can successfully classify (to some extent) different neuronal
population responses with respect to the provoking stimuli.
We can support neuroimaging researchers in revealing the
dominant areas in the brain responsible for visual processing.
Can our results shed new light on the dynamics of the neuronal
populations? We believe it can, for two reasons. First, the
support of our domain expert, who believes that these results
look interesting and promising, and that a further and deeper
study is necessary in order to advance in their interpretation.
Second, by analyzing the differences revealed between the
expert’s ROI pixel sets to the ones selected by our technique.
Not only that the pixels selected by a non-expert technique
provide at least as good results as the expert’s ROIs, but they
also provide new findings on their significance.

V. CONCLUSIONS AND FUTURE WORK

In this work, we presented a combination of methods that
employ machine learning techniques to handle vast spatiotem-
poral VSDI data. In addition to the results and implications
discussed in Section IV, we consider this work as pioneering,
in terms of combining these two perspectives to produce an
interdisciplinary AI research, applied for the first time to
the VSDI domain. With advanced neuroimaging technology
and our proposed tools, we foresee further progress in the
development of visual perception decoding algorithms to aid
in decoding novel visual stimulus, such as movies or real-
time streaming visual data. We plan to compare different
decoding mechanisms over different cortical areas and be-
havioral conditions. Thanks to the fact that our techniques
are domain independent, we also plan to apply them in other
spatiotemporal domains with resembling characteristics.

We ought to mention that our methods do not treat the time
dimension as a dimensionality threat, thus not taking an effort
to effectively reduce it. However, we did preliminary attempts
to apply various sliding window techniques for temporal
reduction, but without any apparent advantage (as expected
with potential data loss). Expecting future data to have a much
higher temporal resolution obligates temporal reduction. For
this purpose, we believe that using Discrete Fourrier Transform
(DFT) or Discrete Wavelet Transform (DWT) for dimension-
ality reduction of time-series, as reported in [20], [21], will
help us find a lower dimensionality time-course representation
that preserves the original information—describing the original
shape of the time-series data as closely as possible.
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