
An Integrated Development Environment and Architecture for Soar-Based Agents

Ari Yakir and Gal Kaminka
The MAVERICK Group

Computer Science Department
Bar Ilan University, Israel
{yakira,galk}@cs.biu.ac.il

Abstract
It is well known how challenging is the task of coding com-
plex agents for virtual environments. This difficulty in de-
veloping and maintaining complex agents has been plaguing
commercial applications of advanced agent technology in vir-
tual environments. In this paper, we discuss development
of a commercial-grade integrated development environment
(IDE) and agent architecture for simulation and training in a
high-fidelity virtual environment. Specifically, we focus on
two key areas of contribution. First, we discuss the addition
of an explicit recipe mechanism to Soar, allowing reflection.
Second, we discuss the development and usage of an IDE for
building agents using our architecture; the approach we take
is to tightly-couple the IDE to the architecture. The result
is a complete development and deployment environment for
agents situated in a complex dynamic virtual world.

Introduction
It is well known how challenging is the task of coding com-
plex agents for virtual environments. This has been a topic
for research in many papers including (Bordini et al. 2006;
Tambe et al. 1995; Jones et al. 1999; D.Vu et al. 2003). This
difficulty in developing and maintaining complex agents has
made adoption of cognitive architectures difficult in com-
mercial applications of virtual environments. Thus many
companies work with different variations of state machines
to generate behaviors (Calder et al. 1993).

In this paper, we discuss development of a commercial-
grade development environment and agent architecture for
simulation and training in a high-fidelity virtual environ-
ment. We discuss architectural support for coding of a com-
plex plan execution by a team of agents, in Soar, and discuss
the differences in our approach from previous approaches to
using Soar in such tasks.

Specifically, we focus on two key areas of contribution.
First, we discuss the addition of an explicit recipe mecha-
nism to Soar, allowing reflection. This allows a program-
mer to build Soar operators (units of behavior) that are
highly reusable, and can reason about their selection and de-
selection. We show how this mechanism acts as a decision-
kernel allowing multiple selection mechanisms (simulating

Copyright c© 2007, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

human social choices, domain knowledge, etc.) to all co-
exist on top of it. The recipe mechanism generates possible
alternatives: The choice mechanisms assign preferences to
these. Soar then decides.

Second, we discuss the development and usage of an in-
tegrated development environment (IDE) to build agents us-
ing our architecture. The approach we take is to tightly-
couple the architecture to the development environment, so
that bugs—which in Soar can be notoriously difficult to find
(Ritter et al. 2005)—can be ironed out as they are written.

We demonstrate these efforts in a complete development
environment for Soar agents, situated in a complex dynamic
virtual world, used for realistic simulation and training.
We attempt to draw lessons learned, and highlight design
choices which we feel were important from the perspective
of an industrial project.

Background
Our work was done as part of Bar Ilan University’s collabo-
ration with Elbit Systems, Ltd. The goal is to create a smart
synthetic entity—an agent—which performs in a variety of
simulated scenarios. Agents should operate autonomously,
behaving as realistically as possible. The agents will en-
hance Elbit’s training and simulation products.

The environments in which the agents are to function
are usually complex environments, containing up to entire
cities, and including accurate placement of objects. The ini-
tial focus of the project is towards the development of indi-
vidual entities, possibly working in small groups. Figure 1
shows an example screen-shot from an application use-case.

Both the architecture and IDE for the agents must be
oriented towards the development of configurable entities,
driven by capabilities, personality and complex plans. Such
a view reinforces the need for a flexible architecture, able to
cope with many parameters and configurations of large plans
(composed of recipes with 100 up to 1000 inner behavior
nodes). The architecture must support several distinct cog-
nitive mechanisms (emotions, focus of attention, memory,
etc.) running in parallel and interacting, in each and every
virtual modeled cognitive entity.

We briefly introduce here the various components of our
architecture, and the rationale behind its design. The next
sections will discuss the foci of the paper in depth.

One main difference between commercial and academic



Figure 1: Urban terrain

frameworks for multi-agent systems, is in the use of hybrid
architectures. While in most academic work it is sometimes
possible—indeed, desired—to include all levels of control
using a unified representation or mechanism, this is clearly
not the case when it comes to large scale industrial appli-
cations. No single architecture or technology in this case is
sufficient. Moreover, it is often critical to be able to inter-
act with existing underlying components. This might come
as a demand from the customer who ordered the project, or
(sometimes) as a way to promote other technology available
within the company.

With respect to academic work, this view goes back to
past research on agent architectures, such as the ATLANTIS
(Gat 1992) architecture, which is based on the observa-
tion that there are different rates of activity in the envi-
ronment, requiring different technologies. In our work,
we were inspired as well by the vast research and conclu-
sions drawn from the RoboCup simulation league (Marsella
et al. 1999) and from past simulation projects conducted
in Soar such as the IFOR project (Tambe et al. 1995;
Jones et al. 1999).

Indeed, our industrial partners have developed a hybrid
architecture in which many components that have to do with
cognitive or mental attitudes are actually outside of the main
reasoning engine, built in Soar. The guiding philosophy
in deciding whether something should be done in the Soar
component has been to leave (as much as possible) any and
all mathematical computations outside of Soar, including all
path planning and motion control. For example, we rely
on a controller in charge of moving an agent on a speci-
fied path. Such controller can be assigned the movement
of teams of agents, and can use different movement con-
figurations while trying to keep relations and angles fixed
between it’s members. In making this choice, the project
is setting itself apart from other similar projects, in which
Soar was used to control entities at a much more detailed
level of control (Tambe et al. 1995; Jones et al. 1999;
Marsella et al. 1999).

We focus in this paper on the Soar decision-making com-
ponent, and its associated IDE. Both of these, with the

other components of the system, are hooked up to a VR-
Forces (MÄK Technologies 2006) simulation environment,
a high-fidelity simulator utilizing DIS. It is used for large
scale projects ranging air, ground and naval training such as
TACOP (van Doesburg, Heuvelink, & van den Broek 2005).

Given the task of providing an agent development frame-
work, several architectures for this type of application might
come to mind: JACK (Howden et al. 2001), SOAR (Newell
1990), UMPRS (Lee et al. 1994), JAM (Huber 1999), etc.
Soar (Newell 1990) is among the few that has commercial
support, and yet is open-source, making it a clear favorable
candidate for our project.

Soar uses globally-accessible working memory, and pro-
duction rules to test and modify it. Efficient algorithms
maintain the working memory in face of changes to spe-
cific propositions. Soar operates in several phases, one of
which is a decision phase in which all relevant knowledge is
brought to bear, through an XML layer, to make a selection
of an operator (behavior) that will then carry out deliberate
mental (and sometimes physical) actions.

A key novelty in Soar is that it automatically recognizes
situations in which this decision-phases is stumped, either
because no operator is available for selection (state no-
change impasse), or because conflicting alternatives are pro-
posed (operator tie impasse). When impasses are detected,
a subgoal is automatically created to resolve it. Results of
this decision process can be chunked for future reference,
through Soar’s integrated learning capabilities. Over the
years, the impasse-mechanism was shown to be very gen-
eral, in that domain-independent problem-solving strategies
could be brought to bear for resolving impasses (Newell
1990).

Being a mixture between a reactive and a deliberative sys-
tem, it is usually very easy to program rules (productions) in
Soar, so that a short sequence will be triggered upon certain
conditions. However, building a complex scenario involv-
ing multiple agents becomes somewhat of an overwhelming
task. Debugging just seems to never end1.

Soar uses globally-accessible working memory. Each rule
is composed by a left and right sides. Simplified, the left
side of the rule is in charge of testing whether specific condi-
tions hold in this working memory, while the right side is in
charge making changes to the working memory. Thus each
rule in the system can read, write, and modify the work-
ing memory, triggering or disabling the proposal of other
rules, including itself. This means that each Soar program-
mer must have complete knowledge of all the rules, taking
all previous written code into account each time a new rule
is added.

Another facet is that Soar does not differentiate between
the change an operator makes, and the actual state of the
agent, and ties them as one by coding conventions. Since
Soar operates through states, this means that each operator
by definition is tied to the state the agent is in. In other
words, naive Soar programming requires all agent behaviors
to be re-programmed each time a behavior is to be applied

1We note that similar motivations have lead in the past to con-
tributions in other directions, e.g., teamwork (Tambe 1997).



in a slightly different state than initially anticipated by the
programmer.

One of the first architectural changes we aimed for was
to overcome this relation between states and operators. By
doing so, we could make use of generic types, templates, and
other byproducts such as the utilization of reflection. These
proved to be valuable programming tools.

Soaring Higher
The approach we take is to provide a higher level of pro-
gramming, built on Soar foundations and taking advantage
of the underlying framework. The most important compo-
nent of this layer is recipes—behavior graphs—representing
a template (skeletal) plan of execution of hierarchical behav-
iors (Kaminka & Frenkel 2005; Tambe 1997). The behavior
graph is an augmented connected graph tuple (B, S, V, b0)
, where B is a set of task-achieving behaviors (as vertices),
S, V sets of directed edges between behaviors (S ∩V = ∅),
and b0 ∈ B a behavior in which execution begins.

Behaviors is defined as bi ∈ B :
1. Constant parameters, with respect to the program execu-

tion scope (such as bi timeout , probability etc..).
2. Dynamic parameters, with respect to bi execution scope

(such as the event that triggered bi preconditions).
3. Maintenance conditions (Kaminka et al. 2007), with re-

spect to bi execution scope.
4. Teamwork conditions (Kaminka et al. 2007), with respect

to bi execution scope.
5. Preconditions which enable its selection (the robot can se-

lect between enabled behaviors).
6. Endconditions that determine when its execution must be

stopped.
7. Application rules that determine what bi should do upon

execution.
In (Kaminka & Frenkel 2005) S sequential edges spec-

ify temporal order of execution of behaviors. A sequential
edge from b1 to b2 specifies that b1 must executed before
executing b2. A path along sequential edges, i.e., a valid
sequence of behaviors, is called an execution chain. V is
a set of vertical task-decomposition edges, which allow a
single higher-level behavior to be broken down into execu-
tion chains containing multiple lower-level behaviors. At
any given moment, the agent executes a complete path root-
to-leaf through the behavior graph. Sequential edges may
form circles, but vertical edges cannot. Thus behaviors can
be repeated by choice, but cannot be their own ancestors.

Even using this representation, we faced several abnormal
situations. For example, if a leaf behavior has precondition
equal to its ancestors endcondition it might never be pro-
posed, or worst, constantly be terminated prematurely. Solv-
ing such a problem at an IDE level, contradicts the need for
behavior encapsulation. Another problematic aspect of such
an architecture is that during an execution chain no alterna-
tives are being considered. Switching from one execution
chain to the other (given that they both derive from the same
parent behavior), needs ending the whole execution chain,
a process which is both time consuming, and sometimes

harms the overall reactiveness of the system. This problem
emerges even when using the Soar architecture as provided.
We will not deal with proposed solutions since they are out
of this paper’s scope. However, one specific proposal in-
volving a reactive recipe mechanism running on top of the
regular one, can be viewed as a higher level selection mech-
anism, and thus is similar to other selection mechanism dis-
cussed later in detail.

The recipe mechanism is responsible for proposing oper-
ators for selection. Through reflection, it examines the cur-
rent recipe data structure (graph), and proposes all operators
that are currently selectable, based on their precondition and
position within the recipe graph. It efficiently schedule the
proposal and retraction of generic behaviors given certain
conditions. These behaviors, are specified inside generic
subtrees of plans, which in turn are gathered in large abstract
sets of plans. When a Soar agent is loaded, it assembles
its recipe structure at run-time by recursively deepening, ar-
ranging and optimizing it.

Additional mechanisms are added to guide selection be-
tween the proposed operators. Examples to such mecha-
nisms include probabilistic behavior selection, teamwork,
social comparison theory (Kaminka & Fridman 2007), in-
dividual and collaborative condition maintenance (Kaminka
et al. 2007), etc. For example, since the recipe enables
reflection, one of the mechanisms monitors other agents’
actions by the mirroring of the recipe onto another inner
Soar state and using translation of sensory data. This al-
lows modeling of another agent’s decision processes based
on observation—a form of plan recognition. Another mech-
anism is in charge of teamwork and keeps the team syn-
chronized and roles allocated, by the use of communication
(Kaminka et al. 2007).

With respect to the IDE, we made use of a new state-of-
the-art facilities such as refactoring and testing of agent ap-
plications. Instead of building the IDE from scratch, as is
commonly done, we chose to utilize an existing IDE, thus
taking advantage of well-tested available technology. Our
IDE is object-oriented, facilitating coding by the use of pre-
made templates, re-usability of components such as plans
and behaviors, instead of wizards and graphical means of
programming.

In Soar, productions are proposed due to changes in
WMEs (Soar working memory). In a behavioral context,
this means that each behavior can be triggered by a change,
both internal (inner state change) or external (sensory data),
and that each behavior can affect the overall conduction of
the system. During early phases of development we chose an
approach similar to that found in (Tambe 1997), by provid-
ing a middle layer between Soar inputs and operators. How-
ever, as mentioned, Soar’s productions can be triggered by
internal events as well. Thus, we chose to broaden the com-
mon ground between behaviors by substituting the transla-
tion layer with an event-based mechanism. All our behav-
iors’ preconditions and endconditions are triggered by ex-
plicit predicates, which signal events that are true. These
events correspond to percepts, deduced or processed facts,
and internal changes. They constitute explicit facts, in-
ternally classified by subject and category (e.g., all audio-



Figure 2: Soar integrated templates
related events groups together).

Adding events to Soar allows our agent means of reflec-
tion. A regular Soar agent is unaware of the actual change in
the environment that lead to a specific operator instantiation,
thus could not refer to the cause of it following a specific
sequence of actions. At most, it can reflect on the actions
themselves. Using the event mechanism, however, allows
the agent to consider exactly what changes lead to each op-
erator/behavior proposal or termination, as the preconditions
and endconditions are defined explicitly.

We found this approach critical when in need of com-
munications between agents. The language by which our
agents communicate is an event language: Entire subtrees
of Soar working memory are being passed on and forth be-
tween agents. The agents thus pass between them sets of
events relevant to the proposal or retraction of behaviors.
This allows allocation of roles, and synchronization of the
execution of behaviors. and

In our target environment, both recipe operators (task and
maintenance) and events can be programmed with the help
of code templates. During the coding phase we discovered
that most bugs result from WME misspelling or errors in
structure reference. Figure 2 shows the interface by which a
user can automatically generate the appropriate operator or
event code. Events are generated and categorized in different
folders, classified by the inputs that trigger them or by the
events that they relay on. Operators (behaviors) are gener-
ated with parameters, preconditions and endconditions, fully
documented. This feature results in a clean uniform code,
and thus simplifies debugging a great deal. Additional sup-
port for communication protocols and probability tables for
operator proposals is also provided.

The use of templates in Soar, goes back to the early IDE
development tools for Soar agents. Our tool differs from
those earlier works in that it provides not only basic support
for Soar operator application and proposal rules templates,
but an extensive elaborated behavior structure supported by
the recipe mechanism, specialized for the architecture we
use. The use of the templates saves much coding for the
programmer, since they already encapsulate much of what
the programmer needs to consider.

The Soar datamap is a representation of the Soar mem-
ory structure generated through the execution of a Soar pro-
gram, and can be inferred by the left side and right side of

Figure 3: Soar Datamap view

Figure 4: Auto complete with deep inspection

Soar production rules. Several tools are available in order
to generate a Soar datamaps through static analysis of Soar
productions. We significantly extended the initial Eclipse
extension for datamap support, provided by the University
of Michigan and SoarTech, adding additional services and
tools. Most of our coding tools now rely on the datamap,
enabling us to generate specific insightful warnings, provide
smart assistance, and auto completion of code that takes the
structure of the memory in our architecture into account.

By using elaborations on the datamap structure provided,
and by constantly matching it with the code being edited, the
IDE is able to propose completion of relevant points in the
code. As seen in Figure 4, the IDE is able to propose the
optional suggestions for code completion down the WME
path s.state.recipe.rsc.sc},where recipe behav-
iors are kept. By inspecting the datamap it is then able to
provide insights regarding it structure, such as its precondi-
tions, endconditions, etc.

Using the Soar parser combined with datamap inspection
we are able to assist the programmer with warning mes-
sages (as seen in Figure 5) and quick-fixes (as seen in Fig-
ure 6). In Figure 5 a common situation is demonstrated,



Figure 5: Warnings

Figure 6: Quick Fixes
where the Soar code refers to an unknown behavior called
movement-to-nav},which judging by its name, might
be the behavior in charge of moving the agent to a spe-
cific location. This warning message notifies the program-
mer that either: (a) this behavior does not exist, which leads
her to the understanding that it is yet to be programmed; or
(b) there is a behavior already present in charge of mov-
ing the agent to a specific location but it is not called
movement-to-nav}; or (c) There is a behavior already
present in charge of moving the agent to a specific location
called movement-to-nav},which is not updated in the
Soar datamap, thus no one knows it exist. Such failure points
are easily spotted and corrected by the use of quick-fixes that
offer several optional automatic corrections to the datamap.

Aside from warnings and code assistance, Soar benefits
from the many Eclipse plug-ins that are already present and
developed within the IDE environment. Among those are
integrated documentation support, execution of Soar agents,
and integrated debugger. Support for both VSS and CVS
code-versioning systems can be found as well, for large team
projects.

We have also extended and enhanced the SoarJavaDebug-
ger which is distributed with the current version of Soar, by
the University of Michigan. The first customization, seen in
Figure 7, utilizes a UML type of visualization, in order to
display the recipe at run time. At any point the active path
to the currently executed behavior is presented along with
optional behaviors not chosen (colored red). These red be-
haviors have matching preconditions, but were not activated
due to hierarchical or situational constraints. This recipe vi-
sualization is updated as well at runtime, enabling the pro-

Figure 7: Soar Java Debugger, with additional Tree View
and Recipe Visualization
grammer to focus only on the relevant executed subset of the
recipe.

In addition, on the left-hand side of the debugger window,
is a tree-folder view of the working memory. The root of the
tree can be set to point any subset of the agent knowledge
(any Working Memory Element, WMEs) and is updated at
runtime. Since Soar already arranges WMEs in a tree like
format, it greatly speeds up debugging to be able to inspect
the agent knowledge by simply clicking such folders.

Evaluation
Evaluation of the contributions described above is challeng-
ing. The first contribution involves the use of reflection in
the recipe, which allows clean separation of the process by
which the knowledge of the agent proposes alternatives, and
the mechanisms that facilitate a decision among them. Dur-
ing the evaluation of our system, we made use of a scenario
in which a team of agents uses communications to agree
upon several mission points. They calculate routes consider-
ing possible threats along the way and travel from one loca-
tion to the other. While doing so they collaboratively main-
tain several movement protocols and react to changes in the
environment such as the appearance of new threats, the loss
of team members, etc.. During the execution of the scenario,
the agents move from one waypoint to another, maintaining
specified formations, and reorganize these formations given
changes in the team hierarchy.

To provide some insight as to the performance of the de-
sign, we compare our system to previous systems that have
utilized Soar as their basis. The most well-known simi-
lar system is TacAir-Soar, a highly successful project us-
ing Soar as the basis for synthetic pilots, capable of run-
ning a wide variety of missions (Tambe et al. 1995; Jones et
al. 1999). Less complex—yet still successful—applications
of Soar included the ISIS-97 and ISIS-98 RoboCup teams
(Tambe et al. 1999).

Table 1 provides a comparison of key features, allow-
ing a qualitative insight into the complexity of these sys-
tems, compared to the system discussed in this paper. The
columns report (left-to-right) on the overall number of Soar



architecture rules actions inputs operators
TacAir-Soar 5200 30 200 450

ISIS-97/98 1000 7 50 40
Ours 650 25 200 100

Table 1: Architectural Complexity Evaluation
rules used in the system, the number of unique actions (out-
puts), the amount of unique percepts (inputs), and the num-
ber of actual domain/task behaviors/operators.

Our system, at its current state of development, is of mod-
erate complexity compared to efforts that have been reported
in the literature. Taking the combined inputs and outputs as
the a basic measure of the complexity of the task, would
put our system’s task on par with that of the TacAir-Soar
system, and far ahead of the challenge faced by RoboCup
teams. However, looking at the number of operators, we see
that the knowledge of our agents, while still significantly
more complex than that of the RoboCup agents, is still very
much behind that of the advanced TacAir Soar.

Based on this qualitative assessment, which puts our sys-
tem somewhere in the middle between the TacAir-Soar and
the ISIS systems, it is interesting to note that our system
uses significantly less rules than both other systems, to en-
code the knowledge of the agents. While we use about 6.5
rules, on average, for supporting each operator, TacAir-Soar
uses 11.5 and RoboCup about 25. We believe that this is
due, at least in part, to the use of the recipe mechanism. In
both previous systems, the preconditions of operators tested
not only the appropriateness of an operator given the men-
tal attitude of the agents with respect to its environment and
goals, but also with respect to the position of the operator
compared to other task operators. For instance, commonly
operators would have to test for the activation of their par-
ents, before being proposed. The recipe mechanism cleanly
separates the two.

On our system, operator rules only determine whether the
task-related preconditions of an operator have been satisfied.
The rules proposing the operator if its preconditions are true,
and given its position within the behavior graph, are all part
of the recipe mechanism. We believe that this saves a signif-
icant number of rules.

It also saves significant programming effort: Since our
operators do not refer at any point to their execution point,
changing the occurrence of a generic action (or a generic
subtree of hierarchical actions within a recipe) requires only
updating the configuration of the Soar coded recipe. In com-
parison, moving operators around in previous systems, from
one specific execution point to another (one point in the
recipe to the other) would require changes to be made in
all branching children (all rules testing the occurrence of
such an operator), since the hierarchy is part of each sub-
operator’s preconditions. Additionally, by previous Soar
conventions, operator source files were written in hierarchi-
cal file system, which reflected the intended hierarchical de-
compositions. Moving operators in the recipe either caused
files to move around, or worse yet, created a discrepancy be-
tween the convention of the file-system and the position of
the operator in memory. Freeing Soar operators from their
execution point also allowed us to place all operator files in a

benchmark dc msec/dc WM(mean, changes)
MaC 200 0.155 (49.896,13651)

Arithmetic 41487 0.320 (983.589,879076)
Ours 31363 0.078 (3266.797,196263)

Table 2: Runtime Evaluation
single directory, making finding and maintaining them much
easier.

Previous Soar architectures, have utilized a specific style
of writing in Soar, in which hierarchical decompositions are
created in memory by relying on Soar’s operator no-change
impasse to keep track of the active hierarchical decompo-
sition. But the creation and maintenance of impasses can
be expensive. The recipe mechanism allows us efficient
book-keeping of the current decomposition, without using
impasses (unless needed for other reasons).

To demonstrate the savings offered by using the recipe
mechanism, Table 2 provides data gathered from the execu-
tion of several standard Soar benchmarks (bundled with the
Soar architecture distribution), on the same hardware and
software configuration (Soar 8.6.2 kernel on the same Pen-
tium 4 CPU 3.2 GHz 512MB ram). These standard problems
consisted of the Missionaries and Cannibals (MaC) prob-
lem, and the performance of 1000 random arithmetic calcu-
lations. We compare Soar’s performance in both, with the
test scenario, described above.

Table 2 consists of four columns: The number of decision-
cycles in Soar (input to output phase) using an average run,
the average time for each decision-cycle in milliseconds, the
average size of Soar working memory at any time, and the
number of changes to this memory. As shown, our architec-
ture is much faster than the benchmarks—despite their sim-
plicity relative to the task our system faces. Our decision-
cycles are substantially faster mainly due to the recipe mech-
anism (which avoids impasses) and the utilization of con-
trollers. Though new input is constantly delivered to our
agents, most of the time our agent is idle, waiting for the
current operator/behavior execution, the proposal of new be-
haviors or the arrival of critical data. Such results are crucial
for demonstrating the scalability of the system, for future
scenarios (e.g., those simulating crowds).

We now turn to evaluation of the integrated development
environments. As one could expect, quantitative evalua-
tion is difficult here. Not only is the impact of the changes
difficult to measure directly, but the target audience—Soar
programmers—is very small. Nevertheless, we asked our
current users to provide qualitative feedback on the tool,
and compare it to previously-published development tools
for Soar (such as Visual Soar, which is packaged with the
Soar distribution).

Our users varied in experience, and in responses. One
veteran Soar programmer has previously developed in Soar
using emacs text-editor (without any GUI support for de-
bugging), and later in Visual Soar. His assessment was that
the use of the Eclipse environment was a marked improve-
ment over Visual Soar (which, not surprisingly, was believed
to be a significant improvement over emacs). He reported
that the use of templates was not a speed-saver: As a vet-
eran Soar programmer, he was used to writing code directly,



without templates. On the other hand, two relatively novice
programmers now swear by the Eclipse environment, and
show strong preference to it over existing tools. They report
that the templates are very useful, though they lose some of
the usefulness over time. Based on these qualitative reports,
it is clear that in an industrial project, a strong IDE such as
Eclipse, is a valuable tool which provides many benefits in
comparison to the alternatives.

Conclusion
In this paper we discussed both the architecture and devel-
opment environment for computed generated forces, based
on an extended version of Soar. On an architectural level
we proposed the addition of an explicit recipe mechanism to
Soar, allowing reflection. This allows a programmer to build
Soar operators (units of behavior) that are highly reusable
and effective. We proposed how such a mechanism could
act as a decision-making kernel by implementing multiple
selection mechanisms on top of it. Second, we discussed
the development and usage of an integrated development
environment (IDE) to build agents using our architecture.
We attempted to draw lessons learned, and highlight de-
sign choices which we felt were important from the per-
spective of an industrial project. We believe those insights
can contribute towards the future development of computer-
generated forces, in complex dynamic virtual worlds.
Acknowledgments. We thank our Elbit Systems partners
for many useful discussions and feedback: Ora Arbel, Itay
Guy, Ilana Segall, Myriam Flohr, and Erez Nachmani. The
work was supported in part by a generous gift by MÄK
Technologies, and by BSF grant #2002401. As always,
thanks to K. Ushi.

References
Bordini, R.; Braubach, L.; Dastani, M.; Seghrouchni, A.
E. F.; Gomez-Sanz, J.; Leite, J.; O’Hare, G.; Pokahr, A.;
and Ricci, A. 2006. A survey of programming languages
and platforms for multi-agent systems. In Informatica 30,
33–44.
Calder, R. B.; Smith, J. E.; Courtemanche, A. J.; Mar, J.
M. F.; and Ceranowicz, A. Z. 1993. Modsaf behavior sim-
ulation and control. In Proceedings of the Third Confer-
ence on Computer Generated Forces and Behavioral Rep-
resentation. Orlando, Florida: Institute for Simulation and
Training, University of Central Florida.
D.Vu, T.; Go, J.; Kaminka, G. A.; Veloso, M. M.; and
Browning, B. 2003. MONAD: A flexible architecture for
multi-agent control. In Proceedings of the Second Interna-
tional Joint Conference on Autonomous Agents and Multi-
Agent Systems (AAMAS-03).
Gat, E. 1992. Integrating planning and reacting in a het-
erogeneous asynchronous architecture for controlling real-
world mobile robots. In Proceedings of the Tenth National
Conference on Artificial Intelligence (AAAI-92). Menlo
Park, Calif.: AAAI press.
Howden, N.; Rönnquist, R.; Hodgson, A.; and Lucas, A.
2001. JACK: Summary of an agent infrastructure. In Pro-
ceedings of the Agents-2001 workshop on Infrastructure
for Scalable Multi-Agent Systems.

Huber, M. J. 1999. JAM: A BDI–theoretic mobile agent ar-
chitecture. In Proceedings of the Third International Con-
ference on Autonomous Agents (Agents-99), 236–243.
Jones, R. M.; Laird, J. E.; E., N. P.; Coulter, K.; Kenny, P.;
and Koss, F. 1999. Automated intelligent pilots for combat
flight simulation. AI Magazine 20(1):27–42.
Kaminka, G. A., and Frenkel, I. 2005. Flexible teamwork
in behavior-based robots. In Proceedings of the Twentieth
National Conference on Artificial Intelligence (AAAI-05).
Kaminka, G. A., and Fridman, N. 2007. Social compari-
son in crowds: A short report. In Proceedings of the Sixth
International Joint Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS-07).
Kaminka, G. A.; Yakir, A.; Erusalimchik, D.; and Cohen-
Nov, N. 2007. Towards collaborative task and team main-
tenance. In Proceedings of the Sixth International Joint
Conference on Autonomous Agents and Multi-Agent Sys-
tems (AAMAS-07).
Lee, J.; Huber, M. J.; Durfee, E. H.; and Kenny, P. G. 1994.
UM-PRS: An implementation of the procedural reasoning
system for multirobot applications. In Proceedings of the
AIAA/NASA Conference on Intelligent Robotics in Field,
Factory, Service, and Space, 842–849.
MÄK Technologies. 2006. VR-Forces.
http://www.mak.com/vrforces.htm.
Marsella, S. C.; Adibi, J.; Al-Onaizan, Y.; Kaminka, G. A.;
Muslea, I.; Tallis, M.; and Tambe, M. 1999. On being a
teammate: Experiences acquired in the design of RoboCup
teams. In Proceedings of the Third International Confer-
ence on Autonomous Agents (Agents-99), 221–227. Seattle,
WA: ACM Press.
Newell, A. 1990. Unified Theories of Cognition. Cam-
bridge, Massachusetts: Harvard University Press.
Ritter; E., F.; Morgan, G. P.; Stevenson; E., W.; and Cohen,
M. A. 2005. A tutorial on Herbal: A high-level language
and development environment based on protégé for devel-
oping cognitive models in Soar. In Proceedings of the 14th
Conference on Behavior Representation in Modeling and
Simulation.
Tambe, M.; Johnson, W. L.; Jones, R.; Koss, F.; Laird,
J. E.; Rosenbloom, P. S.; and Schwamb, K. 1995. Intel-
ligent agents for interactive simulation environments. AI
Magazine 16(1).
Tambe, M.; Kaminka, G. A.; Marsella, S. C.; Muslea, I.;
and Raines, T. 1999. Two fielded teams and two experts:
A RoboCup challenge response from the trenches. In Pro-
ceedings of the International Joint Conference on Artificial
Intelligence (IJCAI-99), volume 1, 276–281.
Tambe, M. 1997. Towards flexible teamwork. Journal of
Artificial Intelligence Research 7:83–124.
van Doesburg, W. A.; Heuvelink, A.; and van den Broek,
E. L. 2005. Tacop: a cognitive agent for a naval train-
ing simulation environment. In Proceedings of the Fourth
International Joint Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS-05), 34–41. New York, NY,
USA: ACM Press.


