
 1

A Scalable Petr i Net Representation
of Interaction Protocols for Overhear ing

 Gery Gutnik* Gal Kaminka
 Bar-I lan University Bar-I lan University
 Computer Science Department Computer Science Department
 gutnikg@cs.biu.ac.il galk@cs.biu.ac.il

Abstract

In open distributed multi-agent systems, agents often
coordinate using standardized agent communications.
Thus, representing agent conversations is an important
aspect of multi-agent applications. Lately, Petri nets
have been found to provide certain advantages
comparing to other representation approaches.
However, radically different approaches using Petri
nets to represent multi-agent interactions have been
proposed, and yet relative strengths and weaknesses of
these approaches have not been examined. Moreover, no
approach was shown to provide a comprehensive
coverage of advanced standardized communication
aspects such as those found in FIPA interaction
protocols. This paper presents (i) an analysis of existing
Petri net representation approaches in terms of their
scalability and appropriateness for different tasks; (ii) a
novel scalable representation approach, particularly
suited for monitoring open systems; and (iii) a skeletal
procedure for semi-automatically converting FIPA
interaction protocols to their Petri net representations.
We argue that the representation we propose is
comprehensive, in the sense that it can represent all
FIPA interaction protocol features.

1. Introduction

Open distributed multi-agent systems often involve
multiple, independently-built agents performing
mutually dependent tasks. To allow different agents
designs to be developed independently, without having
to consider the internal design of other agents, the
coordination of the activities is often accomplished
using standardized inter-agent interactions, typically by
communications. Indeed, the multi-agent community
has been investing a significant effort in developing
standard communication languages to facilitate
sophisticated multi-agent systems (e.g., FIPA
communication standards [4]). These languages define
agent interaction protocols that rely on pre-defined

communicative acts for a variety of system tasks,
ranging from simple queries, to complex negotiations by
auctions and bidding. For instance, FIPA Contract Net
Interaction Protocol [4] defines a sequence of concrete
messages that allows the interacting agents to negotiate.

Ideally, interaction protocols should be represented in
a way that allows performance analysis, validation and
verification, automated monitoring, debugging, etc.
Various formalisms have been proposed for such
purposes. However, Petri nets have been shown to offer
significant advantages in representing multi-agent
interactions, compared to other approaches [2,8,9,10].
Specifically, Petri nets are useful in validation and
testing, automated debugging and monitoring [13] and
dynamic interpretation of interaction protocols [3].

Unfortunately, existing literature on using Petri nets
to represent multi-agent interactions leaves open several
questions. First, different approaches to represent multi-
agent interactions have been introduced, and yet their
relative strengths and weakness have not been
investigated. Second, most previous investigations have
not provided a systematic comprehensive coverage of all
issues that rise in representing complex protocols such
as the standardized FIPA interaction protocols.

This paper addresses these open challenges. We
analyze and compare existing approaches to
representing interactions using Petri nets (Section 3).
This comparison is done based on the type of Petri net
chosen, its choice of representing individual or joint
states, and explicit representation of messages. We then
present a novel scalable representation that uses Colored
Petri nets in which places explicitly denote joint
conversation states and messages (Sections 4). This
representation can be used to cover essentially all
features used in FIPA conversation standards, including
interaction building blocks, communicative act attributes
(such as message guards and cardinalities), protocol
nesting and temporal aspects (e.g., deadlines and
duration). Finally, we provide a skeleton algorithm for
converting FIPA conversation protocols in AUML (the
chosen FIPA representation standard [4,11]) to Petri nets
(Section 5). Section 6 concludes.

* Student paper.

 2

2. Background

We begin first with a brief overview of Petri nets,
and then survey existing approaches that use Petri nets
in representing multi-agent interactions.

Petri nets are a graphical representation for
describing systems in which multiple concurrent states
may exist. An early elaboration of Petri nets is called
Place/Transition nets (PT-nets), while another high-level
extension is called Colored Petri nets (CP-nets) [6].

A PT-net is a bipartite directed graph where each
vertex is either a place (typically denoted by circles) or a
transition (rectangles). Arcs are directed edges
connecting places to transitions and vice versa. A place
can contain tokens (small black dots). An assignment of
tokens to places is called a marking. Arcs may have
associated integer expressions, which determine the
number of tokens associated with the corresponding arc.
A transition is enabled if and only if the marking of its
input places satisfies the appropriate arc expressions. It
then fires, carrying tokens from its input places, per the
output arc expressions, to its output places.

In CP-nets, tokens carry information, called color
[6]. Token color may be simple or complex, e.g. a tuple.
Each place contains only tokens of a specified color.
CP-net arc expressions are also extended, to allow
complex expressions over colored token variables
associated with the corresponding arcs. CP-nets also use
transition guards, boolean expressions over token color
attributes, which determine transition firing. CP-nets
contain additional extensions, which can be useful in
representing complex AUML features. Here, we refer
the reader to [5] for a comprehensive description.

We now turn to using Petri nets to explicitly
represent multi-agent conversations. All Petri net
representation approaches of this type use places to
represent interaction states, and Petri net transitions to
represent transitions between interaction states. Net
marking represents the current state of interaction.
However, previous investigations take different design
choices within this general approach.

Individual roles and CP-nets. Most investigations
choose to separately represent individual roles within
the interaction, rather than represent joint interaction
states. In this approach, separate places are used for
separate roles in the interaction, and thus different
markings distinguish a conversation state where one
agent has sent a message, from a state where the other
agent received it. Typically, the net for each individual
role is built separately, and then these nets are either
merged into a single net [2,8,9], or simply connected
together using Petri net fusion places, or other means
[3,14]. All these investigations use CP-nets to represent

multi-agent interactions. As shown later in the paper, the
use of token color allows compact representation of
multiple conversations using the same net.

Joint-state representations using PT-nets. In
contrast, a limited number of investigations model
conversations using PT-nets with joint conversation
states [10,13]1. In joint state representations, each net
place is at once a representative of the conversation state
of all agents. Typically, markings represent only valid
conversation states (thus the nets ignore transmission
delay, etc.), and synchronization protocols are assumed
to underlie the conversation, to make sure that the agents
are synchronized [12].

3. Analysis of Key Representations

The survey of related work presented above indicates
that previous investigations have introduced rather
different approaches to the modeling of multi-agent
interactions using Petri nets. This section offers a
comparative analysis of these approaches on the basis of
several criteria: scalability (Section 3.1), and suitability
for monitoring tasks (Section 3.2).

3.1. Scalability

We have classified previous approaches based on (i)
their representation of individual conversation states vs.
joint states, and on (ii) their utilization of token color.
We now show how these two independent features
affect the scalability of the chosen representation in
terms of the number of conversations.

In principle, for a conversation that has R roles, with
M messages, a representation which explicitly
differentiates the conversation state of each role would
have O(MR) places: For every message there would be
two individual places for the sender (before sending, and
after sending), and similarly two more for each receiver
(before receiving and after receiving). All possible joint
states (i.e. message sent and received, sent and not
received, not sent but incorrectly believed to have been
received, not sent and not received) can be represented.
In cases where all joint states must be represented
(including all erroneous states), this representation is
preferable to an explicit joint-state representation which
would require O(MR) places.

However, many applications only require
representation of valid conversation states (message not
sent and not received, or sent and received). For

1 Though authors claim otherwise, they in fact ignore color, using CP-
nets as if they were PT-nets. For instance in [10], Nowostawski et al.
duplicate portions of Petri net to represent multiple conversations,
rather than using color tokens within a single net.

 3

instance, the specification of the FIPA interaction
protocols [4] assumes the use of underlying
synchronization protocols to guarantee delivery of
messages [12]. Under such assumption, for every
message, there are only two joint states regardless of the
number of roles: before the message is sent, and after
the message is sent and received. The number of places
representing joint conversation states grows (linearly) in
this case only with the number of messages – O(M).

We now turn to examining the use of color tokens. In
principle, CP-nets and PT-nets are equivalent from a
computational perspective [6], in much the same way
the high level programming languages are no more
powerful in principle than assembly. However, when
representing conversations, a significant difference
between PT-nets and CP-nets is their scalability. A PT-
token corresponds to a single bit. The information it
conveys is a function of the place it is marking. As a
result, it is impossible to represent several concurrent
conversations in the same PT-net, since the tokens
representing the different states of the conversations
may overwrite each other, or cause the net to fire
erroneously. Therefore, representing C concurrent
conversations–all of the same interaction protocol–
would require O(C) PT nets.

In contrast, however, colored tokens can be
differentiated, even when multiple tokens mark the same
net. For instance, in the representation we present in
Section 4, token colors carry information about the
sender and receivers of messages, about the time in
which the message was sent, etc. This information
allows us to represent multiple concurrent
conversations–of the same protocol–on a single CP-net
structure. Note that we save only on the number of nets
explicitly represented–the number of tokens for
representing C conversations is O(C) in either a PT-net
or CP-net approach.

There are some additional differences between CP-
nets and PT-nets, in terms of features that support
representation of FIPA interaction protocols, such as
guards, sequence expressions, cardinalities and timing
[4]. Representation of FIPA attributes is straightforward
using the additional information carried by token color
(see [5] for detail discussion).

 PT-nets CP-nets

Individual
States Space: O(M RC)

Space: O(M R)
[2],[3],[8]
[9],[14]

Joint
States

Space: O(M C)
[10],[13] Space: O(M)

Table 1. Scalability Comparison.

Based on the above, it is possible to make concrete
predictions as to the scalability of different approaches
with respect to the number of agents. Table 1 shows the
space complexity of different approaches, given that we
model C conversations, each with a maximum of R
roles, and M messages. The table also cites relevant
investigations.

3.2. Monitor ing Conversations

There are many different uses for a representation of

an interaction: To monitor its progress, to detect faults
[13], to verify or analyze its features, etc. We focus here
on monitoring, and distinguish two settings, depending
on the information available to the monitor.

In the first type of setting, the monitor, representing
the conversation, has access to the state of the
conversation in one or more of the participants, but not
to the messages being exchanged. This would be the
case, for instance, if a participant in a conversation is
monitoring its own progress. In this case, the participant
has access to its own conversation state, but likely, does
not have direct knowledge on whether messages were
sent or received by others. Therefore, messages are not
explicitly represented, except as transitions that take the
conversation from one place to another (regardless of
whether these places represented individually or jointly).
By placing tokens in the appropriate conversation
places, an agents’ state is inferred. Then, letting the
corresponding transition fire implies the message being
sent and received. Previous investigations that have
taken this approach include [2,8,9]2.

In the second type of settings, the monitor has
knowledge of the messages being sent and received, but
does not necessarily know the internal conversation
state. It monitors conversations by tracking the messages
(e.g., through overhearing [7]). This could be done
either from an individual perspective, or in settings of a
global monitor that does not have direct knowledge of
the conversation state of each agent. However, this
requires the use of separate message places. In this type
of representation, a state place and a message place are
connected via a transition to a new state. A monitoring
agent in this case places a token in the appropriate
message place whenever it intercepts a message.
Together with conversation state places, these tokens
allow the conversation to transition from one
conversation state to a new conversation state only
based on explicit knowledge of the message being sent
or received. In principle, given the current state, the new
conversation state can be inferred from “observing” a

2 In the same publication, Cost et al. [2] also use the other approach.

 4

message. Previous work that has used explicit message
places include [2,3,10,13,14].

4. Scalable Representation for Overhear ing

In this section, we focus on developing a scalable
representation for overhearing. The design choices are
dictated by the insights gained in the previous session.
Thus, the clear choice in terms of scalability is the
approach combining CP-nets with places representing
joint interaction states. In addition, since in overhearing
we only expect to have knowledge of messages being
exchanged, we use explicit message places.
Unfortunately, previous investigations did not explore
this design, though the work in [13] explores similar
ideas using PT-nets.

We now show how various simple and complex
AUML interaction features, used in FIPA conversation
standards [4], can be implemented using the proposed
CP-net representation.

We begin by examining a simple agent conversation
building block, corresponding to a FIPA asynchronous
message, which we first show in AUML (Figure 1-a)
and then using our representation (Figure 1-b). Here,
agent1 sends an asynchronous message msg to agent2. In
Figure 1-a, the msg communicative act is shown by the
arrow connecting the lifelines of the corresponding
agents. The stick arrowhead denotes that msg is passed
asynchronously (see [1,4,11] for AUML details).

To represent the same conversation using a CP net,
we first identify net places and transitions. The
representation we develop uses two types of places,
corresponding to messages and joint conversation states
(as previously described). Figure 1-b shows the
asynchronous message implementation using our CP-net
model. This CP-net shows three places and one
transition connecting them. The A1B1 and the A2B2
places are agent places, while the msg place is a
message place. The A and B capital letters are used to
denote the agent1 and the agent2 individual interaction
states respectively. We have indicated the individual and
the joint interaction states over the AUML diagram in
Figure 1-a, however these details are omitted later on in
the paper. The A1B1 place indicates a joint interaction
state where agent1 is ready to send the msg message to
agent2 (A1) and agent2 is waiting to receive the
corresponding message (B1). The msg message place
corresponds to the msg sent and received. The
interception of the msg (and placing a corresponding
token) causes the agents to transition to the A2B2 place.
This place corresponds to the joint interaction state in
which agent1 has already sent the msg communicative
act to agent2 (A2) who has received it (B2).

agent� agent�

msg

A� B�

B�A�

 (a) (b)
Figure 1. Asynchronous message interaction.

(a) AUML (b) CP-net representations.

The CP-net implementation in Figure 1-b introduces

the use of token colors to represent additional
information about agent interaction states and
communicative acts of the corresponding interaction.
The token color sets are defined in the net declaration
(dashed box in Figure 1-b). The syntax follows standard
CP-notation [6]. The AGENT color is used to identify
agents participating in the corresponding interaction.
This color is farther used to construct the two net
compound color sets. The first color set is INTER-STATE.
This color set is related to the net agent places and it is
applied to represent agents corresponding to the
appropriate joint interaction states. The INTER-STATE
color token is a tuple (record) <a1,a2>, where a1 and a2
are AGENT color elements of the interacting agents. We
apply the INTER-STATE color set to model concurrent
conversations using the same CP-net. The second color
set is MSG. The MSG color set describes interaction
communicative acts and it is associated with the net
message places. The MSG color token is a record <s,r>,
where the s and r elements determine the sender and the
receiver agents of the corresponding message.

Therefore, in Figure 1-b, the A1B1 and the A2B2 places
are associated with the INTER-STATE color set, while the
msg place is associated with the MSG color set. The
place color set is written in italic capital letters next to
the corresponding place. Furthermore, we use the s and r
AGENT color type variables to denote the net arc
expressions. Thus, given that the output arc expression
of both the A1B1 and the msg places is <s,r>, the a1 and
a2 elements of the agent place token must correspond to
the s and r elements of the message place token.
Consequently, the net transition occurs if and only if the
addressed agents of the message correspond to the
interacting agents.

Figures 2 through 4 show similar mappings between
AUML representation of FIPA building blocks, and
their CP-net equivalents. Figure 2 shows synchronous
message passing, denoted through the filled solid
arrowhead, meaning, that an acknowledgement of msg
communicative act must always be received by agent1

 5

before the interaction protocol may proceed. Figure 3
shows a more complex interaction, called XOR-
decision. In this interaction, the sender can send only
one of the two possible messages to the designated
recipients. The figure shows the use of a joint state for
the three agents (the A1B1C1 place). Figure 4 shows
another complex interaction, the OR-parallel interaction,
in which the sender can send one or two communicative
acts (inclusively) to the designated recipients simulating
an inclusive-or. As shown, agent1 can send message
msg1 to agent2 or message msg2 to agent3 or both.

agent� agent�

msg

 (a) (b)
Figure 2. Synchronous message interaction.

(a) AUML (b) CP-net representations.

msg�

msg�

agent� agent� agen�

x

 (a) (b)
Figure 3. XOR-decision messages interaction.

(a) AUML (b) CP-net representations.

msg�

msg�

agent� agent� agen�

 (a) (b)
Figure 4. OR-parallel messages interaction.

(a) AUML (b) CP-net representations.

We now extend our technique to facilitate the
implementation of additional interaction aspects useful
in describing multi-agent conversation protocols. First,
we use CP-nets to represent interaction message
attributes used by FIPA conversation standards such as
guards, sequence expressions, cardinalities, etc [4].
Second, we demonstrate representation of multiple agent
concurrent conversations using the same CP-net.

Figure 5-a demonstrates a conditional agent
interaction using AUML. This interaction is similar to
Figure 1-a above, except for the use of the message
guard-condition [condition] . Its semantics are that msg
is sent if and only if the condition is true. Fortunately,
message guard-conditions can be mapped directly to a
CP-net transition guard (indicated next to the
corresponding transition using square brackets in Figure
5-b). The transition guard guarantees that the transition
is enabled if and only if the transition guard is true.

In Figure 5-b, we also demonstrate the CP-net
implementation to message type and content attributes.
For that purpose, we define two additional colors. The
first, TYPE color, determine a message type, while the
second, CONTENT color, represents message content.
Furthermore, we extend the MSG color set, previously
defined, to allow information passing between agents.
Thus, the MSG color token is a record <s,r,t,c>, where
the s and r elements has previous interpretation and the t
and c elements define the message type and content.

agent� agent�

msg

[condition]

 (a) (b)

Figure 5. Message guard-condition.
(a) AUML (b) CP-net representations.

Additional communicative act attributes include
message sequence-expression and cardinality. In FIPA
[4], sequence-expressions denote a constraint on the
message sent from an agent: m denotes that the message
is sent exactly m times; n..m denotes that the message is
sent n up to m times; {* } denotes that the message is
sent an arbitrary number of times.

In this paper, we focus on a non-FIPA extension
commonly used–the broadcast sequence expression,
which denotes the broadcast sending of a message to all
recipients on a list. In Figure 6 we show its

 6

representation using CP-nets. For this purpose, we
define an INTER-STATE-CARD color set. This color set is
a tuple (<a1,a2>, i) consisting of two elements. The first
tuple element is an INTER-STATE color element, which
denotes the interacting agents as before. The second
tuple element is an integer i that counts the number of
messages already sent by an agent–message cardinality.
This element is initially assigned to 0. The S1R1 place is
of color INTER-STATE-CARD. Two additional colors are
BROADCAST-LIST (defining the sender's list of receivers)
and TARGET (index into this list).

The key novelty in Figure 6 is the use of the
condition on the first transition, coupled with the arc
looping back to S1R1. The initial marking of S1R1 is a
single token (<s,TARGET(0)>,0), pointing at the first
receiver on the broadcast list as the target, with message
cardinality counter initiated to 0. On the other hand, the
msg1 message place initially contains multiple tokens.
Each of these tokens represents the msg1 message
addressed to a designated receiver on the broadcast list.
The S1R1 place token and the appropriate msg1 place
token together enable the corresponding transition. It
fires, thus representing the sending of msg1 to the first
receiver on the broadcast list.

 Figure 6. Broadcast in CP-net representation.

The arc looping back to S1R1 has an arc expression

which increments the index i. Thus after the initial
firing, a new token is placed in S1R1, pointing at the next
recipient on the broadcast list. This recipient is matched
with the appropriate token in the msg1 place, and again
the transition would fire, indicating transmission and
receipt of msg1 by the second receiver. The process
continues while the condition on the transition holds,
i.e., while the index i is smaller the size of the broadcast
list.

The use of token color allows multiple conversations
to be concurrently tracked using the same CP-net. For
instance, in Figure 6, let the sender agent be called
agent1 and its broadcast list contain agents agent2,…,
agent6. Suppose agent1 has already sent msg1 to all
agents on the broadcast list, but has only received the

msg2 reply from agent3, agent4 and agent6. The CP-net
marking for this state would be: (i) The S2R2 place
marked { <agent2, agent1>, <agent5, agent1> } ; and (ii)
the S3R3 place marked { <agent1, agent3>, <agent1,
agent4>, <agent1, agent6>} . The different tokens, that
are distinguishable because of the token color,
differentiate concurrent conversations involving agent1,
using the same CP-net. This is a significant
improvement over PT-net representations.

Due to space constraints, we cannot show how the
proposed CP-net representation is amenable to represent
all FIPA AUML building blocks (and additional
features, such as deadlines and nested protocols). The
reader is referred to [5] for such details.

5. Algor ithm & Concluding Example

Previous investigations have explored various

machine-readable Petri-net representations. However,
interaction protocols are typically specified in human-
readable form (e.g., in AUML [1,11]). The question of
how to systematically translate an interaction protocol
specification into a machine-readable form has been
previously ignored. We present a semi-automated
procedure for transforming an AUML protocol diagram
of two interacting agents to its CP-net representation.
While not fully automated, we believe that it represents
a significant step towards fully automatic translation.
We apply this algorithm on a complex multi-agent
conversation protocol that involves many of the
interaction aspects already discussed.

The procedure is presented in Figure 7. Its input is an
AUML diagram, and its output is a corresponding CP-
net representation using joint states and explicit message
places. The CP-net is constructed in iterations: The
algorithm essentially creates the conversation net by
exploring the interaction protocol breadth-first, while
avoiding cycles. Lines 1-2 create and initiate a queue
and the output CP-net respectively. The queue, denoted
by S, holds the initiating agent places for the current
iteration. These places correspond to interaction states
that initiate further conversation between the interacting
agents. In lines 4-5, an initial agent place, A1B1, is
created and inserted into the queue.

We enter the main loop in line 8 and set curr to the
first initiating agent place in S. Lines 10-13 create the
CP-net components of the current iteration. First, in line
10, message places, associated with curr agent place, are
created using CreateMessagePlaces. These places
correspond to communicative acts, which take agents
from the joint interaction state curr to its successor(s).
Then, in line 11, we create agent places that correspond
to interaction state changes as a result of these messages

 7

associated with curr agent place. Then, in
CreateTransitionsAndArcs (line 12), these places are
connected through transitions and arcs, using the CP-net
building blocks described previously, and in [5]. Finally,
we add token color elements to the CP-net structure,
implementing attributes using FixColor (line 13).

CPN

 AR arcsCPN arcsCPN

 TR stransitionCPN stransitionCPN

RP MP placesCPN placesCPN

p enqueue S

place gterminatin p

iteration current in created not wasp
RP p place

AR TR, RP, MP,CPN, AUML, FixColor
RP MP,curr, AUML, ArcssitionsAndCreateTran AR ,TR

 MPcurr, AUML, Places ltingAgent CreateResu RP
curr ,AUML agePlacesCreateMess MP

 dequeue S curr

empty S

BA enqueue S
ninformatio color withplace agent BA

net-CP CPN

queue S
 CPNAUML, tersationNeCreateConv

11

11

return:
:

whileend:
..:

..:

..:
:

foreachend:
)(.:

notisif:
continue:

if:
inforeach:

:
)(:

)()(:
)(:

)(:
:

().:
donotwhile:

:
)(.:

new:
:

new:
new:

):output:input(Algor ithm

27
26
25
24

23

22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

�
�

� �

=
=
=

←
←
←

←

←

←
←

Figure 7. AUML to CPN Conversion Procedure.

Lines 15-20 determine agent places that are inserted
into S for further iteration. Only non-terminating agent
places, corresponding to non-terminal interaction states,
are inserted into S (lines 18-19), with the exception of
places that have already been handled (lines 16-17).
Completing the iteration, the output CP-net, denoted by
CPN, is updated according to the current iteration CP-
net components in lines 22-24. The loop iterates as long
as S contains places that have not been handled. Finally,
the resulting CP-net is returned (line 27).

To demonstrate this algorithm, we now use it to
construct a CP-net of the FIPA Contract Net Interaction
Protocol [4] (shown in AUML in Figure 8). In this
protocol, the Initiator agent issues m calls for proposals
using a cfp message. By a given deadline, each of the
Participants may send either a refuse message
(terminating the interaction), or a propose message
containing a counter-proposal. Once the deadline
expires, the Initiator evaluates received proposals and
selects agents to perform the requested task. Selected
participants are sent an accept-proposal message, while
others are sent a reject-proposal. Selected participants
carry out their task, and upon completion, send either an
inform-done, an inform-result, or a failure message.

Figure 8. FIPA Contract Net using AUML.

We now use the algorithm introduced above to create
a CP-net for this protocol, in four iterations of the main
loop. The algorithm begins with the creation (and
insertion into S) of the I1P1 place, of INTER-STATE color.
Thus, in the first iteration, the curr variable is set to I1P1.
The algorithm creates net places, which are associated
with the I1P1 place, i.e. a cfp message place and an I2P2
resulting agent place. Then, the three places are
connected using the asynchronous message building
block shown in Figure 1-b. Next, the color sets of the
corresponding places are determined, and the algorithm
also handles the broadcast sequence-expression attribute
of the cfp message, as shown in Figure 6. Accordingly,
the color set associated with I1P1 place, is changed to the
INTER-STATE-CARD color set. The I2P2 is not a
terminating place (Initiator is waiting for a response
from Participants) and is thus inserted into the S queue.

In the second iteration, curr is set to the I2P2 place. A
Participant can send either a refuse or a propose
messages, and thus appropriate message places are
created. Then, the I3P3 and I4P4 agent places,
corresponding to the results of the messages, are created.
The I2P2, Refuse, I3P3, Propose and I4P4 places are
connected using the XOR-decision described in Figure
3-b. Then, the deadline sequence expression of both the
refuse and the propose messages is implemented as
shown in [5]. The I3P3 place (resulting from refuse) is a
terminal interaction state, while the I4P4 place represents
a non-terminal state. Thus, only I4P4 is inserted into S.

For lack of space, we now skip over the final two
iterations of the main loop, to the resulting CP net

 8

(Figure 9). The only items of interest in these skipped
iterations involve the creation of the guard conditions on
the transitions (see Figure 5-b), and the abstraction of
the two inform messages (inform-done, inform-result)
into a single message place marked inform. A detailed
discussion of their creation is provided in [5].

Figure 9. FIPA Contract Net using CP-net.

Although this procedure can convert many 2-agent
protocols in AUML to their CP-net equivalents, it does
not address the general n-agent case. We leave this
development to future work.

6. Summary & Conclusions

Over recent years, increasing attention has been
directed at representations of agent conversations. In
particular, there is an increasing interest in using Petri
nets to model multi-agent interactions [2,9,10,14].
Unfortunately, features of competing approaches with
respect to scalability and suitability for different tasks
have not been analyzed. Furthermore, no procedures
were provided that guide the conversion of an
interaction protocol given in AUML (the FIPA standard
human-readable representation [4,11]) to any of the
Petri-net representations.

This paper sought to address these open questions.
First, we analyzed key features in existing representation
approaches. We have shown that (i) when representing
valid conversations, a CP-net, where places denote joint
conversation states, is more scaleable than other
approaches; (ii) message places are necessary for
tracking conversations by overhearing. Unfortunately,
previous work did not examine this combination of CP-
nets with joint states and message places.

We therefore developed this representation to target
scalable overhearing and monitoring tasks. We provided

building blocks allowing this representation to model
complex multi-agent conversations as defined by FIPA
[4]. Finally, we have presented a skeleton semi-
automated procedure for converting an AUML protocol
diagrams to an equivalent CP-net, and demonstrated its
use on a challenging FIPA conversation protocol.

We believe that the proposed technique can assist and
motivate continuing research on representing
conversations for tasks other than overhearing, e.g.,
debugging [13], automated monitoring [7], etc.

References

[1] AUML site (2004). Agent UML, at www.auml.org.
[2] Cost, R. S., Chen, Y., Finin, T., Labrou, Y. & Peng, Y.

(2000). Using Coloured Petri Nets for a Conversation
Modeling. In Dignum, F. & Greaves, M. (Eds.), Issues in
Agent Communications, pp. 178-192. Springer-Verlag.

[3] Cranefield S., Purvis M., Nowostawski M. & Hwang P.
(2002). Ontologies for interaction protocols. In
Proceedings of AAMAS-02.

[4] FIPA Specifications (2004). FIPA Specifications, at
www.fipa.org/specifications/index.html.

[5] Gutnik, G. & Kaminka, G.A. (2004). A comprehensive
Petri net representation for multi-agent conversations.
MAVERICK Technical Report 2004/1, Bar-Ilan
University, at www.cs.biu.ac.il/~maverick/tech-reports/.

[6] Jensen, K. (1997). Coloured Petri Nets. Basic Concepts,
Analysis Methods and Practical Use. Springer-Verlag.

[7] Kaminka, G.A., Pynadath, D.V. & Tambe, M. (2002).
Monitoring Teams by Overhearing: A Multi-Agent Plan-
Recognition Approach. JAIR, 17, 83-135.

[8] Lin, F., Norrie, D. H., Shen, W. & Kremer, R. (2000). A
schema-based approach to specifying conversation
policies. In Dignum, F. & Greaves, M. (Eds.), Issues in
Agent Communications, pp. 193-204. Springer-Verlag.

[9] Mazouzi, H., Fallah-Seghrouchni, A. E. & Haddad, S.
(2002). Open protocol design for complex interactions in
multi-agent systems. In Proceedings of AAMAS-02.

[10] Nowostawski, M., Purvis, M. & Cranefield, S. (2001). A
layered approach for modeling agent conversations. In
Proceedings of Workshop on Infrastructure for Agents,
MAS and Scalable MAS, pp. 163-170. Montreal, Canada.

[11] Odell, J., Parunak, H. V. D. & Bauer, B. (2001). Agent
UML: A formalism for specifying multi-agent
interactions. In Ciancarini, P. & Wooldridge, M. (Eds.),
Agent-Oriented Software Engineering, pp. 91-103.
Springer-Verlag, Berlin.

[12] Paurobally S., Cunningham J. & Jennings N. R. (2003).
Ensuring consistency in the joint beliefs of interacting
agents. In Proceedings of AAMAS-03.

[13] Poutakidis, D., Padgham, L. & Winikoff, M. (2002).
Debugging multi-agent systems using design artifacts. In
Proceedings of AAMAS-02.

[14] Purvis, M. K., Hwang, P., Cranefield, S. J. & Schievink,
M. (2002). Interaction Protocols for a Network of
Environmental Problem Solvers. In Proceedings of
iEMSs-02.

