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Abstract 
 

In open distributed multi-agent systems, agents often 
coordinate using standardized agent communications. 
Thus, representing agent conversations is an important 
aspect of multi-agent applications. Lately, Petri nets 
have been found to provide certain advantages 
comparing to other representation approaches. 
However, radically different approaches using Petri 
nets to represent multi-agent interactions have been 
proposed, and yet relative strengths and weaknesses of 
these approaches have not been examined. Moreover, no 
approach was shown to provide a comprehensive 
coverage of advanced standardized communication 
aspects such as those found in FIPA interaction 
protocols. This paper presents (i) an analysis of existing 
Petri net representation approaches in terms of their 
scalability and appropriateness for different tasks; (ii) a 
novel scalable representation approach, particularly 
suited for monitoring open systems; and (iii) a skeletal 
procedure for semi-automatically converting FIPA 
interaction protocols to their Petri net representations. 
We argue that the representation we propose is 
comprehensive, in the sense that it can represent all 
FIPA interaction protocol features. 

 
 

1.  Introduction 
 

Open distributed multi-agent systems often involve 
multiple, independently-built agents performing 
mutually dependent tasks. To allow different agents 
designs to be developed independently, without having 
to consider the internal design of other agents, the 
coordination of the activities is often accomplished 
using standardized inter-agent interactions, typically by 
communications. Indeed, the multi-agent community 
has been investing a significant effort in developing 
standard communication languages to facilitate 
sophisticated multi-agent systems (e.g., FIPA 
communication standards [4]). These languages define 
agent interaction protocols that rely on pre-defined 

communicative acts for a variety of system tasks, 
ranging from simple queries, to complex negotiations by 
auctions and bidding. For instance, FIPA Contract Net 
Interaction Protocol [4] defines a sequence of concrete 
messages that allows the interacting agents to negotiate.  

Ideally, interaction protocols should be represented in 
a way that allows performance analysis, validation and 
verification, automated monitoring, debugging, etc. 
Various formalisms have been proposed for such 
purposes. However, Petri nets have been shown to offer 
significant advantages in representing multi-agent 
interactions, compared to other approaches [2,8,9,10]. 
Specifically, Petri nets are useful in validation and 
testing, automated debugging and monitoring [13] and 
dynamic interpretation of interaction protocols [3]. 

Unfortunately, existing literature on using Petri nets 
to represent multi-agent interactions leaves open several 
questions. First, different approaches to represent multi-
agent interactions have been introduced, and yet their 
relative strengths and weakness have not been 
investigated. Second, most previous investigations have 
not provided a systematic comprehensive coverage of all 
issues that rise in representing complex protocols such 
as the standardized FIPA interaction protocols.   

This paper addresses these open challenges. We 
analyze and compare existing approaches to 
representing interactions using Petri nets (Section 3). 
This comparison is done based on the type of Petri net 
chosen, its choice of representing individual or joint 
states, and explicit representation of messages. We then 
present a novel scalable representation that uses Colored 
Petri nets in which places explicitly denote joint 
conversation states and messages (Sections 4). This 
representation can be used to cover essentially all 
features used in FIPA conversation standards, including 
interaction building blocks, communicative act attributes 
(such as message guards and cardinalities), protocol 
nesting and temporal aspects (e.g., deadlines and 
duration). Finally, we provide a skeleton algorithm for 
converting FIPA conversation protocols in AUML (the 
chosen FIPA representation standard [4,11]) to Petri nets 
(Section 5). Section 6 concludes.  

* Student paper. 
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2.  Background  
 

We begin first with a brief overview of Petri nets, 
and then survey existing approaches that use Petri nets 
in representing multi-agent interactions. 

Petri nets are a graphical representation for 
describing systems in which multiple concurrent states 
may exist. An early elaboration of Petri nets is called 
Place/Transition nets (PT-nets), while another high-level 
extension is called Colored Petri nets (CP-nets) [6].  

A PT-net is a bipartite directed graph where each 
vertex is either a place (typically denoted by circles) or a 
transition (rectangles). Arcs are directed edges 
connecting places to transitions and vice versa. A place 
can contain tokens (small black dots). An assignment of 
tokens to places is called a marking. Arcs may have 
associated integer expressions, which determine the 
number of tokens associated with the corresponding arc. 
A transition is enabled if and only if the marking of its 
input places satisfies the appropriate arc expressions. It 
then fires, carrying tokens from its input places, per the 
output arc expressions, to its output places. 

In CP-nets, tokens carry information, called color 
[6]. Token color may be simple or complex, e.g. a tuple. 
Each place contains only tokens of a specified color. 
CP-net arc expressions are also extended, to allow 
complex expressions over colored token variables 
associated with the corresponding arcs. CP-nets also use 
transition guards, boolean expressions over token color 
attributes, which determine transition firing. CP-nets 
contain additional extensions, which can be useful in 
representing complex AUML features. Here, we refer 
the reader to [5] for a comprehensive description. 

We now turn to using Petri nets to explicitly 
represent multi-agent conversations. All Petri net 
representation approaches of this type use places to 
represent interaction states, and Petri net transitions to 
represent transitions between interaction states. Net 
marking represents the current state of interaction. 
However, previous investigations take different design 
choices within this general approach. 

Individual roles and CP-nets. Most investigations 
choose to separately represent individual roles within 
the interaction, rather than represent joint interaction 
states. In this approach, separate places are used for 
separate roles in the interaction, and thus different 
markings distinguish a conversation state where one 
agent has sent a message, from a state where the other 
agent received it. Typically, the net for each individual 
role is built separately, and then these nets are either 
merged into a single net [2,8,9], or simply connected 
together using Petri net fusion places, or other means 
[3,14]. All these investigations use CP-nets to represent 

multi-agent interactions. As shown later in the paper, the 
use of token color allows compact representation of 
multiple conversations using the same net. 

Joint-state representations using PT-nets. In 
contrast, a limited number of investigations model 
conversations using PT-nets with joint conversation 
states [10,13]1. In joint state representations, each net 
place is at once a representative of the conversation state 
of all agents. Typically, markings represent only valid 
conversation states (thus the nets ignore transmission 
delay, etc.), and synchronization protocols are assumed 
to underlie the conversation, to make sure that the agents 
are synchronized [12]. 
 
3.  Analysis of Key Representations 
 

The survey of related work presented above indicates 
that previous investigations have introduced rather 
different approaches to the modeling of multi-agent 
interactions using Petri nets. This section offers a 
comparative analysis of these approaches on the basis of 
several criteria: scalability (Section 3.1), and suitability 
for monitoring tasks (Section 3.2). 

 
3.1.  Scalability 
 

We have classified previous approaches based on (i) 
their representation of individual conversation states vs. 
joint states, and on (ii) their utilization of token color. 
We now show how these two independent features 
affect the scalability of the chosen representation in 
terms of the number of conversations.  

In principle, for a conversation that has R roles, with 
M messages, a representation which explicitly 
differentiates the conversation state of each role would 
have O(MR) places: For every message there would be 
two individual places for the sender (before sending, and 
after sending), and similarly two more for each receiver 
(before receiving and after receiving). All possible joint 
states (i.e. message sent and received, sent and not 
received, not sent but incorrectly believed to have been 
received, not sent and not received) can be represented. 
In cases where all joint states must be represented 
(including all erroneous states), this representation is 
preferable to an explicit joint-state representation which 
would require O(MR) places. 

However, many applications only require 
representation of valid conversation states (message not 
sent and not received, or sent and received). For 

                                                           
1 Though authors claim otherwise, they in fact ignore color, using CP-
nets as if they were PT-nets. For instance in [10], Nowostawski et al. 
duplicate portions of Petri net to represent multiple conversations, 
rather than using color tokens within a single net. 
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instance, the specification of the FIPA interaction 
protocols [4] assumes the use of underlying 
synchronization protocols to guarantee delivery of 
messages [12]. Under such assumption, for every 
message, there are only two joint states regardless of the 
number of roles: before the message is sent, and after 
the message is sent and received. The number of places 
representing joint conversation states grows (linearly) in 
this case only with the number of messages – O(M). 

We now turn to examining the use of color tokens. In 
principle, CP-nets and PT-nets are equivalent from a 
computational perspective [6], in much the same way 
the high level programming languages are no more 
powerful in principle than assembly. However, when 
representing conversations, a significant difference 
between PT-nets and CP-nets is their scalability. A PT-
token corresponds to a single bit. The information it 
conveys is a function of the place it is marking. As a 
result, it is impossible to represent several concurrent 
conversations in the same PT-net, since the tokens 
representing the different states of the conversations 
may overwrite each other, or cause the net to fire 
erroneously. Therefore, representing C concurrent 
conversations–all of the same interaction protocol–
would require O(C) PT nets. 

In contrast, however, colored tokens can be 
differentiated, even when multiple tokens mark the same 
net. For instance, in the representation we present in 
Section 4, token colors carry information about the 
sender and receivers of messages, about the time in 
which the message was sent, etc. This information 
allows us to represent multiple concurrent 
conversations–of the same protocol–on a single CP-net 
structure. Note that we save only on the number of nets 
explicitly represented–the number of tokens for 
representing C conversations is O(C) in either a PT-net 
or CP-net approach. 

There are some additional differences between CP-
nets and PT-nets, in terms of features that support 
representation of FIPA interaction protocols, such as 
guards, sequence expressions, cardinalities and timing 
[4]. Representation of FIPA attributes is straightforward 
using the additional information carried by token color 
(see [5] for detail discussion). 
 

 PT-nets CP-nets 

Individual 
States Space: O(M RC) 

Space: O(M R) 
[2],[3],[8] 
[9],[14] 

Joint 
States 

Space: O(M C) 
[10],[13] Space: O(M ) 

Table 1. Scalability Comparison. 

Based on the above, it is possible to make concrete 
predictions as to the scalability of different approaches 
with respect to the number of agents. Table 1 shows the 
space complexity of different approaches, given that we 
model C conversations, each with a maximum of R 
roles, and M messages. The table also cites relevant 
investigations. 
 
3.2. Monitor ing Conversations 

 
There are many different uses for a representation of 

an interaction: To monitor its progress, to detect faults 
[13], to verify or analyze its features, etc. We focus here 
on monitoring, and distinguish two settings, depending 
on the information available to the monitor. 

In the first type of setting, the monitor, representing 
the conversation, has access to the state of the 
conversation in one or more of the participants, but not 
to the messages being exchanged. This would be the 
case, for instance, if a participant in a conversation is 
monitoring its own progress. In this case, the participant 
has access to its own conversation state, but likely, does 
not have direct knowledge on whether messages were 
sent or received by others. Therefore, messages are not 
explicitly represented, except as transitions that take the 
conversation from one place to another (regardless of 
whether these places represented individually or jointly). 
By placing tokens in the appropriate conversation 
places, an agents’  state is inferred. Then, letting the 
corresponding transition fire implies the message being 
sent and received. Previous investigations that have 
taken this approach include [2,8,9]2. 

In the second type of settings, the monitor has 
knowledge of the messages being sent and received, but 
does not necessarily know the internal conversation 
state. It monitors conversations by tracking the messages 
(e.g., through overhearing [7]). This could be done 
either from an individual perspective, or in settings of a 
global monitor that does not have direct knowledge of 
the conversation state of each agent. However, this 
requires the use of separate message places. In this type 
of representation, a state place and a message place are 
connected via a transition to a new state. A monitoring 
agent in this case places a token in the appropriate 
message place whenever it intercepts a message. 
Together with conversation state places, these tokens 
allow the conversation to transition from one 
conversation state to a new conversation state only 
based on explicit knowledge of the message being sent 
or received. In principle, given the current state, the new 
conversation state can be inferred from “observing”  a 

                                                           
2 In the same publication, Cost et al. [2] also use the other approach. 
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message. Previous work that has used explicit message 
places include [2,3,10,13,14]. 
 
4. Scalable Representation for  Overhear ing 
 

In this section, we focus on developing a scalable 
representation for overhearing. The design choices are 
dictated by the insights gained in the previous session. 
Thus, the clear choice in terms of scalability is the 
approach combining CP-nets with places representing 
joint interaction states. In addition, since in overhearing 
we only expect to have knowledge of messages being 
exchanged, we use explicit message places. 
Unfortunately, previous investigations did not explore 
this design, though the work in [13] explores similar 
ideas using PT-nets. 

We now show how various simple and complex 
AUML interaction features, used in FIPA conversation 
standards [4], can be implemented using the proposed 
CP-net representation.  

We begin by examining a simple agent conversation 
building block, corresponding to a FIPA asynchronous 
message, which we first show in AUML (Figure 1-a) 
and then using our representation (Figure 1-b). Here, 
agent1 sends an asynchronous message msg to agent2. In 
Figure 1-a, the msg communicative act is shown by the 
arrow connecting the lifelines of the corresponding 
agents. The stick arrowhead denotes that msg is passed 
asynchronously (see [1,4,11] for AUML details). 

To represent the same conversation using a CP net, 
we first identify net places and transitions. The 
representation we develop uses two types of places, 
corresponding to messages and joint conversation states 
(as previously described). Figure 1-b shows the 
asynchronous message implementation using our CP-net 
model. This CP-net shows three places and one 
transition connecting them. The A1B1 and the A2B2 
places are agent places, while the msg place is a 
message place. The A and B capital letters are used to 
denote the agent1 and the agent2 individual interaction 
states respectively. We have indicated the individual and 
the joint interaction states over the AUML diagram in 
Figure 1-a, however these details are omitted later on in 
the paper. The A1B1 place indicates a joint interaction 
state where agent1 is ready to send the msg message to 
agent2 (A1) and agent2 is waiting to receive the 
corresponding message (B1). The msg message place 
corresponds to the msg sent and received. The 
interception of the msg (and placing a corresponding 
token) causes the agents to transition to the A2B2 place. 
This place corresponds to the joint interaction state in 
which agent1 has already sent the msg communicative 
act to agent2 (A2) who has received it (B2). 

agent� agent�

msg

A� B�

B�A�

   

   (a)     (b) 
Figure 1. Asynchronous message interaction.  

(a) AUML (b) CP-net representations. 
 
The CP-net implementation in Figure 1-b introduces 

the use of token colors to represent additional 
information about agent interaction states and 
communicative acts of the corresponding interaction. 
The token color sets are defined in the net declaration 
(dashed box in Figure 1-b). The syntax follows standard 
CP-notation [6]. The AGENT color is used to identify 
agents participating in the corresponding interaction. 
This color is farther used to construct the two net 
compound color sets. The first color set is INTER-STATE. 
This color set is related to the net agent places and it is 
applied to represent agents corresponding to the 
appropriate joint interaction states. The INTER-STATE 
color token is a tuple (record) <a1,a2>, where a1 and a2 
are AGENT color elements of the interacting agents. We 
apply the INTER-STATE color set to model concurrent 
conversations using the same CP-net. The second color 
set is MSG. The MSG color set describes interaction 
communicative acts and it is associated with the net 
message places. The MSG color token is a record <s,r>, 
where the s and r elements determine the sender and the 
receiver agents of the corresponding message. 

Therefore, in Figure 1-b, the A1B1 and the A2B2 places 
are associated with the INTER-STATE color set, while the 
msg place is associated with the MSG color set. The 
place color set is written in italic capital letters next to 
the corresponding place. Furthermore, we use the s and r 
AGENT color type variables to denote the net arc 
expressions. Thus, given that the output arc expression 
of both the A1B1 and the msg places is <s,r>, the a1 and 
a2 elements of the agent place token must correspond to 
the s and r elements of the message place token. 
Consequently, the net transition occurs if and only if the 
addressed agents of the message correspond to the 
interacting agents.  

Figures 2 through 4 show similar mappings between 
AUML representation of FIPA building blocks, and 
their CP-net equivalents. Figure 2 shows synchronous 
message passing, denoted through the filled solid 
arrowhead, meaning, that an acknowledgement of msg 
communicative act must always be received by agent1 
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before the interaction protocol may proceed.  Figure 3 
shows a more complex interaction, called XOR-
decision. In this interaction, the sender can send only 
one of the two possible messages to the designated 
recipients. The figure shows the use of a joint state for 
the three agents (the A1B1C1 place). Figure 4 shows 
another complex interaction, the OR-parallel interaction, 
in which the sender can send one or two communicative 
acts (inclusively) to the designated recipients simulating 
an inclusive-or. As shown, agent1 can send message 
msg1 to agent2 or message msg2 to agent3 or both. 

 

agent� agent�

msg

 

   (a)     (b) 
Figure 2. Synchronous message interaction.  

(a) AUML (b) CP-net representations. 
 

msg�

msg�

agent� agent� agen�

x

 

   (a)    (b) 
Figure 3. XOR-decision messages interaction.  

(a) AUML (b) CP-net representations. 
 

 

msg�

msg�

agent� agent� agen�

 

  (a)      (b) 
Figure 4. OR-parallel messages interaction.  

(a) AUML (b) CP-net representations. 

We now extend our technique to facilitate the 
implementation of additional interaction aspects useful 
in describing multi-agent conversation protocols. First, 
we use CP-nets to represent interaction message 
attributes used by FIPA conversation standards such as 
guards, sequence expressions, cardinalities, etc [4]. 
Second, we demonstrate representation of multiple agent 
concurrent conversations using the same CP-net. 

Figure 5-a demonstrates a conditional agent 
interaction using AUML. This interaction is similar to 
Figure 1-a above, except for the use of the message 
guard-condition [condition] . Its semantics are that msg 
is sent if and only if the condition is true. Fortunately, 
message guard-conditions can be mapped directly to a 
CP-net transition guard (indicated next to the 
corresponding transition using square brackets in Figure 
5-b). The transition guard guarantees that the transition 
is enabled if and only if the transition guard is true. 

In Figure 5-b, we also demonstrate the CP-net 
implementation to message type and content attributes. 
For that purpose, we define two additional colors. The 
first, TYPE color, determine a message type, while the 
second, CONTENT color, represents message content. 
Furthermore, we extend the MSG color set, previously 
defined, to allow information passing between agents. 
Thus, the MSG color token is a record <s,r,t,c>, where 
the s and r elements has previous interpretation and the t 
and c elements define the message type and content. 

 

agent� agent�

msg

[condition]

  
  (a)    (b) 

Figure 5. Message guard-condition.  
(a) AUML (b) CP-net representations. 

 

Additional communicative act attributes include 
message sequence-expression and cardinality. In FIPA 
[4], sequence-expressions denote a constraint on the 
message sent from an agent: m denotes that the message 
is sent exactly m times; n..m denotes that the message is 
sent  n up to m times; {* } denotes that the message is 
sent an arbitrary number of times.  

In this paper, we focus on a non-FIPA extension 
commonly used–the broadcast sequence expression, 
which denotes the broadcast sending of a message to all 
recipients on a list. In Figure 6 we show its 
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representation using CP-nets. For this purpose, we 
define an INTER-STATE-CARD color set. This color set is 
a tuple (<a1,a2>, i) consisting of two elements. The first 
tuple element is an INTER-STATE color element, which 
denotes the interacting agents as before. The second 
tuple element is an integer i that counts the number of 
messages already sent by an agent–message cardinality. 
This element is initially assigned to 0. The S1R1 place is 
of color INTER-STATE-CARD. Two additional colors are 
BROADCAST-LIST (defining the sender's list of receivers) 
and TARGET (index into this list). 

The key novelty in Figure 6 is the use of the 
condition on the first transition, coupled with the arc 
looping back to S1R1. The initial marking of S1R1 is a 
single token (<s,TARGET(0)>,0), pointing at the first 
receiver on the broadcast list as the target, with message 
cardinality counter initiated to 0. On the other hand, the 
msg1 message place initially contains multiple tokens. 
Each of these tokens represents the msg1 message 
addressed to a designated receiver on the broadcast list. 
The S1R1 place token and the appropriate msg1 place 
token together enable the corresponding transition. It 
fires, thus representing the sending of msg1 to the first 
receiver on the broadcast list. 

 

 
    Figure 6. Broadcast in CP-net representation. 

 
The arc looping back to S1R1 has an arc expression 

which increments the index i. Thus after the initial 
firing, a new token is placed in S1R1, pointing at the next 
recipient on the broadcast list. This recipient is matched 
with the appropriate token in the msg1 place, and again 
the transition would fire, indicating transmission and 
receipt of msg1 by the second receiver. The process 
continues while the condition on the transition holds, 
i.e., while the index i is smaller the size of the broadcast 
list. 

The use of token color allows multiple conversations 
to be concurrently tracked using the same CP-net. For 
instance, in Figure 6, let the sender agent be called 
agent1 and its broadcast list contain agents agent2,…, 
agent6. Suppose agent1 has already sent msg1 to all 
agents on the broadcast list, but has only received the 

msg2 reply from agent3, agent4 and agent6. The CP-net 
marking for this state would be: (i) The S2R2 place 
marked { <agent2, agent1>, <agent5, agent1> } ; and (ii) 
the S3R3 place marked  { <agent1, agent3>, <agent1, 
agent4>, <agent1, agent6>} . The different tokens, that 
are distinguishable because of the token color, 
differentiate concurrent conversations involving agent1, 
using the same CP-net. This is a significant 
improvement over PT-net representations. 

Due to space constraints, we cannot show how the 
proposed CP-net representation is amenable to represent 
all FIPA AUML building blocks (and additional 
features, such as deadlines and nested protocols). The 
reader is referred to [5] for such details. 
 
5. Algor ithm &  Concluding Example 

 
Previous investigations have explored various 

machine-readable Petri-net representations. However, 
interaction protocols are typically specified in human-
readable form (e.g., in AUML [1,11]). The question of 
how to systematically translate an interaction protocol 
specification into a machine-readable form has been 
previously ignored. We present a semi-automated 
procedure for transforming an AUML protocol diagram 
of two interacting agents to its CP-net representation. 
While not fully automated, we believe that it represents 
a significant step towards fully automatic translation. 
We apply this algorithm on a complex multi-agent 
conversation protocol that involves many of the 
interaction aspects already discussed. 

The procedure is presented in Figure 7. Its input is an 
AUML diagram, and its output is a corresponding CP-
net representation using joint states and explicit message 
places. The CP-net is constructed in iterations: The 
algorithm essentially creates the conversation net by 
exploring the interaction protocol breadth-first, while 
avoiding cycles. Lines 1-2 create and initiate a queue 
and the output CP-net respectively. The queue, denoted 
by S, holds the initiating agent places for the current 
iteration. These places correspond to interaction states 
that initiate further conversation between the interacting 
agents. In lines 4-5, an initial agent place, A1B1, is 
created and inserted into the queue.  

We enter the main loop in line 8 and set curr to the 
first initiating agent place in S. Lines 10-13 create the 
CP-net components of the current iteration. First, in line 
10, message places, associated with curr agent place, are 
created using CreateMessagePlaces. These places 
correspond to communicative acts, which take agents 
from the joint interaction state curr to its successor(s). 
Then, in line 11, we create agent places that correspond 
to interaction state changes as a result of these messages 
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associated with curr agent place. Then, in 
CreateTransitionsAndArcs (line 12), these places are 
connected through transitions and arcs, using the CP-net 
building blocks described previously, and in [5]. Finally, 
we add token color elements to the CP-net structure, 
implementing attributes using FixColor (line 13). 
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Figure 7. AUML to CPN Conversion Procedure. 

Lines 15-20 determine agent places that are inserted 
into S for further iteration. Only non-terminating agent 
places, corresponding to non-terminal interaction states, 
are inserted into S (lines 18-19), with the exception of 
places that have already been handled (lines 16-17).  
Completing the iteration, the output CP-net, denoted by 
CPN, is updated according to the current iteration CP-
net components in lines 22-24. The loop iterates as long 
as S contains places that have not been handled. Finally, 
the resulting CP-net is returned (line 27). 

To demonstrate this algorithm, we now use it to 
construct a CP-net of the FIPA Contract Net Interaction 
Protocol [4] (shown in AUML in Figure 8). In this 
protocol, the Initiator agent issues m calls for proposals 
using a cfp message. By a given deadline, each of the 
Participants may send either a refuse message 
(terminating the interaction), or a propose message 
containing a counter-proposal. Once the deadline 
expires, the Initiator evaluates received proposals and 
selects agents to perform the requested task. Selected 
participants are sent an accept-proposal message, while 
others are sent a reject-proposal. Selected participants 
carry out their task, and upon completion, send either an 
inform-done, an inform-result, or a failure message. 

 

Figure 8. FIPA Contract Net using AUML. 
 

We now use the algorithm introduced above to create 
a CP-net for this protocol, in four iterations of the main 
loop. The algorithm begins with the creation (and 
insertion into S) of the I1P1 place, of INTER-STATE color. 
Thus, in the first iteration, the curr variable is set to I1P1. 
The algorithm creates net places, which are associated 
with the I1P1 place, i.e. a cfp message place and an I2P2 
resulting agent place. Then, the three places are 
connected using the asynchronous message building 
block shown in Figure 1-b. Next, the color sets of the 
corresponding places are determined, and the algorithm 
also handles the broadcast sequence-expression attribute 
of the cfp message, as shown in Figure 6. Accordingly, 
the color set associated with I1P1 place, is changed to the 
INTER-STATE-CARD color set. The I2P2 is not a 
terminating place (Initiator is waiting for a response 
from Participants) and is thus inserted into the S queue. 

In the second iteration, curr is set to the I2P2 place. A 
Participant can send either a refuse or a propose 
messages, and thus appropriate message places are 
created. Then, the I3P3 and I4P4 agent places, 
corresponding to the results of the messages, are created. 
The I2P2, Refuse, I3P3, Propose and I4P4 places are 
connected using the XOR-decision described in Figure 
3-b. Then, the deadline sequence expression of both the 
refuse and the propose messages is implemented as 
shown in [5]. The I3P3 place (resulting from refuse) is a 
terminal interaction state, while the I4P4 place represents 
a non-terminal state. Thus, only I4P4 is inserted into S. 

For lack of space, we now skip over the final two 
iterations of the main loop, to the resulting CP net 
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(Figure 9). The only items of interest in these skipped 
iterations involve the creation of the guard conditions on 
the transitions (see Figure 5-b), and the abstraction of 
the two inform messages (inform-done, inform-result) 
into a single message place marked inform. A detailed 
discussion of their creation is provided in [5]. 

 

 

Figure 9. FIPA Contract Net using CP-net. 
 

 

Although this procedure can convert many 2-agent 
protocols in AUML to their CP-net equivalents, it does 
not address the general n-agent case. We leave this 
development to future work. 
 

6. Summary &  Conclusions 
 

Over recent years, increasing attention has been 
directed at representations of agent conversations. In 
particular, there is an increasing interest in using Petri 
nets to model multi-agent interactions [2,9,10,14]. 
Unfortunately, features of competing approaches with 
respect to scalability and suitability for different tasks 
have not been analyzed. Furthermore, no procedures 
were provided that guide the conversion of an 
interaction protocol given in AUML (the FIPA standard 
human-readable representation [4,11]) to any of the 
Petri-net representations. 

This paper sought to address these open questions. 
First, we analyzed key features in existing representation 
approaches. We have shown that (i) when representing 
valid conversations, a CP-net, where places denote joint 
conversation states, is more scaleable than other 
approaches; (ii) message places are necessary for 
tracking conversations by overhearing. Unfortunately, 
previous work did not examine this combination of CP-
nets with joint states and message places. 

We therefore developed this representation to target 
scalable overhearing and monitoring tasks. We provided 

building blocks allowing this representation to model 
complex multi-agent conversations as defined by FIPA 
[4]. Finally, we have presented a skeleton semi-
automated procedure for converting an AUML protocol 
diagrams to an equivalent CP-net, and demonstrated its 
use on a challenging FIPA conversation protocol. 

We believe that the proposed technique can assist and 
motivate continuing research on representing 
conversations for tasks other than overhearing, e.g., 
debugging [13], automated monitoring [7], etc. 
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