New Challenges in Multi-Agent Intention Recognition:
Extended Abstract

Gal Kaminka
Computer Science Department
Carnegie Mellon University
Pittsburgh, PA 15213
galk@cs.cmu.edu

Introduction

Recently, there has been an emergence of interest in un-
derstanding how observations of the actions of agents
can be used as the basis for inference of the unobserv-
able state of these agents, in order to improve the ability
of the observer to respond to these agents. In particular,
there is increasing interest in the area of Agent Model-
ing, which investigates mechanisms allowing an agent to
acquire, maintain, and infer knowledge of other agents.
This area unites plan-, goal-, and intent-recognition
under a single umbrella with user-modeling, behavior-
recognition, belief ascription, agent tracking, etc.

Traditionally, agent modeling researchers have ex-
plored techniques in which two agents are involved
e.g., (Kautz & Allen 1986; Charniak & Goldman 1993;
Lesh, Rich, & Sidner 1999). In such techniques one
agent observes the actions of another agent, and at-
tempts to infer its unobservable state features, such as
intent, goal, or plan. These techniques are successful in
many cases, and new techniques are still being investi-
gated, e.g., (Pynadath & Wellman 2000).

However, the transition from agent-modeling tech-
niques, where an observing agent is monitoring the state
of another agent, to multi-agent modeling, where the ob-
serving agent is monitoring the actions of more than one
agent, present new challenges that have not been previ-
ously addressed by agent modeling researchers. These
include both computational challenges, such as band-
width and computational load, as well as conceptual
challenges, such as reasoning about previously unseen
behavior of teams of agents.

This extended abstract outlines some of these cur-
rent key challenges in multi-agent modeling, and the
steps we have begun to take in address these challenges,
specifically in the context of agents that are collaborat-
ing with each other. We focus on the following key
challenges:

o The Monitoring Selectivity Challenge: Given finite
bandwidth and computation resources, how can an

*This research was carried out while the author was vis-
iting Carnegie Mellon University.
Copyright (© 2001, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

Jan Wendler*
Department of Computer Science
Humboldt University Berlin
D-10099 Berlin, Germany
wendler@informatik.hu-berlin.de

Galit Ronen
Computer Science Department
Carnegie Mellon University
Pittsburgh, PA 15213
gronen@andrew.cmu.edu

agent modeling system reason about large teams with
many agents? How can is selectively use observations
of perhaps only a few agents, to successfully carry out
tasks which require modeling an entire team?

e The Incomplete/Incorrect Knowledge Challenge:
How can an agent modeling system reason about un-
familiar teams, for which it has inaccurate, incorrect,
or even no models?

e The Model Challenge: What type of models should
an agent-modeling system reason about in modeling
multiple agents? For instance, are plans and goals
(traditionally, the building blocks for the “solution
space” of an agent modeling process) useful for all
multi-agent modeling tasks?

We address these challenges using an abstract frame-
work for building multi-agent modeling applications.
This framework, called Socially-Attentive Monitoring
(Kaminka & Tambe 2000; Kaminka, Pynadath, &
Tambe 2001), emphasizes using knowledge of the re-
lationships (social structures) between modeled agents’
states, and the procedures that the agents use to main-
tain them (norms and social laws). Using this frame-
work as a guiding principle, an agent-modeling to al-
leviate the significant uncertainty and computational
challenges facing multi-agent modeling systems. We
present a set of promising results which address the in-
complete/incorrect knowledge challenge by focusing on
learning relationships separately from learning models
of behavior, and that demonstrate that social models
of interaction between agents can be very useful for ad-
dressing significant multi-agent modeling tasks.

The Monitoring Selectivity Problem

Traditionally, agent-modeling techniques have been in-
vestigated in a context of two agents—the observer and
the observed (Kautz & Allen 1986; Charniak & Gold-
man 1993; Lesh, Rich, & Sidner 1999; Pynadath &
Wellman 2000). However, in multi-agent modeling, the
monitoring agent must observe and reason about poten-
tially many agents. These new settings for the modeling
task present significant challenges.

On one hand, if an agent attempts to observe all other
agents, then in general it will face significant bandwidth

and computational difficulties (Jennings 1995). As the
number of agents scales up, bandwidth requirements
grow: For instance, the agent would need to observe all
other agents continuously, which is in general not al-
ways possible, as agents become physically and logically
separated from each other. In addition, computational
requirements grow: If a monitoring agent is busy mod-
eling all others, a significant computational task (Kautz
& Allen 1986; Pynadath & Wellman 2000), it may run
the risk of not having enough computational resources
available to carry out its other tasks: After all, multi-
agent modeling is a perceptual sub-task in service of
an overall task for the monitoring agent, such as ad-
versarial planning, coordination, visualization, failure
detection, etc.

Thus the designer of a multi-agent system often
builds the system such that there is some selectivity in
observing and monitoring others. However, if the de-
signer ventures too far, or if the environment physically
constrains the design in such ways, the observing agent
may find it self with insufficient observations, provid-
ing only partial information about the state of observed
agents. Thus the observing agent will have uncertainty
about the state of the monitored agents, which may
hinder the observing agent from carrying out its tasks,
such as coordinating with the other agents, planning
interactions with them, etc.

The key challenge, which we refer to as as the Moni-
toring Selectivity Problem, is thus to identify, for a given
task (a) how much modeling of other agents is neces-
sary to carry out the task; and (b) techniques that will
be able to carry out such modeling. overcoming uncer-
tainty and computational burdens. Over recent years,
we have been investigating modeling algorithms that
provide concrete answers to these two questions in sev-
eral complex, dynamic, multi-agent domains.

The techniques we investigate are guided by socially-
attentive monitoring, a guiding principle which em-
phasizes using a model of the expected relationships
between monitored agents’ states to complement rea-
soning about any other previously-known applica-
tion/agent models (Kaminka & Tambe 2000; Kaminka,
Pynadath, & Tambe 2001). We focus in this extended
abstract on utilizing knowledge of collaborative relation-
ships between team-mates in service of different mod-
eling tasks. Agents in a team are dependent upon each
other, and their important state features, such as be-
liefs about the world, plans, and goals, will therefore
be dependent as well. These dependencies can be iden-
tified by the designer, by collaboration engines (e.g.,
GRATE* (Jennings 1995), COLLAGEN (Rich & Sid-
ner 1997), etc.), or by theory (Grosz & Kraus 1996).

Consider the following example, following (Kaminka,
Pynadath, & Tambe 2001), that demonstrates multi-
agent modeling with and without the use of knowledge
of a particular collaborative relationship among agents:
In this example, a set of heterogenous agents is inte-
grated into a distributed application (team) to run on
the Internet. Different agents are running on machines

across the U.S., yet with focused communications be-
tween them, the agents are tied in together to function
as a team. Yet due to their distribution, their actions
and state are mostly unobservable to any single human
operator sitting in one of these locations. For instance,
it is difficult for such an operator to view a computer
monitor hundreds of miles away.

To solve this problem, a multi-agent intention-
recognition system was built to provide real-time vi-
sualization of the state of each agent. In theory, the
system could have relied on report-based monitoring, in
which each agent continuously updates the visualization
system as to the agent’s state. However, such a solu-
tion does not scale very well, since it requires modifying
agents to send these reports (a problem with legacy and
proprietary systems), and it adds significant costs to
the computational and bandwidth requirements, since
agents must devote some of their resources to generat-
ing and transmitting these reports.

We therefore proposed to visualize the state of the
agents based on their routine communications, used as
observations by a multi-agent modeling system. The
initial solution attempted to model each agent inde-
pendently of its peers, by utilizing an array of proba-
bilistic plan-recognizers, in which each observed agent
was modeled separately. But due to the scarcity of ob-
servations (agents communicate routinely only once per
20 state changes, on average—and some don’t commu-
nicate at all), this approach proved unsatisfactory, re-
sulting in 3-4% average accuracy in actual system runs
(Kaminka, Pynadath, & Tambe 2001).

To address this difficult challenge, we focused on
social knowledge (please see (Kaminka, Pynadath, &
Tambe 2001) for details). First, although in the ini-
tial solution each agent was modeled independently, in
reality agents were expected to be dependent on each
other: They were supposed to switch together from one
abstract mode of operation to the next (as part of any
such abstract mode each agent would carry out differ-
ent action). Thus agents were supposed to be in agree-
ment as to the mode the team is in. Agreement on
the joint plan to be executed by team-members is in-
deed common in teamwork applications (Jennings 1995;
Tambe 1997). Second, the routine communications be-
tween agents during task execution were somewhat pre-
dictable, and in fact such predictions were amenable
to learning. By eliminating modeling hypotheses that
did not conform to the agreement relationship (i.e., hy-
potheses where agents were not in agreement), or did
not conform to the predicted communications (i.e., hy-
potheses where agents switched mode without sending
a predicted message), the accuracy of visualization was
increased to 84% on average (up to 97% in some ex-
periments). Furthermore, by restricting the modeling
algorithm to only these hypotheses, we were able to
realize computational space and time savings of about
90%.

The Knowledge Challenge

One of the key assumptions typically made in plan-
recognition, user-modeling, and other agent modeling
investigations is that the set of possible explanations
for the observations is known a-priori in the form of
a plan-library, i.e., the recognition problem is cast as
a set membership query (Kautz & Allen 1986). How-
ever, as agent modeling techniques are being applied
in multi-agent systems, this assumption is often prob-
lematic. For instance, in building a coach agent for
RoboCup soccer games (Noda et al. 1998)—one of our
current projects—one cannot assume that the behavior
of opponent soccer teams will be explained correctly by
an existing plan-library.

We are tackling this challenge by trying to reason sep-
arately about a task’s plan-library, i.e., the set of recipes
associated with carrying out a particular task (possibly
by multiple agents), and the social plan-library, i.e., the
set of relationships maintained and procedures used by
the same agents as part of their task execution. Our
hope is that this separation will yield not only com-
putational benefits, but will also allow a designer to
correctly characterize the nature of the incompleteness
or incorrectness of the plan-library in question, for a
given multi-agent modeling task.

We are investigating this problem in the context of
two projects. The first projects deals with building
multi-application assistant agents (in which the rela-
tionships are unknown), the second with building a soc-
cer coach for the RoboCup soccer simulation environ-
ment (in which the task knowledge is unknown). Here,
we focus on the multi-application assistant project.

The vision of the intelligent assistant agent has been
explored in many different investigations, and of course
is now finding commercial applications (for instance,
as the Microsoft Office assistant). However, the tra-
ditional focus of such applications were on assisting a
single user in the context of a particular application be-
ing used. For instance, the Microsoft Office assistant is
able to provide detailed help about writing letters in
Word, or equations in Excel. The usefulness of engag-
ing in user-modeling for such collaborations between an
application and a user has also been demonstrated in
(Lesh, Rich, & Sidner 1999).

However, a user does not always use a single appli-
cation in service of carrying out a single task. Con-
sider a typical Java or Python development scenario.
Much of the power of developing in these two different
computer languages lies in their large, useful, standard
libraries. As a result, a typical developer often finds
herself switching back and forth between the program-
ming editor (e.g., Emacs) used for writing code, and
an online documentation browsing tool (e.g., Netscape)
used to explore the depths of the online documentation
for the standard library.

A traditional assistant approach would conceptually
have an Fmacs-assistant actively trying to help the user
edit the program, and a Netscape-assistant helping the
user browse the web-page. These two conceptual as-

sistants would each see the user being active for a few
minutes, then becoming inactive (in the context of the
specific application) for a few minutes more, only to
become active again later on, and so on. What is con-
ceptually missing here is not detailed knowledge about
what each application is capable of doing, or how a user
uses each single application.

Instead, the missing knowledge is concerned with how
a developer uses and coordinates these two applications
together to accomplish a single task—writing code ef-
fectively. A better intelligent assistant would need to
recognize such relationships and utilize them to provide
better assistance (for instance, by predicting needed
web-pages based on code being written). However, it
is difficult to predict all the possible relationships that
can occur between applications: After all, there are in-
deed many different possible tasks that a user may be
carrying out, and enumerating all possible application
combinations is not a practical approach.

We are therefore attempting to learn to recognize
very general patterns of such dynamic interactions
based on past observations of the user interacting with
multiple applications. The key idea is to assume that
all interactions between applications are equally-likely,
and then recognize statistically significant patterns that
emerge where the user interacting with one application
is correlated with future interactions of the user with
another application. To do this, we are currently adopt-
ing the Multi-Stream Dependency Detection (MSDD)
algorithm (Oates & Cohen 1996) for reasoning about
such observations of complex applications (the algo-
rithm was originally built to reason about simple atomic
observations). Furthermore, we are developing the in-
frastructure necessary to monitor multiple applications
without modifying them, and this is proving to be a key
technical challenge.

The Model Challenge

A final challenge we address here is the challenge of
finding useful models to reason about as part of a multi-
agent modeling system. Traditionally, plans (sequences
of actions), beliefs, and goals (ending states) are used as
the models that an agent-modeling application reasons
about, e.g., (Kautz & Allen 1986; Charniak & Gold-
man 1993; Pynadath & Wellman 2000). However, the
application of agent-modeling techniques in multi-agent
settings breeds new challenges: For instance, the need
to reason about relationships as first-class modeling ob-
jects.

Consider the following example, which rose in the
soccer coach-building project briefly mentioned above.
One of a coach-agent tasks is to automatically identify
weaknesses in the capabilities of teammates, and to offer
advice to counter such weaknesses. As an example, we
wanted our coach to be able to improve player’s passing
abilities (the players are also software agents interact-
ing with the coach in the RoboCup soccer simulation).
Naturally, it is relatively easy for the coach to recognize
passes that failed, versus those that succeed. However,

a more difficult challenge is for the coach to rank all
successful passes according to their quality: To do this,
the coach must differentiate not between a failed at-
tempt and a successful pass, but instead between two
successful passes of different qualities.

We approached this problem by looking at passes as
an instance of coordinated activity between two agents.
In fact, passing conforms to a very common coordina-
tion process (Malone & Crowston 1994) composed of a
producer (the kicker), who produces and delivers a re-
source (the ball) to a consumer (the intended receiver),
at the right time and in the right way. Thus the coach
agent does not need to recognize a plan, or a goal, for
the two agents, but instead recognize to what degree
they are engaged in a particular coordination relation-
ship.

We built alternative models of producer-consumer co-
ordination processes which the coach was able to recog-
nize. Such models differed, for instance, in where they
placed the optimal interception point for the receiver
of the ball, the intended velocity vector of the receiver
at the time the ball was to be intercepted, the veloc-
ity vector of nearby opponents, etc. However, a key
idea in all of these models was that a perfect coordi-
nation conforming to the model would require minimal
effort on the part of the receiver in intercepting the ball,
where such effort is measured in deviation from the in-
tended velocity vector of the receiver. In other words,
a perfectly coordinated pass is one where the receiver
is intercepting the ball exactly where and when it had
intended to go all along, without needing to slow down,
change course, or speed up. Based on these models,
the coach ranks observed passes, in essence specifying
which passes were most closely matched by which mod-
els. In other words, the coach is recognizing different
coordination relationships.

To verify our approach, the coach was run on the
recorded games of the RoboCup evaluation sessions
(Kaminka 1998), data from controlled experiments in
which dozens of RoboCup teams were run against a
fixed opponent, in an effort to create a scientifically-
meaningful data allowing for ranking teams. The re-
sults have been encouraging: In both the 1998 and 1999
data sets (dozens of mega-bytes of data, thousands of
simulation cycles), we have found a correlation (on the
order of 0.5) between the ranking of a team in terms of
its pass success-rate (how many passes are successful),
and conformity with two particular models of coordi-
nation that we have developed: In one of these models
the receiver was assumed to intend to continue its ve-
locity vector at the time of the kick, and in the other,
the receiver was assumed to be slowing down to a halt
starting at the the time of the kick. More details are
provided in (Wendler, Kaminka, & Veloso 2001).

Summary

As multi-agent systems grow in popularity in research
and in actual real-world applications, the role for multi-
agent modeling techniques becomes increasingly criti-

cal. However, the transition from traditional intention-
recognition (agent-modeling) settings, where a single
agent is modeling another, to settings where an agent
is modeling many other agents, is raising many dif-
ficult challenges to current techniques. In particular,
three of these challenges are the monitoring selectivity
problem, the plan-library incompleteness/incorrectness
challenge, and the model challenge. We are actively
investigating ways to address these challenges, within
the framework of socially-attentive monitoring, which
focuses on the social structures and procedures within
the monitored multi-agent system. We have provided a
summary of current preliminary results demonstrating
the usefulness of this approach.

References

Charniak, E., and Goldman, R. P. 1993. A Bayesian
model of plan recognition. Artificial Intelligence
64(1):53-79.
Grosz, B. J., and Kraus, S. 1996. Collaborative
plans for complex group actions. Artificial Intelligence
86:269-358.

Jennings, N. R. 1995. Controlling cooperative problem
solving in industrial multi-agent systems using joint
intentions. Artificial Intelligence 75(2):195-240.

Kaminka, G. A., and Tambe, M. 2000. Robust multi-
agent teams via socially-attentive monitoring. Journal
of Artificial Intelligence Research 12:105-147.

Kaminka, G. A.; Pynadath, D. V.; and Tambe, M.
2001. Monitoring deployed agent teams. In Proceed-
ings of the International Conference on Autonomous
Agents.

Kaminka, G. A. 1998. The multi-agent systems evalua-
tion repository. http://www.cs.cmu.edu/~galk/Eval/.

Kautz, H. A., and Allen, J. F. 1986. Generalized plan
recognition. In Proceedings of the National Conference
on Artificial Intelligence, 32-37. AAAI press.

Lesh, N.; Rich, C.; and Sidner, C. L. 1999. Using
plan recognition in human-computer collaboration. In
Proceedings of the Seventh International Conference
on User Modelling (UM-99).

Malone, T. W., and Crowston, K. 1994. The inter-
disciplinary study of coordination. ACM Computing
Surveys 26(1):87-119.

Noda, I.; Matsubara, H.; Hiraki, K.; and Frank, I.
1998. Soccer server: A tool for research on multiagent
systems. Applied Artificial Intelligence 12(2-3):233—
250.

Oates, T., and Cohen, P. R. 1996. Searching for struc-
ture in multiple streams of data. In Proceedings of

the Thirteenth International Conference on Machine
Learning, 346-354.

Pynadath, D. V., and Wellman, M. P. 2000. Prob-
abilistic state-dependent grammars for plan recogni-

tion. In Proceedings of the Conference on Uncertainty
in Artificial Intelligence, 507-514.

Rich, C., and Sidner, C. L. 1997. COLLAGEN: When
agents collaborate with people. In Johnson, W. L.,
ed., Proceedings of the International Conference on
Autonomous Agents, 284-291. Marina del Rey, CA:
ACM Press.

Tambe, M. 1997. Towards flexible teamwork. Journal
of Artificial Intelligence Research 7:83-124.

Wendler, J.; Kaminka, G. A.; and Veloso, M. 2001.
Automatically improving team cooperation by apply-
ing coordination models. In The AAAI Fall sym-

posium on Intent Inference for Collaborative Tasks.
AAAT Press.

