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English Abstract

A swarm is a multi-agent system in which robots base their decisions only
on local interactions with the other robots and the environment. Local in-
teractions limit the robots' abilities, allowing them to perceive and act only
with respect to a subset of the other robots, and preventing them from
coordinating explicitly with all members of the system. Despite these chal-
lenging constraints, swarms are often observed in real-world phenomena, and
inspired technology for many robotics applications. A key open challenge in
swarm research is to be able to provide guarantees on the global behavior
of the swarm, given their individual decision rules and local interactions.
The reverse is also an open challenge: given the required guaranteed global
behavior, how should the individual behave and make decisions?

This thesis proposes a new game-theoretic model for swarms. It ties local
decision-making with theoretical guarantees of stability and global rewards.
Using simple reinforcement-learning with a reward that is computed locally
by each robot, it is able to make guarantees about the emerging global results.
Speci�cally, we show that the utility of the swarm is maximized as robots
maximize the time they spent on their task. This allows each single robot to
evaluate the e�cacy of a collision-avoidance action based on the time it frees
up for its own swarm task execution. We use a multi-arm bandit framework
to allow each individual agent to learn the collision-avoidance actions that are
best. Then, we show how to shape the reward used in the learning process,
so that it takes into account the marginal contribution of the robot to the
swarm. While the marginal contribution is not directly accessible by the
robot, it can be approximated e�ectively based on its own experience. We
evaluate the model empirically, using a popular 3D robotics physics-based
simulation, in which a cooperative swarm is engaged in foraging, a popular
canonical task. We compare the results to those achieved by the state of the
art, and show superior results.
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Chapter 1

Introduction

A swarm is a multi-agent system in which robots base their decisions only
on local interactions with the other robots and the environment [69]. Local
interactions limit the robots' abilities, allowing them to perceive and act
only with respect to a subset of the other robots, and preventing them from
coordinating explicitly with all members of the system. As a result, common
multi-agent tasks such as task allocation and group planning are particularly
challenging: not only are these tasks to be carried out in a distributed fashion
(as in all multi-agent systems), they have to be carried out with no global
communications or interactions.

Despite these challenging constraints, swarms are often observed in real-
world phenomena [29, 5, 4, 23]: in crowds of humans, schools of �sh or
�ocks of birds, insect aggregates (bee hives, ant and termite colonies, lo-
cust), and in bacteria aggregates. These inspired technology in use in many
applications [47, 18, 26, 69, 60, 8, 34, 21]: computer graphics, simulations,
autonomous robots, and medical molecular robotics.

The successful coordination of swarms in all of these instances has been
of interest to researchers for many years, in particular attempting to analyze
how individual decision-making, combined with strictly local interactions,
raise stable global phenomenon of interest. An open challenge in swarm re-
search is to be able to provide guarantees on the global behavior of the swarm,
given their individual decision rules and local interactions. The reverse is also
an open challenge: given the required guaranteed global behavior, how should
the individual behave and make decisions?

This thesis proposes a new game-theoretic model for swarms. It ties local
decision-making with theoretical guarantees of stability and global rewards.
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Using simple reinforcement-learning with a reward that is computed locally
by each robot, it is able to make guarantees about the emerging global results.

Speci�cally, we show that some swarms can be modeled as a Stochastic
Games [55]. In this type of game, a sequence of simple (normal-form) games
is played, with the result leading, with some probability, to another normal-
form game of the same or di�erent type, and so repeatedly. Each stage
(normal-form game) in the sequence is an interaction, where robots are in
con�ict (in our case, they are about to collide). Given the new model, robots
in the swarm should be able to rationally select individual actions that lead
to equilibrium solutions that are inherently stable, and possibly optimize
other criteria (such as social welfare, in the case of cooperative swarms).

However, a game-theoretic model of the swarm is descriptive. It is not
necessarily useful in guiding the actions of the robots. In particular, when
colliding (i.e., when engaging in a stage in the sequence), robots can take
one of various actions to resolve the collision. A descriptive model based on
the e�ects of their joint actions on the swarm may indicate better choices.
However, the robots might not be able reason and make these choices, because
of their inherent limitations.

Thus, several challenges are raised when using the proposed model in
practice. These are discussed brie�y below, and in detail in the next chapters.

First, the robots do not have global information, and thus are not able
to track the swarm's global progress towards its task. In most settings,
they also cannot predict the e�ects of a collision on the swarm's goals, and
are therefore unable to compute the joint payo� of the swarm from their
individual actions.

Second, in many cases, robots are unable to perceive the actions and
payo�s of others. They choose an individual action, but do not know what
action the other robots have taken. Thus not only are they blind to the
e�ects of their choices on the swarm's goals, they also are blind to their
e�ects on those with whom they collided, or how the actions of others a�ect
themselves.

Third, the environment itself, even devoid of others, introduces stochas-
ticity in the results of actions. A movement towards some direction may
be successful in one location, and less so in another, where an obstacle lies
ahead. Thus attempts to learn successful choices will need to address stochas-
tic results from applying them. This is exacerbated when multiple robots are
involved, as they introduce additional dynamic changes which, to the indi-
vidual robot, are perceived as even greater stochasticity (though in fact, they

2



stem from a di�erent source).
To overcome these challenges, we take several steps in turning the de-

scriptive Markov games model into a prescriptive model, that can be used
with reinforcement learning to successfully guide the behavior of robots in
swarms, to maximize swarm results despite the limitations listed above.

We �rst transition from attempting to describe the swarm goals in some
task-speci�c measure of utility, to a description grounded in time spent exe-
cuting the swarm task. In particular, we address settings in which the utility
of the swarm is maximized as more robots are engaged in their swarm tasks,
and less in collisions. This introduces a measure of utility which is accessible
to each individual swarm robot that is able to measure time.

The individual measurement of task execution time allows each single
robot to evaluate the e�cacy of a collision-avoidance action based on the
time it frees up for its own swarm task execution. Given the stochastic
nature of the results, we use a multi-arm bandit framework to allow each
individual agent to learn the collision-avoidance actions that are best.

However, each individual's measurement of its own time it does not over-
come the barrier of global knowledge (how much time the collective spends
on its tasks), nor local perception (e.g., how much time another robot is
wasting on a current collision). To overcome this challenge, we shape the re-
ward used in the learning process, so that it takes into account the marginal
contribution of the robot to the collision and the swarm. While the marginal
contribution is not directly accessible by the robot, it can be approximated
e�ectively based on its own experience.

The model is explored in the coming chapters. It departs from previous
work in this area by Douchan et al. [20], both in its explicit addressing of the
stochastic nature of the rewards (previous work addressed it ad-hoc), in the
reward approximation analysis, and in allowing for multiple types of stage
games to be possible (where previous work allowed a single repeating game).

We also evaluate the model empirically, using a popular 3D robotics
physics-based simulation, in which a cooperative swarm is engaged in for-
aging, a popular canonical task. We compare the results to those achieved
by the state of the art, and show superior results.

The thesis is organized as follows. Chapter 2 discussed background and
related work in detail. Chapter 3 presents the basic stochastic games model
of a swarm, and shows mathematically how it can be used a descriptive model
of how ideally a swarm works, and how this guarantees stability and max-
imization of the swarm goals. Chapter 4 then transforms the model to be
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prescriptive, addressing how it can be used to guide the individual decision
making such that the theoretical guarantees hold in practice. Chapter 5 de-
tails the extensive experiments carried out in 3D physics-based robot swarm
simulation, to empirically evaluate the model presented. The experiments
show not only where it succeeds, but also where it fails when its underlying
assumptions are not maintained. Chapter 6 discusses the implications of the
work and open questions raised, and concludes. The thesis ends with Ap-
pendix A which presents the open-source library implementing the various
algorithms used in the experiments.

4



Chapter 2

Motivation and Related Work in
Swarm Robotics

We �rst brie�y introduce swarm robotics, an active area of research (Sec-
tion 2.1), and focus on Forgaging, a popular canonical task for swarms, as
a motivating example for the challenges addressed in this thesis. We then
examine existing machine learning approaches to addressing these challenges,
noting di�erences with the work presented in this thesis (Section 2.2).

2.1 Swarms and the Challenges They Raise

A group of agents can be referred to as a multi-agent system when individuals
in the group interact with each other: they take actions that a�ect others in
the group, they are a�ected by the actions of others, and they may be able to
perceive the existence of others, and the e�ects of interactions with others.
They may be able to communicate information to each other. Implicit in
this de�nition is that the system is distributed: each agent is responsible for
its own computation1.

A swarm is multi-agent system, where the interactions are strictly limited
to relatively small subsets of the group, i.e., an agent can interact with only
a small number of individuals at a time (these are called neighbors). So while
agents may participate in the swarm to achieve a common goal, they are not

1Agents may still utilize centralized computation for making decisions, but this is done

by using communications to allow one member to carry the burden of decision-making for

the others.
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able to communicate or interact globally (i.e., with the entire group at once).
Swarms are of interest to a variety of �elds, as they arise both in nature

as well as in synthetic systems. For instance, biologists study the swarming
behavior of bacteria, insects and complex animals such as �sh and birds
[48, 11, 38, 4, 6, 5, 21]. Others investigate swarming in humans, as can be
seen in crowds, car tra�c and pedestrians [29, 23, 59, 45, 64]. Swarms are of
interest in simulation and graphics [47, 17, 30, 67, 33, 35, 3], in investigating
theoretical distributed systems [2, 56], autonomous vehicles [63, 21, 13, 63],
and other applications [27, 34].

Swarm robotics is an area of research within robotics and arti�cial in-
telligence, that studies swarms whose agent members are robots. The focus
on robotic agents grounds the types of interactions that are considered and
their limitations. Commonly, swarm robotics deals with robots that have no
or limited communications with their neighbors [69, 60, 18], and may or may
not be able to perceive their existence, or their actions and motions.

This thesis focuses on cooperative robot swarms (where robots work to-
wards a common goal), and henceforth, when we refer to swarms we specif-
ically mean cooperative swarms. We are speci�cally interested in robots
that are homogeneous in the sense that they have the same capabilities and
decision-making algorithms. It is assumed that the environment is unknown.

The common key challenge in swarm tasks is to be able to predict (and
guarantee, as the robot designers) the global behavior of the swarm, based
on the individual decision rules, which are inherently limited to governing
local interactions. The challenge comes up in di�erent variants:

� Given individual decision rules, predicting the global swarm behavior
and e�ects (on some global variables of interest). This is sometimes
called the local to global problem.

� Given a target global goal (or global optimization criteria), synthesize
individual decision rules that guarantee the global outcome. This is
analogously called the global to local problem.

There are too many investigations of these challenges for a detailed
overview, ranging from theoretical studies (e.g., [16, 62, 56]) to highly suc-
cessful empirical investigations (e.g., [52, 26]). We point the interested reader
to recent surveys [60, 8].

Instead, we wish to highlight a popular canonical swarm task, called
Foraging, which we we use to both illustrate the challenges facing swarm
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robotics researchers, as well as (later) a testing-bed for the techniques we
introduce in this thesis.

Foraging is a task�inspired by nature�whose goal is to collect the max-
imum number of items of interest (often referred to as pucks) in a work
area. Most commonly, in multi-robot foraging, robots have a single base
from which they exit, and in which they deposit pucks found in the work
area. Robots are unable to self-localize in the work area, and do not have a
map. They therefore search for pucks on their way out, and search for the
base once they collect a puck (one at a time). Typically, robots colliding
(or about to collide) cannot communicate with each other, and so must re-
solve the collision by initiating avoidance motions which may or may not be
e�ective given the actions of the other robots involved in the collision. In
general, robots cannot sense the motions of others (other than their distance
in near-collision situations), and cannot perceive whether the other robots
are carrying pucks. They also cannot perceive the number of pucks collected
so far, or how many pucks are left in the work area.

We use foraging to illustrate the challenges raised to swarm robotics re-
searchers, when designing the individual decision-making procedures for the
robots, and when attempting to predict the global results. In the case of
foraging, we seek a global guarantee that the swarm will consistently collect
the maximal number of pucks in the time allowed. Given that interactions
only occur during collisions (or near-collisions), we seek individual decision
rules that handle collisions such that th global goals are optimized.

Note the inherent di�culties faced by any single robot attempting to make
the decision about how to handle an impending collision. The individual
robot does not know how many pucks have been collected by the swarm, or
where pucks are located; nor does it know where it is located�it can only
distinguish between being in a base or outside of it. It does not know how
many robots are in the swarm aside from itself, and may not even be able to
tell how many robots are involved in the collision with itself, and it certainly
cannot tell whether they are holding pucks or not. These are the conditions
under which it needs to decide on an action, such that the swarm is better
o�.

There have been several investigations that have proposed collision-
handling procedures that should improve foraging [22, 28, 44, 61, 68]. How-
ever, it has been shown that no one method is good for all cases and group
sizes [53]. Deciding on a coordination method for use is not a trivial task.
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2.2 Machine Learning in Foraging Swarms

A promising approach to addressing the challenge in selecting interaction
actions (collision-handling methods) in foraging was proposed by Rosenfeld
et al. [50]. They use learning o�ine to adjust thresholds which allowed agents
to select between coordination methods after being deployed. Though relying
on cumbersome o�ine learning ahead of the task, the method demonstrated
that it is possible to improve on any single method, by combining them in
the same swarm. However, it provided no guarantees on the results.

A followup investigation by Kaminka et al. [32] proposed using reinforce-
ment learning for online adaptive selection between methods. The focus of
the investigation was on a speci�c reward function (called E�ectiveness In-
dex ), the ratio of the amount of time and resources spent handling the last
collision, to the total time and resources spent during the collision and the
time until the next one. This measures the overhead spent by the agent
handling the collision. This reward was used with a stateless Q-learning al-
gorithm (Q-learning with a single state) with a high learning rate (0.5) to
quickly adapt the decisions to the recents conditions in which collisions occur.

The study by Kaminka et al. was the �rst to use reinforcement learning
in foraging, but is certainly not the �rst to use reinforcement learning in
multi-robot or multi-agent systems. Mataric [40] describes several di�erent
learning setups, with robots receiving joint rewards, individual rewards, etc.
She examined these empirically, without discussing the reward function itself
or the task model.

Approaching multi-agent reinforcement learning from the game-theoretic
side, Claus and Boutilier [14] investigate a repeated-games model of tasks
(a special games of stochastic games), and distinguish two types of learning
agents: joint action learners which know the actions taken by others, and
independent learners which are blind to the selection of others. They con-
cluded that generally, independent learners using standard Q-learning do not
converge to the Nash equilibrium. This is the case here, as robots are unable
to perceive the actions of others. Indeed, while Kaminka et al. [32] conjecture
as to the guarantees a�orded by the E�ectiveness Index reward the proposed,
they were unable to prove it, and new research established that in practice,
the use of the reward did not always optimize the swarm results [19].

Indeed, the translation of reinforcement learning algorithms and reward
functions into guarantees on convergence to Nash or other equilibria is a topic
of much ongoing research. When learning as part of a group is considered, the
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global reward function the agents seek to maximize is usually a function of
the individual reward functions (sum, average, etc.). The individual reward
functions, however, depend on a global decision (joint action, majority vote,
etc.).

One approach is to change the learning algorithm. For instance, within
general reinforcement learning Zhang and Lesser [66] use limited communi-
cation to overcome speci�c limitations of independent learners, i.e., make
them a little more like joint learners. Littman [37] suggested an algorithm
called Team Q-learning and proved it convergence to optimal solution in the
case of unique solution. Bowling and Veloso [10] introduced a new principle,
"Win or Learn Fast" (WoLF), that handles the problem of parallel learning
with a variable learning rate, they proved convergence for some cases and
demonstrated greater empirical success. Conitzer and Sandholm [15] used the
"WoLF" concept as a basis and presented an algorithm named AWESOME
(Adapt When Everybody is Stationary, Otherwise Move to Equilibrium), it
assumes each agent can observe other agents' actions to determine whether
they are stationary, and then learn based on those observations. There are
numerous such investigations; Hernandez et al. [31] provide a recent compre-
hensive survey.

However, these generally require the learning agent to know the actions
of the others, or their outcomes. The learning agents are not completely
independent. Similarly, most work within multi-agent multi-armed bandit
learning models assume some level of communication between the agents [54,
12, 39, 1]. For instance, Shahrampour et al. [54] suggested a way for the
agents to estimate the global reward with local communication. Chakraborty
et al. [12] used global communication for the same purpose, but added a cost
for communication to reduce the use of it.

Independent learning agents are particularly challenging, because they
learn in isolation and so unwittingly respond to changes in the rewards,
that stem for the parallel processes of learning taking place in other agents.
Matignon et al. [41] carefully analyzed and distinguished speci�c challenges
to independent learning agents that are raised under speci�c conditions. One
of these challenges is that from the point of view of the individual indepen-
dent learning agent, the reward distribution is non-stationary: it varies and
changes as other agents learn in parallel, but their existence and their deci-
sions are not known to the learning agent. Some algorithms have attempted
to focus on this inherent non-stationarity of the reward distribution. For
example, variants of the classic UCB1 algorithm (which is optimal for multi-
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arm bandits) have been proposed by Garivier and Moulines [24, 25]. We will
later empirically compare the results we achieve with theirs.

A di�erent approach to addressing the challenges in multi-agent learn-
ing focuses on changing the reward function itself, as Kaminka et al. at-
tempted [32]. Wolpert and Kagan [65] discuss the use of the marginal con-
tribution of each agent on the global utility, as the individual reward to the
agent. The call the reward function the Wonderful Life Utility (WLU) as it
measures the contribution of the agent to the group by contrasting the group
utility with and without its action.

Later, Douchan, Wolf, and Kaminka [20] have used WLU together with
the E�ectiveness Index, to model swarms as repeated games, in which the
Nash equilibrium also maximizes social welfare (the aggregate of all agents
payo�s). This is the most closely related work to ours. It derives the indi-
vidual reward from the model, and uses common approximation techniques
to account for missing information. In comparison, the model we introduce
here is more general (allows multiple types of stage games), and is based on
measurement of total accumulated direct work, rather than the overhead of a
single stage-game. This results in a much more compact and elegant deriva-
tion of the individual reward function, and allows compensating for stochastic
settings. Indeed, we demonstrate empirically it improves signi�cantly over
the previous approximations and learning model.

2.3 A New Model of Swarms and Its Use with

Multi-Agent Reinforcement Learning

Our goal is to �nd a model that (1) does not rely on any communications,
(2) provides guarantees on the global behavior and results of the swarm task,
and (3) makes realistic assumptions, enough to be implemented in practice
by simple autonomous robots so that empirical success can be demonstrated.

This thesis addresses the challenges described below, using a combina-
tion of a multi-arm bandit algorithm (modi�ed to allow for actions with
duration), and a reward derived mathematically from the stochastic games
model introduced in the next chapter.

Immeasurable, Task-Dependent Global Utility The goal of the
swarm, whether known to the individual swarm member, cannot be mon-
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itored or measured by the individual. In foraging, the goal is to maximize
the number of pucks collected by the swarm. But the individual agent can-
not measure the rate at which pucks are collected, or whether that rate can
be improved. Moreover, utility is inherently task- and domain- dependent.
Changing the task from foraging to a di�erent task, will require rethinking
the utility function, and thus re-shaping the reward function that would be
derived from it.

Previous work has repeatedly suggested that minimizing the time spent on
the overhead of managing interactions can lead to improved performance [28,
51, 32]. Indeed, under some conditions and assumptions, the total overhead
can act as a potential function for the game [20].

We switch the focus from minimizing overhead, to maximizing the direct
work (total net working time) spent by the agent, as as a substitute for the
speci�c domain-dependent utility. In game-theory terms, we use time spent
on swarm work as the basis for a potential function for the swarm utility.
Later, this allows reformulating the individual reward in a manner that is
more natural for learning algorithms, and indeed shows improved results.

Unlike the task-dependent utility, time is not only measureable by the
robots, but it is inherently task-independent. Any swarm task whose utility
can be described as a function of time (as discussed in the next chapters) is
directly addressable by the model we present.

Global Information is Not Available Whether pucks or time spent
working, the individual swarm robot cannot monitor the progress of the
swarm. It cannot count the pucks collected by others; and it cannot measure
how much time they have spent working. Because of this, its own assessment
of how its choices a�ect the swarm utility (however it is de�ned) is inherently
and extremely limited.

We take the approach of Douchan et al. [20] by utilizing the marginal
contribution of the robot as the basis of an individual reward function which
will establish the impact of the action on the swarm. The use of this reward,
called the Wonderful Life Utility (WLU) was introduced in [65].

This WLU reward determines the marginal contribution of an agent by
comparing the utility with and without it. However, the individual agent
does not have knowledge of the utilities of others. Thus missing information
needs to be approximated. The derivation of the WLU in the framework in
previous work was complex, and was carried out using ad-hoc (though fa-
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miliar) simple approximation functions (e.g., using the mean, minmax, etc.).
Instead, because we compute the WLU of the direct work rather than over-
head, derivation of the individual reward was easier to approximate, and
indeed more successful as we show empirically.

Stochastic Rewards due to Environment Given that the basis for re-
wards is the measurement of work time (direct work) and collision-handling
time (overhead) after each collision, a persistent challenge is that the rewards
can be stochastic in nature. Even when only a single or handful robots are
present, the time spent working vs colliding can vary greatly from one colli-
sion to the next, simply because of the location of the robots and the shape
of the work area: Two robots meeting in corridor with collide with greater
frequency than in an open space.

From the perspective of the single robot, the reward on using the same
action can vary greatly, making the process slow to converge, at a minimum.
Previous work has not addressed this explicitly.

To address the stochastic nature of the rewards, we build on the Multi-
Arm Bandit framework [57] which inherently addresses the exact problem of
learning which action to take when there are stochastic rewards. We treat
each interaction method (collision-handling method) a an arm in the multi-
arm bandit. The robot is to select a method (pull an arm) that will yield
the best expected accumulated result (accumulated work time).

Actions Take Time As rewards in our model are a function of time (e.g.,
time to move away from a collision), the inconsistency of the world also
a�ects the time spent on each action. The standard reinforcement learn-
ing algorithms, which operate in discrete steps (each action takes the same
amount of time) do not address this issue. As a result, they introduce biases
into the learned results, which prohibit or hurt the results in practice.

Previous work [20] has addressed this ad-hoc, by modifying the Q-learning
update function, such that longer cycles are given more weight than shorter
ones, for the same chosen action. This was done by manipulating both the
learning rate and the introduction of a interval duration hyper-parameter.
Introduced as continuous-time Q-learning, they described the intuition be-
hind it, but did not provide any guarantees for it. Moreover, because they
attempted to learn the overhead associated with each con�ict, the solution
is not straightforward.
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Our selection of the learning algorithm within the multi-arm bandit work
likewise needs a change, as MAB formulations similarly assume each arm-
pull takes the same amount of time. But in our case, a pull now also has a
duration, so in choosing an arm, the agent should not select the arm that
maximizes its average reward based on how many times it pulls this arm,
but rather its average reward based on how long it plays this arm. We
therefore modi�ed the UCB1 algorithm [7] to average by time, instead of the
number of times the arm was pulled. The change was quite trivial, as the
focus on total direct work lent itself mathematically to this change.

Non Stationarity of Reward Distribution due to Parallel Learn-
ing A major challenge in multi-agent learning in general is the fact that
the agents are learning in parallel [41, 31]. Consequently, the reward distri-
bution changes through time and is non-stationary. UCB1 assumes a �xed
(stationary) distribution over the rewards, so its theoretical guarantees do
not apply.

The use of the WLU reward does not explicitly address this issue. We
therefore attempted to work with algorithms speci�cally designed to address
parallel learning. In particular, we experimented with discounted USB (D-
UCB) [24], which uses a discount factor over the rewards to adapt distribution
changes. Surprisingly, we empirically show that its use lead to no improve-
ment in the learning compared to the WLU reward use. These results will
be shown in later chapters.

Multiple States In Douchan, Wolf, and Kaminka's model [20], only one
type of con�ict was considered, e.g., a single type of collision. Thus the
swarm model is that of a repeated game, where each game is the same type of
interaction. However, this is a restrictive assumption in practice. A collision
from behind is not the same (and should not be resolved in the same manner)
as a collision from the front.

We therefore generalize the previous work to model the swarm as engaging
in a Markov Game (stochastic game), where multiple types of collisions or
interactions are allowed. Like previous work, we are interested in the total
sum of all robots direct work, and seek to minimize their overhead spent
on collisions. Unlike previous work, however, we allow for multiple types
of interactions to be managed, something which could not be achieved with
previous work.
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Some collisions may be resolved di�erently, and more easily, than others.
Thus a single strategy (for one type of game), would not be optimal for all
types. We theoretically consider the case in which all types are distributed
uniformly, i.e., agents cannot use strategies that focus on getting to eas-
ier con�icts. Later, we also discuss the di�culties to the multi-arm bandit
algorithms when the distribution is not uniform.
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Chapter 3

A Descriptive Stochastic Games
Model of Swarm Tasks

This chapter presents a stochastic games model of swarm tasks. The model
is descriptive, in that it shows how swarms may be described and analyzed
as stochastic games, but this in itself does not proscribe individual agent
decisions in practice. However, it does argue that successful swarms may be
viewed as reaching a Nash equilibrium which also maximizes social welfare
(the sum of all agents utilities).

In Section 3.1, we provide formal de�nitions and notations, and explain
the fully-cooperative model, which is the basis for our work. In Section 3.2 we
explain how the shared utility of the fully-cooperative game, in a distributed
swarm, is the sum of individual swarm members' rewards. In Section 3.3,
we transform this basic model to using time as a proxy for utility, replacing
the domain-dependent utility measure with a measurement of time, which is
both task-independent, and accessible to robots in swarms. Section 3.4 shows
the model makes assumptions that prohibit its direct use in practice to guide
individual robot decisions. These will be discussed in the next chapter.

3.1 Fully-Cooperative Swarm Games

We consider swarms of n homogeneous robots (each with the same capa-
bilities and decision-making algorithms), which act only according to local
sensing. The swarm carries out a cooperative task: The goal is to maximize
the total utility of all swarm members. The robots are assumed to be co-
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operative: they do not seek to minimize their work, but rather to maximize
their contribution.

3.1.1 Cooperative Swarms

The need for coordination in swarms comes arises in two distinct situations.
First, robots may inadvertently interfere with each other, i.e., they are in
con�ict [32]. In robots, this happens for example when their trajectories
cross and they (are about to) collide. A second for of coordination may be
needed materially for the task, when robots cannot perform a component
of the task by independently of each other, i.e., more than a single robot is
needed to carry out an atomic component of a task (e.g., lifting a long table
from both ends requires two robots, but lifting a chair may be carried out by
a single robot).

We focus on swarm tasks which involve only the �rst type of coordination
(Assumption 1). For instance, in foraging (see Chapter 2), each robot collects
pucks on its own, and the swarm bene�ts from a larger number of total
collected pucks. Coordination in foraging is needed only to resolve collisions
between robots. Had the de�nition of foraging require pucks to be carried
in pairs to the base, this would have been an example of the second type of
coordination.

Assumption 1. The swarm task requires coordination only to prevent or
reduce con�icts between individuals.

We follow up on previous work [32, 20] in looking at each swarm member's
activities as a sequence of transitioning between two states, back and forth:
a Task state (also called program mode, and denoted P ) where the swarm
members are carrying out the actual task of the swarm, and a coordination
state (also called avoidance state, denoted A), where members are in con-
�ict, and must spend resources avoiding collisions. For each swarm member,
each con�ict starts a cycle of coordination and task that ends at the next
con�ict, and the member's activity over time is a sequence of such con�icts
(Figure 3.1).

We assume for now that all robots participate in every collision (Assump-
tion 2). This allows us to model the swarm as a process in which all robots
participating synchronously. As the con�icts are mutual, their total duration
is also mutual. However, the division of the duration into the di�erent states
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Figure 3.1: A visual illustration of a swarm member's activity timeline. Du-
ration of the Task and Coordination states are implicitly shown by the length
of the respective boxes along the horizontal axis.

of task execution and coordination is not necessarily identical (Figure 3.2).
Later, we will relax this assumption, as it does not hold in practice.

Assumption 2. All con�icts are mutual to all agents.

Figure 3.2: A visual illustration of the di�erent divisions of the mutual cycle
duration between states according to the di�erent agents.

The swarm cycles from one con�ict to the next. With every con�ict, the
robots choose actions to resolve the collision, so they can go back to carrying
out the task. The actions are joint : All swarm members enter a collision
together, and all exit it together by selecting a joint action. The con�ict
duration as other outcomes of the con�ict resolution are determined by the
joint action that has been taken.

As robots act individually, the notion of a joint action is that of a com-
bination of the individual collision-avoidance actions of all agents. Each in-
dividual robot selects its own response to the collision, and the synchronous
combination of all these selections synthesizes the joint action that takes the
swarm out of the con�ict. Indeed, we assume that every possible joint action
can succeed (Assumption 3). This easily holds in practice, as an unsuccessful
joint action can be modeled as a joint action that leads to a zero-duration
task state, which then immediately transitions into a new con�ict.

Assumption 3. Every joint action can resolve a con�ict.
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3.1.2 A Fully Cooperative Game

In this section, we suggest a �rst model for swarm tasks. Under the assump-
tions above, we view the swarm as engaging in a stochastic game (also known
as a Markov game) [55]. Each speci�c con�ict cycle (collision resolution and
subsequent task activity) is a normal-form subgame, where robots are play-
ers, the coordination methods are the possible individual actions and the
payo�s are given by the utility gained during the task state associated with
the con�ict, and lost during the coordination state. Figure 3.3 illustrates this
view.

Figure 3.3: An illustration of a swarm task as a sequence of stage games

The swarm task is then viewed as a series of stages. Formally, it is a
stochastic game de�ned by a tuple ⟨N,S,A,D,R⟩, where:

N A �nite set of n := |N | players, each a swarm robot.
S The set of states, each representing a type of con�ict that

could take place during a stage. In other words, this is the set
of stage game types. We use the notation sk when discussing
the speci�c state of stage k.

A The set of joint collision-avoidance actions (combinations of
players' individual actions). See below for more details.

D D : S × A × S → [0, 1] is the transition probability function;
D(s, a, s′) is the probability of transition from state s to state
s′ after performing the joint action a.

R R : S × A→ IR is a function describes the swarm payo� from
performing the joint action a at state s.

The joint actions set A. The set of joint actions A is made from the
combination of all individual actions Ai, i.e., it is generally de�ned as A =
A1 × A2 × · · · × An. However, this notation hides salient details.
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First, in principle, the set of actions available to each robot may vary
between states, so formally we should have de�ned Ai : S → Mi, where Mi

is the set of all actions available to a player, and we should have written
Ai(s). For notational brevity, we ignore the state when the exposition does
not require it, and simply write Ai.

Second, as the robots are assumed to be homogeneous in their capabilities,
∀i,Mi = M , where M is the (same) set of individual collision-avoidance
methods available to each player.

The payo� function R. Generally, in stochastic games, there are n in-
dividual reward functions (Ri)∀i∈n, each function Ri returns the player's
individual payo�, having been in state s, where the joint action a was taken
(the player's individual action in the state is a component in a).

The de�nition above uses a more abstract version, where the players'
payo�s are joint; all swarm members share the payo� R. This type of game
is called a Fully Cooperative Markov Game in [14, 41].

The fully cooperative theoretical payo� does not hold in the reality of
independent robots in swarms. The locality and independence restrictions
faced by robots raise the key challenges that are addressed in this thesis:
immeasurability of the payo� (the units on which the payo� is given are
irrelevant to the robots), and the globality of the payo� (the robots cannot
perceive the payo� of the joint action; at best they can only perceive some
local proxy of it). Thus later in this thesis we will transform the model into
a more realistic one, where the these challenges will be addressed explicitly.

3.1.3 Solving a Fully Cooperative Swarm Game

Each stage (t ≥ 1) of a game can be represented as a pair consisting of the
state at this stage (st ∈ S) and the joint action played in response (at ∈ A).
A sequence of such pairs is called a possible play if there exists a pair for
every t ≥ 1, and the probability of transitioning from any state st to state
st+1 in the sequence is positive (De�nition 3.1.1). The set of all possible plays
of G is annotated Gp.

De�nition 3.1.1. A possible play g of a game G is a sequence
of pairs ⟨(s1, a1), (s2, a2), . . . , (st, at), . . . , (sT , aT )⟩, where ∀T ≥ t ≥
1: D(st, at, st+1) > 0. Note T may be in�nite.
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Let σ be an assignment of actions for each player, for all stages. This set
of assignments determines the action each player should take at any stage
t ≤ T . σ is called a strategy pro�le [43]. A strategy pro�le potentially
takes the state-action history up to stage t into account in determining the
assignment of the joint-action at.

A special case of a strategy pro�le is one that speci�es actions
that depend only on the current state st, and ignores the history
⟨(s1, a1), (s2, a2), . . . , (st−1, at−1)⟩. Such a strategy pro�le is called station-
ary [58]. This is the case where ∀s ∈ S, t, ∃a ∈ A such that if s = st, (st, at) ∈
g, then at = a, i.e., the action is selected based only on the state in the stage,
regardless of previous states and actions in previous stages. We then denote
strategy pro�le simply as function of the current state, i.e., ∀t, σ(st) = at.

A solution in a fully cooperative swarm game. A solution to the fully
cooperative swarm game is a strategy pro�le σ, with which one can induce
from a possible play g by applying σ repeatedly. Starting with a given state
s1, applying σ, one generates the joint state-action pair (s1, σ(s1)), which
leads to s2 and so on. For the remainder of this thesis we will restrict ourselves
to stationary pro�les alone (see Chapter 6 for a discussion).

Where T is the number of stages in the possible play, the accumulating
joint payo� of the swarm, when using σ is then given by1

UT (σ) =
T∑
t=1

R(st, at) ·D(st−1, at−1, st) (3.1)

=
T∑
t=1

R(st, σ(st)) ·D(st−1, at−1, st) (3.2)

For now, we will make the assumption that each state is independent of
others, i.e., the probability of transitioning from one state s ∈ S to a di�erent
state s′ ∈ S is uniformly distributed for all joint actions a ∈ A. For swarm
tasks, this means that the resolution of one collision can lead to any other
collision later on, with equal probability (Assumption 4).

Assumption 4. ∀s, s′ ∈ S,∀a ∈ A : D(s, a, s′) = 1
|S| .

1For t = 1, we de�ne D(st−1, at−1, st) := 1
|S| , i.e., the start state s1 is arbitrarily set

with uniform probability.
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As a result, there is a constant factor 1
|S| which is always present when we

discuss the rewards and their summation. We will omit it from the formalities
for brevity. Chapter 6 will revisit this assumption and notation.

The swarm does not know T . This is equivalent, from a game theory
perspective, to an in�nite horizon game, where T tends towards in�nity.
Naively then, U grows to in�nity and so the import of selecting a is essentially
meaningless as long as the reward (described by R) is positive. We therefore
follow a standard alternative objective, where the swarm seeks to maximize
the limit of means of UT (De�nition 3.1.2):

De�nition 3.1.2. The utility of a fully cooperative swarm game is given by

U(σ) := lim
T→∞

1

T
UT (σ)

:= lim
T→∞

1

T

T∑
t=1

R(st, σ(st))

An optimal solution is a strategy pro�le σ∗ that maximizes this utility
(De�nition 3.1.3). We use U∗ to denote the expected utility of σ∗.

De�nition 3.1.3. An optimal swarm strategy pro�le σ∗ is one that generates
the maximal fully cooperative utility limit of means:

σ∗ := argmax
σ

U(σ)

A second important quality is stability, i.e., that once players have a
strategy pro�le, they are incentivized to maintain their individual roles. In
game theory terms, a solution that has this quality is said to be in Nash
Equilibrium (NE) [42]. The main quality of NE is that agents do not bene�t
from deviations from the solution's pro�le, which ensures that the system
remains stable.

Theorem 1 shows that a strategy pro�le that maximizes the long-term
swarm payo� reward is also in NE of a full cooperative Markov game.

Theorem 1. In fully cooperative Markov games, the strategy pro�le that
maximizes the swarm payo� is also a NE of the game.
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Proof. Let σ = (σ1, σ2, . . . σn) be a strategy pro�le which maximizes swarm
payo� U , where σx is the strategy of agent x. Let us denote this maximum
utility by α := max(U). Assume for contradiction that σ is not a Nash equi-
librium (NE). This means that there is a player i that bene�ts from deviating.
i.e., it has an alternative strategy as σ′

i which has a higher payo� β > α. Since
the payo� β is identical to all agents in swarm games as de�ned above, then
this means the strategy pro�le (σ1, σ2, . . . σi−1, σ

′
i, σi+1, . . . σn) yields higher

long-term swarm payo� than σ. This contradicts the assumption that σ is
the strategy pro�le that maximizes the payo�.

Together, stability and joint payo� optimality are excellent qualities for
a robot swarm. Stability guarantees on a swarm means that robots will
continue their role in the swarm and will not misbehave. And joint reward
optimality means the robot swarm will achieve the optimal result. A maximal
payo� reward will be stable (see Thm. 1).

3.2 Additive-Utility Swarm Games

The swarm game model introduced above assumes the existence of a function
R : S ×A→ IR that describes the joint payo� at some stage (described by
the state at this stage and the joint action taken). It also assumes all agents
are aware of the joint payo�. Let us maintain this latter assumption for now,
but discuss the individual contributions of the swarm members to the joint
payo�.

We modify the de�nition of the swarm game. We replace the joint payo�
function R : S × A → IR, with a set of individual payo� functions R =
{R1, . . . , Rn} where Ri : S × A → IR is the individual payo� of player i,
resulting from the selection of the joint action a in state s.

We then de�ne the stage game payo� R to be the social welfare utility,
the sum of individual player payo�s. R(s, a) =

∑
i∈N Ri(s, a).

Foraging is a natural match to the revised model. The swarm seeks to
maximize the sum of total number of pucks collected by the robots. Each
robot should therefore try to maximize the number of pucks that were col-
lected overall by all individuals, rather than individually.

The de�nition of the swarm utility and optimal strategy pro�le must now
change appropriately:
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UT (σ) =
T∑
t=1

R(st, σ(st))

:=
T∑
t=1

∑
i∈N

Ri(s
t, σ(st))

(3.3)

U(σ) = lim
T→∞

1

T
UT (σ)

= lim
T→∞

1

T

T∑
t=1

∑
i∈N

Ri(s
t, σ(st))

(3.4)

and

σ∗ := argmax
σ

lim
T→∞

1

T

T∑
t=1

∑
i∈N

Ri(s
t, σ(st)) (3.5)

This change may seem innocuous but its closeness to reality undermines
our ability to guarantee that a solution to the game would be stable (i.e.,
would be a Nash equilibrium). While the swarm seeks to maximize the joint
reward R at any stage t, its members are only aware of their own individual
payo�s Ri. Trivially, it would seem that selecting an action that maximizes
Ri would also maximize R. But this is not the case, and Theorem 1 no longer
holds.

We use the following example to illustrate. Let N be the set of agents,
which are the members of a football team. Each agent has its personal
contribution, which is the number of goals it scored. The team (swarm)
pro�t function (R) describes the sum of individual contributions, which is
the number of goals scored by all members of the team (R =

∑
i∈N Ri).

Figure 3.4 illustrates a situation in which maximization of the team score
is di�erent from maximization of the individual contribution. Players p1, p2
are positioned such that p1 holds the ball and needs to decide whether to try
to score ('score' action) or to pass the ball to player p2 ('pass' action). If it
decides to score, it succeeds with a probability of 0.1 and both its personal
contribution (which is the number of goals it scores) and the team pro�t
increase, with the expected increase being 0.1 goals. Alternatively, if it de-
cides to pass, player p2 gets the ball and scores (with probability 1.0). In
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this scenario, the personal contribution of player p1 does not increase but the
team pro�t increases by 1 with certainty.

Figure 3.4: A situation in which the player has to choose between its own
individual pro�t and the pro�t of the team.

If player p1 knows the expected team rewards, it would undoubtedly
choose the action 'pass', despite it having an individual reward of 0. How-
ever, as it only knows its own rewards, and thus will seek to maximize its
own individual reward, taking the action 'score'.

This inherent di�culty in assessing the e�ects of an action on the welfare
of the swarm, while having access (at best) only to an individual's own con-
tribution (reward) is at the heart of the challenge faced by swarm members'
action selection mechanism. It stems from ignorance: the individual swarm
member does not know the expected individual rewards of other members,
and thus cannot compute the expected sum of these rewards.

In swarm robots, ignorance of the individual swarm members is a re-
sult of several factors. Perhaps �rst among them is the computational di�-
culty, sometimes inability, of a robot to observe�and to recognize from the
observations�the action and reward of another. For example in foraging,
identifying that another robot is holding a puck may be computationally
expensive (requiring recognition of a puck in an image), or even impossible
(e.g., when the robot holding the puck is turned away such that its gripper
is occluded). In the general case, distance to pucks is unavailable, and thus
even simple reward estimates (those closest to picking up a puck should be
given the right-of-way in a collision) are not feasible.

The reliance on abstract utilities whose measurement is impractical also
limits the model in other ways. Even in foraging, where supposedly rewards
are easily measured by pucks collected, it is di�culty to assess the value
of collision avoidance action when no pucks are around, and the agents are
unable to count how many pucks have been collected. Moving away from
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foraging to other swarm tasks, the utility measure itself changes from one
swarm task to another; there is no standard scale by which utility can be
measured.

In Section 3.3 below, we take an important step towards removing one
element in the ignorance of the agents with respect to their utility and those
of others. We show that the swarm utility is improved by maximizing the
time spent on the task, where time is of course a concrete, task-independent
measure, which can be measured by all individuals in the swarm, at all times.

3.3 Using Time to Measure Utility

As discussed, the swarm seeks to maximize the long-term mean swarm utility
de�ned above (Eq.3.4), but, under conditions where each member only knows
its own reward Ri, it cannot determine the optimal response. Moreover, in
reality, even this individual reward may be hidden from the robot itself, thus
the social welfare game model is not directly applicable.

The �rst step we take to address this challenge of ignorance is by trans-
forming the utility measure itself into a form directly measurable by every
robot. This gives the robot a concrete measurable proxy to the utility, which
they apply to evaluate their actions.

Similarly to previous investigations ([51, 32, 20]), we focus on time as a
proxy to the utility gained by swarm members. In particular we consider
the relation between the time spent by the swarm members on the task, and
the utility resulting from it. We will prove that maximization of the �rst
is equivalent to maximization of the second. And since the measurement of
time can be carried out individually, without even knowing what the task is,
the swarm robots can focus on increasing the time spent on the task, rather
than maximizing some abstract notion of utility.

We remind the reader of two earlier points we established in earlier sec-
tions. First, that the swarm works in continuous time (Section 3.1.1): its
members switch repeatedly between two modes of operation: a program
mode, in which members carry out their individual tasks, and collision mode,
in which members respond to collisions. Second, that the swarm utility U
is given as the limit of means of the sum of individual payo�s (Section 3.2,
Eq. 3.4). We will now combine these.
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3.3.1 Individual Program Mode Duration as a Proxy to
Individual Payo�

As a �rst step, we assume that each individual payo� (Ri) increase with time
the agent is in working on its task (i.e., it is in program mode). Where the
duration of the robot being in program mode is determined (as the reward)
by a state and a joint action and is described by a function Pi : S ×A→ IR.
This assumption is reasonable and based on two observations:

� First, robots are built to carry out their task during program mode,
so it is reasonable to assume that whatever work they carry out, it is
productive.

� Second, the robots coordinate when they are (in danger of) colliding,
and it is therefore reasonable to expect that for the duration Ai of their
resolving a collision (i.e., when they are in avoidance mode), they are
not productive.

For simplicity, we assume that for any stage t, the individual payo� (Ri)
increase proportionally only with the time spent on the task (Pi), i.e., Ri ∝
Pi (Assumption 5). Later, section 5.4 illustrates how this assumption plays
a crucial role in our model, and how, when it fails, the guarantees are lost.

Assumption 5. There exists β ∈ IR
+ such that Ri(s

t, at) = βPi(s
t, at), for

all i ∈ N, st ∈ S, at ∈ A

3.3.2 Total Direct Work of the Swarm

Given the relationship assumed above between the individual payo� and the
duration of the program mode run-time, we can now re-de�ne the global
utility using the total accumulated duration of the program run-time of the
individual robots.

We use the term Direct Work to refer to the total accumulated program
time of the swarm members throughout the entire game, however many stages
it takes (De�nition 3.3.1). Direct work stands in contrast to Overhead, or
Indirect Work (De�nition 3.3.2), a term often used in business to denote
expenses or activities which support and enable the direct work of a system.
In the case of the swarm, the overhead of the system is the total time spent
in coordination.
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De�nition 3.3.1. Direct Work
The direct work of a strategy pro�le σ is

P T (σ) =
T∑
t=1

∑
i∈N

Pi(s
t, σ(st))

De�nition 3.3.2. Overhead
The overhead of a strategy pro�le σ is

AT (σ) =
T∑
t=1

∑
i∈N

Ai(s
t, σ(st))

We now move to demonstrate that the swarm utility of a strategy pro�le σ
is directly tied to the direct work resulting from the same strategy (Lemma 1).
Then, we show that maximizing the direct work also necessarily maximizes
the utility (Theorem 2).

Lemma 1. For every possible strategy σ, UT (σ) ∝ P T (σ).

Proof.

U(σ) =
T∑
t=1

∑
i∈N

Ri(s
t, σ(st)) [Eq. 3.1]

=
T∑
t=1

∑
i∈N

βPi(s
t, σ(st)) [Assum. 5]

= β
T∑
t=1

∑
i∈N

Pi(s
t, σ(st))

= βP T [Def. 3.3.1]

As β ∈ IR+, UT (σ) ∝ P T (σ).

Based on Lemma 1 we can now show further that any strategy pro�le σ∗

which maximizes P T as T increases also maximizes UT , i.e., it is an optimal
strategy as de�ned in Def. 3.5.

Theorem 2. Let σ∗ be a strategy that maximizes P T for any T ≥ 1. Then
σ∗ is an optimal strategy.
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Proof. We are given σ∗ maximizes P T , for T ≥ 1, i.e.,

∀T, σ∗ = argmax
σ

P T (σ)

Lemma 1 established UT (σ) ∝ P T (σ) for any σ, and therefore there exists
a constant β ∈ IR+ such that UT (σ) = βP T (σ). Thus, if σ∗ maximizes P T ,
then surely

∀T, σ∗ = argmax
σ

βP T (σ) = argmax
σ

UT (σ)

We get that the maximal value of UT is UT (σ∗), i.e.,

∀T,∀σ, UT (σ∗) ≥ UT (σ)

and as T is a positive integer, the following holds:

∀T,∀σ, U
T (σ∗)

T
≥ UT (σ)

T

and therefore,

∀σ, lim
T→∞

UT (σ∗)

T
≥ lim

T→∞

UT (σ)

T

∀σ, lim
T→∞

1

T
UT (σ∗) ≥ lim

T→∞

1

T
UT (σ)

Therefore, σ∗ is an optimal strategy.

We showed that maximization of the long-term swarm utility can be
achieved by maximization of the direct work of the swarm, i.e., the total
time spent by the swarm members in program mode. Taking only time into
account, this function is independent of the task.

3.3.3 Revisiting the Unknown Horizon when Using
Time

One of the constraints on any model of the swarm is that the duration of its
total operation is unknown. In game-theoretic terms, this means that even
if the number of stages in the game, T , is �nite, it is unknown to the agents.
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We have previously chosen to model this as the limit of means described in
De�nition 3.4, where the accumulating utility of the swarm is averaged over
T , as T →∞.

This de�nition of the limit of means is satisfactory under the assumption
that the duration of every stage is exactly the same, i.e, the swarm advances
from one con�ict (one stage game) to another in discrete, �xed-duration,
steps. Alas, this is not the case in robotics.

In robot swarms, the horizon for the system is measured in total operation
time, not in the number of collisions (which is the number of games taken,
i.e., the number of collisions). When we deploy a swarm of robots, we are
limited by their battery life, not by the number of collisions they face.

An example can illustrate intuitively. Suppose we have two joint avoid-
ance actions available to the swarm members: action a resolves a collision in
a minute; action b resolves a collision in 5 minutes. Suppose a �rst swarm,
denoted Qa, begins with a collision (everyone close together), and disperses
to forage. Including the initial collision, it collides three times: each time it
resolves the collision using action a, and continues to forage for 9 minutes
after each collision. Thus the �rst stage has a

∑
i∈N Pi() of 9 × n minutes

(n = |N |), and an avoidance taking one minute, the second stage similarly,
etc. Overall, within 30 minutes, the n robots have worked for 3 × 9 × n
minutes. Now consider a second swarm Qb, that uses action b. Assuming the
post-collision foraging time is still 9 minutes, we see that within 30 minutes,
only two collisions could have taken place, each one lasting for 5+9 = 14min-
utes, for a total of 28 minutes. Thus within those 30 minutes, only 2× 9×n
were spent foraging.

Fig. 3.5 illustrates how, eventually, swarm Qa worked more time than
Qb even though both actions a and b have the same program time in each
collision (and therefore, in average). Of course, post-collision foraging time
may also vary, which reveals the importance of the ratio between program
time and overall time.

The point is that averaging the foraging time on the basis of the number
of collisions makes little sense when we seek to determine the productivity of
a swarm. We should be averaging on the basis of the time spent in operation.
We therefore revisit the formulation of the unknown horizon in the de�nition
of the swarm utility. Rather than looking at the limit of means only the
basis of the number of stages T , we also consider the time spent by the
swarm in each stage, which is also referred to as the length of the stage, and
described by L : S × A → IR. As with the other functions of this type, its
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Figure 3.5: An illustration of the importance of collision time duration.A
comparison of two swarms that di�er in the actions they use, both actions
achieve the same program time in each collision, but result in di�erent long-
term utilities. .

sum throughout all stages is denoted by LT (σ) =
∑T

t=1 L(s
t, σ(st)).

Based on Lemma 1 and Thm 2, the original de�nition of the swarm
utility (De�nition 3.1.2) can be rewritten to use the direct work and LT

(De�nition 3.3.3).

De�nition 3.3.3. Time-based Utility

U(σ) := lim
T→∞

1

LT (σ)
UT (σ)

We observe that LT is simply the amount of time spent by the swarm in
all T stages, collectively (i.e., the duration of operation of the swarm in the
environment in which it is deployed). This can be computed directly.

The total time spent by the individual robots, is the sum of the direct work
P T (Def. 3.3.1) and the overhead AT (Def. 3.3.2). These measure the total
time of n robots spent in program mode, and avoidance mode, respectively,
over all T stages of the game. Given n robots, who have been working for
M minutes, the sum P T + AT is n×M . Diving this sum by the number of
robots n will give the time spent by the swarm as a collective, i.e.,

LT (σ) =
P T (σ) + AT (σ)

n
(3.6)

Combining Def. 3.3.3 and 3.6 we can now rewrite the swarm utility using
only time as the basis for the limit of means.
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U(σ) = lim
T→∞

1

LT (σ)
UT (σ) [Def. 3.3.3]

= lim
T→∞

β

LT (σ)
P T (σ) [Lemma 1]

= β lim
T→∞

P T (σ)

LT (σ)
[β is constant]

∝ lim
T→∞

P T (σ)

LT (σ)
[β > 0]

3.4 Summary

The steps we have taken in this chapter show that a swarm of cooperative
robots may coordinate to maximize the swarm utility, without directly mea-
suring the utility itself. The swarm utility function is the sum of individual
payo�s, which individuals cannot access. We show that instead, by relying
on the assumption that utility increases with the time spent by robot swarm
members directly working on the task, it is possible to indirectly improve the
swarm utility, by increasing the total amount of time spent in direct work.

From theorem 1, we have learned that maximum payo� is also stable
when applied to the situation, and from theorem 2, we have seen that the
maximum payo� can be achieved only by considering time measurements.
The combination of these two results allows us to conclude that the robots can
use a time-based task-independent function to achieve a stable and optimal
solution to any given task.

However, while the transition from abstract and task-dependent utility to
time gives us hope that robots may be able to measure the swarm progress,
the resulting function which we seek to maximize, given in De�nition 3.3.3,
cannot be directly computed in practice by robot swarm members. There
are several reasons for this (which we address in the following chapter) but
they all stem from the same underlying cause: the de�nition of the utility is
given in swarm-centric terms, rather than individual-centric terms, i.e., the
swarm utility is given in terms inaccessible to the swarm members.
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Chapter 4

Swarming Bandits: A Prescriptive
Model of Swarm Tasks

The previous chapter showed that an optimal strategy pro�le σ∗ would max-
imize the expression (denoted hereafter by Ψ)

Ψ(σ) = lim
T→∞

P T (σ)

LT (σ)

This is a descriptive expression, from the point of view of the robots: it
tells them what the swarm is seeking to maximize, but in terms they cannot
control in practice. We now seek to transform this into a prescriptive model,
that can be used in practice.

We begin by re-writing Ψ(σ) , so as to facilitate an robot-centric per-
spective. Expanding the utility expression above in greater detail (De�ni-
tion 3.3.3), we see

Ψ(σ) = lim
T→∞

P T (σ)

LT (σ)
(4.1)

= lim
T→∞

∑T
t=1

∑
i∈N Pi(s

t, σ(st))

LT (σ)
[Def. 3.3.1 in numerator] (4.2)

The denominator LT is the duration of time in which the swarm was ac-
tive, and it is the same for all robots, assuming all robots began deployment
together. It can therefore be measured independently by each robot.

Maximizing Ψ by �nding an optimal strategy pro�le σ∗ faces two gaping
challenges, which we address in the next sections:
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� Given that any robot x ∈ N does not know the transition probability
function D, nor the reward function Ri (nor Pi nor Ai), how is it
to choose its own action? We discuss online learning as a solution
approach in Section 4.1.

� How does any robot x ∈ N form its policy such that the swarm util-
ity resulting from the joint action is maximized? We discuss a so-
lution based on approximating each robot's marginal contribution in
Section 4.2.

4.1 Learning a Strategy

The robot members of the swarm do not know what will be the direct work
given a state and joint action, i.e., they do not know the function P . Thus
seemingly cannot compute an optimal strategy maximizing Ψ. We propose
that the robots learn these values using reinforcement learning.

A major challenge is that rewards are stochastic due to two reasons. First,
the environment is stochastic in nature, this issue is described in greater detail
in section 4.3.2. Second, the robots cannot communicate. They can only
partially in�uence the joint action (by selecting an individual action that
is part of the joint action) and are only partially aware of the joint action
(they know their individual action). Consequently, robots can only learn
according to their individual actions, leading to another type of stochasticity;
robots may receive di�erent rewards for the same individual action according
to the choices made by others.

The lack of communication also prevents robot i from knowing the others'
program times, meaning that it is able to measure Pi, but not Pj for j ̸= i.
We will ignore this issue for the remainder of this section, and return to it
in section 4.2.

Let us furthermore assume for now that there is only one state, i.e., S is
a singleton (with one single state, |S| = 1). The assumption will be relaxed
later in this section.

We pose this as a multi-arm bandit (MAB) problem (also known as k −
armbandit problem; see [57] for a recent introduction), which is designed
to take into account stochastic rewards. Each robot is facing a choice of
selecting between k := |Ai| actions. Each time it makes a selection, it pays
a price. The learning process attempts to learn as quickly as possible (i.e.,

33



with a minimal number of trials) the action that will generate the largest
expected reward. In other words, the robot is trying to determine its own
optimal individual action based on the rewards it observes after each one.
To clarify, if we denote the single state by s and the set of stages in which
player i played the individual action ai as Ti(ai), then player i is looking for
a∗i such that:

a∗i := argmax
ai

lim
T→∞

∑
t∈Ti(ai)

P (s, at)∑
t∈Ti(ai)

L(s, at)
(4.3)

There are standard solutions to the MAB problem. Perhaps the most
familiar of these is the Upper Con�dence Bound (UCB1) algorithm [7]. The
standard UCB1 algorithm ignores the duration of an action, just as in the
standard de�nition of Markov Games, which ignores the duration of a stage.
We therefore make a similar adjustment, as we have done adapting the for-
mulation of the time-based utility (Def. 3.3.3 in Section 3.3).

Algorithm 1 below is a modi�ed version of the UCB1 algorithm, adapted
for taking the duration of each stage into account, to optimize a∗i (Def. 4.3).
The algorithm allows each robot to independently learn the value of each
individual action ai, denoted Q(ai). For brevity, in the algorithm description,
the notation a refers to the individual action.

It should be noted that since UCB1 algorithm assumes a �xed (stationary)
reward distribution, the second type of stochasticity that arises as a result of
parallel learning may break its theoretical guarantees. The issue is discussed
in more detail in section 5.3.2.

Multiple States and Contextual Bandits. We now turn to the more
general case, where there are multiple states in the swarm game, i.e., |S| > 1.
For example, in foraging, a collision from behind may be di�erent from a
collision up-front, both in the sense that di�erent collision-avoidance actions
may be available, and their rewards may greatly vary. Speeding up, for
instance, may be a collision-avoidance method appropriate for near-collisions
from behind, but inappropriate for head-on collisions.

Fortunately, the extension of multi-arm bandit problems for multiple
states is quite familiar, and known as contextual bandits [36]. In contex-
tual bandits, a separate k − arm bandit exists for each separate state. The
extension to Algorithm 1 is straightforward, and involves running a separate
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Algorithm 1: Continuous-Time UCB Algorithm for Multi-Arm
Bandits.
Initialize: ∀a,Q(a)← 0 [Estimated value of action a.]
Initialize: ∀a, count(a)← 0 [# of times a selected.]
Initialize: ∀a,

∑
P (a)← 0 [Accumulated reward for action a.]

Initialize: ∀a,
∑

L(a)← 0 [Accumulated stage duration when using
a.]

1 while true do
2 Wait for a collision
3 Select action

a := argmax
a

[
Q(a) +

√
2 ln(

∑
a count(a))

count(a)

]
4 Execute a, observe A,P [Avoidance duration, Program duration.]
5 Increase count(a)← count(a) + 1
6 Increase

∑
L(a)←

∑
L(a) + A+ P

7 Increase
∑

P (a)←
∑

P (a) + P

8 Update Q(a) =
∑

P (a)∑
L(a)
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update and action selection, with separate accumulators and counters, for
each state. For brevity, we do not list the changes here.

Note that in contextual bandits, there is an assumption that contexts
(states) are independent of each other and of the selected actions. The prob-
ability of encountering a state sx ∈ S is not related to the action taken in the
previous stage, or any before it. This �ts our assumption of uniform state
transition probability (Assumption 4 in Chapter 3).
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4.2 Lack of Knowledge of Others' Program

Time

We have previously used Ψ to denote the swarm mean direct work

Ψ(σ) = lim
T→∞

∑T
t=1

∑
i∈N Pi(s

t, σ(st))∑T
t=1 L(s

t, σ(st))

. From the point of view of any robot x, this can be rewritten as:

lim
T→∞

1

LT (σ)

T∑
t=1

[
Px(s

t, σ(st)) +
∑

i ̸=x∈N

Pi(s
t, σ(st))

]
(4.4)

The term LT is directly measurable by the robot (it is its own total
deployment time), and of course the robot can also measure Px for any t, and
thus its own total time spent in program mode, within the total deployment
time LT . However, it cannot directly know how much time others have spent
in their own program mode for the same stage, and therefore cannot access∑

i ̸=x∈N P t
i .

Douchan et al. [20] encountered a similar challenge, and addressed it by
circumventing direct computation of the total utility, replacing it with an ap-
proximation of the marginal contribution of the agent to the swarm utility.
The marginal contribution can be described by the Wonderful Life Utility
(WLU) function [65] which compares the swarm utility with the robot's con-
tribution to the swarm utility if the robot is absent. (Def. 4.2.1).

De�nition 4.2.1. The marginal contribution (WLU) of robot x to the total
program time P in a given stage t is given by

∆xP (s, a) := Υx(s, a)−Υ−x(s, a) (4.5)

where Υi is the total program time (in the stage t), when robot i is present,
and analogously, Υ−i is the total program time when robot i is absent from
the stage.

Naively, one may therefore consider Υx to be the sum of swarm members'
program mode duration (as before), and Υ−x to be likewise, but with Px = 0,
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as robot x is absent, thus not in program mode. This leads to a trivial
conclusion:

∆xP (s, a) =

With x︷ ︸︸ ︷∑
i∈N

Pi(s, a)−

Without x︷ ︸︸ ︷
[0 +

∑
x ̸=i∈N

Pi(s, a)]

=
[
Px(s, a) +

∑
x ̸=i∈N

Pi(s, a)
]
−

∑
x ̸=i∈N

Pi(s, a)

= Px(s, a)

However, this is not a correct de�nition. If the robot is absent, it does not
take an action. And if it takes no action, then the rewards of the other robots
would not be identical. In other words, when robot x is hypothetically absent,
the time spent in program mode by any robot i ̸= x, cannot be assumed to
be the same as when x is present and participating in the game.

Before we dive into the question of how Υx,Υ−x should be de�ned, we
�rst prove that the use of the WLU leads to optimality.

The remainder of this section will use the notation a−i to describe the
joint action a when the action of robot i is replaced with a dummy action
which indicates its absence.

Theorem 3. For each player i and for each state s ∈ S, maximization of the
∆iU of some utility function U : S × A → IR is equivalent to maximization
of the utility function U .

Proof. A robot that is trying to maximize the utility function U must select
an optimal strategy given the strategies of the other agents. Consider its
order of preferences: for an agent i at a cretin state s ∈ S, if the others'
actions were given, which action should be preferred over another? The
analysis below indicates that the order of preferences is the same for U and
∆iU , and therefore, we can consider the second rather than the former.

Let a, b ∈ A be two joint actions that di�er only in the action of player i.
So, a−i = b−i.
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We get that for any state s ∈ S:

∆iU(s, a)−∆iU(s, b) = (4.6)

=
[
Υi(s, a)−Υ−i(s, a)

]
−
[
Υi(s, b)−Υ−i(s, b)

]
= (4.7)

=
[
Υi(s, a)−Υi(s, b)

]
−
[
Υ−i(s, a)−Υ−i(s, b)

]
= (4.8)

=
[
U(s, a)− U(s, b)

]
−
[
0
]
= (4.9)

= U(s, a)− U(s, b) (4.10)

As the di�erence is equal, we can conclude that the order of preferences
according to U and according to ∆iU is the same.

4.2.1 Approximate Υx (when robot x is present).

Robot x knows its own Px of course. But how is it to determine the duration
of other robots' program mode duration? For any agent i ̸= x, the robot x
uses an estimate P̃i instead of the actual value Pi which it does not know.
As robot x only aware to its own choice, it uses the mean value it observed
for its action in this state over the entire history as the estimator. Denote
the set of stages in which the state was s and player x played the individual
action ax as Ti(s, ax) so the estimator, denoted by P̃x, will take the following
form:

P̃x(s, a) =

∑
t∈Ti(s,ax)

Pi(s
t, at)

|Ti(s, ax)|
As the other robots are indistinguishable to robot x, all Pi are estimated in
the same way, by P̃x.

This results in estimating Υx, for any s ∈ S, a ∈ A, as follows:

Υ̃x(s, a) := Px(s, a) +
∑

x ̸=i∈N

P̃i(s, a) (4.11)

= Px(s, a) + (n− 1)P̃x(s, a) (4.12)

4.2.2 Approximate Υ−x (when robot x is hypothetically
not present).

Following the approach of Douchan, Wolf and Kaminka [20], we take it that
when a robot is absent, it is unable to perform the task and therefore is con-
sidered to be in coordination mode during the entire cycle (Assumption 6).
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Thus while indeed its Px = 0, its Ax is maximal, and equal to the entire du-
ration of the stage t, which we have previously denoted by L (Section 3.3.3).

Recall that a−i is used to describe the joint action a when robot i is
absent.

Assumption 6. When agent i is absent, it is considered to be in coordination
mode for the entire cycle.

∀i ∈ N,∀a ∈ A,∀s ∈ S :

Pi(s, a−i) = 0⇒ Ai(s, a−i) = L(s, a) (4.13)

This allows agent x to de�ne its own Px and Ax when it is absent. But
what about the other robots?

We assume that when the robot x is absent, the collision can be treated
as if it had never happened, and thus the other robots' program mode would
not be interrupted by a collision.

Figure 4.1 demonstrates this hypothetical timeline. The top �gure shows
the actual time line. The middle �gure considers the case where there was
no collision, as the robot in question was absent and no collision occurs, thus
the con�ict and its avoidance duration should not exist. The bottom �gure
shows a revised hypothetical timeline, whereby the other robots where not
interrupted by a collision, and thus enjoy two periods of program mode.

For each robot i ̸= x, the approximation of Pi when robot x is absent, is
de�ned to be (2× P̃x), where P̃x is the mean program time robot x observed
after applying its individual action in the state s, as discussed in Section 4.2.1.
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Figure 4.1: The hypothetical timeline when collision is treated as if it had
never happened.
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Taking these together, Υ−x is approximated as

Υ̃−x(s, a) :=
∑
i∈N

P̃i(s, a−x) (4.14)

= P̃x(s, a−x) +
∑

x ̸=i∈N

P̃i(s, a−x) (4.15)

= 0 +
∑

x ̸=i∈N

P̃i(s, a−x) [Assumption 6] (4.16)

= 0 +
∑

x ̸=i∈N

2P̃x(s, a) []Discussion above.] (4.17)

= 2
∑

x ̸=i∈N

P̃x(s, a) (4.18)

= 2(n− 1)P̃x(s, a) [Same estimate for all robots.]
(4.19)

4.2.3 Estimated WLU

Taking Υx from Section 4.2.1 and Υ−x from Section 4.2.2 together, we can
now de�ne robot x's estimate of its marginal contribution to the total pro-
gram time, given a state s and a joint action a, with the WLU as:

˜∆xP (s, a) := Υ̃x(s, a)− Υ̃−x(s, a) (4.20)

= Px(s, a) + (n− 1)P̃x(s, a)−Υ−x(s, a) [Eq. 4.12]
(4.21)

= Px(s, a) + (n− 1)P̃x(s, a)− 2(n− 1)P̃x(s, a) [Eq. 4.19]
(4.22)

= Px(s, a)− (n− 1)P̃x(s, a) (4.23)

Estimating the Size of the Swarm. The estimated ∆̃xP relies on know-
ing the size of the swarm n. Indeed, We have so far assumed that all robots
participate in every collision (Assumption 2), and thus the estimation uses
n (actually, n− 1) in its computation.

However, individual robots do not know the size of the swarm. We follow
Douchan, Wolf, and Kaminka [20] and use instead the number of a�ected
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robots participating in the collision, which we denote by n0. n0 is approx-
imated by counting the number of sensors that are blocked (i.e., detect a
robot in collision-distance). Figure 4.2 illustrates a number of scenarios and
the corresponding n0 approximations: (a) a collision of two robots, each rec-
ognizing that the collision is with one robot exactly; (b) a collision of two
robots, with one underestimating n0; (c) a collision of two robots, with one
overestimating n0; (d) a collision of three robots in which one is aware of all
others, one is partially aware, and one is not aware at all; (e) a collision of
three robots, with one overestimating n0; and (f) a collision of �ve robots,
with some of them underestimating and some overestimating.

Figure 4.2: Examples of n0 approximation as captured by the experimental
simulator.

Algorithm 2 below describes the single robot learning procedure, with all
modi�cations, as it was used during the experiment phase (in Chapter 5). As
this learning algorithm executes in each state separately, as appropriate for
assumption 4, we ignore the state notation in the description of the algorithm.
Also, as before, the notation a refers to the individual action.
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Algorithm 2: Continuous-Time UCB Algorithm for Swarm
Robotic Tasks.
Initialize: ∀a,Q(a)← 0 [Estimated value of action a.]
Initialize: ∀a, count(a)← 0 [# of times a selected.]
Initialize: ∀a,

∑
P (a)← 0[Accumulated program time for action a.]

Initialize: ∀a,
∑

L(a)← 0 [Accumulated stage duration when using
a.]

Initialize: ∀a,
∑

R(a)← 0 [Accumulated reward for action a.]
1 while true do
2 Wait for a collision
3 Observe n0 [Number Of robots a�ected.]
4 Select action

a := argmax
a

[
Q(a) +

√
2 ln(

∑
a count(a))

count(a)

]
5 Execute a, observe A,P [Avoidance duration, Program duration.]
6 Increase count(a)← count(a) + 1
7 Increase

∑
L(a)←

∑
L(a) + A+ P

8 Increase
∑

P (a)←
∑

P (a) + P

9 Set R = P − n0 ×
∑

P (a)
count(a)

10 Increase
∑

R(a)←
∑

R(a) +R

11 Update Q(a) =
∑

R(a)∑
L(a)
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4.3 This Model Generalizes Previous Work

We have referred throughout the exposition to earlier closely related work
by Kaminka, Erusalimchik and Kraus (KEK, [32]), and by Douchan, Wolf,
and Kaminka (DWK, [20]). Both of these are special cases of the model
presented above, with the exception that they may be utilizing di�erent
approximation methods (which we empirically evaluate in Chapter 5). We
discuss the generalization of these earlier models in this section.

4.3.1 The Assumption of a Stationary Strategy

Both KEK and DWK models begin their modeling process by considering an
extensive form game, in which every con�ict is a decision node. This allows
a description of the swarm's evolution with time, such that the history of
decisions in�uences current decisions. They then introduce an assumption
that history does not matter to the winning strategy, and thus every decision-
node should be considered a normal-form game independent of previous ones,
i.e., they �atten the extensive-form game into a series of repeated games.
Repeated games [9] are special case of stochastic games [55], where |S| = 1.

We make the same assumption here, in that we consider only stationary
strategy pro�les. However, while KEK and DWK assume there is only one
type of con�ict that could occur we do not make this assumption. We o�er
a model that allows multiple con�ict states, though we make the assumption
that the transition probability between states is uniformly distributed.

4.3.2 Stochastic Rewards

One of the key assumptions of both KEK and DWK models is that if the
same joint action is performed by the agents to resolve the con�ict, the conse-
quences will be the same, regardless of when it occurs. In practice, this does
not hold. There are multiple reasons for this, but the fact is that in practice,
the duration of program mode and the duration of collision avoidance can
vary quite a bit.

As an example, consider a foraging task perform by a swarm of two agents,
where when they collide one turns left for two seconds and the other turns
right for two seconds. Two situations are shown in �gure 4.3, illustrating
how the results of this joint action can be di�erent. On the above image,
both agents are heading for the nest while colliding, once they have �nished
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coordinating, they return to performing their task and must �rst �x their
direction. This causes them to collide again, which ends the cycle and rewards
both of them with 0.5 - for two seconds in avoid time and two seconds in
program time. In contrast, in the bellow image, the agents are searching for
food while colliding, so when they return to perform their task, they just
keep moving forward. The reward in this scenario will be higher than 0.5
because it will take them more time to collide again.

Figure 4.3: An example of how the world state can a�ect the consequence

DWK report on this [20] but do not address this in the formulation of the
model. Instead, they attempt to address the stochastic nature in practice
by an ad-hoc modi�cation to the learning algorithm to handle this variance,
while allowing convergence. A di�erent approach was taken by KEK [32],
where the experiments used a high learning rate (0.5) with a standard Q-
learning algorithm, to re-adapt to new rewards and quickly ignore older ones,
sacri�cing convergence to an optimal action.

In contrast, our formulation of the learning problem as a multi-arm ban-
dits easily and elegantly admits stochastic rewards, which means we can use
standard algorithms for learning. The only change in the algorithm is to
admit actions with duration.

The key di�erence between KEK/DWK and the formulation presented in
this paper is that both KEK and DWK attempted to determine the mean
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overhead (termed EI ), which is the ratio of the avoidance duration to the
total stage duration, for any given stage t:

Q(a) := E[
Ai(a)

(Ai(a) + Pi(a))
]

When this is averaged over the lifespan over the robot, KEK and DWK
are averaging the ratio. Instead, the formulation we present in this paper
considers only the direct work Pi:

Q(a) := E[Pi(a)]

The formulation as a multiarm bandit problem admits stochastic rewards
much more readily.

4.3.3 Direct Work vs Indirect Work (Overhead)

DWK de�ne the Coordination Overhead (CO) of the system, which is anal-
ogous (but inverse) to the notion of direct work which we utilize. We show
this below.

The CO of the swarm, given a strategy σ is de�ned by DWK (Def. 3.1
in [20])as follows1:

CO(σ) :=
1

LT (σ)

∑
i∈N

T∑
j=1

Ai(s
t, σ(st))

DWK assumed T was given, but unknown to the robots. They did not rec-
ognize the in�nite horizon settings formally, and so did not present the limit
of means notation as we do. However, the underlying mechanism of learning
and the mathematical derivations continue to assume T is not known. So in
actuality, a more correct formulation of CO would be:

CO(σ) := lim
T→∞

1

LT (σ)

∑
i∈N

T∑
j=1

Ai(s
t, σ(st)) (4.24)

1We converted their notations to those used in this paper
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It is easy to see that this is quite similar to our de�nition of Ψ(σ) in
Eq. 4.2):

Ψ(σ) = lim
T→∞

1

LT (σ)

T∑
t=1

∑
i∈N

Pi(s
t, σ(st))

We now proceed to show that in fact the two de�nitions are inversely
related: maximizing Ψ is equivalent to minimizing CO, and vice versa. To
do this, we �rst de�ne a positive-linear relationship between two functions

and denote it as
+∼ (De�nition 4.3.1).

De�nition 4.3.1. Positive-Linear Relationship
A function f(x) : IR → IR is positive-linear to the function g(x) : IR → IR if
and only if there exists a ∈ IR

+ and b ∈ IR such that ∀x ∈ IR : f(x) = ag(x)+b

This relationship is denote as f(x)
+∼ g(x)

One characteristic of this relationship is that maximization of one function
is equivalent to maximization of the other (Lemma 2).

Lemma 2. If f(x) is positive-linear to g(x) then maximization of f(x) is
equivalent to maximization of g(x).

Proof. From Def. 4.3.1, we know ∃a ∈ IR
+ and ∃b ∈ IR such that: f(x) =

ag(x) + b. Then,

f(x) = ag(x) + b ⇐⇒ (f(x))′ = (ag(x) + b)′ [Di�erentiate both sides.]

⇐⇒ f ′(x) = ag′(x) + 0 [Di�erentiation rules.]

Since a ∈ IR
+ the extrema points will be at the same value of x.

Using Lemma 2 we can now relate Ψ and CO, and show that maximizing
one, minimizes the other (Theorem 4).

Theorem 4. Given a strategy pro�le σ for a swarm game G, maximizing
Ψ(σ) is equivalent to minimizing CO(σ).
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Proof.

Ψ(σ) + CO(σ) =

Ψ︷ ︸︸ ︷
lim
T→∞

1

LT (σ)

T∑
t=1

∑
i∈N

Pi(s
t, σ(st))+CO(σ) [Eq. 4.2]

= lim
T→∞

1

LT (σ)
P T (σ) + CO(σ) [Def. 3.3.1]

= lim
T→∞

1

LT (σ)
P T (σ) +

CO︷ ︸︸ ︷
lim
T→∞

1

LT (σ)

T∑
t=1

∑
i∈N

Ai(s
t, σ(st)) [Eq. 4.24]

= lim
T→∞

1

LT (σ)
P T (σ) + lim

T→∞

1

LT (σ)
AT (σ) [Def. 3.3.2]

= lim
T→∞

1

LT (σ)
[P t(σ) + AT (σ)]

= lim
T→∞

1
[PT (σ)+AT (σ)]

n

[P t(σ) + AT (σ)] [Eq. 3.6]

= lim
T→∞

n[P T (σ) + AT (σ)]

[P t(σ) + AT (σ)]

= lim
T→∞

n [[P T + AT ] cancel]

= n

It follows that Ψ(σ) = −CO(σ)+n, and as n is constant, Ψ(σ)
+∼ −CO(σ)

(De�nition 4.3.1). Then, based on Lemma 2, we conclude that maximizing
Ψ(σ) will maximize [−CO(σ)], i.e., minimize CO(σ).
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Chapter 5

Experiments

We now turn to empirically evaluate the model and learning approach pre-
sented in Chapter 4. The experiments' settings are described in Section 5.1.

5.1 Setup: The Krembot Simulator

The experiments were carried out on a simulator called the krembot-sim,
available online at https://bitbucket.org/galk-opensource/krembot_

sim. The simulator is based on the Argos simulator [46], which is often
used in swarm robotics research. Krembot-sim simulates krembot robots in
our lab1, shown in Figure 5.1. These are small and simple robots that de-
signed for swarms research. The Krembots are round, with a diameter of 6.5
centimeters and height of 10.6 centimeters. They have 8 visual and range
sensors spread uniformly around the robot circumference, allowing the dis-
tinction of color and distance in 8 directions.

5.1.1 Physical Environment Settings

We have constructed several settings for foraging. Figure 5.2 shows the arena
we used, it is 1 square simulated meter. The home is in the center of the
arena; its radius is 0.1 meters. pucks are concentrated in bases, which are
scattered in �xed locations (see below). Each such base is a circle 0.03 meters
in radius.

1More documentation about the krembots can be found at: https://robotican.net/

krembot
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Figure 5.1: The krembots in our lab.
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Figure 5.2: The Arena
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We used two di�erent settings in determining the location of puck bases:

Fixed food locations. There are four food bases, each is located 0.3meters
from the center of the nest as shown in Figure 5.2.

Random food locations. The food locations are randomized from a uni-
form distribution over the arena such that we restrict the locations
inside the nest or adjacent to obstacles (the walls). A new food loca-
tion is randomized every time a robot picks up food, i.e, at any time
there are four available food locations in the arena.

We tested �ve swarm sizes in the same arena (in essence, varying the
density): 5, 11, 17, 23 and 30 robots.

5.1.2 The Foraging Algorithm

The foraging algorithm itself is composed of two modes, as described brie�y
above: a task mode (program mode), and a coordination mode (collision
avoidance mode), which is triggered when a collision is imminent.

Foraging Task Mode (ProgramMode). Two behaviors were developed,
wander and return to nest. The former is used when the robot has no puck,
and is searching for one. It switches to the latter when a puck is found (i.e.,
the robot's position is within a puck base). The two behaviors are described
below.

Wander. The agent is looking for pucks. It goes straight until it senses an
obstacle and then turns 135 degrees back into the arena (Figure 5.3).

Return To Nest. The agent has a puck and needs to get to the home base
to put it there. It does this by navigation. The agent is provided with
two pieces of information in order to perform the navigation behavior:
its own position and angle relative to the X axis, and the location of the
home base. Given its own position and the location of the home base,
it calculates the angle between the line connecting these two points
and the X axis. Based on this angle and its own current angle, it
turns toward the home base. Then, it goes straight until it reaches
its destination, except if it collides with other robots along the way,
in which case it performs afterward the "angle correction" procedure
described above once again.

53



Figure 5.3: Throw back inside behavior

Foraging Coordination Mode (Avoidance Mode). For the remainder
of this explanation, the sensor names described in Figure 5.4 will be used. We
say that there is a robot in front of a sensor if this sensor detects an object
at a distance of 4 centimeters while at the same time detecting a green light
(during the experiments, all robot's LEDs are lit green to enable them to
distinguish between one another and objects). A con�ict occurs when a
robot senses another robot from its Front, FrontLeft or FrontRight sensors
(considers as a front collision) or its Rear, RearLeft or RearRight sensors
(considers as a back collision). In many experiments, only a single avoidance
state was used (in particular in comparison with related work, which relied
on a repeated game model of swarm behavior), but in some cases (denoted
multistate in the presentation of results), the front and back collisions were
separately addressed, each with its own learning mechanism and counters.

We tested several sets of collision-avoidance methods, both using the re-
peal behavior with di�erent intervals of execution. In this behavior, the robot
attempts to go in the direction opposite the collision direction for half of the
interval, then stop for the remainder. Note that, the purpose of the stopping
part is to reduce the impact of the behavior on the task execution. A more
detailed discussion of this issue can be found in Section 5.4.2.

Two sets of actions were used, shown in Table 5.1.
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Figure 5.4: The Krembot sensors' names

Avoid action set Repeal interval (milliseconds) No. of Actions
1 500, 1000 2
2 200, 500, 1000 3

Table 5.1: Two sets of avoidance actions used in the experiments.
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5.1.3 Foraging Performance Measurement

Each experiment with a speci�c setting (selection algorithm, puck base lo-
cations, size of swarm, etc.) goes through a learning episode followed by
a testing episode. When using a non-learning algorithm (i.e., an algorithm
that always chooses a speci�c method), the learning episode is skipped.

In the learning episode, the swarm is operated for 8 simulated hours,
to allow ample time for each robot to converge to its preferred stationary
strategy. At the end of the learning episode, we record for each robot its
optimal action (maximizes Q(ai)), and a strategy pro�le is generated by
joining together the stationary strategy of each individual. This was repeated
�ve (5) times, with �ve di�erent random seeks.

The resulting �ve strategy pro�le were used in a testing episode: 50
experiments of 20 simulated minutes, each with a di�erent random seed. For
the non-learning algorithms, 50 such experiments ran for each of the �xed
strategies (selection algorithms).

Overall, the main measure is the average number of pucks that the agents
collect during the testing episode. For each of the �xed selection algorithms,
the results are over 50 experiments. For the learning algorithms, the results
are over 250 experiments (5 learning episodes, 50 testing episodes to each of
them).
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5.2 Swarming Bandits Compared to Fixed

Policies

This section presents the results of experiments carried out in comparing the
swarming bandits model (Chapter 4) to swarms where all robots are homo-
geneous in their decision-making: they all select the same avoidance action
whenever the need for coordination arises. We contrast two version of the
swarming bandits model: one with a single-state (i.e., a repeating games ver-
sion, called stateless below), and one with two states (di�erentiating contexts
based on front and back collisions, called multistate).

All the �gures have the same structure: The vertical axis denotes the
algorithms used in selecting avoidance actions. Algorithms with names that
have the pattern �x-* are those with �xed avoidance methods. For example,
�x-repelOpposite500 refers to the settings where all robots used repel, where
the interval was set to 500ms. The horizontal axis measures the average
number of pucks collected during the testing episodes (as discussed above).
The results of all runs of a speci�c algorithm are displayed as a horizontal
boxplot.

Each �gure below shows the results from trials with a given number of
robots n, a given set of avoidance actions (Set 1 or Set 2 ), and puck base
location settings (Fixed locations, or Random).

5.2.1 Set 1: Fixed Puck Base Locations

57



Figure 5.5: 5 Robots - Set 1 - Fixed Food Locations

Figure 5.6: 11 Robots - Set 1 - Fixed Food Locations
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Figure 5.7: 17 Robots - Set 1 - Fixed Food Locations

Figure 5.8: 23 Robots - Set 1 - Fixed Food Locations
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Figure 5.9: 30 Robots - Set 1 - Fixed Food Locations
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5.2.2 Set 1: Random Puck Base Locations

Figure 5.10: 5 Robots - Set 1 - Random Food Locations

61



Figure 5.11: 11 Robots - Set 1 - Random Food Locations

Figure 5.12: 17 Robots - Set 1 - Random Food Locations
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Figure 5.13: 23 Robots - Set 1 - Random Food Locations

Figure 5.14: 30 Robots - Set 1 - Random Food Locations
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5.2.3 Set 2: Fixed Puck Base Locations

Figure 5.15: 5 Robots - Set 2 - Fixed Food Locations
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Figure 5.16: 11 Robots - Set 2 - Fixed Food Locations

Figure 5.17: 17 Robots - Set 2 - Fixed Food Locations
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Figure 5.18: 23 Robots - Set 2 - Fixed Food Locations

Figure 5.19: 30 Robots - Set 2 - Fixed Food Locations
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5.2.4 Set 2: Random Puck Base Locations

Figure 5.20: 5 Robots - Set 2 - Random Food Locations
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Figure 5.21: 11 Robots - Set 2 - Random Food Locations

Figure 5.22: 17 Robots - Set 2 - Random Food Locations
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Figure 5.23: 23 Robots - Set 2 - Random Food Locations

Figure 5.24: 30 Robots - Set 2 - Random Food Locations
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5.3 Comparison to Previous Work

We also contrast the swarming bandits approach to previous related work.
Section 5.3.1 shows the results from an empirical comparison of the swarm-
ing bandits with algorithms proposed by DWK [20]. Section 5.3.2 shows
the results from a comparison with the dUCB (Disccounted UCB) bandit
algorithm, which has been proposed to directly tackle the non-stationarity
inherent in multiple robots learning in parallel (see also Chapter 6).

5.3.1 Comparison to DWK

In addressing the need to approximate knowledge of others rewards (pro-
gram duration and avoidance duration), DWK tested several approximation
methods for the marginal contribution of the total program time ∆xP in
Def. 4.2.1. Table 5.2 provides a brief description of each of their approxima-
tions converted to our notations. As these experiments were carried out only
on one state setting, we ignore the state notation. And, as before, we use
the notation ai for individual robot action.

Figures 5.25�5.27 show the results from an empirical comparison of the
DWK model [20] and its various approximation variants to our approach
(marked our approximation in the �gures). The results show that in all
cases, the swarming bandits model presented here is superior to all DWK
variants.
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Figure 5.25: Comparisons to previous model approximations - 5 Robots - Set
1 - �xed Food Locations
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Figure 5.26: Comparisons to previous model approximations - 17 Robots -
Set 1 - �xed Food Locations
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Figure 5.27: Comparisons to previous model approximations - 30 Robots -
Set 1 - �xed Food Locations
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Name Description Approx. of ∆xP (a)

Stateless
Our approximation as de-
scribed in detail in Section
4.2.

Pi(a)− n0 ×
∑

Pi(a)
count(a)

No approx-
imation

The robot ignores the others
and uses only its own pro-
gram time at this stage.

Pi(a)

Same
The robot approximates the
others' program time with
its own.

Pi(a) + n0 × Pi(a)

Average
Over Time

The robot approximates the
others' program time with
its average over all actions.

Pi(a) + n0 ×
∑

a′
∑

Pi(a
′)

T

Average
Over Ac-
tions

The robot approximates the
others' program time with
its average of the averages
over each action.

Pi(a)+n0× 1
|Ai|(

∑
a′

∑
Pi(a

′)
count(a′)

)

Min Over
Actions

The robot approximates the
others' program time with
its minimum average over
each action.

Pi(a) + n0 ×mina′(
∑

Pi(a
′)

count(a′)
)

Max Over
Actions

The robot approximates the
others' program time with
its maximum average over
each action.

Pi(a) + n0 ×maxa′(
∑

Pi(a
′)

count(a′)
)

Table 5.2: The compared approximation of the total program time.
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5.3.2 Multi-Agent, Multi-Arm Bandits

The UCB algorithm which forms the basis for the swarming bandits model,
assumes that rewards are stochastic�but their distribution remains station-
ary (�xed). This is a typical assumption in multi-arm bandit problem for-
mulations. However, we are applying UCB in non-standard settings. In
actuality, there are mulitple mulit-arm bandit problems which are present�
one for each robot. Each robot selects an individual action, but its reward is
a function of others' selections as well.

When multiple agents learn in parallel, there is a risk that their learning
processes interfere�for instance they explore new actions independently of
others, and since others do not know this, the reward they get is a function
of the exploration [31]. As the agents converge to a stationary policy, the
reward distribution changes as well. Thus the assumption of a stationary
distribution underlying the reward is broken.

We chose to ignore this in our work, but others have proposed speci�c
algorithms for handling non-stationary distributions. One of these is the
dUCB (discounted UCB) algorithm [24], which uses a discount factor in its
updating of the Q(a) values, so as to minimize the e�ect of older values.

We compare the performance of the swarming bandit learning approach to
that of dUCB, with di�erent discounting parameters (0.5 and 0.9). Figures
5.28�5.30 show the results of these experiments. We see that the dUCB
algorithms perform on par, or just below, the swarming bandit algorithm.
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Figure 5.28: Comparisons to DUCB - 5 Robots - Set 1 - �xed Food Locations

Figure 5.29: Comparisons to DUCB - 17 Robots - Set 1 - �xed Food Locations
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Figure 5.30: Comparisons to DUCB - 30 Robots - Set 1 - �xed Food Locations
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5.4 Sensitivity to Assumptions

Several di�erent assumptions have been made in developing the model. In
this section we examine the empirical sensitivity to their violation in practice.
First, we examine the assumption that utility grows with program duration
(Assumption 5). Based on this assumption, we proved the same relationship
exists between the total program time and the swarm achievements. But,
we saw that this assumption can be easily broken and strongly depends
on the quality of the implementation (Section 5.4.1). Another (implicit)
assumption was that the actions the robots take to resolve con�icts only
a�ect the coordination time. However, it appears that they may also a�ect
the task execution (Section 5.4.2).

5.4.1 More Program time does NOT always equal
higher achievements

During the experiments, we found that the behavior of the robots during
the program time is very crucial to the success of the model. Accidentally,
we found that it is far too easy to create task mode behaviors that break
the assumption of increased productivity with increased time. For example,
we found that the robots learned to walk in a circle at �xed distances from
each other so they could avoid collisions entirely (see Figure 5.31). This
was possible due to the fact that the behavior during the task was not good
enough.

The �gure shows an experiment in which red and blue LEDs were used
to inform the robots when food and home bases are nearby. It was designed
such that robots move around the arena while reacting to other robots and
avoiding walls until they detect red (if searching for food) or blue (if searching
for home) light, at which point they attempt to reach it. As light has an
impact only on the area around it, the robots were able to learn how to keep
distance from one another and at the same time from the food and home
bases (where most collision between robots occur).
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Figure 5.31: Agents learned to maximize their program time by walking in
a circle
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5.4.2 The Coordination Actions Also A�ect The Task
Execution (rather than only its time)

Another situation we saw was that the robots learn a strategy pro�le that
leads to higher program time but lower achievements. We found out that the
collision avoidance actions they could choose a�ected the task execution in
addition to the avoidance duration. This happened, for example, when some
coordination actions inadvertently point the robot away from pucks or from
the home base.

Figure 5.32 illustrates the problem with an action set which includes
the actions stop and repel-backward. On the left side, we see two agents
colliding, where agent 1 is on its way to some goal. If agent 1 stops for two
seconds, then when the two seconds are up, it will continue from the same
location (right side), in constant for what happens if it repels backwards for
two seconds and will be further away from the goal (middle). Note that the
time division in both scenarios is the same.

Figure 5.33 shows the phenomenon more broadly, where each dot rep-
resents the average of 50 experiments where the agents react to collisions
with a �x action. Three actions are compared, each with three variants,
determined by the interval parameter. For example, consider the results of
�x-repelBackward1000 and �x-BastEvade1000, where the program time is
nearly the same, but the achievements are totally di�erent. However, as can
be seen, there is a linear correlation between actions from the same type,
probably because they have the same e�ect on the program. Due to this
phenomenon, we evaluated the swarming bandits model using homogeneous
action sets, where all actions are parameterized variants of the same tem-
plate.
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Figure 5.32: An example of a situation in which the choice a�ect the execu-
tion

Figure 5.33: An example of di�erent �x methods lead to di�erent results
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Chapter 6

Discussion

Several challenges are raised by the presentation of the model and the ex-
periments: multiple equilibria, non-uniform transition probabilities, and non-
stationary reward distribution. These are all clear challenges for future in-
vestigation. We provide some discussion of the challenges below.

Multiple Equilibria. Earlier, we showed that robots may learn a station-
ary strategy pro�le that is optimal. However, there could be several joint
actions that are optimal. The model presented does not address this case.

In general, the problem of multiple equilibria [49] describes a situation
where there are di�erent optimal solutions, yet the uni�cation of parts of
them may not be an optimal one. To illustrate, assume that the best way
for a swarm of two robots to cover a �eld is to cover its both sides simul-
taneously. How would they determine who would go to each side without
communicating? Since they are trying to independently decide and are un-
aware of each other's decisions, they may go to the same direction believing
that the other goes to the other direction. In game theory, this situation is
called multiple equilibria.

Non-uniform stage-transition probabilities. We have made the as-
sumption that the stage transition probabilities are uniformly distributed
(Assumption 4). However, in practice, transition probabilities may not be
distributed uniformly. When this assumption does not hold, the contextual
swarming bandits may learn strategies that are optimal for each context in-
dependently, but are not optimal overall, when the expected rewards from
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each stage depend also on the transition probability between one stage to
the next.

We use the following simple example for intuition. Consider a game G of
100 seconds with two players, two states s1, s2 and two joint actions a1, a2.
According to the state and joint action the agents spent time in coordination
mode (A) and program mode (P ), such that:

P (s1, a1) = 9, A(s1, a1) = 1, P (s1, a2) = 8, A(s1, a2) = 2

P (s2, a1) = 0, A(s2, a1) = 10, P (s2, a2) = 1, A(s2, a2) = 9
(6.1)

The joint action a1 always leads the agents to the state s1 and the joint action
a2 leads to the state s2. We get that:

∀s ∈ S : D(s, a1, s1) = 1, D(s, a2, s2) = 1

P (s1, a1)

l(s1, a1)
= 0.9,

P (s1, a2)

l(s1, a2)
= 0.8

P (s2, a1)

l(s2, a1)
= 0,

P (s2, a2)

l(s2, a2)
= 0.1

⇒ σ∗(s1) = a1, σ∗(s2) = a2

(6.2)

Consider comparing σ∗ to a strategy pro�le σ′ in which the agents always
choose the joint action a1. Since the transitions are �x and both strategy
pro�les are stationary, the course of the game depends only on the �rst state.
If the game starts with s1 the two plays will be the same (ten repeated stage-
games from the type s1). But if the game starts with s2, a play that played
according to σ∗ yield 10 seconds of program time and a play that played
according to σ′ yield 81 seconds. Meaning that σ′ is strictly better.

One can view this issue as some con�icts being more di�cult than others,
and a reasonable strategy that takes the transition probability into account
might focus on avoiding them.

Non-stationary distribution of rewards: History Matters The
learning algorithm we used assumes a stationary (�xed) distribution of the
rewards, whereas this assumption does not necessarily hold in practice. Part
of this comes from the fact that multiple robots are independently learning
in parallel, something we have discussed brie�y in Section 5.3.2. However,
there are other causes for dynamic distribution.
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For example, if the number of pucks available for foraging changes
throughout the game, or pucks are farther than in late stages (e.g., because
close pucks are collected �rst), then the distribution of rewards will not be
stationary. This breaks the assumption that a stationary strategy pro�le can
be optimal, as the history of the stages matters.
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Chapter 7

Conclusions

The thesis presented a game-theoretic model of cooperative swarms, and
proscribed a practical approach�-swarming bandits�for swarm robots to
optimize their joint goal. The model is intended for swarm activities in
which interactions�where coordination is needed�interfere with the swarm
goals. It models activities in which swarm goals are maximized when the
swarm members are given as much opportunity as possible to act without
interference.

Under these conditions, it is possible to describe the swarm as engaging
in in�nite-horizon stochastic games, where the goal is to maximize the time
spent on direct work, i.e., the total time spent by the swarm members on
the task, without the overhead of handling collisions and interactions with
others. A swarm that behaves according to the model is guaranteed to achieve
the maximal utility, when agents act rationally. The use of time opens the
possibility for individuals to assess progress, as they can measure their own
time spent on the task and in handling collisions.

We showed how the stochastic game model, which is descriptive, can
be used in a prescriptive form to guide the practical individual decision-
making. Rationally maximizing the individual reward derived from the model
optimizes the swarm-level goals.

The model can be used in practice under some conditions and practi-
cal approximations, but it also relies on parameters which are never known
in advance. To overcome these unknowns, we use multi-arm bandits as a
reinforcement-learning framework that guides online selection of coordina-
tion actions. We modi�ed the classic UCB algorithm for continuous time,
and demonstrated that it works well in extensive experiments, carried out in
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a sophisticated 3D physics-based simulation often used for swarm robotics
research. Finally, we discussed open challenges that remain for future work.
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Appendix A

The LocustLib - Open Source
Library For Krembot-Sim

LocustLib was designed for Krembot-Sim and provides an easy way for the
user to work with our model as well as to adapt and extend it. In the
Krembot-Sim, Krembot controllers are simulating. Each of them have a loop
function that is activated at each step and determines what it will do based
on the information that it receives from its sensors. As was described in detail
in the previous chapters, our model is divided into two parts - program and
coordination, and respectively the controller holds two separate components,
one for each. The class diagram is shown in �gure A.1 and the sequence
diagram is shown in �gure A.2.
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Figure A.1: LocustLib - class diagram
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Figure A.2: Sequence diagram - controller main loop
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