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In multi-robot systems, robots cannot act without interactions and conflicts must be
resolved. Such conflict is a spatial conflict; robots cannot share the same spot at the same
time and must avoid collision. While there are many approaches to collision avoidance and
resolution, every approach has its advantages and disadvantages. Recent promising work
tries to address multi robot spatial coordination by adaptive selection of reactive coordina-
tion methods using an intrinsic reward function named the Effectiveness Index (EI) which
is based on the resource spending rate of the robots. While it has many desirable character-
istics in terms of multi-robot coordination and shows some empirical success, its success
is only limited and there are no theoretical guarantees of optimality or convergence, as we
indeed show. The contributions of this work are in several areas: First, we start by listing
gaps between existing theory and practice that rise in the context of reactive arbitration
of coordination methods. Then, we give theoretical modelling and practical solutions in
order to bridge those gaps. The theoretical modelling starts by representing a task run
as an extensive form game. It then goes to creating a connection between the system-
wide performance for a task run and the choices of each robot in each collision. Finally,
it deals with the issue of how robots should act in order to achieve optimal system-wide
performance. The practical solutions further bridge gaps that rise from running multi-
robot systems in real-world applications. The last part of this work puts the theoretical
modelling and practical solutions to the test by experimenting with different multi-robot
domains both with real robots and in a simulation.
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Nomenclature

Symbol Meaning Equivalent
in [27]

N = {1,2, . . . ,n} The set of players A = {a1, . . . ,an}

Si
The set of actions available for
player i

M

si A specific action taken by player i αi or α

S = S1× ...×Sn
The set of all possible action pro-
files

s = (s1, ...,sn) ∈ S
An action profile: the joint action
composed of the action si of player
i

{sc}c=C
c=1 = {(sc

1, ...,s
c
n)}c=C

c=1 A sequence of action profiles

h j = (s1,s2, ...,s j) ∈ S j The history of joint actions played
up until the j’th collision

gi : S j 7→ R
Gain of player i as a function of the
joint actions played up until colli-
sion j

gain

ui ∈ U j : S j 7→ R
The utility of player i given the joint
actions played up until collision j

ui(αi)

U : S j 7→ Rn
The set of utilities of each player
as a function of the joint actions
played up until collision j

Ai : S j 7→ R
Active time of player i as a function
of the joint actions played up until
collision j

Ia
i

Pi : S j 7→ R
Passive time of player i as a func-
tion of the joint actions played up
until collision j

Ip
i

T ∈ R Game time T

Table 1: List of symbols and notations used in this thesis. Where appropriate, we
also list equivalent notation used in [27], which is closely related.
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Introduction

Multi-robot systems are comprised of multiple autonomous robots, each with its own con-
trol. Typically, the robots are designed and deployed to work towards a common goal,
carrying on a shared task. Examples of such multi-robot systems include multirobot cov-
erage [1, 51, 20, 34, 7], patrolling [16, 2, 50, 37], foraging [27, 35, 14, 22, 5], formation-
maintenance [26, 13, 28, 29, 6], and more.

Necessarily, the robots share resources (at the very least, the space of their work area),
and thus a fundemental challenges is the challenge of multi-robot coordination. As robots
cannot act completely independently of others, they must coordinate their actions with
other robots in order to avoid and resolve conflicts over resource use. Such coordination
necessarily introduces some overhead into the workings of the robots, either by design or
ad-hoc. Multi-robot coordination therefore both supports and competes with achievement
of the goals of the robots.

One of the most basic types of conflicts of resource usage in multi-robot systems is the
spatial conflict. Robots cannot share the same spot at the same time and must avoid and
resolve collisions. They must coordinate spatially, acting so as to not collide and continue
their task normally, if a collision occurs.

One example domain where spatial coordination is key to the success of doing the task
is order picking. Order picking is the task of collecting items, usually in a logistic ware-
house, in order to compose orders which are composed by a collection of items ordered by
customers. A very known real-world implementation of such system is Amazon Robotics’
order picking system [49, 23]. This system was acquired by Amazon in its takeover of
Kiva System (for 775 million dollars; Amazon’s second-largest acquisition). This system
was built to replace most human labor in a logistics warehouses1. In such setting, robots
must engage in spatial coordination, e.g., while moving in the passageways along shelves,

1 Human workers used to walk 20 kilometers a day to pick ordered items in shelves in such warehouses,
and labor was in short supply.
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or when arriving the packing stations with the collected items. While robots receive their
pick orders tasks (where to go, what to pick, where to bring it) from a centralized server,
they each carry out their own collision avoidance and resolution: Planning non-colliding
paths by a centralized server is computationally intractable [52], and is not tolerant of
human motions and mechanical unpredictability [49].

This thesis will focus on the challenge of designing distributed multi-robot coordi-
nation algorithms. First, in Chapter 2 we provide background and review related work
on multi robot coordination describing the challenges in multi-robot coordination: what
characteristics of coordination algorithms are desirable and current existing approaches to
multi-robot coordination. We will highlight a recent promising approach to coordination—
coordination method arbitration—whereby various coordination algorithms are used in-
terchangeably by different robots at different times, as conflicts occur. While empirically
showing promising, the technique has no theoretical underpinning and its results are unex-
plained. Chapter 3 provides a theoretical model of the online coordination method arbitra-
tion, grounding it in game theory. It connects between optimal performance of the system
and choices of the robots in any time of the task run and show how robots can arbitrate
in order to achieve optimal system-wide performance. It also shows the extent to which
this model is relevant to real-world robotics. Chapter 4 discusses practical ways to bridge
the gaps between the theoretical model and the reality of multi-robot systems, also show-
ing how earlier work on coordination method arbitration is a special case. The theoretical
modeling and practical solutions will then be put to the test in Chapter 5 by experimenting
in two multi-robot domains: physical robots carrying out a variant foraging task, and simu-
lated robots carrying out order-picking, using the Alphabet Soup simulator [23] developed
by the Kiva Systems team. Chapter 6 provides conclusions.
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Multi-Robot Coordination: Background

Approaches to Multi-Robot Coordination: Brief Overview

There are several approaches to multi robot coordination algorithms, each with its own ad-
vantages and disadvantages. Desirable characteristics of coordination algorithms include
the following:

• Computational efficiency: Multi-robot coordination often requires decision making
in real time. Even when this is not critical, the computational efficiency of the al-
gorithms have to be feasible in practice. For instance, the task allocation algorithms
used in Amazon Robotics to decide which package or item will be picked and deliv-
ered are carried out by a central server, and obviously represent a feasible solution
for this component of the coordination between the robots. On the ther hand, the
computation of collision-free paths for the hundreds of robots is not centrally car-
ried out, because of the computational load involved.

• Population changes: Addition or removal of robots to the system (robot birth, robot
death) should be allowed by the coordination algorithm. New robots should assist,
removed robots should not hinder performance.

• Scalability: The methods should continue to perform well regardless of the group
size.

• Robustness to failure: An unexpected failure of one or more robots should not render
the system inoperable or affect group performance significantly.

• Little or no communicational requirements between robots: Communication be-
tween robots is an additional layer of complexity in the system and it consumes
energy. Therefore, one should minimize the need for communication.

3



• Domain independence: We desire one or few algorithms for many different multi-
robot tasks, avoiding the need to specifically tailor each coordination algorithm to a
specific domain and configuration.

• Analytical guarantees, empirical evidence of optimality in terms of group perfor-
mance: This characteristic is of paramount importance. It is the final seal of ap-
proval that the algorithm is both conceptually right (has performance guarantees)
and works in practice (empirical evidence).

We cannot do justice to a full survey of multi-robot coordination, especially since
many of the relevant work is reported in manner where coordination and task algorithms
are intimately coupled. Some surveys of interest may be found elsewhere [17, 33]. We will
provide instead an overview (with some examples) of the key approaches, alongside brief
discussions of advantages and disadvantages vis-a-vis the desired characteristics described
above.

Pre-Deployment (Planning-Time) Coordination. In this approach, the work area itself
and the behavior of the robots are designed such that the need for coordination is elimi-
nated or at least minimized. For example, Fontan and Mataric [18] report on an algorithm
that pre-allocates robots to different territories. Each robot operates in its territory but has
the ability to pass objects to another, thus creating a bucket brigade like structure. They
also discussed re-allocating the territories once a robot fails. The same general approach is
taken by Elmaliach et al. [16, 15] and Agmon et al. [3] in allocating robots to patrolling ar-
eas and perimeters, such that robot spatio-temporal trajectories never intersect. Likewise,
Locker-Room Agreements follow the same general approach, here for robot soccer [39].

In general, pre-deployment coordination can be very effective, when robots can be
assumed to maintain their pre-computed restrictions. The planning and design is most
commonly done by hand, rather than automatically. The computational intractability of
composing conflict-free "traffic laws" (motion constraints, such as "travel on right side of
the road") for robots has been shown by Shoham and Tennenholtz [38] even in simple
grid-worlds. Indeed, planning optimal collision-free trajectories for multiple robots is
computationally intractable [52].

Post-Deployment (Execution-Time) Coordination. A different approach for handling
coordination focuses on handling conflicts as they arise, or at least during execution, in an
effort to address the computational cost of planning resource usage and coordination ahead
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of time. This approach also addresses the assumption of planning methods, that robot will
be able to follow through on their planned motion constraints, and that no changes to the
scale or components of the system will be made.

Within this approach, some algorithms consider the overall goal of the robot, and re-
spond within the context of this goal. For example, in navigation, the Dynamic Window
algorithm [19] is a coordination method that uses limited planning in the space of admis-
sible velocities. This method is capable of making decisions based not only on external
constraints like obstacles and other robots, but also on internal constraints like maximal
velocity and acceleration. We are using a dynamic window variant as one of the algorithms
in our work.

A popular class of navigation methods which do some planning is the Reciprocal Ve-
locity Obstacles (RVO) class of methods. This class plans ahead based on the space of
admissible relative velocities to nearby obstacles and robots. A very popular RVO method
is the Optimal Reciprocal Collision Avoidance (ORCA) [43], which guarantees collision-
free paths, as long as (1) all robots use ORCA, and (2) all robots know other robots’ shape
and velocities. It does not guarantee any optimality of either a system-wide or individ-
ual goal (e.g., the makespan or cumulative distance travelled). Other algorithms focus
on safety and provide better guarantees. For example, the Passively Safe Partial Motion
Planning (PassPMP) algorithm[8].

More abstractly, Stone et al. [40] model the ad-hoc coordination problem from a game-
theory persective. They show a method by which a robot can cause its teammates, without
communicating with them, towards a globally-optimal coordinating solution. However,
the model relies on modeling the payoffs (rewards) associated with all actions of all robots,
and is intended as a theoretical exploration alone. It also assumes a single robot is driving
the change, while others only respond.

At the extreme of the post-deployment approach lie reactive coordination algorithms.
These are algorithms that respond to a collision, with no or very little planning with respect
to the task goal of the robot, or the group, i.e., these are necessarily myopic algorithms.
On the other hand, such algorithms are extremely simple to implement and use (both
in practice and from a computational perspective), and are generally task-independent
(because they do not use information about the goals of the task).

We use several such reactive algorithms in our work. One reactive algorithm is the
noise algorithm by Balch and Arkin [6]. Given a collision, a robot repels itself backwards
with some directional noise. In [35] the repel method is described. As the name suggests,
once a robot collides with another robot it repels itself backward for an arbitrary time
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interval or distance.

More sophisticated algorithms introduce stochasticity into the decision-making. A re-
active algorithm named aggression was described by Vaughan et al [44]. When robots use
this coordination method, the robot with the highest "aggression factor" gets the right of
way while the other backs off. They describe three possible ways to determine the ag-
gression factor of the robot - randomly, fixed or based on the robot’s free personal space
behind it. A related approach, by Danassis and Faltings [12] is called CA3NONY , and is
intended for domains where an optimal behavior will be to anti-coordinate1, i.e. that each
agent must choose an action which differs from other agents’ actons in order for the out-
come to be optimal. Here, agents are being courteous: If an agent collides with another
agent, i.e. chooses the same resource at the same context, it backs off from this choice
with a constant probability. In addition to this social convention the agents maintain a dis-
tributed bookkeeping scheme which prevents them from monopolizing resources, causing
each agent to choose only one resource for one context. While this algorithm does not re-
quire any communication between agents and guarantees optimal behavior, it holds several
assumptions on the context space and the reward structure. The algorithm assumes that
the context space is discrete, repeats itself periodically and is shared between all agents. It
also assumes that the marginal reward is decreasing.

It is now understood that while each method is effective in some settings, no method
is always effective [35, 36]. The results in foraging show that the system-wide utility of
a specific coordination method depends on the density of the system. For all methods,
the system-wide utility decline once some density is reached. But the density in which
this occurs differs from one method to the next. Certainly, some methods do better than
others—but none are superior to others in all densities.

The behavior of the group in the investigations above mimics the Law of Marginal
Returns in economics: Adding more robots does not necessarily increase productivity.
Goldberg and Mataric [22] had attempted to capture the cause for this, by defining inter-
ference, a global signal which varies in the working space of the system denoting how
much robots interfere with each other, e.g., due to lack of coordination. They suggested
that by picking this global signal the robots may act accordingly. The problem is that
in practice, this signal cannot be easily computed (as it involves internal measurements
from each robot) or made public without communications. Furthermore, no theoretical
connection has been made between interference and task performance.

1 The definition of coordination in [12] differs from the definition of coordination in our work. We define
coordination as the need to take an action due to an interaction between agents. They define coordination
as a consensus: where agents need to choose the same action in order to achieve optimal results.
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Learning and Adaptation for Improving Multi-Robot Coordination

Measures of coordination (such as interference, above), can be used to guide actions to
improve coordination, e.g., through learning. For example, Rosenfeld et al. [35] show
that for a fixed group size, areas of high density of robots correlate negatively with group
performance, in a multi-robot foraging task. In addition, the higher the cost robots invest
on coordination methods the less the group performance will be. They define the likelihood
of collision around a robot as the ratio between the area of a circle of fixed radius around
it and the total area robots take inside this circle. They represent cost of coordination by
the combined coordination cost (CCC), a weighted average of all coordination costs of a
robot like time and fuel. They show a strong negative correlation between the CCC and
group performance for a fixed group size.

Rosenfeld et al. [35] also proposed an offline adaptive algorithm for the problem of
multi-robot coordination, based on their CCC measure. This algorithm arbitrates between
a set of coordination methods by using methods with larger CCC when the likelihood of
collision is high and methods with lower CCC when the likelihood of collision is low. It
does so by sorting the set of coordination methods from the one with lowest to the one
with highest CCC and sets thresholds based on likelihood of collision to determine what
method to choose. The adaptation was done by tuning the aforementioned threshold. They
used two separate variants for this adaptation: Hill climbing and gradient learning, each
one of them tunes the thresholds differently based on the group performance. The CCC
measure was not explored theoretically, despite the empirical success of using it as the
basis for learning (offline).

More generally, there is much work on utilizing learning to improve multi-robot (and
multi-agent) coordination, mostly focusing on reinforcement learning, which is often used
in the context of planning and decision-making. Indeed, this is the approach we take in
this thesis: to improve coordination by using learning to adjust which reactive coordination
method is to be used in each conflict. We only briefly describe it here, and refer the reader
to [45, 41, 30, 25] for a deeper explanation. There are several investigations that are closely
related to this approach, which we describe below in detail.

Reinforcement Learning (RL) is an area of Machine Learning, inspired by biology and
behavioral psychology, where an agent, or more than one agent, takes actions sequentially;
it receives a scalar signal (the reward). This scalar signal is then used by the agent as a
part of a feedback mechanism to direct it towards better actions, where a better action is
an action with a larger rewards. Most commonly, RL algorithms seek to maximize the
accumulated rewards of the agents. Many such algorithms have proven optimality and
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convergence guarantees.

Claus and Boutilier [11] show different variations of RL techniques in multi agent
domains and the difficulties that rise using them. They divide learners to two different
types: Independent learners (IL) and joint-action learners (JAL). ILs learn actions with no
knowledge of actions of other agents while JALs learn with knowledge of the actions of
all other agents. To ground RL use in multi-agent systems, Claus and Boutilier discuss
learning in the context of game theory models. The show that even simple RL algorithms
(such as a stateless version of Q-Learning, perhaps the most well-known RL algorithm),
lead to non-intuitive results, depending on the settings of the game. In particular, they
examine both IL and JAL agents in several identical-interest matrix games (where in every
action profile every agent gets the same utility). For both IL and JAL they show that the
agents converge to a Nash equilibrium, which is sub-optimal in terms of welfare. They
also show that different learning parameters such as the learning rate or exploration rate
can make the system converge to different equilibrium points. As we are interested in
maximizing the global utility (the group goal), this is a serious challenge, which has been
undertaken in many investigations.

Godoy et al [21] show that using simplistic reinforcement learning techniques with
ORCA can make a multi-robot system achieve a better system-wide goal than with either
using only ORCA or only the simplistic reinforcement learning techniques. They present
the ALAN framework which uses a reinforcement signal composed of two factors: A goal-
oriented and a politeness factor. The goal oriented factor is based on the direction cosine of
the velocity vector of the robot and the displacement vector of the goal from the robot. The
politeness factor is based on the vector cosine between the preferred velocity vector and the
vector ORCA will output in the current robot’s situation. The final reinforcement signal
for the ALAN framework is a weighted sum of the goal-oriented factor and the politeness
factor. This work has both similarities and dissimilarities to our work. In a similar manner
to our work, this work uses reinforcement learning in order to choose the best action in
any given time. Unlike our work, this work does not focus on reactive algorithms but
rather builds upon a planning algorithm (ORCA). Furthermore, ALAN does not provide
guarantees on task performance.

Wolpert and Tumer [48] described the Collective intelligence (COIN) framework.
COIN framework models a system of multiple agents where there is little or no com-
munication between agents and the agents are working towards a common global utility.
Each agent in a COIN framework is a learning agent and emphasis is put on reinforce-
ment learning. By taking into account the states of all agents at all times COIN framework
defines several characteristics that a system should have for it to be a COIN. Those char-
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acteristics are related to how well an agent learns (intelligence), the relation between how
an agent’s action affects his utility vs how other agents’ actions affect the agent’s utility
(learnability), how the global utility of the system changes due to a change in an agent’s
personal utility (factoredness) and how a global utility is affected by an agent not existing
at all (wonderful life utility). They show success in many multi agent domains [42, 46].
However, their framework relies on knowing the global utility, and/or the value (payoff)
of others’ actions. In practice, this is not often possible.

Most closely related to our work is the work by Erusalimchik et a. [27], which advo-
cates the use of a reward called Effectiveness Index as the basis for coordination adaptation
(rather than learning). As we build and extend this work significantly, we begin with a de-
tailed overview of its workings.

A reactive robot takes action only when the need to avoid a conflict is immediate. If
no conflict is imminent the robot focuses only on its task as if it was independent of other
robots. Therefore, a task run for a reactive robot should have a specific structure. First,
when it starts the run, it focuses on the task. Once it recognizes an imminent collision,
it focuses on conflict avoidance for a specific time interval. When the robot decides the
conflict has been averted, it returns to normal task execution up until next collision is
imminent. This cycle continues up until task execution has ended. A graphical depiction
of the timeline from this perspective is shown in Figure 2.1.

Figure 2.1: Task life cycle from the perspective of a reactive coordination method.

The time interval between a collision and the next one is split into two intervals. Erusal-
imchik et al. [27] coined terms for these: For the collision avoidance interval they coined
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the term active time, as the reactive coordination method is being activated. The task
execution interval is termed passive time, as from the coordination perspective, nothing
is being done (there is no need to coordinate). The active time is the time spent by the
robot executing a coordination method. The passive time is a time interval where the robot
focuses on the task to be done.

The approach taken in [27] relied on the stateless version of Q-Learning [11], and
learns which reactive coordination method to use. To do this, it uses—as the reward
signal—the effectiveness index of the methods: the ratio between the coordination costs
and the total time interval between the current collision and the next. The coordination
costs are composed from the active time and other costs such as fuel and the total time
between collisions is simply the sum of the active and passive times (Figure 2.2).

The structure of the task run with arbitration now looks as follows. When a robot
detects that it is about to collide, it then carries out the following procedure:

1. Chooses a coordination method α based on its EI value, using the RL algorithm.

2. Performs coordination method immediately (and keep track of the active time dura-
tion)

3. Return to task execution until another collision is imminent (keeping track of the
passive time)

4. Compute the EI of α and store it.

5. When a new collision in imminent, go to step 1.

Figure 2.2: Task life cycle from the perspective of an EI learning coordinating
robot.
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Eruslimchik et al. [27] show that this procedure resulted in significantly improved per-
formance in several domains. Furthermore, the effectiveness index combined with state-
less Q-Learning has many of the desirable characteristics described therein:

• Being computationally light. Only a small calculation of a simple formula once in a
conflict.

• Requires no communication. It is an intrinsic reward

• Domain independent. Different multi-robot domains have different measurements
of performance and a performance measurement in one domain will probably be
impossible to be used in another domain due to its domain-specific nature. Since
Effectiveness index relies instead on properties common to all domains such as time
investments and costs. It can be used everywhere.

Despite the empirical success of the EI measurement using reinforcement learning, it
comes with no guarantees. Indeed, our research work began by applying the framework
to the pick ordering domain, which turned out to be not at all trivial or necessarily suc-
cessful [14]. We therefore sought to ground EI in theory, and along the way developed
a more general model and family of rewards, which provide guarantees up to explicit as-
sumptions, as well as a thorough discussion of approximation methods which can be used
in practice, and are motivated by the theory.
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A game-theoretic view of multi-robot swarms

We begin in Section 3.1 by introducing an abstract game-theoretic model of multi-robot
tasks carried out by a swarm of robots. We then make incremental modifications to this ab-
stract model, to bring it closer to the reality of physical interacting robots, when the robots
cannot communicate (Sections 3.2–3.3). Finally, in section 3.4, we address the challenge
of learning optimal actions according to the game-theoretic model we introduced.

Extensive form game representation of a task run with reactive method arbitration

When considering the task multiple robots (each engaging in its own coordination method
arbitration), we follow Erusalimchik et al. [27] in representing the task as an extensive
form game between n robots. The extensive form game represents every possible outcome
as a function of the sequence of parallel coordination actions taken by all robots in every
collision during the run. In this context, the outcome is the utility of each of the robots in
the system gained in the alloted game time.

The root node of the game tree represents the first collision. Given that there are
n robots, the first n layers of the game tree will each represent a robot and its possible
actions in the first collision. This is because we focus on non-communicating coordination
methods, and thus we will treat each collision as having no information on the actions and
utilities selected and gained by other robots.

The actions independently taken by players are coordination methods: The gains (pay-
offs) from taking them and the costs which they entail differ between robots and between
collisions, but are theoretically accounted for.

The next n layers will represent the second collision in the same manner. This sequence
continues until a terminal node is reached—when the time for the task is done: A terminal
node represents the end of the game (task) and holds the utility of each player. Since
different actions can yield different time intervals between collisions, terminal nodes can
each be of different depth depending on the sequence of collisions (and associated joint
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𝑠1 = 𝑅𝑠1 =R 𝑠1 = 𝑅 𝑠1 = 𝑅

s2 = 𝐿 s2 = 𝐿s2 = 𝑅 s2 = 𝑅

𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 #1

𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 #2

𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑛𝑜𝑑𝑒𝑠
(Task ended)

Robot 2

Robot 2

Robot 1 Robot 1

Robot 2Robot 2 Robot 2

Robot 1

Figure 3.1: A two-player two-action task run represented as an extensive form
game for the action sets S1 = S2 = {L,R}. Not all terminal nodes have the same
depth, as different joint actions taken by the players can lead to more or less
collisions.

actions chosen) during the game. Each such sequence is represented as a path in the game
tree. Each terminal node will hold a vector of numerical values representing the utilities
of each robot in the system.

A two-player two-action example of such an extensive form game is shown in Figure
3.1. It shows several paths from the root node to the terminal nodes.

Folding an extensive-form game to a sequence of normal-form games

The extensive form model of a task run represents every possible outcome of the task run.
This is obviously of theoretical value only, as no robot—nor their designers—can predict
the outcome of future collisions, nor their timing, nor their impact on global payoffs. In
reality, robots only know their history of previous collisions, and the immediately immi-
nent collision. Indeed, in many settings robots cannot know of the other robots’ choices
(which theoretically affects their own) and thus even this information is hidden from them.

In order for robots to make decisions based only the history and current collision,
we must draw a connection between the global final utility (payoff) theoretically reached
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using the extensive-form game, and the sequence of collisions in which the robots make
collision-resolution choices. Robots may then rely on signals that are obtained during a
joint collision.

To do this, we take an intermediate step and show how the extensive form game can be
expressed as a sequence of normal form games, each representing a single joint collision.
We first start with a few definitions:

• Robot i’s action at the j’th collision will be denoted as s j
i . The joint action of the

robots at the j’th collision will be denoted as s j.

• Robot i’s history of actions until the j’th collision inclusive will be denoted as h j
i =

(s1
i ,s

2
i , ...,s

j
i ). The history of actions of the robots up until the j’th collision inclusive

will be denoted as h j = (s1,s2, ...,s j).

• The cost of robot i at the j’th collision will be denoted as c j
i .

• The gain of robot i at the j’th collision will be denoted as g j
i .

• The utility of robot i at the j’th collision will be denoted as u j
i and is the difference

between this robot’s gains and costs at the j’th collision: u j
i = g j

i − c j
i .

• The global utility of all the robots during the whole task run is denoted as U

We start with the most general case where outcomes of a robot at the j’th collision may
depend on the entire history of play of all the robots up until collision j inclusive. This
means that u j

i ,g
j
i ,c

j
i are all functions of h j. U will now depend on the entire history of

play. Given that the number of collisions for the whole task run is c, U will be a function
of hc and will be defined as the sum of utilities of every robot and every collision during
the task run (Eq. 3.1).

U(hc) = ∑
i∈N

c

∑
j=1

ui(h j) = ∑
i∈N

c

∑
j=1

(gi(h j)− ci(h j)) (3.1)

We can look at each joint collision as a normal-form (matrix) game representing the
outcomes of this collision only, rather than the whole task run. For the j’th collision, the
player set of this matrix is the set of robots performing the task and the action set of each
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robot is its set of available coordination methods for this collision. Given the history of
joint actions played up until collision j (inclusive), h j, the payoffs of this matrix will be
the sum of the utilities of the robots obtained only for the j’th collision ∑i∈N ui(h j) as a
function of the history of play. We call this matrix the Folded Game Matrix (see Figure 3.2
for an illustration).

We define the (·) operator between a play history and a new joint action to be the
concatenation of the new joint action to the history. For h j−1 = (s1, ...,s j−1) and s j, h j =

h j−1 · s j = (s1, ...,s j−1,s j).

s2 = L s2 = R

s1 = L
u1(h j−1 · (L,L)) +
u2(h j−1 · (L,L))

u1(h j−1 · (L,R)) +
u2(h j−1 · (L,R))

s1 = R
u1(h j−1 · (R,L)) +
u2(h j−1 · (R,L))

u1(h j−1 · (R,R)) +
u2(h j−1 · (R,R))

Figure 3.2: An example of a two-player two-action folded game matrix for the
action set S1 = S2 = {L,R}.

Global Utility and the Folded Game Matrices

Since robots in a system have limited sensing and communication capabilities, they are
unable to know the utilities of other robots, even in the same joint action. Indeed, each
robot does not even know how its own action affects its own immediate utility. The only
information available to it is data from its own sensors and internal state information.

Previous work by Erusalimchik et al. [27] has examined using the Effectiveness Index
(EI)—the ratio of active time to total cycle duration (since the last conflict) as a substitute
for the robot’s estimate of its utility. In particular, minimizing EI was proposed to be an
alternative to maximizing the robot’s utility. However, this conjectured connection was
not satisfactorily proven.

We now take steps to formally tie the active and passive times of the collision to the
utility of the robot resulting from the collision. We make the following observations and
assumptions:

• Gains in active time are zero. When a robot is in active time it focuses on handling
conflicts and not on the task and therefore, cannot contribute to it. For example,
in foraging a robot can not retrieve a puck when focusing on avoiding collisions.
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Therefore, we assume that gains occur only in passive time. This assumption can be
expressed as gi(h j) = gi(Pi(h j)).

• We will further assume that the gains are linear to the passive time given history of
play h j. This can take several forms:

1. gi(h j) = α(h j)Pi(h j). Given a play history up until time j, the gains will be
linear in passive times. We stated that gains occur only in passive time. There-
fore, it should at least be a function of the passive time.

2. gi(h j) = αPi(h j) where α = const. This is an even stronger assumption than
the above that states that the rate of gain will be the same for every joint action.
This claims that a change in action will not yield a higher rate of gain during
the passive time but instead will cause different passive time length.

• We will also assume that costs are constant throughout the task run meaning that
ci(h j) = β (Ai(h j)+Pi(h j)) where β = const.

Previous work by Rosenfeld et al [35], shows that there is a strong correlation between
coordination costs (only the active time in our case) and group performance. The more
a robot, or a group of robots invest on the task (passive time), the lower are their costs
(active time) and the higher is their performance. Therefore, the gains of the system, and
each robot individually, are proportional to the total passive time of the system. For robot
i, this takes the form of gi(h j) = αPi(h j) (assumption option 2 on the gain).

Global Utility and Coordination Overhead

Definition 3.3.1. The Coordination Overhead (CO) is the total amount of time the sys-
tem was in active time divided by the total time invested in the task run: CO(hc) =
1
T ∑i∈N ∑

c
j=1 Ai(h j).

Since T is the sum of all cycle length of any of the robots’ task run, we can write
T = ∑

c
j=1(Ai(h j)+Pi(h j)) for any robot i. Therefore, CO can also be written as CO(hc) =

∑i∈N
∑ j=1 Ai(h j)

∑
c
j=1(Ai(h j)+Pi(h j))

.

We will now show, given the above assumptions, that the global utility U is now a
linear decreasing function of CO:

Theorem 3.3.1. Given the assumptions on the cost and gain, U is a linear decreasing
function of CO.
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Proof.

U = ∑
i∈N

c

∑
j=1

[ui(h j)] = ∑
i∈N

c

∑
j=1

[gi(h j)− ci(h j)]

= ∑
i∈N

c

∑
j=1

[αPi(h j)−β (Ai(h j)+Pi(h j))]

= ∑
i∈N

c

∑
j=1

(αPi(h j))−∑
i∈N

c

∑
j=1

β (Ai(h j)+Pi(h j))]

= T
α ∑i∈N ∑

c
j=1 Pi(h j)

T
−nT β

= T α(1−CO(hc))−nT β

=−T α ·CO(hc)+T (α−nβ )

As a result of this connection, now it is possible to look at our problem as minimizing
CO rather than maximizing U . Although there is now a connection between U and CO, it
does not give information about how robots should choose their actions in a way that CO
is minimized.

Connecting Coordination Overhead to the Folded Game Matrices

We further assume that for every collision, the outcomes of the robots’ method selection
depend only on the current joint action performed and not on the history of all joint actions
performed. This also means that no matter what the collision index is, as long as the joint
action stays the same, the outcomes of this collision stay the same. Therefore, variables
that depend on the history of joint actions played until collision j, h j ∈ S j, depend only on
the joint action that was played in time j, s j ∈ S. We can now denote the active time as
Ai(s j) and since it does not vary in time, we can denote it as Ai(s). The same applies for
Pi,gi,ci,ui and U .

One consequence of this assumption is that instead of the task run having a big set of
different folded game martices depending on the history of play, it has only one folded
game matrix which is the same for every collision in the task run.
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s2 = L s2 = R
s1 = L u1((L,L))+u2((L,L)) u1((L,R))+u2((L,R))
s1 = R u1((R,L))+u2((R,L)) u1((R,R))+u2((R,R))

Table 3.1: An example of a two-player two-action conflict matrix with a generic
utility u(s).

In the previous section we saw that maximizing CO maximizes the global utility. Using
the above assumptions we can write:

CO(hc) = ∑
i∈N

∑
c
j=1 Ai(s j)

∑
c
j=1[Ai(s j)+Pi(s j)]

Given a joint action s and a robot i, we will define EItot(s) to be the sum of the effec-
tiveness indices of all robots: EItot(s) = ∑i∈N EIi(s) = ∑i∈N

Ai(s)
Ai(s)+Pi(s)

. Let s∗ be the joint
action that minimizes EItot : s∗ = argmins(EItot(s)). If the system always plays joint ac-
tion s∗ its CO will be: CO(h∗) = ∑i∈N

c·Ai(s∗)
c·[Ai(s∗)+Pi(s∗)]

= ∑i∈N
Ai(s∗)

Ai(s∗)+Pi(s∗)
= EItot(s∗) where

h∗ = (s∗,s∗, ...,s∗). We will now show that for every sequence of joint actions CO will be
greater or equal to EItot(s∗). This means that in order to minimize CO the system always
needs to select s∗ as the joint action.

Theorem 3.3.2. for any number of collisions c and histories of play hc, CO(hc)≥EItot(s∗).

Proof.

CO(hc) = ∑
i∈N

∑
c
j=1 Ai(s j)

∑
c
j=1(Ai(s j)+Pi(s j))

= ∑
i∈N

∑
c
j=1 Ai(s j)

T

=
1
T ∑

i∈N

c

∑
j=1

Ai(s j) =
1
T

c

∑
j=1

∑
i∈N

Ai(s j)

=
1
T

c

∑
j=1

l(s j) ∑
i∈N

Ai(s j)

l(s j)
=

1
T

c

∑
j=1

l(s j)EItot(s j)

≥ 1
T

c

∑
j=1

l(s j)EItot(s∗) = EItot(s∗)
1
T

c

∑
j=1

l(s j)

= EItot(s∗)
1
T

T = EItot(s∗)
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Now we know what the system needs to do in order to perform best. However, robots
can only know internal properties and therefore cannot know s∗ since it requires to know
the actions of other robots. Therefore, we need to find a way to make the robots converge to
s∗ by using internal measurements, without requiring knowledge of coordination methods
selected and utilities obtained by other robots.

Learning Optimal Actions

Potential games

As we have seen in the previous section, achieving optimal group performance is done
by converging to s∗. We therefore need a learning mechanism for each robot that will
guarantee system-wide convergence to s∗. This is not a trivial task due to the robots’
inability to know the actions and rewards of other robots. Therefore, for each robot this
learning mechanism must be based only on intrinsic data such as its individual actions and
rewards.

We show that the use of Potential Games [32] can solve the challenge of converging to
s∗ while requiring only intrinsic data from each robot. A potential game is a normal form
game where for every player i, the difference in the payoff of every unilateral deviation of
player i’s action si is related to the difference of a single potential function ψ(s) mapping
joint actions to a scalar. The potential function can be seen as a global signal (not nec-
essarily visible to the players) which depends on the joint action. There are several types
of potential games with differing strength. We will present three types of those games in
descending strength.

Definition 3.4.1. Exact potential game. A game with player set N, action set S and utility
function U is an exact potential game if there exists a potential function ψ : S 7→ R such
that for every player i and actions si,s′i: ui(s′i,s−i)−ui(si,s−i) = ψ(s′i,s−i)−ψ(si,s−i).

Definition 3.4.2. Weighted potential game. A game with player set N, action set S and
utility function U is an exact potential game if there exists a potential function ψ : S 7→ R

and a weight function w ∈ Rn such that for every player i and actions si,s′i: wi(ui(s′i,s−i)−
ui(si,s−i)) = ψ(s′i,s−i)−ψ(si,s−i).

Definition 3.4.3. Ordinal potential game. A game with player set N, action set S and
utility function U is an exact potential game if there exists a potential function ψ : S 7→ R

such that for every player i and actions si,s′i: ui(s′i,s−i)−ui(si,s−i)> 0 ⇐⇒ ψ(s′i,s−i)−
ψ(si,s−i)> 0.
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It is straightforward to see that any exact potential game is also a weighted and an
ordinal potential game and that any weighted potential game is an ordinal potential game.
It is also straightforward to see that the opposite is not always true.

Potential games hold several characteristics that normal form games do not necessarily
hold:

• Potential games always have at least one pure-strategy Nash equilibrium.

• When players use pure strategies a change in one player’s individual payoff due to
changing its individual action will be aligned with the potential function. This means
that in any potential game if one player chooses to change its action to a better action
in terms of his payoff, the potential function will always benefit, vice versa.

If the players take turns and choose one by one the best action in terms of their individ-
ual payoffs, the system will converge to a pure-strategy Nash equilibrium and that Nash
equilibrium is at least a local optimum of the potential function. This means that there
exist simple learning techniques based on each player’s payoffs such that if each player
uses them, the whole system converges to a Nash equilibrium.

Therefore, in the context of multi-robot coordination, we need to find a reward function
for each robot based on its intrinsic measurements in a way that the robots play a potential
game with potential function EItot . Doing so will make the robots converge to an optimal
joint action in terms of EItot .

Total EI as a Potential Function

In section 3.3 we’ve seen that the problem of optimizing the global utility narrows down
to minimizing EItot by converging to a single joint action s∗ while still using only internal
measurements.

In order to do so we use the Wonderful Life Utility (WLU) first discussed in the work
done by Wolpert and Tumer as a part of the Collective Intelligence (COIN) framework [47].
Given a global utility U , the WLU for robot i is a measurement of the difference between
the resulting U and the global utility when robot i is absent. In terms of game theory, the
absence of robot i is equivalent to the robot choosing a "null" action denoted by φi.

Definition 3.4.4. Wonderful Life Utility. Given a global utility U and a joint action s =
(si,s−i), the wonderful life utility of robot i is:

WLUU
i (si,s−i) =U(si,s−i)−U(φi,s−i)
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The WLU is, in fact, a measurement of robot i’s marginal contribution to U . It is
known that agents that learn with WLU as a utility function play a potential game with the
global utility as the potential function [4, 31].

Theorem 3.4.1. If players play with WLU as a payoff over a global utility U they play an
exact potential game with ψ =U as a potential function.

Proof. We will look at a unilateral change in robot i from action si to action s′i given the
action profile of others s−i. The change in WLUi will be:

WLUU
i (s′i,s−i)−WLUU

i (si,s−i) =U(s′i,s−i)−U(φi,s−i)−U(si,s−i)+U(φi,s−i)

=U(s′i,s−i)−U(si,s−i) = ψ(s′i,s−i)−ψ(si,s−i)

Since our goal is to optimize EItot , we can now make the robots choose actions ac-
cording the WLU of EItot . If robots do so, not only they will converge to a joint action,
the potential function will be ψ = EItot . Therefore, this joint action will at least be a local
minimum of EItot due to the properties of potential games. We will now show a closed
expression of WLUEItot

i in order to see according to what utilities robots should learn in
order to converge to this minimum.

Theorem 3.4.2. let li(s) be the cycle length of robot i given a joint action s: li(s) =

Ai(s) +Pi(s). The WLU of EItot for robot i takes the form Ai(s)+Aφ

i (s)
Ai(s)+Pi(s)

− Ai(φi,s−i)
li(φi,s−i) where

Aφ

i (s) = ∑ j∈N\{i}(A j(s)
li(s)
l j(s)
−A j(φi,s−i)

li(s)
l j(φi,s−i)

).
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Proof.

WLUEItot
i (s) = EItot(s)−EItot(φi,s−i)

= ∑
j∈N

A j(s)
A j(s)+Pj(s)

− ∑
j∈N

A j(φi,s−i)

A j(φi,s−i)+Pj(φi,s−i)

= ∑
j∈N

A j(s)
l j(s)

− ∑
j∈N

A j(φi,s−i)

l j(φi,s−i)

=
Ai(s)
li(s)

+ ∑
j∈N\{i}

A j(s)
l j(s)

− ∑
j∈N\{i}

A j(φi,s−i)

l j(φi,s−i)
− Ai(φi,s−i)

li(φi,s−i)

=
Ai(s)
li(s)

+ ∑
j∈N\{i}

A j(s)
l j(s)

− ∑
j∈N\{i}

A j(φi,s−i)

l j(φi,s−i)
− Ai(φi,s−i)

li(φi,s−i)

=
Ai(s)
li(s)

+ ∑
j∈N\{i}

A j(s)
li(s)
l j(s)

li(s)
− ∑

j∈N\{i}

A j(φi,s−i)
li(s)

l j(φi,s−i)

li(s)
− Ai(φi,s−i)

li(φi,s−i)

=
Ai(s)+∑ j∈N\{i}(A j(s)

li(s)
l j(s)
−A j(φi,s−i)

li(s)
l j(φi,s−i)

)

li(s)
− Ai(φi,s−i)

li(φi,s−i)

=
Ai(s)+Aφ

i (s)
Ai(s)+Pi(s)

− Ai(φi,s−i)
li(φi,s−i)

This is the most general form of the WLU of EItot . Different assumptions result in
specific special versions that can be useful in various settings:

1. When a robot is absent from the system it cannot contribute to the system and its
costs are zero. The expression Ai(φi,s−i)

li(φi,s−i) is the effectiveness index of robot i when
it is absent. Since we assumed that gains in active time are zero we can express
the absence of the robot i as if it was always in active time during the cycle length
li(φi,s−i). This assumption can be expressed as Ai(φi,s−i) = li(φi,s−i). Therefore
we can see that Ai(φi,s−i)

li(φi,s−i) = 1. The WLU will now take the form WLUEItot
i (s) =

Ai(s)+Aφ

i (s)
Ai(s)+Pi(s)

−1.

2. Collisions are synchronous in our model. This means that cycle length depends
only on the joint action selected and not on the robot. For all pairs of robots i, j ∈ N
and all joint actions s: li(s) = l j(s). Therefore, we can remove the subscript and
write l(s). The effect of this assumption is that now Aφ

i (s) takes a simpler form:
Aφ

i (s) = ∑ j∈N\{i}(A j(s)−A j(φi,s−i)
l(s)

l(φi,s−i)
)
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3. The absence of robot i does not affect cycle length: l(s) = l(φi,s−i). Aφ

i (s) can now
be expressed as Aφ

i (s) = ∑ j∈N\{i}(A j(s)−A j(φi,s−i)). Now Aφ

i has a meaning - it
is the change in the total active time of the system due to the absence of robot i.

Now, WLU takes the form

WLUEItot
i (s) =

Ai(s)+∑ j∈N\{i}(A j(s)−A j(φi,s−i))

Ai(s)+Pi(s)
−1

Omitting the −1 element will not change the optimization problem. From the above
formula of WLU we can see that either minimizing Ai(s) or Aφ

i (s) minimizes WLU . Com-
paring WLU to EI we can see that EI is the same as WLU but with Aφ

i = 0. This means
that WLU , unlike EI, in addition to minimizing the robot’s active time, also gives weight
to minimizing the effects of the robot on other robots’ active time.

Learning According to WLU

Robots initially do not know what action is best for every situation and therefore need to
learn it. Now that we have an individual utility function (WLU), we know according to
what utility they need to learn, but we still do not know how they will learn it.

There are many learning algorithms suitable for this task, and indeed we use a few
in the experiments (see Chapter 5). As an example, we demonstrate learning using the
Q-Learning algorithm [45], due to its simplicity. It is perhaps the most popular learning
algorithm in the field of Reinforcement Learning [41]. We will show how we use this
algorithm in the context of approximating WLU.

Q-Learning is based on iteratively learning according to a reward r in order to evaluate
which action s is best to choose given that a robot was in state x and transitioned to state
x′. This evaluation of the state and action pair is given by the Q-Function Q(x,a). In the
context of our model of reactive arbitration the reward will be the WLU approximation,
the actions will be the coordination methods and for now, we focus on a single state and
we will discuss multiple states later. This learning algorithm is built upon reactive arbitra-
tion. Given that a robot is about to collide, the robot will execute the following procedure
(Figure 3.3):

1. Given state x it chooses argmaxs(Q(x,s)) with some exploration rate ε .

2. Performs the coordination method and obtains the active time A.
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Figure 3.3: Reactive arbitration using the Q-Learning algorithm.

3. Returns to task execution up until next collision.

4. When the robot is about to collide once again the robot:

(a) Obtains the passive time P

(b) Calculates the WLU approximation ŴLU according to A,P and other statistics.

(c) measures the new state x′

(d) Updates Q(x,s) by the following rule: Q(x,s) = (1−α)Q(x,s)+α(ŴLU +

γ max′s(Q(x′,s′))) where α ∈ [0,1] is called the learning rate and γ ∈ [0,1] is
called the discount factor.

It is shown in [45] that in single agent domains in a Markov Decision Process (MDP),
if an agent learns a policy using Q-Learning with any reward function R(x′,a,x), it will
converge to the optimal policy in terms of the long-term reward.

In our context there are two main differences. The first difference is that learning is
stateless. In terms of Q-Learning it simply means there will be only one state and in this
case Q-Learning will become an exponential moving average. The second difference is
that Q-Learning is designed for a single agent. There are extensions of Q-Learning for
multi-agent systems [9, 24] but they either rely heavily on agent’s knowledge of other
agents or they hold no guarantees of convergence.

The use of stateless Q-Learning by multiple agents based on intrinsic measurements
mimics the dynamics which lead potential games to converge to a potential function opti-
mizers (each player unilaterally changes to a better action in terms of its individual payoff).
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Therefore, we use stateless Q-Learning with ŴLU in order for the robots to converge to
an optimal joint action in terms of EItot .

Even though we have shown a method to learn optimal actions according to a more
general model, there are still some gaps between this model and multi-robot coordination
in practice. Those gaps will be thoroughly addressed in the next chapter.
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Learning in Practice

In this chapter we first list all the gaps between our model and what happens in prac-
tice during multi-robot coordination. We then address each gap by suggesting a practical
solution for it.

Gaps between our theoretical model and practice

• The WLU of EItot for a robot needs knowledge of other robots’ active times.

• Collisions are asynchronous while this model is synchronous.

• Collisions are not mutual: When robots are about to collide, either synchronously or
asynchronously, there is no guarantee that either one of them will actually recognize
a collision and act to avoid it.

• Active and passive times may vary from the viewpoint of one robot, even for the
same method.

• Different clusters of robots can collide at the same time in different places. This
model does not take that into account.

Approximating WLU of total EI

Even though we now have a closed form of WLU , it is still required from the robot to
know the active times of other robots. However, effects of a robot on other robots tend to
be local - it is highly unlikely that a robot will affect the active time of another robot in the
opposite edge of a map. Although we still do not know the active times of robots, even
if they are close, each robot has sensing capabilities of its local environment. Using those
sensing capabilities it can measure an approximation ŴLU i of how it affects on the active
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time of those nearby robots. From now on, we will almost exclusively discuss the WLU
of EItot . Therefore, unless stated otherwise, we will remove the superscript and denote
WLUi(s) as the WLU of EItot .

WLUi is composed of three elements - Ai,Pi and Aφ

i . Since a robot knows Ai and
Pi, it only needs to approximate Aφ

i . Therefore, approximating WLUi will take the form

ŴLU i(s)=
Ai(s)+Âφ

i (s)
Ai(s)+Pi(s)

. Below are examples of how we can use this form of approximation:

• ŴLU i(s) =
Ai(s)+0

Ai(s)+Pi(s)
= EIi(s). EIi is also an approximation of WLUi yet it is prob-

ably not a good approximation since it does not take into account its effect on other
robots.

• ŴLU i(s) =
Ai(s)+n·A0
Ai(s)+Pi(s)

where n is the number of robots in the system and A0 is an
approximation of how much active time was added to each robot due to the presence
of robot i. While this approximation does take into account effects on other robots, it
is probably not feasible because of two reasons: The first being the fact that a robot
does not necessarily know the number of robots in the system n and the second is
the fact that effects are probably local and therefore do not necessarily involve all n
robots in the system.

• ŴLU i(s) =
Ai(s)+na·A0
Ai(s)+Pi(s)

where na is the number of robots affected by this robot and
A0 is the same as before. This is a much more feasible structure than the former
due to overcoming the two reasons why the former was infeasible: The robot does
not need to know n - it only needs to know na. Due to locality of effects na can
be measured by sensors. For example, one way of measuring na is by the number
of robots in the vicinity. When using na instead of n, it no longer assumes that all
robots are affected and therefore, it is probably a better approximation.

Due to both being simple and the most feasible out of the above suggested forms for
ŴLU i, we focus on the form ŴLU i(s) =

Ai(s)+na·A0
Ai(s)+Pi(s)

. There are now two questions we need
to answer: The first is how na is measured and the second is how A0 is measured.

Measuring the number of affected robots

We suggest two possibilities for counting the number of affected robots:

1. By density - Before coordinating, a robot measures its density and assigns it to na.
The density is a measurement of how many robots were in the vicinity of this robot.
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2. By collisions - During the coordination and also in the resulting passive time the
robot counts how many robots entered collision avoidance because of this robot. It
then assigns this number to na.

Measuring by density has the advantage of being simple and possible to be done using
sensing. However, there are two main disadvantages to this method: The first is the fact
that density can be measured in many ways. For example, one way to measure it is to
measure the number of robots in a given radius - different radii may yield different results
and therefore different approximations. The second disadvantage is that the measurement
is done only in the beginning of the collision and not over all the cycle. This can cause
inaccuracies. For example, if in the beginning the density was low and during the rest of
the cycle it was high we will get an under-approximation.

Unlike, measuring by density, measuring by collisions has both the advantage of being
measured over all the cycle rather than only in the beginning and the advantage of having
only one way to do so. However, its main disadvantage is that it is more difficult (yet not
impossible) to use this measuring method.

Measuring active time added to other robots

In order for a robot to measure A0, it needs to know both the active times of other robots
with and without the absence of this robot. Both cannot be measured by the robot. A robot
cannot measure anything when it is absent and when it is not absent, it cannot measure
the active time of affected robots. However, we know that A0 is a real value and it exists.
Therefore, we suggest approximating it. Given a history of play hc and a joint action s∈ S,
we will define C(s)⊆ {1, ...,c} as the subset of collision indices where joint action s was
played. In the same manner we will define C(si) as the subset of collision indices where
robot i chose individual action si ∈ Si, regardless of the actions chosen by other robots.
Below is a list of possible approximations:

• EI, A0 = 0 - Assume active times of other robots remain unaffected. Equivalent to
calculating EIi.

• Same EI for all, A0 = Ai(s) - Assume each robot’s active time is added this robot’s
active time.

• Average over time, A0 =
1
c ∑

c
j=1 Ai(s j) - The addition in active time to other robots

is this robot’s average active time measured in its history of play.
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• Average over actions, A0 = 1
|Si|∑s′∈Si

1
|C(s′)|∑ j∈C(s′)Ai(s j) - The addition in active

time to other robots is by measuring this robot’s average active time for each type of
method it selected s′ ∈ Si and then averaging over those averages.

• Minimum over actions, A0 = mins′∈Si(
1

|C(s′)|∑ j∈C(s′)Ai(s j)) - The addition in active
time to other robots is by finding the individual action s′ ∈ Si that has the lowest
average active time.

• Maximum over actions,A0 = maxs′∈Si(
1

|C(s′)|∑ j∈C(s′)Ai(s j)) - The addition in active
time to other robots is by finding the individual action s′ ∈ Si that has the highest
average active time.

Dealing with Asynchronous Collisions

In section 4.1 we made a list of the gaps between existing models of reactive arbitration and
what happens in practice. One of the gaps is the fact that collisions can be asynchronous.
There is absolutely no guarantee that all robots will collide together. Figure 4.1 shows the
difference between theory and reality by showing two diagrams, each representing a task
run.

Robot 1
Robot 2
Robot 3

Robot n

…

Ideal task run

Robot 1
Robot 2
Robot 3

Robot n

…

Real task run

Figure 4.1: A complete task run according to theory vs. reality. Bars with di-
agonal lines denote the active times and bars with no lines denote the passive
times. Perpendicular lines denote the times where robots jointly collide and each
chooses a coordination method. An ideal run is expressed as a sequence of syn-
chronous collisions while in practice it is not so.
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Therefore, in order to represent a task run with asynchronous and non-mutual colli-
sions, we treat every time where at least one robot detected a collision as a synchronous
joint collision, even if not all robots detected a collision. In terms of the collision matrix,
if a robot did not actually detect an imminent collision, we treat it as if it stays with its
choice of coordination method. Figure 4.2 shows this representation.

Robot 1
Robot 2
Robot 3

Robot n

…

Idealization of a real task run

Figure 4.2: Treating a task run as a run with synchronous collisions. If a robot
does not detect a collision it effectively choses a ’nop’ action. Bars with diagonal
lines denote the active times and bars with no lines denote the passive times.
Perpendicular lines denote a synchronous joint collision.

Dealing with Non-Mutual Collisions

In addition to collisions being asynchronous they can also be non-mutual. This means
that even if robots jointly collide at the same time, there is no guarantee that all of them
will recognize they collided, whether they are close or far from each other. This is mainly
caused by limited sensing capabilities. For example, if a robot can only sense robots that
are in front of it, it will not recognize another robot colliding it from the back.

When a joint collision occurs and a robot cannot recognize it - there is nothing this
robot can do but keep doing what he did. On the other hand, whenever it knows it collided
it must do something. If it collided in passive time, it should coordinate. The main question
is what it should do when it is in active time and it collides once again with a robot. One
option is to keep coordinating as if no collision occurred. Another option is to preempt the
current coordination method and choose either the same or a new coordination method.
According to our modeling the rightest way to treat collisions during active time is to
preempt the current coordination method and choose a new coordination method.
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Even though preempting is the best way in theory to deal with collisions in active time,
we chose not to do so. This is due to the fact that the criteria for detecting a collision can
cause thrashing - repeated preemption of the coordination mechanism due to the collision
criteria being true for consecutive samples. Therefore, not responding to collisions during
active time acts as an anti-thrashing mechanism. For example, let there be a multi robot
system where each robot’s collision criteria is that there is at least one robot within a
distance less than d from it. Each robot, in its controller’s main loop checks this condition
repeatedly several times per second. If another robot indeed was in a distance less than
d from this robot for a respectable amount of time, this robot will enter coordination and
then for each cycle in its controller’s main loop it will repeatedly preempt the coordination
method.

Dealing with varying active and passive times

In Section 3 we have assumed that outcomes of a collision rely only on the joint action
selected. In terms of a WLU approximation it includes all of its elements - Ai,Pi and
Aφ

i . It can be directly inferred that the cycle length l = Ai +Pi will stay the same given
a joint collision. However, a robot does not know the joint action played and from its
viewpoint the active and passive times it will obtain will vary, even if it chooses the same
individual action repeatedly because the active and passive times also depend on other
robots. In addition, in practice the cycle length may vary even for the same joint action.
Therefore, we would like to do some averaging on Ai,Pi and Aφ

i and then calculate a WLU

approximation which is an averaging over the last collisions ŴLU = Ai+Ai
φ

Ai+Pi
.

This can cause inaccuracies in learning WLU approximations. Stateless Q-Learning,
for example, is effectively an exponential moving average depending on its learning rate—
the closer the learning rate the stronger the averaging is. Given that an individual action
si ∈ Si was performed C(si) times, averaging the WLU approximation of this action will

give the expression 1
|C(si)|∑ j∈C(si)

Ai(s j)+Aφ

i (s
j)

Ai(s j)+Pi(s j)
. Such averaging sums the WLU approxi-

mations and divides them by the number of collisions. What we actually want is to first
average Ai,Pi and Aφ

i and then assign it in the WLU approximation formula. This may
cause different results.

We now show an example: Consider the case where a robot i collided 20 times. In
all collisions but the last one Ai = 500 and Pi = 10 and in the last collision Ai = 500 and
Pi = 1000000. The total time the robot spent in active time will be 500∗20 = 10000 and in
passive time: 10∗19+1000000 = 1000190. Therefore EIi

tot will be 10000
10000+1000190 ≈ 0.01.
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This means that the robot invested very little time on coordinating. On the other hand, if
the robot uses a non moving average based on sampling EI for each collision it will get
1

20(19 · 500
500+10 + 1 · 500

500+1000000) ≈ 0.93. This will cause the robot to estimate that it does
poorly in terms of time fraction it invested on the task (93% of the time spent on collision
avoidance) while the truth is that it does well (1% of the time spent on collision avoidance).

The above difference between the two averaging methods is caused by the fact that the
cycle length Ai +Pi is real-valued signal in continuous time while sampling of Ai,Pi and
Aφ

i is disctete. Semi Markov Decision Processes (SMDP) [10] are models that represent
discrete sampling of a continuous-time reward. They also introduce a Q-Learning variant
for SMDPs. We therefore suggest a heuristic based on SMDP which is a modification of Q-
learning that will overcome this inaccuracy without changing the informational demands
of the robots. We call this heuristic the Continuous Time Q-Learning. The formula is
similar to Q-Learning but with some: First is the learning rate α is now a function of cycle
length - The bigger the cycle length the closer it will be to 1, thus giving more weight to
collisions with longer cycle length. Ai,Pi and Aφ

i are now also scaled according to cycle
length.

1: α ← 1− e−
∆t
τ

2: A′i← (1− e−
Ai
τ )

3: P′i ← e−
Ai
τ (1− e−

Pi
τ ) ·Pi

4: Aφ ′

i ← (1− e(− Aφ ′
i
τ
)) ·Ao

5: q(xi,si)← (1−α)q(xi,si)+α(−A′i+Aφ ′
i

A′i+P′i
+ γ ·maxs′(Q(x′i,s

′)))

Algorithm 1: q_learning_continuous_time(Ai,Pi,Ao,τ,γ,xi,x′i,si)

Different clusters of robots collide at the same time in different places

In a real-world system the actions selected by the robots are not the only factor in the
outcomes of the system. An additional factor is the clustering of the robots during a
collision - robots are found in different areas of the map at the same time. Therefore, while
a stateless representation can drive the system towards better performance, it is limited by
the fact that it is unable to distinguish between different clustering of a joint collision.
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Figure 4.3: Different clusters of robots jointly collide at different times in an
idealized system with synchronous collisions.

Figure 4.3 shows an example of an ideal system where all collisions are synchronous.
In this example: In the second collison robot 1 collides with robot 2 and robot 3 with robot
4. In the third collision all robots collide with each other. In the fourth collision robot 1
collides with robot 3 and robot 2 collides with robot 4. In the fifth collision robot 1 collides
with robot 4 and robot 2 collides with robot 3.

Therefore, we need to find a way for the robot to recognize what robots are in the same
cluster with it. In many multi-robot systems it is very feasible to assume that robots are ho-
mogeneous. This, in general, means that they have the same body and behavior. Therefore,
when robots are homogeneous there is no need for a robot to know which robots collide
with it, but only how many collided with it. This is a significantly easier task. Therefore,
we address this gap by defining the Density as a state space. The density measured by a
robot is the number of robots which are within a given radius around it. The density will
approximate the cluster size and will make the robot able to choose different actions for
different densities. Learning the actions can be done with any learning algorithm that takes
states into account, including the Q-Learning and continuous time Q-Learning algorithms.
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Experiments

Experimentation environments

Before describing the experiments that were conducted, we will introduce the environ-
ments we conducted experiments on. We initially started with the Alphabet Soup simulator
and then moved to experimenting with real robots - the Krembot swarm robots.

Alphabet Soup

The Alphabet Soup simulator simulates the multi-robot task of order picking. Order pick-
ing is the task of collecting items, usually in a structure like a logistic warehouse, in order
to compose orders made by customers. In the Alphabet Soup simulator the items are por-
trayed as letters and the orders are portrayed as words. It is comprised of several word
stations where each word station has a list of words to be composed, buckets which con-
tain letters, letter stations which are used to re-fill buckets with letters and the robots which
do all the work. The robots have three main tasks: The first is to take a bucket to a word
station in order to put one letter in this station. The second is to return a bucket to its
original position and the third is to take a bucket to a letter station.
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Figure 5.1: The Alphabet Soup simulator. Red lines are the robots, Purple circles
are the buckets, Green circles are the word stations and cyan circles are the letter
stations.

In this simulator, the task allocation for the robots is centralized and the collision avoid-
ance mechanism is a reactive heuristic which is a combination of dynamic window (mov-
ing towards most vacant direction) and waiting in place for a random amount of time.
Robots apply this collision avoidance mechanism when they sense that they are too close
to other robots.

Modifications

The task allocation mechanism remains unmodified by us. So is the mechanism which
detects and decides when a robot should coordinate. We only modify the coordination
mechanism itself. We do it by replacing the original collision avoidance mechanism with
a mechanism that arbitrates between reactive coordination methods. It should be noted
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that since the original collision avoidance mechanism can be treated as a reactive method,
it can be included inside the mechanism which arbitrates between reactive methods.

Experimentation settings

The main measurement of performance for this simulator is the amount of letters placed
in word stations in a given amount of time. Unless stated otherwise, Each simulation is 10
minutes long with the last 30 seconds used for measuring performance and other statistics.
In addition, unless stated otherwise, measuring na is done by collisions and not by density.

Krembot swarm robots

After testing reactive arbitration in the Alphabet Soup simulator we moved to testing the
adaptation in a real world environment. We used Robotican’s Krembot swarm robots in a
domain which is a variant of multi-robot foraging.

Krembot robots are swarm robots with relatively limited sensing and processing capa-
bilities. They are cylindrical-shaped robots with a height of 10.5 cm and a diameter of 6.5
cm. Below is a list of specifications that made our implementation possible:

• Bumpers: 4 bumpers evenly spread in 90 degree intervals around their circumfer-
ence.

• RGB and ambient sensors (RGBA): 8 sensors evenly spread in 45 degree intervals
around their circumference.

• Proximity sensors: 8 sensors evenly spread in 45 degree intervals around their cir-
cumference, together with the RGB and ambient sensors. Each sensor can sense
proximity up to a range of 25.5 cm.

• RGB LEDs: Between the RGB, ambient and proximity sensors. 8 RGB leds evenly
spread in 45 degree intervals around their circumference.

For a more detailed list of specifications, visit https://www.robotican.net/kremebot.
It should be noted that despite they have a 9 degrees-of-freedom IMU, the Krembots we
used are prototypes which do not utilize this IMU. Therefore, the Krembots do not have
sensing capabilities of the linear acceleration, angular velocity and the absolute orientation
of themselves.
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The domain we tested reactive arbitration on, is a variant of multi-robot foraging. In
Foraging, robots search an area in order to find pucks and retrieve them to their homebase.
In general, gathering pucks requires robots to have grippers. Krembots, however, do not
have grippers. Therefore, when we say they take and retrieve pucks they act as if they
found and retrieved pucks.

In this domain there are a few stations fixed in position where robots can acquire pucks
from. Once a robot reaches one of those stations, it takes the puck and retrieves it to
a small area which we call the homebase. Once a robot retrieves this puck it returns
for searching to acquire a puck from a station. We say it is a variant of foraging and
not foraging because in foraging there are only pucks spread over the field and no fixed
stations which provide those pucks. It should be noted that since the Krembot robots have
no localization capabilities they are unable to either remember or plan a path to one of the
stations. Therefore, they do it by randomly searching for a station.

We implemented this domain using a 150x80 cm table where we evenly spread 11
stations, each fixed to a position. In order to make the robots be able to go to the homebase,
we put a light source in the bottom right corner that the robot could home to using its RGB
and ambient sensors. The behavior of the robot can be described by three states and a few
transitions from one state to another caused by various triggers. The three states are:

• Wander: Search for a station by randomly wandering over the field. Whenever the
robot is in state wander its LED light will be magenta (both red and blue simultane-
ously).

• Go to homebase: Go to the homebase to retrieve the puck after a station was found.
When the robot is in this state its LED light will be blue.

• Resolve conflict: The robot enters this state when it detects an imminent collision
with another robot (not a static obstacle). In this state the robot learns based on EI
and chooses a reactive coordination method. When the robot is in this state its LED
light will be red.

If a robot detects an imminent collision with a static obstacle it executes a fixed be-
havior, unlike with a robot where it executes a coordination method by reactive method
arbitration. For each of the three states there are several transitions from it to other states:

• Wander -> Go to homebase: The robot found a station.
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• Go to homebase -> Wander: The robot retrieved a puck to the homebase.

• Wander/Go to homebase -> Resolve conflict: The robot detected an imminent colli-
sion with another robot.

• Resolve conflict -> Wander/Go to homebase: The robot finished executing the reac-
tive coordination method and goes back to its previous state.

This domain requires the robot to have an ability to distinguish between a few objects.
The objects are: A static obstacle, a station, a robot and the homebase. Each of those
objects have a different way to be recognized by the robots:

• Robots - Each robots’ LEDs emit either blue light, red light or both. Therefore,
each robot senses another robot by measuring the intensity of the red and blue light
sensed by the RGB sensors and see if at least one of the two passes a fixed threshold.

• Static obstacles - If the proximity sensors of a robot have a reading lower than a
specific threshold and the red and blue lights sensed by the RGBA sensors do not
cross the threshold for detecting a robot, the robot considers it as detecting a static
obstacle.

• Homebase - When in state "Go to homebase", a robot goes towards the direction
which has the highest intensity of green light. In order for a robot not to confuse
between the homebase and other robots (which also emit light), we wrapped the
lights of the homebase with a green cellophane paper in order for it to emit only
green light and not red or blue lights. We also added another light source above the
green light in order to avoid occlusion of the green light by the robots.

• Station - We used small wooden cylinders for the stations. Each cylinder is of
enough height to be touched by the bumpers and short enough to not be recognized
by the RGBA and proximity sensors. Therefore, when in state "Wander", if one of
the bumpers of the robot is pressed and the robot did not detect another robot or a
static obstacle as described above, it treats this sensation as detecting a station. If
this happens when the robot is in state "Go to Homebase" it backs off with a random
arc in order to avoid this obstacle and go towards the homebase.
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Since the above implementation heavily relies on sensing light, we dimmed the sur-
rounding lights as much as possible in order to prevent light pollution which may cause
the Krembots to falsely sense one of the objects.

Figure 5.2: Krembot experimentation environment. An example with 4 robots.

Figure 5.2 shows the environment where experiments with the Krembots were ran.
On the table, the wooden cylinders are the stations where robots gather pucks from. The
green light in the upper-left corner is the homebase. There may be a situation where robots
obstruct the light emitted from the homebase, causing other robots not to be able to orient
themselves towards the homebase. Therefore, we added another light source above the
green light for the robots to be able to orient towards the homebase from afar. There are
four robots in this figure: The leftmost robot retrieved a puck to the homebase and is in
state "Wander" (magenta LED light) searching for a station to collect a puck from. The
two robots in the center have detected that they are about to collide with each other and
therefore are in state "Resolve conflict" (red LED light) and the robot to the right is in state
"Go to homebase" (blue LED light) since it found a station to collect a puck from.
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Experimentation settings

In a similar manner to Alphabet Soup, the main objective of the robots is to gather as
many pucks to the homebase in a given time. We would like to experiment with reactive
arbitration that will maximize this objective.

We experimented with two Best evade coordination methods, one with a time param-
eter of 500ms and the other with a time parameter of 10000ms. The duration of each run
is 1 hour long. For each hour-long we logged each event such as a collision or a puck that
was retrieved. From this log we extracted statistics on the number of pucks retrieved and
the coordination method choices of the robots. We extracted statistics based only on the
last 15 minutes of the run since we want the learning to stabilize.

Using the above configuration, we tested the performance of 4 robots and 8 robots for
several configurations. We measure the group performance of each configuration and the
time fraction the robots spent on Best evade 500. This time fraction includes the active
time and the resulting passive time of choosing Best evade 500. Since there are only two
methods, it is easy to derive the time fraction of Best evade 10000.

Experiments: Learning vs. Adaptation

We distinguish between learning and adaptation. Learning focuses on converging to a
policy which consistently chooses the best action for each state. On the other hand, adap-
tation focuses on rapidly changing between policies according to what is best now.

Previous work by Erusalimchik et al [27] where online reactive arbitration was used,
focused on adaptation. They used stateless Q-Learning in order for the robots to learn the
EI. However, to make it adaptive in their specific implementation, they used a very high
learning rate (as high as 0.8). This can cause the robots to rapidly switch between policies.

Adaptive methods do not always work

Despite its empirical success in [27], adaptation is not a magic bullet. As a first step with
the Alphabet Soup simulator, in [14] we initially tried EI-based adaptation over a set of
five coordination methods:

• Repel - Go backwards for a given amount of time.

• Noise - Go towards a random direction for a given amount of time.
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• Aggression - Choose between backing of like in Repel ("Meek" behavior) or staying
put until robot has moved ("Aggressive" behavior)

• Original - The original reactive method of Alphabet Soup

• Best Evade - Always go to most vacant direction for a given amount of time.

We measured performance as a function of the number of robots in the system. We first
tested the performance of each of the five reactive methods alone. We then tested the per-
formance of random selection between those methods. Finally, we tested the performance
of the EI reward with stateless Q-Learning. The parameters of the stateless Q-Learning
formula were selected for it to be adaptive: Learning rate α = 0.5 and exploration rate
ε = 0.1. Simulations were run for one minute with the last 30 seconds for measuring
results. Each coordination method except Original has a time parameter - the amount of
time (in this case in ms) that the robot spends in executing this method. For each of the
methods we selected 20 milliseconds.
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Figure 5.3: Initial results obtained in [14]. x-axis is the group size and the y-axis
is the group performance in terms of total placed letters.

Figure 5.3 shows that EI-based adaptation does not perform best. Both random selec-
tion and the Original coordination methods slightly outperform it.
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If in the previous experiment we tested a heterogeneous action set we now test homo-
geneous action sets. Those action sets are composed of the same type of action but with
different time parameters. We now show that with real robots EI-based adaptation works
very poorly. Using 4 Krembots, we test two coordination methods of the same type but
with different time parameters - Best Evade 500 and Best Evade 10000. We first test each
method separately, then test random selection between the two methods and finally test
EI-based adaptation with the two methods. The Q-Learning algorithm with a learning rate
of 0.5 and exploration rate of 0.1 was used (same as in previous experiment in Alphabet
Soup. Unlike previous experiment, we measure performance (total retrieved pucks) as a
function of the time fraction of Best Evade 500. The time fraction of a method is the total
percent of time the system invested in this method - both the active time and the passive
time resulting from using this method.
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Figure 5.4: Initial results for Best Evade 500 and Best Evade 10000 with 4 Krem-
bot robots. x-axis is the time fraction of Best Evade 500 and the y-axis is the
group performance in terms of total retrieved pucks.

Figure 5.4 shows that EI-based adaptation performs poorly - significantly lower than
Best Evade 500 and even slightly lower than random selection. If EI-based adaptation
works best we would expect it to always select Best Evade 500 or adapt to something
better.

We return to Alphabet Soup and experiment with various homogeneous action sets
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composed of only Best Evade methods. The number of robots was set to 40. We started
with the method set Best Evade 20, Best Evade 2000 and moved on to larger sets with
more parameters in between 20 and 2000. Below is a list of all action set sizes and the
parameters used. All of the simulation runs below used the stateless Q-Learning algorithm
with the same parameters - learning rate 0.5 and exploration rate 0.1.

Number of methods Parameters
2 20, 2000
6 20, 100, 200, 500, 1000, 2000

12 20, 100, 200, 500, 600, 800, 1000, 1200, 1400, 1600,
1800, 2000

24
20, 50, 75, 90, 100, 200, 300, 400, 500, 600, 700,
800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600,
1700, 1800, 1900, 2000

Table 5.1: The number of coordination method set and the parameters used in
each of the sets.
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Figure 5.5: Group performance as a function of the number of coordination
methods.

Figure 5.5 shows that the larger the set of methods the robots can arbitrate between,
the lower their group performance is. We would expect from an optimal algorithm to
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either improve performance or stay the same the more choice it has arbitrating between
algorithms, especially given that in the above action sets larger action sets contain all the
actions of smaller action sets.

Adaptive methods can sometimes work better than learning

We now show that adaptive methods can sometimes work better than learning. In order
to do so, we test adaptation with EI and compare it to learning with EI. We compare Best
Evade 20 and Best Evade 2000 in the Alphabet Soup simulator. Adaptation with EI is
done by using stateless Q-Learning with a learning rate of 0.5 and exploration rate of
0.1. Learning EI is done by using stateless Q-Learning with a learning rate of 0.05 and
exploration rate of 0.02 in order for the robots to not rapidly change between actions.

We show the performance of the two configurations as a function of the time fraction
of Best Evade 20 in Alphabet Soup. In addition, we show two curves which we call
the Individual Mix and the Population mix. The individual mix is a configuration of the
robots where during the whole run each robot, given a collision, chooses Best Evade 20
with probability p and Best Evade 2000 with probability 1− p. The population mix is a
configuration of the robots where during p percent of the robots always choose Best Evade
20 and the rest always choose Best Evade 2000.
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Figure 5.6: Group performance as a function of the number of coordination
methods.
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Figure 5.6 shows that adaptation performs significantly better than learning. In addi-
tion, the individual mix, for most of the time fractions, performs significantly better than
the population mix. When robots put an emphasis on learning they eventually converge to
a population mix. Therefore, we can conclude that it is not always best for each robot to
converge to one action.

Learning can perform better than adaptation

In a similar manner, we now show that unlike Alphabet Soup, learning performs better
than adaptation using the Krembots. We tested Best Evade 500 and Best Evade 10000
with EI using the same Q-Learning parameters for learning and adaptation. Figure 5.7
indeed shows that learning performs significantly better than adaptation.
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Figure 5.7: Learning vs. adaptation in Krembots for 4 robots (upper chart) and
8 robots (bottom chart).
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Learning can improve performance

We show that even if learning is not always better than adaptation, it can improve per-
formance in comparison to other algorithms. We test two heterogeneous action sets in
Alphabet Soup. We list the action sets and their timing parameters:

1. Repel (700), Noise(540), Aggression(500), Original, Best evade(600).

2. Repel (200), Noise(500), Aggression(2000), Original, Best evade(200).

For each of the action sets we compare the Original coordination method to random
choice and then to the Minimum Over Actions WLU approximation. For the WLU ap-
proximation we used the continuous time Q-Learning algorithm with τ = 1010 nanosec-
onds and an exploration rate of 0.02.
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Figure 5.8: Performance of random choice vs. the original coordination method
and the Minimum Over Actions WLU approximation.

Figure 5.8 shows that learning using the WLU approximation significantly improves
performance in action set 1 and performs slightly better in action set 2.

We also show with the Krembots that not only learning EI with regular Q-Learning im-
proves performance, but also with more learning variants: EI and Minimum Over Actions
approximations, both using continuous-time Q-Learning with τ = 1010 nanoseconds and
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an exploration rate of 0.02 both improve performance significantly over EI-based adapta-
tion.
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Figure 5.9: Different variants of learning vs EI-based adaptation in Krembots
for group sizes of 4 (upper chart) and 8 (lower chart).

Figure 5.9 indeed shows that all variants of learning perform significantly better than
adaptation.

Experiments: Regular Q-Learning vs. Continuous time Q-Learning

We will now compare regular Q-Learning to continuous time Q-Learning. We do so
by measuring the performance of different WLU approximations each with regular Q-
Learning and continuous time Q-Learning. The WLU approximations are the ones de-
scribed in section 4.2. The parameters of regular Q-Learning are: learning rate was 0.05
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and the exploration rate was 0.02. The parameters of continuous time Q-Learning are:
τ = 1010 nanoseconds and the exploration rate was 0.02. The experiments were run in the
Alphabet Soup simulator with the action set containing two actions: Best Evade 20 and
Best Evade 2000.
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Figure 5.10: Performance of different WLU approximations with regular Q-
Learning (upper chart) vs with continuous time Q-Learning (lower chart) and
where they are relative to the population mix.

Figure 5.10 shows a consistent pattern in the results in terms of the time fractions. The
approximations show up in a specific order in terms of time fractions. The Maximum Over
Actions and Average Over Actions tend to be at the leftmost side of the graph, preferring
Best Evade 2000. The Average Over Actions approximation also perfers mostly Best
Evade 2000, though in continuous time Q-Learning it has more bias towards selecting Best
Evade 20. Following it is the Minimum Over Actions approximation which is somewhere
in the middle. After this approximation is the EI approximation which is one time in the
middle and one time towards 80% Best Evade 20. Finally, there is the Same EI For All
approximation which always sticks to about 80% Best Evade 20. This pattern is consistent
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with the characteristics of the approximations - approximations that give a heavier weight
on effects of the robot on other robots, such as the Maximum over actions and Average
over actions, tend to choose Best Evade 2000 while approximations that give lower weight
such as EI and the Minimum over actions tend more towards Best Evade 20. In both of
the configurations this order is kept but it can be seen that in continuous-time Q-Learning
the results are shifted towards Best Evade 20.

In terms of performance it can be seen that EI performs best with Regular Q-Learning
and poorly with continuous time Q-Learning while the Minimum Over Actions approx-
imation performs best with Continuous Time Q-Learning while it does not do so with
regular Q-Learning though it does not perform as poorly as EI did with continuous time
Q-Learning. As we have stated before, EI is also a WLU approximation. We know it
is a poor WLU approximation since it assumes it does not have any negative effects on
other robots. It indeed can be seen that in continuous time Q-Learning EI is an under-
approximator.

Experiments: Estimating number of affected robots by different methods

In section 4.2 we presented two ways of measuring na: By density and by collisions. We
want to see how the two measurement methods differ in both behavior and performance.
Therefore, we take two steps: The first is, given a configuration composed of an action
set, a coordination method and a learning algorithm, to obtain the histogram of na for each
coordination method for both ways of measuring it. The second step will be to see the
performance of each way of measuring na.

We start with the Alphabet Soup simulator using the following configuration: The
action set is composed of two actions, Best Evade 20 and Best Evade 2000. The re-
ward function is the Minimum Over Actions approximation. The learning algorithm is the
continuous time Q-Learning algorithm with a time constant of 1010 nanoseconds and an
exploration rate of 0.02. The number of robots is 40.
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Figure 5.11: Histograms of the measurements of na - density versus collisions.

Figure 5.11 shows that for both Best Evade 20 and Best Evade 2000, measuring na by
density tends to yield higher na values than by collision. A closer look at the histograms
shows that the amount of bias towards lower na for measuring by collisions is different for
the two coordination methods.

Best evade 20 by
density

Best evade 2000
by density

Best evade 20 by
collisions

Best evade 2000
by collisions

7.99 4.69 0.82 2.1

Table 5.2: Average na for each measurement method and coordination method.

Table 5.2 shows the average na for each measurement method and coordination method.
Indeed, measuring by density yields higher na, but it can also be seen that the ratio of
change from by density to by collisions in Best Evade 20 is 7.99

0.82 = 9.74 which is much
higher than for Best Evade 2000: 4.69

2.1 = 2.23. We denote this ratio as r. Since WLU
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approximations have the structure A+na·A0
A+P it means that measuring by collisions will "pun-

ish" Best Evade 20 less. Therefore, we will expect that measuring na by collisions will
make the system prefer Best Evade 20 more than with measuring na by density.
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Figure 5.12: Group performance for each of the configurations (y-axis) and the
average time fraction of the run spent on Best Evade 20 (x-axis) for 40 robots.

Figure 5.12 shows the difference between measuring na by collisions and by density.
Indeed when measuring by collisions, robots have significantly more bias towards choos-
ing Best Evade 20.

We now repeat with the Krembots what we did with the Alphabet Soup. With the
Krembots, we used the following configuration: The action set is composed of two actions,
Best Evade 500 and Best Evade 10000. The reward function is the Minimum Over Actions
approximation. The learning algorithm is the continuous time Q-Learning algorithm with
a time constant of 104 milliseconds and an exploration rate of 0.02. We tested over two
group sizes: 4 robots and 8 robots.

In order to measure density we need to estimate it using the robot’s sensors. Therefore,
we used the 8 built in RGBD (RGB and distance) sensors in each Krembot. We estimated
density by measuring the number of RGB and distance sensors which sense a robot. Since
we programmed the robots to emit either a red or blue light, an RGBD sensor senses a
robot if the red, blue and distance elements pass pre-set red blue and distance thresholds
calibrated accordingly. In order to measure the number of collisions per cycle we looked
at a portion of the videos of each run and measured it manually.

For each collision we measured the number of collisions per cycle, we also gathered
the density obtained by the robot for the same collision. Using this data we constructed
histograms of the density and number of collisions for each coordination method.
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Figure 5.13: Histograms for na for best evade 500 and best evade 10000 when
calculated by measuring density versus when calculated by number of colliding
robots with 4 Krembots.
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Figure 5.14: Histograms for na for best evade 500 and best evade 10000 when
calculated by measuring density versus when calculated by number of colliding
robots with 8 Krembots.

Figures 5.13 and 5.14 show the obtained histograms.

Best evade 500
by density

Best evade 10000
by density

Best evade 500
by collisions

Best evade 10000
by collisions

4 Krembots 1.06 0.47 0.59 1.94
8 Krembots 1.37 0.89 0.52 1.41

Table 5.3: Average densities vs. average collisions for Alphabet Soup and the two
Krembot configurations.

Unlike Alphabet Soup, na is not larger when measuring by density. However, the
density-collision ratio of Best Evade 500 is larger than that of Best Evade 10000. For 4
robots, the ratio of Best Evade 500 is r = 1.06

0.59 = 1.8 and of Best Evade 10000 is r = 0.47
1.94 =

0.24. For 8 robots, the ratio of Best Evade 500 is r = 1.37
0.52 = 2.63 and of Best Evade 10000
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is r = 0.89
1.41 = 0.63. This means that in both 4 robots and 8 robots we will expect measuring

na by collisions to "punish" Best Evade 10000 more and thus to make the system to prefer
Best Evade 500 more.

After we have obtained the histograms we now measure the performance of each
method to measure na for 4 robots and 8 robots. For measuring na by density, we use
the regular formula of a WLU approximation: A+na·Ao

A+P . Since we measured collisions
manually, we measure density and add a compensation factor to the WLU formula accord-
ing to r in order to scale from density measurement to collision measurement according to
the obtained histograms. The approximation will take the form A+ na

r Ao
A+P .

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120

TO
TA

L 
P

LA
C

ED
 IT

EM
S 

IN
 T

H
E 

LA
ST

 1
5 

M
IN

U
TE

S

TOTAL TIME INVESTED IN BEST EVADE 500 (BOTH ACTIVE AND THE RESULTANT PASSIVE TIME)

8 ROBOTS

Best evade 500

Best evade 10000

By Density

By collisions

0

20

40

60

80

100

120

140

160

180

0 20 40 60 80 100 120

TO
TA

L 
P

LA
C

ED
 IT

EM
S 

IN
 T

H
E 

LA
ST

 1
5 

M
IN

U
TE

S

TOTAL TIME INVESTED IN BEST EVADE 500 (BOTH ACTIVE AND THE RESULTANT PASSIVE TIME)

4 ROBOTS
Best evade 500

Best evade 10000

By density

By collisions

Figure 5.15: Group performance for each of the configurations (y-axis) and the
average time fraction of the run spent on Best evade 500 (x-axis) for 4 robots and
8 robots.

Figure 5.15 shows that indeed the compensation factor (By collisions) gave signifi-
cantly more bias towards Best evade 500 and improved the performance of learning with
the best EI approximation.
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Experiments: Rewards based on global utility

Up until now we only tested reward functions that are approximations to the WLU of
EItot . We know that EItot is indirectly connected to U . Despite the fact that EItot is
domain independent and U is domain dependent, we would like to test whether this indirect
connection may impair performance. Therefore, we compare WLU(EItot) approximations
to rewards directly based on U .

In the COIN framework presented in [48], they use reward functions that are based
on U . We experiment with those reward functions in Alphabet Soup. In the context of
Alphabet Soup, the performance U is the total placed letters. Given a time interval ∆t, we
denote ∆l as the amount of letters the system placed in this time. Therefore ∆l

∆t will simply
be the (average) rate of placed letters by the system in ∆t. In the same manner we define
∆li for the amount of letters placed by robot i. Each robot learns rewards based on those
variables in the same manner as in reactive arbitration. This implies that ∆t will represent
a robot’s interval between collisions. The reward functions used in [48] are:

• Team Game (TG) - The rate of placed letters of all the robots in a given time interval.
For robot i, T Gi =

∆l
∆t .

• Selfish Utility (SU) - The rate of placed letters of robot i in a given time interval.
SUi =

∆li
∆t .

• Wonderful Life utility (WLU) - The wonderful life utility of U (not EItot). We
approximate this WLU by the formula WLUi = SUi−

∑ j∈coli SU j·A j

∆t where coli is the
set of robots which collided with robot i in its collision cycle and A j is the active
time of robot j.

• Aristocrat Utility (AU) - This reward is similar to WLU of U . If the main concept of
WLU is the difference between the group performance with the robot and without
the robot, the AU is the difference between the group performance with the robot
performing the current action and the group performance with the robot performing
an "average" action. The approximation of the AU is AUi = SUi− ∑s∈S Pi(s)Qi(s)

∆t where
Pi(s) is the percentage of time robot i chose action s and Qi(s) is the Q-value of robot
i for action s.
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Name Reward formula Learning
method Parameters

TG ∆l
∆t Q-Learning Learning rate 0.1, ex-

ploration rate 0.1

SU ∆li
∆t Q-Learning Learning rate 0.1, ex-

ploration rate 0.1

WLU SUi−
∑ j∈coli SU j·A j

∆t
Q-Learning Learning rate 0.1, ex-

ploration rate 0.1

AU SUi− ∑s∈S Pi(s)Qi(s)
∆t

Q-Learning Learning rate 0.1, ex-
ploration rate 0.1

Table 5.4: Reward functions used for arbitrating Repel, Noise, Aggression, Orig-
inal and Best Evade

Table 5.4 shows all the approximations done alongside with what learning method and
parameters were used. We ran simulations with those approximations for 8 minutes and
measured the rate of placed letters during the whole run. For EI 0.5, we averaged results
over 110 runs, for EI 0.1 104 runs, for TG 103 runs, for SU 106 runs, for WLU 109 runs
and for AU 112 runs.
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Figure 5.16: Performance of rewards based on U .

Figure 5.16 shows that the WLU of U outperforms all other rewards based on U . This
indeed comes in concordance with the results in [48].
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Given that the WLU of U performs best we would like to compare it to different ap-
proximations of the WLU of EItot . We compare WLU(U) to three approximations of
WLU(EItot):

• Minimum Over Actions, continuous time Q-Learning with τ = 1010 nanoseconds
and exploration rate of 0.02.

• Regular Q-Learning, learning rate 0.05, Exploration rate 0.02.

• WoLF-PHC [9], Exploration rate 0.02, α=0.05, δw=0.0005,δl=0.005.
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Figure 5.17: Performance of WLU(U) vs. different approximations of
WLU(EItot) with different learning algorithms.

Figure 5.17 shows that WLU(U) has the lowest performance in comparison to all
WLU(EItot) approximations. This shows that consisting directly on U and its derivatives
does not improve performance, even though rewards based on EItot are connected to U
only indirectly.

Experiments: Different learning algorithms

In this section we test how different learning algorithms change performance given one
reward function. We choose the Minimum Over Actions WLU approximation and test 3
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different learning algorithms over 8 action sets in the Alphabet Soup simulator. Table 5.5
lists the learning algorithms used and their parameters.

Learning algorithm
name Parameters

Regular Q-Learning α = 0.05, Exploration rate 0.02
Continuous time
Q-Learning τ = 1010 nanoseconds, Exploration rate 0.02

WoLF-PHC Exploration rate 0.02, α=0.05, δw=0.0005,δl=0.005.

Table 5.5: The learning algorithms tested and their parameters.

Given the learning algorithms we now specify the action sets that the robots will use
with the algorithms. We divide the 8 action sets (a)-(h) into 3 sub-groups: The first group
(a),(b) and (c) is composed of action sets containing two Best Evade methods, one with pa-
rameter 20 and the other parameter is significantly higher than 20 and it varies. We would
like to see how performance is affected as a result of this variance. The second group, (d)
and (e) is composed of action sets each composed of 24 Best Evade methods with different
time parameters. The difference between (d) and (e) is that in (e) the timing parameters are
10 times bigger than in (d). We would therefore want to test how a multiplier on the time
parameters will affect performance. The third group (f), (g) and (h) are action sets that
were initially tested in [14]. Each action set is composed of 5 heterogeneous methods and
action sets differ only in the timing parameters of their methods. It should be noted that
the Original coordination method has no timing parameter since it is the built-in method
in Alphabet Soup. Each method in action set (h) has a time parameter arbitrarily chosen
to be 20 (except Original). In action set (g), unlike (h), actions were not chosen arbitrarily.
For each action we varied the time parameters and chosen best parameter according to
the highest area-under-curve of performance when testing performance as a function of
number of robots. Action set (f) was obtained when it was found that EI-based arbitration
performed significantly better than each method or a random choice between methods.
Table 5.6 lists the action sets.
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Action set Methods
(a) Best evade 20 and 2000
(b) Best evade 20 and 5000
(c) Best evade 20 and 10000

(d)
Best evade 20, 50, 75, 90, 100, 200, 300, 400, 500, 600, 700,
800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800,
1900 and 2000

(e)
Best evade 200, 500, 750, 900, 1000, 2000, 3000, 4000, 5000,
6000, 7000, 8000, 9000, 10000, 11000, 12000, 13000, 14000,
15000, 16000, 17000, 18000, 19000, 20000

(f) Repel (700), Noise (540), Aggression (500), Original and Best
evade (600)

(g) Repel (200), Noise (500), Aggression (2000), Original and Best
evade (200)

(h) Repel (20), Noise (20), Aggression (20), Original and Best evade
(20)

Table 5.6: The learning algorithms tested and their parameters.

We now test the performance of each of the learning algorithms over all the action sets
for two group sizes: 10 robots and 40 robots.
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Figure 5.18: Performance of the Minimum Over Actions approximation using
action sets (a) to (h) with regular Q-Learning, continuous time Q-Learning and
WoLF-PHC.
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Figure 5.19: (a)-(c): Performance as a function of the second method’s time pa-
rameter. (d),(e): Performance as a function of the timing parameter multiplier.

The simulation in figure 5.18 that not one learning algorithm works best in all action
sets: In both 10 robots and 40 robots regular Q-Learning almost always falls behind the
two other algorithms. Continuous time Q-Learning mostly performs best with 10 robots,
especially in action sets (a),(b),(c) and (e). WoLF-PHC performs best with 40 robots in
(a),(b) and (c) yet significantly falls behind in (e).

Figure 5.19 shows for the first group of action sets how performance varies as a func-
tion of the timing parameter of the second action. It also shows for the second group how
performance varies as a function of multiplying the timing parameters. In the second group
we can see that the performance of continuous time Q-Learning slightly improves while
the performance of the two other algorithms significantly decline. We give a hypothesis
to why continuous time Q-Learning performs best with 10 robots and why WoLF-PHC
mostly performs best with 40 robots.

Why continuous time Q-Learning is best with 10 robots

The more robots there are in a system, the more frequent interactions between robots will
be. We hypothesize that when there are 10 robots in the system, the number of interactions
is fairly low and therefore outcomes of a robot i mostly depend on the robot’s actions
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rather than the joint action. Therefore, the multi-robot system can now be treated as many
single robots. In such a configuration, robots need to find the action which minimizes their
own WLU approximation. In section 4.5 we’ve shown that regular Q-Learning can cause
inaccuracies in measuring the WLU approximation of a method. Since part of the WoLF-
PHC algorithm uses regular Q-Learning, it may also become inaccurate. Therefore, this
may cause regular Q-Learning and WoLF-PHC to select methods that are not optimal in
terms of the WLU approximation.

Why WoLF-PHC performs best with 40 robots on (a), (b) and (c)

WoLF-PHC, unlike Q-Learning, learns a stochastic policy rather than a deterministic one.
A stochastic (and stateless) policy corresponds to the individual mix while a deterministic
policy corresponds to the population mix. As we have seen in figure 5.6, a stochastic
stateless policy mostly performs better than a deterministic stateless policy. Therefore,
WoLF-PHC may perform better in such settings.

Different time constants in continuous time Q-Learning

We now show how performance varies with different time constants when using the con-
tinuous time Q-Learning algorithm. Using Alphabet Soup we simulate continuous time
Q-Learning with the Minimum Over Actions approximation. The action set is the same
action set as in table 5.6. For each action set we test five time constants: τ = 1010,τ =

5 ·109,τ = 109,τ = 108 and τ = 107.
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Figure 5.20: Performance of the Minimum Over Actions approximation with the
continuous time Q-Learning algorithm with different time constants (τ).

Figure 5.20 shows that in most of the action sets, the lower the time constant is, the
lower the performance gets. Since higher time constants give higher averaging it indeed
shows that converging gives a better result.

Experiments: Stateless Q-Learning vs. stateful Q-Learning

Up until now we only experimented with stateless learning methods. We would now want
to see how learning over a state space affects the performance of learning. For continuous
time Q-Learning we would like to choose one time constant based on best performance.
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Since we have seen that higher time constants give higher performance, we choose τ =

1010 as the time constant for continuous time Q-Learning. The state space we test will
be based on the density around the robot when it collided. We test 3 variants of this state
space:

1. All densities - Each state corresponds to only one density

2. Median - Two states. One for densities up to the median density and one for densities
higher than the median density.

3. Quartiles - Four states. Each state corresponds to a set of densities which are in the
same quartile of the density histogram.

We measure the median density and the density quartiles by looking at the density
histogram of the stateless runs for the Minimum Over Actions approximation with con-
tinuous time stateless Q-Learning having τ = 1010 and exploration rate 0.02. Table 5.7
shows the median and quartile densities obtained for each of the action sets.

Median Quartiles (boundaries)
(a), 10 robots 3 2, 3, 4
(a), 40 robots 6 4, 6, 8
(b), 10 robots 3 2, 3, 5
(b), 40 robots 9 6, 9, 11
(c), 10 robots 3 2, 3, 4
(c), 40 robots 6 5, 6, 8
(d), 10 robots 4 3, 4, 5
(d), 40 robots 12 9, 12, 15
(e), 10 robots 2 2, 2, 3
(e), 40 robots 5 3, 5, 6
(f), 10 robots 2 2, 2, 3
(f), 40 robots 8 5, 8, 11
(g), 10 robots 4 2, 4, 5
(g), 40 robots 12 8, 12, 14
(h), 10 robots 4 2, 4, 5
(h), 40 robots 20 16, 20, 24

Table 5.7: Median and quartile densities for each of the action sets.

After we measured the median and quartile densities we would like to compare state-
less learning to stateful learning. We use the Minimum Over Action approximation with
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the continuous time Q-Learning algorithm. The algorithm’s parameters are: τ = 1010, ex-
ploration rate 0.02 and we set the learning to be myopic by setting the discount factor to
be γ = 0. We test over the same 8 action sets as in 5.6 and on 10 and 40 robots.
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Figure 5.21: Performance of the Minimum Over Actions approximation for
stateless learning vs. stateful learning with different state spaces.

Figure 5.21 shows that with 10 robots there is no significant difference, but with 40
robots there is a significant improvement in performance, especially in action sets (a), (b)
and (c). Even though using all densities as a state space can improve performance, it can
sometimes cause the performance to go below stateless learning, for example in action
sets (a) and (e) with 40 robots. One possible explanation is the fact that this is the biggest
state space and robots learn more slowly. Indeed the median and quartile state spaces that
are sized 2 and 4 respectively, do not show this drop and many times perform better than
stateless learning.

We now show how performance varies with different stateful learning algorithms. On
average, using quartile densities as a state space yields the highest performance over the
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four previously tested configurations. Therefore, quartile densities will be our benchmark
state space for testing the performance of those stateful learning algorithms. We test three
learning algorithms for the same 8 action sets as in table 5.6. The learning algorithms we
test are described in table 5.8:

Learning algorithm
name Parameters

Regular Q-Learning α = 0.05, Exploration rate 0.02, γ = 0
Continuous time
Q-Learning τ = 1010 nanoseconds, Exploration rate 0.02, γ = 0

WoLF-PHC Exploration rate 0.02, α=0.05, δw=0.0005,δl=0.005,
γ = 0

Table 5.8: The learning algorithms tested for multiple states and their parame-
ters.
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Figure 5.22: Performance of the Minimum Over Actions approximation for regu-
lar Q-Learning, continuous time Q-Learning and WoLF-PHC, each with density
quartiles as a state space.

66



Figure 5.22 shows that continuous time Q-Learning either outperforms other algo-
rithms or is on par with them. Special attention should be put to the first two groups of
action sets: In both the first group (a)-(c) and the second group (d)-(e) we see that the
performance of continuous time Q-Learning stays steady as parameters vary while the
performance of the other two algorithms tends to decline.

Stateful learning vs. adaptation

In the previous section we have seen that the Minimum Over Actions approximation with
multiple states performs well and stays steady while other algorithms sometimes decline
in their performance. Therefore, we would like to compare this configuration to what was
done in previous work and shown empirical success [27] - adaptation with EI. We test the
two configurations on the same 8 action sets as in 5.6 for 10 robots and 40 robots. Table 5.9
shows the configurations for stateful learning and adaptation.

Configuration Reward Learning algo-
rithm Parameters

Stateful learning Minimum Over
Actions

Continuous time
Q-Learning
(stateful)

τ = 1010

nanoseconds,
Exploration rate
0.02, γ = 0

Adaptation EI
Regular Q-
Learning (state-
less)

Exploration rate
0.1, α=0.5

Table 5.9: Stateful learning vs. adaptation - configurations.
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Figure 5.23: Performance of stateful learning in comparison to EI-based adapta-
tion.

Figure 5.23 show that the performance of stateful learning and adaptation are close to
each other. With 10 robots stateful learning almost always performs best while with 40
robots adaptation sometimes performs better than stateful learning. It can also be seen that
for the second group of action sets (d) and (e) the performance of adaptation declines in
the same manner as for stateful regular Q-Learning and stateful WoLF-PHC in figure 5.22
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Conclusions

The starting point of this study was the promising approach of EI-based adaptation to the
challenge of multi robot coordination. While EI-based adaptation demonstrates empirical
success, this work also showed empirical evidence that its performance is sub-optimal.
As a result, this thesis moved to more elaborate and extensive theoretical modeling and
suggested practical solutions for reactive method arbitration.

The first part of the thesis focused on theoretical modeling, under a few assumptions,
to show a mathematical connection between the robots’ Coordination Overhead (CO) in
the group task, to the global utility of the system. We then connected between the CO
of the whole run to the EI of the robots per single collision. Using the two connections
we now have a complete mathematical derivation between the EI of robots for a single
collision and the global utility of the system. Using potential games we have shown a way
for the robots to learn a reward for each collision that will yield optimal global utility.

The second part of the thesis, considered several practical solutions to challenges that
may rise in practice when applying the theoretical model. First, we developed a continuous
time variant of Q-Learning in order to address possible inaccuracies of regular Q-Learning
that may rise in such domains. Second, we have suggested that the density of a robot can
be used as a state space in order for it to know how many robots it may collide with.

After these gaps in theory and practice were addressed, the theoretical modeling and
practical solutions were put to the test by experimenting in both simulation and real world.
Experiments show that the algorithms used in order to overcome the gaps in previous
work do improve performance while holding guarantees. Even though there is still room
for improvement, both theoretically and practically, this work answered key questions in
multi-robot coordination in general and reactive arbitration in particular.
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