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Abstract. Coverage is a canonical task where a robot or a group of
robots are required to visit every point in a given work area, typically
within the shortest possible time. Previous work on offline coverage high-
lighted the benefits of determining a circular coverage path, divided into
segments for different robots (if more than one). This paper contributes
a number of significant improvements to the planning and utilization
of circular coverage paths with single and multiple robots. We focus on
circular paths that exactly decompose the environment into cells, where
each obstacle-free cell is covered in a back-and-forth movement. We show
that locally changing the coverage direction (alignment) in each cell can
improve coverage time, and that this allows for merging bordering cells
into larger cells, significantly reducing the number of turns taken by
the robots. We additionally present a novel data structure to compactly
represent all possible coverage and non-coverage paths between cells in
the work area. Finally, we discuss the complexity of global multi-robot
assignment of path segments, and present greedy polynomial-time ap-
proximations which provide excellent results in practice.
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1 Introduction

Coverage is a canonical robotic task where a robot or a group of robots are
required to visit every point in a given work area, typically within the shortest
possible time [6, 7]. The offline coverage problem assumes a static and accurate
work area is given as input, alongside the current robot location(s). The task
is then to produce a path (or set of paths) for the robots, such that the entire
work area is covered. This planning problem is believed to be NP-Hard [7], even
when an approximation of the area is covered [1].

Previous work on offline coverage highlighted the benefits of determining a
circular coverage path, divided into segments for different robots (if more than
one). For a single robot, this guarantees the robot comes back to its starting
location, and reduces coverage redundancy [5, 14]. For multiple robots, it also
adds potential for robustness, as robots can take over for failing teammates,
simply by staying on the circular joint path [9, 1, 12].

This paper contributes a number of significant improvements to the planning
and utilization of circular coverage paths with single and multiple robots. We
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focus on circular paths that exactly decompose the environment into cells, where
each obstacle-free cell is covered via the seed-spreading method [13]. Specifically,
(i) we show that locally changing the coverage direction (alignment) in each cell
can improve coverage time, and (ii) that this allows for merging bordering cells
into larger-cells, significantly reducing the number of turns taken by the robots.
We additionally (iii) present a novel data structure to compactly represent all
possible coverage and non-coverage paths between cells in the work area. This
allows some robots to plan paths that take shortcuts through the work area, im-
proving the coverage time even further. Finally, (iv) we discuss the complexity of
global multi-robot assignment of path segments, and present greedy polynomial-
time approximations which provide excellent results in practice. The techniques
developed in this paper are guaranteed analytically where possible, and evalu-
ated in simulation in hundreds of experimental trials.

2 Background

The literature on coverage is very extensive, and we can do it no justice in the
limited space available here; for a recent survey see [7]. In this paper, we focus on
offline robot coverage, where a map of the work area is given, which is assumed
to be complete and correct (i.e., the environment is static and is accurately
modeled).

One approach divides the work area into a regular grid. A circular path
through all obstacle-free grid cells covers approximately the work area. Gabriely
and Rimon discuss the single-robot case [5]; Hazon et al. [9] and Agmon et al. [1]
discuss the multi-robot case. In contrast, we focus on an exact work-area decom-
position, where the work-area is decomposed into irregularly-sized obstacle-free
cells, each to be covered by simple zigzag motions [13]. The objective is to find
a circular path through these cells.

In general, in exact cellular decompositions, the free space is divided into
non-overlapping cells whose union is exactly the given free area and a path is
planned to take the robot to cover each. There are several methods (see [7]).
We use the boustrophedon decomposition [2], where a virtual sweep line is used
to determine the cells’ division. It is moved across the work area at a given
orientation. The points on cell borders where the free-space along the sweep line
changes, are called critical points.

Xu et al. have considered cyclic coverage paths in such exact work-area de-
compositions [14]. The key to their technique is to represent each critical point
as a vertex, with edges connecting critical points, i.e., edges represent cells. A
Chinese Postman Problem algorithm (e.g.,[8]) is then used to create an Eulerian
circuit path through the graph, duplicating some edges as necessary (represent-
ing the splitting of their associated cells in half). This reduces the redundancy of
the coverage. We follow the same approach, but after the creation of the Eulerian
circuit we convert it to a simple circle. In addition, we present a novel technique
that allows the coverage direction (the salient angle of the zigzag motion in each
cell) to be changed locally, per cell. Furthermore, we present an algorithm for
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merging the coverage patterns of nearby cells, so as to reduce the number of
turns, the principal factor in coverage time.

The idea of changing the local coverage direction to reduce the number of
turns was introduced by Huang et al. [10]. They discuss a combinatorial dynamic-
programming algorithm which examines all possible angles, and all possible cell
divisions and mergers. In contrast, we restrict ourselves to two angles (parallel
and orthogonal to the decomposition sweep line), and provide a polynomial time
algorithm for this task.

Karapetyan et al. [12] extend Xu et al. [14] to multi-robot coverage, mini-
mizing overall coverage time (makespan). Under the assumption that all robots
start with the same position, and the requirement that all robots finish there,
they utilize a heuristic algorithm that assigns robots to different segments in the
path. A key idea in their work (which we extend and improve on) is that robots
can move quickly through a cell when they do not cover it, in order to reach
another cell. However, even when moving quickly, the robots must follow the
circular path. The techniques we present here do not make the same assump-
tions, and utilize a novel data structure to compactly represent shortcut paths
between cells, even when they do not follow each other directly in the circular
path. This, coupled with the local change in coverage direction and the merging
procedure, improve the makespan significantly.

3 Efficient Coverage With a Single Robot

In this section we first discuss two factors that influence the efficiency of a robot
coverage: the direction of the coverage, and the consolidation of cells to reduce
turns. The techniques improve both single- and multi-robot coverage. We then
present (in Section 3.2) a polynomial-time algorithms for utilizing these factors
to improve coverage time—guaranteed!.

3.1 Factors Influencing Coverage Time

Consider the case of a single robot covering the work area. If it must visit every
point in the area, it would seem that the only factor in the coverage time is any
redundancy in the coverage path. But this is not the case. The number of turns
taken by the robot is an important factor affecting coverage time, even when the
robot visits each point exactly once. This is because turning takes time [7, 14].
Thus reducing the number of turns can reduce the coverage time considerably.

Coverage Direction (Alignment). Work area exact decompositions results in a set
of cells to be covered individually. A common approach for covering an individual
cell is by using back and forth motions [13]. Most previous work assumes such
motions are parallel to the decomposition sweep lines. However, this assumption
is unnecessary, and in fact may result in greater coverage time.
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Fig. 1. Red lines designate
cells boundaries. Critical
points in blue. Grey areas
mark obstacles; white areas
are obstacle-free.

Consider, for example, the area illustrated in
Figure 1. Assume that the chosen coverage direc-
tion is horizontal. This is obviously the optimal
motion for cell 5 with respect to number of turns
that the robot preforms. However, in cell 3 the
robot would perform more rotations than if the
coverage direction were vertical. Therefore, this is
not the optimal coverage direction for cell 3. If
we instead assume that the coverage direction is
vertical—optimal for cell 3—then the coverage di-
rection would be non-optimal for cell 5 since the
robot will perform more rotations than if the di-
rection of the coverage was to be horizontal.

Therefore, we should formulate each cell dif-
ferently according to its shape. There are many
methods for determining the optimal coverage direction of a cell. In this paper
we determine the optimal coverage direction by calculating the number of turns
in the circumscribed rectangle of the cell.

Cell Consolidation The decomposition of the work area leaves neighboring cells
that may end up being covered in the same direction. Consolidating such cells
reduces the number of turns. Figure 2 shows an example; note how the number
of turns is significantly reduced.

(a) Unmerged cells. (b) Merged cells.

Fig. 2. The designation of the same area prior and after the consolidation of cell 4 with
cell 5. The critical points, cell divisions and obstacles are shown as above. The green
curved lines show the path of the robot covering cells 4 and 5.

3.2 Consolidating and Deciding on Direction

To optimize the coverage time we present Algorithm Optimal Cell Merger (Alg. 1).
The algorithm checks two possible coverage directions for each cell, while simul-
taneously attempting to consolidate neighboring cells. It uses dynamic program-
ming, and is based on the algorithm for optimal matrix chain multiplication [4].



Taking Turns in Complete Coverage for Multiple Robots 5

Algorithm 1 creates a matrix m that contains, in cell [i, j], the minimal
number of turns it takes to cover the area from cell i to cell j (and all the
cells between i and j in the cells’ list that is given as input). First, for each
cell [i, i] within matrix m, the algorithm inserts the minimal number of turns it
takes to cover cell i in the map (lines 4-6). This is done by calling the function
minimum number of turns(), which plots zig-zag coverage paths in the two
possible directions, and returns the minimal number of turns. In lines 13-23, the
algorithm computes cell m[i, j]. This calculation is contingent on cells m[i, k]
and m[k + 1, j]. These cells have been already computed by the algorithm. The
solution—the exact configuration of the cells consolidation—will be stored in
matrix s (the solution matrix). Algorithm 1 guarantees the optimal consolidation
of cells (Theorem 1).

Algorithm 1: Optimal Cell Merger (cells, robot’s size)

1: n = length(cells)
2: s = [n][n]
3: m = [n][n]
4: for i = 1 to n do
5: m[i][i]← minimum number of turns(cells[i])
6: s[i][i]← cells[i]
7: end for
8: for h = 2 to n− 1 do
9: for i = 0 to n− h− 1 do

10: j ← i + h
11: min value←∞
12: for k = i to j − 1 do
13: current← m[i][k] + m[k + 1][j]
14: if current ≤ min value then
15: min value← current
16: s[i][j]← s[i][k] ∪ s[k + 1][j]
17: end if
18: end for
19: number of turns after merger ←

minimum number of turns(celli ⊕ ...⊕ cellj)
20: if number of turns after merger ≤ min value then
21: min value← number of turns after merger
22: end if
23: m[i][j]← min value
24: end for
25: end for

Theorem 1. Given an acyclic ordered list of cells, Algorithm Optimal Cell Merger
returns the cell merger that minimizes the number of turns for a robot covering
the cells in the ordered list.
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Proof. (Sketched, for lack of space.) We prove by induction on the number of
cells n. When n = 1, there is a single cell. For n > 1, and assuming true for
n−1, we prove by contradiction. We consider two adjacent cells in a non-optimal
solution, that should have been merged in an optimal solution (and were not),
or were separated (optimally) (and were merged). In both cases, we show a
contradiction to the induction step assumption.

Complexity of Algorithm 1. Let M be the complexity of minimum number of turns
function. Then the complexity of minimum number of turns is O(Mn3). Note
that in principle, there exists an improvement to the optimal matrix chain mul-
tiplication algorithm, which is the basis for Algorithm 1, that reduces the time
complexity from O(n3) to O(n2.376) [3]. Thus there is potential for even better
run-time.

4 Efficient Coverage for a Multi-Robot System

The algorithm and methods discussed above can be used for both single-robot
and multi-robot systems. While in a single robot system the robot can simply
trace the Eulerian circuit as shown by Xu et al. [14], in multi-robot systems
more complex algorithms need to be considered. In this section we suggest four
algorithms that solve the mentioned problem and examine each one of them.

The simple circuit that was discussed in Section 2 is denoted as graph G.

(a) An Eulerian graph representing pos-
sible coverage paths that begin and end
in the same cell, e.g., as used in [14].
Edges correspond to cells. Weights of
edges correspond to the coverage time of
the respective cells.

(b) Novel representation: Outer circle as
in Fig. 3(a). Inner circle edges explicitly
represent shortcut paths through cells.
Shortcut edge weights are set based on
minimal time for moving between cell en-
try and exit points, without covering it.
Edges between outer circle vertices and
inner circle vertices have 0 weight.

Fig. 3. Graph representations of cells and motion possibilities between them. Vertices
represent cell entry/exit points.
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We suggest the following double-circle data-structure: the outer circle is the
simple circle G and it represents coverage of cells. The inner circle represents the
shortcuts which a robot can preform (see figure 3) between cells. The following
assumption should be highlighted in this context: Each robot starts at one of
G’s vertices. If not, the robot will go to the closest vertex.

The naive solution for this problem places all robots on the graph according
to their initial position and each robot covers the cells in a clockwise direction
along the circle until it reaches to the initial position of the robot next to it in
G. Clearly, this algorithm does not guarantee optimal temporal efficiency.

The optimal scheduling for a given map (without cells consolidation), can
be found by creating all possible scheduling options (i.e. create all options for
robots’ assignments) and choosing the one with minimal makespan. This al-
gorithms is denoted as global. Despite the fact that this algorithm finds the
optimal scheduling without cell merger, this algorithm’s time complexity is ex-
ponential in the number of robots. The problem of finding the optimal schedul-
ing (i.e. schedule with minimal makespan) is NP-hard [11]. Hence, we suggest
two suboptimal greedy algorithms, Sequential Robots Tree (SeRT) and Alter-
nate Robot Cell Tree (ARCT), that have better performance than the naive
algorithm that was described above.

For the first algorithm, SeRT, we present the following tree structure: Level
i represents robot i and each edge represents an uncovered cell as illustrated in
Figure 4. Namely, this tree represents one assignment for each robot, that is a
cell to cover. If there are more robots than uncovered cells, some robots will not
be assigned with a job in this round.

Fig. 4. In this example there are four cells to be covered (c1, c2, c3, c4) and three
robots (r1, r2, r3). The first level represents r1, the second level represents r2 and the
third level represents r3.

The algorithm’s flow is as follows: After constructing a tree as described
above, use the DFS algorithm and choose the branch with the minimal makespan.
Assign each robot its job (robot’s job is the edge that comes out of the vertex
that represents this robot in the chosen branch). Finally, the cells that were
covered are removed from the uncovered list and the algorithm is been called
again until all cells are covered. Let n denote the number of cells to be covered,
and k denotes the number of robots. Therefore, the time complexity of SeRT is
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O(
n

k
nk). This algorithm guarantees complete coverage. Nonetheless, it does not

guarantee optimality. For example, consider the scenario shown in Figure 5.

Fig. 5. In this example there are six cells to be covered and eleven robots (r1 - r11).
Robots r1 - r6 are at vertex A, r7 is at vertex B, r8 is at vertex C, r9 is at vertex D,
r10 is at vertex E and r11 is at vertex F.

In this example, the algorithm assigns robot r1 - r6 while robots r7 - r11
are idle. Clearly, the optimal schedule would be to assign r6 - r11, yet in this
algorithm r7 - r11 can not be assigned.

As seen in this example, the order of the robots might affect the working
time of each robot. Therefore, we suggest an improvement for this algorithm
by Algorithm ARCT. Instead of using a tree structure such as the i-th level
represents robot i, we use the following tree structure: Each level (except of
the first level which represents the tree’s root) represents cells to be covered
and robot to cover a cell alternately. Like before, this tree represents single
assignment for each robot. Let us denote the level of the tree’s root as 0. Level

Fig. 6. In this example there are four cells to be covered (c1, c2, c3, c4) and two robots
(r1 and r2).
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1 represents all cells that were not covered yet. Cell i’s children in this tree
represent all available robots that can cover it, i.e. all robots that do not have
an assignment yet in this branch. Their children represent all cells that were
not covered yet in this path and so on until each robot as an assignment or
all cells were covered. Figure 6 illustrates a single tree as described above. This
algorithm assures complete coverage, however this algorithm does not guarantee

optimal time efficiency. The time complexity of ARCT is O(
n

k
nkkk) where k is

the number of robots, and n is the number of cells to be covered.

5 Experiments

To evaluate the contributions in this paper, beyond their theoretically-proven
properties, we examined coverage of a single robot and multiple robots in five
different maps. For each map we randomly chose up to fifteen different initial
robot locations. On each map configuration we tested our algorithms using one,
three and five homogeneous robots. We assume that after consolidation of cells
the robot must start cover the new cell either at the first sub-cell or at the last
sub-cell. Furthermore, if there are two different coverage paths with the same
makespan, the algorithm will choose the path that was created first. All the
results were statistically analyzed using the One-Way ANOVA test, p-values are
reported herein.

5.1 Single Robot

We examined five maps as mentioned above. For each map we examined all fifteen
possible robot initial locations. The following diagram (Figure 7) presents the
results. The x-axis represents the different map and the y-axis represents the
average makespan. The blue columns represent the robot’s coverage makespan
before cells’ merger, while the green columns represent the robot’s coverage after
the merger. The results have proven that shortcuts do not change the robot’s
makespan in case of a single robot. That occurs because single robot traces the
circle and does not need to come around other robots. Therefore, it does not
need to travel through a cell without covering it.

5.2 Multiple Robots

In this sub-section we will compare the algorithms that have been presented in
Section 4, and will discuss their results.

Table 1 presents the results of the average makespan of Algorithm global in
our experiments. The best value of each row is written in bold.

As the table shows, the merger of cells either improves or does not change
the makespan. Moreover, the average results with the inner shortcuts without
cells consolidation have better makespan then the average results without inner
shortcuts before consolidation.
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Fig. 7. Single robot chart. The x-axis represents the different map and the y-axis
represents the average makespan.

Table 1. This table presents the average makespan of each category we tested. The
best value of each row is written in bold font.

map # robots # w/o shortcuts, w/o merge w/o shortcuts, with merge with shortcuts, w/o merge with shortcuts, with merge

1
3 134.00 96.67 107.20 88.80
5 88.00 55.33 88.00 56.13

2
3 573.87 399.07 513.33 369.47
5 416.53 304.00 364.20 290.07

3
3 470.87 422.73 428.33 372.27
5 320.47 302.40 293.33 280.40

4
3 826.93 660.80 645.73 532.13
5 519.07 489.07 382.33 378.20

5
3 943.93 792.53 745.20 628.33
5 723.13 718.53 514.07 508.27

Figure 8 presents both the best value of each algorithm and the value of each
greedy algorithm in the category of the global algorithm’s best value from table
1. In addition, as shown in the columns of map 3 with 3 robots, the improved
greedy algorithm yields better results than the global algorithm. However, as
mentioned before, in case of more than one path with the same makespan, the
first generated path was chosen. Therefore, there might be another coverage path
with the same makespan that results a better makespan after consolidation.

In average, consolidation of cells significantly improves the makespan (p-value
of the global algorithm is 4.86E-04, the p-value of ARCT is 2.16E-07 and the
p-value of SeRT is 4.89E-05).
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Fig. 8. The best results for all suggested algorithms compared to the result of each
greedy algorithm, for three and five robots on each map.

6 Conclusions and Future Work

In this paper we address the problem of efficient coverage of a known envi-
ronment. We have shown that in order to increase the temporal efficiency, it
is necessary to both choose the coverage angle locally and merge cells. Further-
more, we presented an efficient method for cell consolidation that can be used for
both single and multi-robot systems. Moreover, algorithms for complete cover-
age were presented. Both theoretic and empiric analysis addressed the efficiency
of our algorithms.

Much work is left for the future. For example, the question of what is the
optimal number of robots to cover a given area remains open. Moreover, in
the presented experiments the cells were consolidated after the coverage path
had been chosen. Thus, all the algorithms that were mentioned above can be
improved. This can be achieved by choosing the coverage path with minimal
makespan before cell merger and after it. However, this would be less efficient.
In addition, one can first merge the map’s cells and then divide the consolidated
cells to paths. Nevertheless, it requires a different cell division method.
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