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Abstract Online coverage path planning is a canonical multi-robot task, where the

objective is to minimize the time it takes for robots to visit every point in an un-

known area. Two general major approaches have been explored in the literature:

a stigmergic approach, inspired by ant behavior, relies on active marking of the

environment. In contrast, the collaborative approach relies instead on localization,

memory of positions, and global communications. In this paper, we report on a new

approach, inspired by territorial bird chirping, which borrows from both previous

approaches: it relies on localization and memory, but not on global communica-

tions. We provide a detailed analytic and empirical evaluation of this model.

1 Introduction and Background

Coverage path planning is a canonical robotics task, with many applications such as

environmental monitoring, surveillance, exploration, and search [5]. In online cov-

erage, one or more robots is to move inside an unknown target area, such that every

point in the area is visited by one or more robots, often with the secondary objective
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of minimizing the time for such full coverage [8]. For multiple robots, two major

approaches emerge for online coverage: A stigmergic [25] approach, which relies

on environmental marking by the robots to direct their motion towards uncovered

territory, and a collaborative approach, which relies on global communications to

have robots explicitly—and remotely—coordinate their actions.

The stigmergic approach is often thought to be inspired by ants, though it is used

by some mammals as well [7], e.g., foxes [20]. Here, robots mark visited points as

they move around, simultaneously reading previously left markings. Robots move

away from points marked by others [27, 10, 17]. This causes them to divide the

environment into territories, each maintained by a single robot. Clear benefits of

this approach include simplicity of the control algorithm (a random walk), and the

fact there is no need for localization or memory of markings; robots use the mark-

ings themselves to identify locations visited by themselves or others. Unfortunately,

coverage is often redundant, and relies strongly on the duration of the markers ex-

istence; moreover, building robots with actual marker reading and writing mecha-

nisms is quite difficult in practice [10].

The collaborative approach is often associated with artificial methods (though

it could just as easily be inspired by human teamwork). Here robots communicate

with each other (in most studies, regardless of their distance), and divide up the area

between them, e.g., [13, 11, 1]. The coverage time can be minimized using such

collaborative algorithms. However, this approach requires not only localization (to

identify current position) and navigation (to move to agreed-upon new locations),

but also memory (to store visited locations and future positions), communications

that allow task assignment, and most importantly, a shared coordinate system that al-

lows a shared understanding of the regions to be divided between the robots. Satisfy-

ing these requirements in practice is again difficult. While memory and localization

can perhaps be fairly easily had (some commercial vacuum cleaners now employ

SLAM), establishing global communications, and a shared coordinate system in an

unknown area, with unknown initial poses, is a difficult challenge [24, 18].

There have been surprisingly few attempts at addressing these challenges. Rek-

leities et al. have worked on coverage with range-limited communications [21], yet

still rely on a shared coordinate systems. Batalin et al. have replaced the need for

communications and localization with the need to sense others remotely, distin-

guishing robots from other objects in the environment [2]. Rutishauser et al. ex-

amine collaborative algorithms that display graceful degradation (to random mo-

tions) when positional, sensory, and communication failures accumulate [22], and

are therefore less reliant on explicit collaboration. Durham et al. have discussed a

related approach to ours, for offline coverage, whereby robots that meet exchange

information by pairwise gossip communications, to statically partition a known an

area between them [4]. In contrast, our online coverage approach only requires

robots to detect each other, but no information exchange is necessary.

In this paper we propose a novel online coverage approach that is inspired by the

territorial behaviour of higher organisms in particular certain species of birds [12]

and mammals [23]. The key idea is that when two robots meet, they detect each

other (in birds, this is done by chirping a challenge which is then countered), then
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remember the location of the encounter and treat it as a border landmark. Robots

using this approach are assumed to have localization and memory, but do not need

global communications or a shared coordinate system. Moreover, they utilize the

simple-to-implement random walk algorithm for their motion. We provide a com-

prehensive mathematical and empirical analysis of this approach. Specifically, we

analyze its characteristics and determine its efficiency in terms of coverage time as

a function of its control parameters.

2 The Memory-Based Territorial Exclusion Model

We are given a set of N identical circular robots of radius r with a radially uniform

detection distance d ≥ r that move in continuous space with speed of magnitude

|−→v | within an arena of size A with periodic boundary conditions (toroidal domain).

Every time a robot detects another, they both remember the location (in their own

coordinate system), and move away from it. They mark the location in memory,

and then use this to avoid the location if they run into it again. Thus upon detecting

another robot or remembering a mark, the robots turn away.

Algorithm 1 SINGLE-STEP

Require: Current position −→p
1: Randomly choose λ ,ϑ

2:
−→
ℓ ←RANDOMWALK(λ ,ϑ )

3: if A robot is detected in position
−→
b within d

OR

Remembered location
−→
b is within d then

4:
−→
ℓ ←−→b

5: Move to new position
−→
ℓ

6: If robot or mark detected, REPEL.

The position of each robot is up-

dated following Algorithm 1, which

controls a single motion step of size

d at most. First (line 2), a new mo-

tion vector
−→
ℓ is generated by calling

a correlated random walk procedure

with parameters λ ,ϑ described below

(Section 2.1). Then, the robot considers

whether another robot is detected along

the motion vector, within the detection

distance d (line 3). If so, the robot re-

members the location (line 4) and sets a revised, shortened motion vector to it,
−→
b ,

reaching the detected robot or mark by not moving beyond them. Alternatively, if a

previously marked location is retrieved from memory, it is used to set
−→
ℓ (line 5–6).

The robot then moves along
−→
ℓ . If it encounters a robot or remembers a mark in the

new location, it repels towards the opposite direction, following the exclusion rule

described in Section 2.2.

2.1 Selecting a Motion Vector

The robots possess a degree of persistence in their motion and move as correlated

random walkers (see e,g. [3]). At one extreme each new step is uncorrelated with

the direction of the previous step and their movement is random. At the other ex-
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treme the direction of movement is always identical to the one at the preceding

step and their movement is ballistic. At each time step, each robot randomly se-

lects a step size λ and an angle ϑ . The step size is sampled from an exponential

distribution of mean size equal to half the size of the robot diameter. The new

angular direction is selected relative to the previous movement direction. Except

at the start of the simulations when the choice of angle is completely random,

each robot selects from a distribution of turning angles f (θ). This distribution is

a (symmetric) wrapped Cauchy distribution, that is a Cauchy distribution C (x) =

ρ
[
π(ρ2 + x2)

]−1
, which is wrapped around the origin. For values between −π ≤

θ ≤ π [16].

Virtual 
Mark

Virtual 
Barrier

Robot

(radial) 
Detection 
Distance

Fig. 1: Representation of the robot ex-

clusion (repel) rule whereby one agent

changes its direction upon encountering a

virtual barrier.

The parameter ρ is called the con-

centration parameter and represents

the mean cosine of the distribution

〈cos(θ)〉= ∫ π
−π cos(θ) f (θ)dθ = ρ. In

other words it indicates the ‘strength’

by which a robot would go for-

ward at each step. Integration and

inversion of f (θ) allows to sample

from a uniform distribution U between

0 and 1 and obtain θ angles dis-

tributed according to f (θ) via θ =

2arctan
{

1−ρ
1+ρ tan

[
π
(
U− 1

2

)]}
.

In the limit ρ → 0 the distribution

f (θ) reduces to a uniform one between

−π and π , while in the limit ρ → 1

the distribution f (θ) reduces to a Dirac

delta distribution. In the former case,

sampling turning angles from a uni-

form distribution means that the robot

moves at random, whereas in the latter

limit the robot moves ballistically, i.e. always going straight (except upon encoun-

tering others). For intermediate values, the robot moves as a so-called correlated

random walker with the degree of persistence determined by ρ . For computational

simplicity the random step length for which a robot is initially selected to move is

rounded down to its first integer. The call to Algorithm RANDOMWALK represents

the computation of a new motion vector based on the sampled parameters λ ,ϑ .

2.2 Repelling Away from a Collision or a Remembered Mark

Two robots detect each other whenever their distance becomes equal to d. Upon

detection the two robots will mark the positions where such detection has occurred

and retreat from each other. The retreat represents an exclusion interaction at the
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moment of detection, but the detection position is also a virtual mark is remembered

by the robots for the duration T (called memory time). Neither of the two robots will

cross the virtual mark. As each robot may interact with any neighbour that comes

within a detection distance, the number of active marks that a robot has with any

other members of the population fluctuates over time and depends on the various

parameters of the model.

Consider a robot R1 executing Algorithm 1. Assume that it is in collision course

with another robot, robot R j, which is considered static initially. At the predicted

location of collision, robot R1 marks the terrain at location
−→
b . Robot R1’s location

now gets updated by accounting for the presence of the virtual mark at
−→
b with

robot j fixed. We assume symmetrical detection, i.e., Robot R j now also remember

a virtual mark at
−→
b , though in its own coordinate system.

The geometry of the collision is as follows. After the mark location at
−→
b is

established, robot 1 moves up to−→a when it collides with the virtual mark at position−→
b . The mark now acts as a virtual barrier since robot 1’s velocity gets reflected as

if a barrier tangent to the robot’s detection circle was present at
−→
b . Formally the

reflected velocity vector −→v ′ changes from the old velocity −→v through the relation

−→v ′ =−→v −2

〈
−→v ,−̂→a −→b

〉
· −̂→a −→b , (1)

where −̂→a −→b is the normalized vector from −→a to
−→
b and 〈−→z ,−→z ′〉 represents the

scalar product between −→z and −→z ′, that is the projection of −→z along −→z ′. As the

reflection of the velocity is performed only when the robot is moving towards the

virtual barrier, the exclusion rule applies only when

〈
−→v ,−̂→a −→b

〉
> 0. All of this

computation is carried out by the REPEL algorithm.

3 Simulating the Behavior of Robotic Birds

The simulator was developed in Java using the MASON simulation framework

(http://cs.gmu.edu/ eclab/projects/mason/). The simulator uses MASON’s visual-

ization facilities to draw the moving robots. It portraits each robot as a small disk of

radius r. The radius is drawn in a different color to indicate the current movement

direction from the robot’s centre to the radius tip. A larger circle around the robot’s

disk indicates its detection circle. For ease of visualization the detection circle’s ra-

dius is half its true value, so that the touching of two circles indicates that a collision

between two robots has occurred.

There are in total eight parameters in the model. Those that we have kept fixed

are, in arbitrary units, the size of the toroidal arena A = 100× 100, the magnitude

of the robots’ speed |v| = 1, their size (robot radius r = 1) and the mean of the

distribution of step length λ = 1. We have changed the remaining four parameters
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(a) A snap-shot of the simulation with Voronoi

tessellation displayed.

(b) A snap-shot of the simulation with a visu-

alization of the home range size of each robot.

Fig. 2: Visualization of the simulator with Voronoi partitioning in panel (a) and

home range size in panel (b). The circles around each robot represent half the size

of the robot’s detection distance, while the long lines centered on a robot indicate

the locations of the virtual marks. The direction of motion of each robot is shown by

a small radial vector pointing outward from each robot. Although home ranges and

Voronoi tessellation are correctly computed also for the agents that are close to the

‘edges’ of the toroidal domain, they are not visualized here. The home range size are

computed with a minimum convex polygon estimate over 50 time steps. Overlaps

between the estimated home ranges are colored in green.

consisting of the number of robots 1 ≤ N ≤ 100, the detection distance 2 ≤ d ≤
30 (arb. units), the memory time 0 ≤ T ≤ 100 (arb. units), and the random walk

persistence 0≤ ρ ≤ 1.

Additionally, the simulation draws lines from each robot to the virtual marks that

were generated when other robots were detected. These lines remain visible for an

amount of time T and show the mark locations where the robot may collide with.

To get a perception of the global patterns we display at each time step the Voronoi

tessellation [19] of the arena and the size and locations of the boundaries of the so-

called agent home range (see e.g. [6]) that gives an indication of where a robot has

been over a prescribed amount of time. Fig. 2 shows the Voronoi partitioning and

the outer boundaries of the home ranges measured by computing the minimum con-

vex polygon (MCP) (see e.g. [28]) of a robot’s localizations. Although other more

sophisticated procedures exist (see e.g. [14]), MCP is sufficient for our purpose.

To mimic experimental conditions where no global clock exists that causes all

the elements of the system to update their state at the same time [9], we use the

following asynchronous update scheme. At the start of a simulation the N robots

are numbered. At each time step robots are displaced sequentially from 1 to N.

Within one simulation step, say robot R1 is selected, then its position is updated
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considering all other robots as static. When R2 is then selected, R1’s updated position

is accounted for in moving R2, and so on with all other robots. A discrete simulation

step is considered elapsed once all the N robot positions have been updated. This

sequential scheme has also the advantage of reducing the computational costs of

dealing with multi-agent detections if synchronous updating were to be used.

3.1 Measured outputs

For each parameter set of the model the measured outputs are obtained by running

1000 simulations starting from the same initial condition (the number of simula-

tions for each figure is specified in the caption). The outputs that aim at giving an

indication of the degree of spatial heterogeneity of the system are of two kinds. One

kind is instantaneous and is obtained by observing the locations of each robot at

a given time and averaging over simulation runs. The instantaneous measurements

include the size of each Voronoi cell, the distance with respect to Voronoi neigh-

bours, the number of active virtual marks both within each Voronoi cell and within

Voronoi neighbours. The time-integrated measurements require accumulation of the

data over each simulation run for a certain period of time and include the robot home

range size, the spatial overlap and the coverage time. Outputs of the simulations are

represented via the values of the mean, the standard deviation and the coefficient of

variation (CV), that is the ratio of the standard deviation divided by the mean.

Whenever a simulation run starts, the initial directions of the robots are ran-

domized and the robots are placed in an hexagonal pattern. To do so it calculates

the maximal circle radius for packing N circle in the toroidal arena of size A, and

chooses initial placements for the robots as if they were circles of that radius. After

the initial placement, to ‘thermalize’ the initial configuration the simulation is run

for a burning time tb = 100T .

4 Results

Given our interest in proposing a new coverage algorithm, we have focused on the

analysis of the memory-based territorial exclusion model rather than on a com-

parison between the various algorithms employing stigmergic or collaborative ap-

proaches. We do so by characterizing the heterogeneity of the spatial arrangement

of the robots and computing coverage times.

The degree of spatial heterogeneity of the emerging spatial segregation patterns

is obtained by studying the variability of the Voronoi partitioning. In Fig. 3 we dis-

play CV of the Voronoi tile size at time tb as a function of detection radius and

memory time. The CV of Voronoi partitioning is a measure of the relative strength

of the fluctuations in the Voronoi cells among each robot and is mainly dependent

on the detection distance d. For a given T the robots are allowed to wander more
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(a) (b)

Fig. 3: Coefficient of variation of Voronoi cell size as a function of the memory time

and detection distance for 100 robots in panel (a) and 10 robots animals in panel

(b). Variability is evaluated through 1000 simulation runs for each parameter com-

bination. Heat maps of one simulation run that indicate where one robot (selected at

random) has been over 1000 time steps are also plotted for different combinations

of values of d and T . The concentration parameter ρ is set to 0.

throughout space the smaller is d. Voronoi tiles with varying shape and size appear

more frequently the smaller is the detection distance as indicated by the increase in

CV while d is decreased in panel (a) and (b). The dependence of the spatial hetero-

(a) Simulations with d = 13

and N = 17 corresponding to

a packing fraction η = 0.23

(b) Simulations with d = 15

and N = 20 corresponding to

a packing fraction η = 0.35.

(c) Simulations with d = 17

and N = 23 corresponding to

a packing fraction η = 0.5.

Fig. 4: Coverage time as a function of the concentration parameter ρ and memory

time T for different choices of packing fraction η averaged over 1000 simulations.

The black line in each panel tracks the minimum as a function of T for each different

value of ρ . In computing the coverage time a grid of 104 rectangles is superimposed

on the spatially continuous domain contained in A. Whenever the centroid of a robot

is within a distance d from any point of a rectangle, that rectangle is considered

covered. Once all rectangles have been covered the simulation runs are halted and

the number of time steps are recorded.

geneity of the robot position on T for a fixed d is in general very minor, as shown

in panel (a) with 100 robots. However, this is not the case anymore when one uses a

small number of robots for which a decrease in T reduces the movement constraints

and allows for more variability between the positions of the robots (and the result-
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ing Voronoi tiles) as displayed in the top right part of panel (b). The associated heat

maps with (d,T ) = (3,15) and (d,T ) = (8,15) in panels (a) and (b), which repre-

sent the spatial occupation probability where a single agent have been, also gives

some indication of a wider range and variability in the sizes of the Voronoi cells

when a smaller number of robots is being deployed.

Fig. 5: Coverage time as a function of the

number of robots averaged over 1000 sim-

ulations. From top to bottom the first ten

curves have been drawn with values of ρ
increasing by 0.1 starting from the ran-

dom case at ρ = 0 to the ballistic case at

ρ = 1. The detection distance is d = 15

and the memory time is T = 20. The bot-

tom curve is the perfect algorithm. Due

to optimal initial placement the perfect al-

gorithm possess a zero coverage time be-

yond 14 robots.

A way to measure the efficiency of

the swarm algorithm is to estimate the

coverage time (CT) of the domain A for

different choice of detection distance d

and number of robots N as a function

of the concentration parameter ρ and

the memory time T . We do so in Fig.

4 and for a better appreciation of the

robot density we actually use the pack-

ing fraction η in place of N. As the

robot collision distance is d/2 we de-

fine η = π N(d/2)2/A, i.e. as the ratio

between the maximum total area robots

may occupy as they collide with each

other, π N(d/2)2, and the domain size

A. For low packing fraction we notice

a general decrease of coverage time to-

wards higher persistent walk and lower

memory time. We also notice that for a

given fixed concentration ρ , the value

of memory time T that minimizes the

coverage time, drawn as a continuous

black curve in all three panels, is nei-

ther random nor ballistic, but interme-

diate between the two, with larger val-

ues the smaller the memory time. Even-

tually for higher packing fraction, the

coverage time develops a region in the

T − ρ parameter domain where min-

imization of the CT is possible. The

transition to the appearance of a region of global minimization of the coverage time

is smooth and is noticeable when η & 0.49.

It is also of interest to know the dependence of the coverage time for a given

memory time T as a function of ρ and the number of robots, which can also be

evinced from Fig. 4. As shown in panel (a) and (b), when packing fraction is suffi-

ciently low, the minimum coverage time is obtained with a ballistic walk. To show

clearly this effect we plot in Fig. 5 the coverage time as a function N for different

concentration ρ and we compare to the ‘perfect’ coverage algorithm whereby each

location is visited only once by one robot and based on an initial configuration of the

robots that gives the lowest possible coverage time. Considering the torus we con-
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struct the perfect algorithm by computing CT =
√

A+(2d)2
√

A/(2dN)−2d where√
A+(2d)2 is the length that a robot needs to travel to wrap around the torus’ edge

before its original place and
√

A/(2d) is the number of required trips to go to cover

the available area for each robot. The final subtraction is included because robots

stop before reaching their original location.

Fig. 6: Dimensionless coverage time as a

function of the inverse normalized persis-

tence parameter ζ for a single robot in

a circular arena averaged over 1000 sim-

ulations following the same movement

and interaction (reflection) rules as those

in the swarm. Random movement corre-

sponds to ζ = 0 (ρ = 0) and ballistic

movement corresponds to ζ = ∞ (ρ = 1).

The circular arena and the speed of the

agents were set at 1. From top to bot-

tom the curves correspond to a choice of

a square grid superimposed on the arena,

respectively, of size L =1000, 316, 100,

31, and 10.

To understand better the role of the

walk persistence and spatial constraints

due to the collisions with other robots,

in Fig. 6 we plot CT of a single robot

with zero detection distance and zero

radius in a circular geometry of ra-

dius R. The robot follows the move-

ment rules as in the swarm and re-

flects the normal component of the ve-

locity vector by colliding with the cir-

cular confining wall in the same way

robots in the swarm get reflected upon

encountering a virtual barrier. We study

how the coverage time changes as a

function of the robot directional per-

sistence. We do so by plotting CT

versus the dimensionless ratio ζ =
−λ/[R ln(ρ)], which represents an ef-

fective persistence parameter being the

ratio between −λ/ ln(ρ), the average

distance a correlated random walker

would move without turning [26], and

the size of the confining domain R.

To measure the coverage time we

partition the circular arena with a rect-

angular grid of L× L cells, and only

the n cells whose centers are inside the

arena are taken into account. The cov-

erage time C(n) is then defined as the time that takes a walker to visit all these n

sites. We make C(n) dimensionless by considering the ratio φ =C(n)/τn, where τn

is the time it takes a random walker with no correlation (ρ = 0) to cover n distinct

sites in open space.

5 Discussions

We have proposed a bio-inspired distributed spatial coverage algorithm that does

not require robots to deposit ‘marks’ on the terrain. Rather than exploiting the stig-

mergic nature of scent-mediated territorial exclusion, we mimic a form of cognitive
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territorial behaviour whereby animals remember the locations where they exchange

visual or auditory signals with neighbouring individuals to make each others’ pres-

ence conspicuous. A robotic implementation of this behaviour consists of making

each agent consider, for a finite amount of time, the locations of direct collision with

or proximity to other robots as virtual barriers that cannot be encroached. This form

of interaction generates a dynamical segregation that reduces spatial oversampling

between the robots.

Two extreme regimes of spatial heterogeneity of the swarm are present depending

on the number and detection distance of the robots. At one extreme, when packing

fraction is sufficiently small, robots wander over all space with rare encounter oc-

currences and the system resembles a fluid-like material with homogeneous mixing.

At the other extreme, when packing fraction is relatively high, robots are nearly

jammed and the system may be highly heterogeneous. In some areas robots may

move very little around their initial placements, while in others robots move very

little around their initial placement.

While the analysis of a single robot moving within a confined arena showed

that an intermediate degree of correlation minimizes coverage time, we found no

evidence of such minimization in our robotic swarm except by increasing packing

fraction (black line Fig. 4). For lower packing coverage minimization was achieved

instead when robots moved ballistically with increasingly poorer performance as

persistence was reduced (Fig. 5). We ascribe this difference to the fact that virtual

barriers, when robot encounters are rare, do provide a degree of confinement but

only partially. Although persistence reduces spatial oversampling in a single robot,

it also diminishes the chance to revisit or return towards the area where a barrier

was created thus preventing the robots to generate collectively long-lasting space

partitioning.

As robot confinement is only partial, a natural measure to determine the size of

the confining domains is necessary. Home range estimates, being based on an arbi-

trary integration time, do not offer a proper representation of the spatial confinement.

As a consequence it is not evident how to estimate the ζ parameter regime in which

robots operate. To explain the shift in optimal coverage between the ballistic and

the correlated regime between low and high packing fractions future work should

address the lack of a proper tool to estimate the size of the partial confinement.

Promising directions to improve the spatial coverage in the proposed algorithm

include the choice of more informed alternatives for the movement paths of the

robots, e.g. by avoiding recently visited locations, a variant of the so-called self-

avoiding walk [15], or by systematic plowing of the emerging territory of each

robot [1].

Finally, we would like to add that although we have left unexplored the impact of

robot failures, the presence of obstacles and the confining geometry of a real arena,

we do not expect qualitative changes in our findings because the movement response

upon encountering an immobile robot, an obstacle or a reflecting wall would follow

the same interaction mechanism that a robot undergoes when encountering a vir-

tual mark. On the other hand, the same cannot be said about perception errors as

these would affect the degree of confinement of the robots and their effects on spa-



12 Luca Giuggioli, Idan Arye, Alexandro Heiblum Robles, Gal A. Kaminka

tial coverage would need to be studied. For an empirical test careful considerations

should also be made on the robot sensing mechanisms and how malfunctioning of

the detection or recording systems would change the efficiency of the algorithm.
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