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Abstract

We investigate a general cognitive model of group behaviors, based on Festinger’s so-
cial comparison theory (SCT), a prominent social psychology theory. We describe two
possible implementations of SCT process at an architectural level, on the basis of the
Soar cognitive architecture. The first, which seems to follow directly from Festinger’s
social comparison theory, treats the SCT process as an uncertainty-resolution method.
The second, takes a different approach, in which an SCT process is constantly active,
in parallel to any problem solving activity. We present the implementation of these
approaches in the Soar cognitive architecture and argue that one is more suitable for
modeling crowd behaviors. In previous work, we have shown that SCT covers a variety
of pedestrian movement phenomena. In this paper we present the use of the SCT model
in generation of imitational behavior in loosely-coupled groups. Based on experiments
with human subjects, we show that SCT generates behavior in-tune with human crowd
behavior.

1. Introduction

Models of crowd behavior facilitate analysis and prediction of the behavior of
groups of people, who are in close geographical or mentally similar states, and are
affected by each other’s presence and actions. Existing models of crowd behavior, in
a variety of fields, leave many open challenges. In social sciences and psychology,
models often offer only qualitative description, and do not easily permit algorithmic
replication. In computer science, models are often simplistic, and typically not tied to
specific cognitive science theories or data. Moreover, existing computer science mod-
els often focus only on a specific phenomenon (e.g. flocking, pedestrian movement),
and thus must be switched depending on the goals of the simulation.

In our previous work [7], we presented a model of crowd behavior, based on social
comparison theory (SCT) [5], a popular social psychology theory that has been contin-
uously evolving since the 1950s. The key idea in this theory is that humans, lacking
objective means to evaluate their state, compare themselves to others that are similar.
We believe that social comparison is a general cognitive process underlying the social
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behavior of each individual in crowd. However, it was described as a stand-alone al-
gorithm, with no discussion of how it should be integrated into the action-selection
processes of the agent. Moreover, the model was evaluated almost entirely in the do-
main of synthetic pedestrian movement, without comparison to human crowd behavior.

In this paper we describe the implementation and adaptation of the SCT model in
the Soar cognitive architecture, and provide a detailed description of its use in mod-
eling imitational behavior. We describe two implementations of SCT process at an
architectural level. The first, which seems to follow directly from Festinger’s social
comparison theory, treats the SCT process as an uncertainty-resolution method, i.e.,
as a weak (read: general) problem-solving method, which is social. The second takes
a different approach, in which an SCT process is constantly active, in parallel to any
problem solving activity. We argue that the latter approach, in which comparison is a
continuous process, is more suitable for modeling crowd behaviors.

In addition, we evaluate the use of SCT in generation of imitational behavior in
studies with human subjects. We show that SCT generates behavior in-tune with human
crowd behavior: The subjects ranked SCT to be a middle-ground between completely
individual behavior, and perfect synchronized (“soldier-like”) behavior. Independently,
human subjects gave similar rankings to short clips showing human crowds.

2. Background and Motivation

Social psychology literature provides several views on the emergence of crowds
and the mechanisms underlying crowd behaviors [16, 1, 26, 20]. These views can
inspire computational models, but are unfortunately too abstract to be used algorith-
mically. In contrast, computational crowd models tend to be simplistic, and focus on
specific crowd behaviors (e.g, flocking). A common theme in all of them is the gener-
ation of behavior from the aggregation of many local rules of interaction, e.g. [21, 29].
Social psychology. A phenomenon observed within crowds, and discovered early in
crowd behavior research, is that people in the crowd act similar to one another, often
acting in a coordinated fashion as if governed by a single mind [16, 1, 26, 20, 2].
However, this coordination is achieved with little or no verbal communication.

There are several psychological theories that explain this coordinated behavior. For
example, Le Bon [16] noted that individuals seem to lose their individuality (in terms
of personality and thought) when becoming part of a crowd. Contagion Theory carried
this further, emphasizing a view of the crowd as a "Collective Mind" that transforms
an individual into becoming identical with the others in the crowd. Thus, according to
Contagion Theory, the crowd as a collective causes an individual to behave in a manner
similar to others [16].

Convergence Theory [1] states that crowd behavior is a product of the behavior of
like-minded individuals. According to Allport [1], individuals become a part of the
crowd behavior when they have a "common stimulus" with people inside the crowd.
Allport’s explanation of crowd homogeneous behavior is that similar people act in sim-
ilar ways; otherwise they would not be a part of the same group. However, individual
behavior affected by the behavior of his surrounding, thus, according to Allport, "the
individual in the crowd behaves just as he would behave alone, only more so."
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Additional explanations of coordinated crowd behaviors [26, 20] suggest that this
coordination emerges because people in the crowd share a common social identity.
Unlike Allport’s individualistic behavior of people in crowds, Social Identity theory
combines together the societal aspects with individual aspects.

Berk explains crowd behavior using decision theory [2]. According to Berk each
individual tries to maximize her reward and minimize her cost and the crowd behaviors
is no exception for this. Berk’s explanation of coordinated behavior of crowds is that
according to a minimax strategy, the greater the number of participants that engage in
specific action, the less will be an individual cost for engaging in this action. Thus,
each individual selects the action of the majority.

Different theories provides different explanations on what derives the individual
behavior as being part of the crowd. However, all agree that individual behavior is
affected by behavior of others when he or she is part of the crowd which displays
coordinated crowd behavior.
Computational models. Work on modeling crowd behavior has also been carried out
in other branches of science, in particular for modeling and simulation. However, only
a few models have been validated against human data [4, 14, 10]

Reynolds [21] simulated bird flocking using simple, individual-local rules, which
interacted to create coherent collective movement. There are only three rules: avoid
collision with neighbors, match velocity with neighbors and stay close to the center
of gravity of all neighbors. Each simulated bird is treated as a particle, attracted and
repelled by others.

Blue and Adler [3] used Cellular Automata (CA) in order to simulate collective
behaviors, in particular pedestrian movement. The focus is again on local interactions:
Each simulated pedestrian is controlled by an automaton, which decides on its next
action or behavior, based on its local neighborhoods. Blue and Adler showed that this
simple rule results in the formation of lanes in movement, similarly to those formed in
human pedestrian movement [28].

Helbing et al. [11, 12, 10] also focused on simulating pedestrian movement. Each
entity moves according to forces of attraction and repulsion. Pedestrians react both
to obstacles and to other pedestrians. They observed phenomena of self-organization
in collective motion which can be caused by interaction among pedestrians similarly
to the human pedestrian movement [28]. By self-organization, it means that there are
some behavioral phenomena which were not planned: for example, creation of lane
formation in pedestrian movement.

Kretz [14] proposes the Floor field-and-Agent based Simulation Tool model (FAST)
which is a discrete-space and discrete-time model for pedestrian motion. The FAST
model can be classified as an extension of Probabilistic Cellular Automata (PCA). The
FAST model has been validated against human data. In particular, the model simula-
tion results of evacuation scenario was compared to results of evacuation exercise at a
primary school.

A key problem with these models is that the algorithms they provide change with
the crowd phenomenon modeled. Thus, they are not presented at an architectural level.
For instance, many models for crowd behavior utilize cellular-automata (CA), which
differ between domains. One CA model for pedestrian movement [3] uses a set of 6
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IF-THEN rules which work in parallel for all cells, to simulate the movement of pedes-
trians in cells. Another CA model for evacuation [27] uses different set of rules while
the actions and perceptions of each entity are similar to those used in the pedestrian
model. But the algorithmic computation is different.

Our work differs from those described above in that we aim to develop a gen-
eral cognitive model of simulating group behaviors, based on psychology and imple-
mentable as an architectural mechanism. We have already shown that our model covers
pedestrian movement phenomena as was presented in our previous work [7, 8], together
with initial results on imitational behavior. In this paper, we describe the evaluation of
SCT model on imitational behavior in loosely-coupled groups. We discuss the full set
of results, and the evaluation methodology, in detail. Moreover, we describe two imple-
mentation of the SCT process at an architecture level, on the basis of the Soar cognitive
architecture. The first which seems to follow directly Festinger’s theory, treats the SCT
as an uncertainty resolution method. The other is an alternative approach which treats
the SCT as an constantly active process. We argue that the second approach, in which
comparison is a continuous process, is more suitable for modeling crowd behaviors.

3. A Model of Social Comparison

Our research question deals with the development of a computerized cognitive
model which, when executed individually by many agents, will cause them to behave
as humans do in groups and crowds. The hypothesis underlying this research is that
such a model should be a part of the cognitive architecture, rather than a specific task.

We took Festinger’s social comparison theory [5] as inspiration for the social skills
necessary for our agent. According to social comparison theory, people tend to com-
pare their behavior with others that are most like them. To be more specific, when
lacking objective means for appraisal of their opinions and capabilities, people com-
pare their opinions and capabilities to those of others that are similar to them. They
then attempt to correct any differences found.

We believe that social comparison theory may account for some characteristics of
crowd behavior, as noted by Le Bon and Allport:
Contagion Theory [16]. Using social comparison, people may adopt others’ behav-
iors. Festinger writes ” [5, p. 124]: "The existence of a discrepancy in a group with
respect to opinions or abilities will lead to action on the part of members of that group
to reduce the discrepancy".
Convergence Theory [1]. One implication of SCT is the formation of homogeneous
groups. Festinger notes ” [5, p. 135]: "The drive for self evaluation is a force acting on
persons to belong to groups, to associate with others. People, then, tend to move into
groups which, in their judgment, hold opinions which agree with their own“.

Festinger [5] presents social comparison theory (SCT) as an explicit set of axioms.
The following subset of axioms (re-worded) are particularly relevant:

• When lacking objective means for evaluation, agents compare their state to that
of others;

• Comparison increases with similarity;
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• Agents take steps to reduce differences to the objects of comparison.

In our previous work, we turned these abstract axioms into a concrete algorithm.
The algorithm is described in [7], and we provide only a brief description here (Algo-
rithm 1).

Algorithm 1 SCT (O,Ame, Smin, Smax)
1: S ← ∅
2: for all Ao ∈ O do
3: if Smin < Sim(Ame, Ao) < Smax then
4: S → S ∪Ao

5: Ac ← argmaxAc∈S(Sim(Ame, Ao))
6: D ← differences between me and agent Ac

7: a ← SelectAction(D)
8: Apply action a with its Gain (Eq. 1) to minimize differences in D.

Each observed agent Ai is taken to be a tuple of k state features A ≡ 〈fA
1 , . . . , fA

k 〉.
For each such agent, we calculate a similarity value Sim(Ame, Ao), which measures
the similarity between the observed agent Ao and the agent carrying out the comparison
process Ame. The agent Ac with the highest such value within the bounds (Smin,Smax)
is selected for the comparison. Then the comparing agent selects an actions (a) to
reduce the discrepancy. We use a gain function Gain(Sim(Ame, Ac)) (Eq. 1) for the
selected action a, which translates into the amount of effort or power invested in the
action. For instance, for movement, the gain function would translate into velocity; the
greater the gain, the greater the acceleration.

Gain(Sim(Ame, Ac)) ≡ Smax − Smin

Smax − Sim(Ame, Ac)
(1)

4. SCT Implementation in Soar

One of the open questions that we are coping with, is how to implement the SCT
process at the agent architecture level. Soar serves us in this paper as a representative
cognitive agent architecture.

We implemented SCT in the Soar cognitive architecture [19]. Soar was connected
to the GameBots virtual environment [13]. Here, multiple agents, each controlled by a
separate Soar process (each executing SCT) can interact with each other in a dynamic,
complex, 3D virtual world (see Figure 1).

A detailed discussion of Soar’s role as a cognitive architecture is beyond the scope
of this paper. We provide a very brief overview here, and refer the interested reader to
[19, 17, 18, 15] for additional details.

Soar has two components: A graph-structured working memory, and a set of user-
defined production rules that test and modify this memory. Efficient algorithms main-
tain the working memory by executing rules that match existing contents. All the
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Figure 1: Soar agents in the GameBots environment. Each agent has limited field of view and range,
and may move about and turn.

agent’s knowledge, sensor readings, and decisions are recorded in the working mem-
ory. Soar operates in a classic sense-think-act cycle, which includes a decision phase
in which all relevant knowledge is brought to bear to propose, and then select, an op-
erator, that will then carry out deliberate mental (and sometimes physical) actions.
Once the operator finishes its actions, it is automatically de-selected (terminated), and
the cycle repeats. Unlike simple production rules, whose effects on working memory
are temporary, operator-induced the actions of rule firings on working memory (and in
turn, on physical actions) are persistent, even after the operator has been de-selected.
Overall, a Soar agent’s behavior is the result of the sequential selection of operators,
each performing an action on the environment and/or internal memory.

In the following sections, we propose two approaches for such implementation.
The first approach directly follows Festinger’s social comparison theory. According to
Festinger, the SCT process is a response to uncertainty (“lack of objective means to
evaluate opinions”). However, an alternative approach is to view the SCT process as
an on-going process at the architecture level. Such a view requires that the agent will
be monitoring other agents all the time, and is thus more computationally expensive. It
also seems to contrast with Festinger’s theory.

It may appear easy to dismiss the implementation question as insignificant. How-
ever, the implementation choice carries significant implication: As SCT processes in-
herently rely on knowing about the behavior of others, the implementation question
raises a more fundamental question about where modeling of others (e.g., using plan
recognition) occurs in cognition: Is it a problem-solving activity, or is it carried out all
the time, at an architectural level.

4.1. Implementation of the SCT as Problem-Solving Activity in Soar

A key novelty in Soar is that it automatically recognizes situations in which the
decision-phase is stumped, either because no operator is available for selection (state
no-change impasse), or because conflicting alternatives are proposed (operator tie im-
passe). When an impasse is detected, a subgoal is automatically created to resolve
it. Thus, social comparison theory as described by Festinger seems to naturally fit
Soar’s impasse-driven operation. In particular, Festinger describes the trigger to using
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comparison as a situation in which people are unable to evaluate their opinions and
capabilities, which seems to match an impasse situation.

We thus may treat the social comparison process as a new kind of uncertainty-
resolution method, i.e., a method for impasse-resolution (problem-solving). Our goal
in this section is to determine a general way to describe social comparison processes in
Soar, in such a way that they can be used for solving a wide variety of problems.

A snapshot from a log showing Soar using SCT implementation as Problem-Solving
Activity process (here, to decide on movement) is shown below. Soar’s decision cycles
are denoted by numbers before colons. In the first and second decision cycles, oper-
ators called init and explore-decision, respectively, are selected by Soar. Then, more
than 20 different instantiations of an operator called elaborate-target are proposed by
the system, one for each available navigation point for our agent. Each such opera-
tor promotes our agent towards its target and specifically in this case towards different
available locations. Soar is faced with the task of choosing one among different oper-
ators for execution. Since it cannot decide, an operator-tie impasse is declared; see the
line marked

3: ==> S: S3 (operator tie)

This triggers our social comparison process, which is carried out, in sequence, by the
following operators: (i) sct-init, which sets up the new state, and copies relevant in-
formation. (ii) sct-add-entities, which copies information about other agents for use in
ranking operators. rank-item then calculates a rank for all proposed operators, based on
associated agents and their own choices. Finally select-item selects the highest-ranking
operator and makes the decision. Indeed the last decision cycle (#8 in the log) shows a
specific instance of the elaborate-target was chosen.

1: O: O2 (init)
root is active ->proposed child : explore-decision ->by : root

2: O: O4 (explore-decision)
->proposed child : elaborate-target ->by : explore-decision

->proposed child : elaborate-target ->by : explore-decision

[ . . . . . . . . . . . . . . . . . . additional proposals for elaborate-target . . . . . . . . . . . . . . . . . . ]

->proposed child : elaborate-target ->by : explore-decision

3: ==>S: S3 (operator tie)
4: O: O27 (sct-init)
5: O: O28 (sct-add-entities)
6: O: O51 (rank-item)

7: O: O68 (select-item)
SCT Done. Chose O21 Name: elaborate-target

8: O: O21 (elaborate-target)
elaborate-target is active

[ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Soar continues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ]
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4.2. Implementation of the SCT as an on-going process in Soar

A different way of treating SCT process is as on-going process at the architecture
level that is active in parallel to problem-solving activity. Thus, SCT was implemented
as secondary parallel thread within Soar (Figure 2). At every cycle, operators are pro-
posed (and selected) by Soar based on their suitability for a current goal (e.g., through
means-end analysis), and also based on their suitability for SCT. Thus SCT-proposed
operators compete with the task-oriented operators for control of the agent. By setting
Soar’s decision preferences to prefer the SCT-proposed operators, we get a very so-
cial agent. Conversely, by preferring the task-oriented operators, we get an individual
choice agent which makes its decisions independently of its peers.

Sensor Input

Propose
Task Operators

Select
Operator

Execute
Operator

Sense

Act

Think

(a) The normal Soar sense-think-act deci-
sion cycle.

Sensor Input

Propose
Task Operators

Select
Operator

Execute
Operator

Sense

Act

Think

Propose
Operators to Minimize

Differences

(b) Modified Soar decision-cycle. SCT process high-
lighted.

Figure 2: The Soar sense-think-act decision cycle, SCT process highlighted.

The SCT thread proposed operators by following the algorithm described previ-
ously in Section 3, though in a way that is adopted for Soar’s decision cycle: At every
cycle, for each observed agent and for each difference, the SCT process would pro-
pose an operator that would minimize the difference. Then, a set of preference rules is
triggered that ranks the proposals based on feature weight. Additional rules prefer the
most similar agent (that is still not sufficiently similar).

Figure 3 presents a snapshot of Soar’s graph-structured working memory during
one of the experiments. S1 represents the root. In this example, there are several
operators that were proposed by Soar and matched the current state of the agent (O18,
O21, O8, O1, O19, O20). According to this approach SCT process proposes operators
which minimized the differences to the observed agents in parallel to problem-solving
activity. In this example, the SCT operators are O20, O19 and O18 which minimized
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Figure 3: Soar’s memory snapshot

the differences in direction between three observed agents (E3, E4 and E5). The
problem-solving activity process proposes task oriented operators which promote the
agent toward its current goal (in this example: O21, O8, O1). The figure shows that
the SCT operators and task-oriented operators are competing for control of the agent.
At the end, only one is selected.

We now present a snapshot from a log showing Soar using SCT implementation
as on-going approach. When no SCT operators are available (agent do not observe
any other agents), the task-oriented operators took control. In this example, explore-
decision, elaborate-no-target and wait are task-oriented operators (lines #2,#3 and #4
in the log). When agent observe other agents, the SCT process proposes operators
(ex. turn-to-entity) in parallel to task oriented process. Based on different preference
rules, Soar selects one operator for the execution. In our example, according to Soar
working memory (Figure 3) the following operators are proposed O18, O21, O8, O1,
O19, O20, however, the O20 (turn-to-entity) which is SCT operator is selected for the
execution (line #7 in the log).

1: O: O2 (init)
2: O: O4 (explore-decision)
3: O: O5 (elaborate-no-target)
4: O: O1 (wait)
5: O: O6 (turn-to-entity)
6: O: O1 (wait)

[ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Soar continues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ]

7: O: O20 (turn-to-entity)
8: O: O1 (wait)

[ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Soar continues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ]
Implementing SCT as on-going process at the architecture level may appear to con-

tradict Festinger’s theorizing that social comparison comes into play only when people
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are at an impasse. However, this is not the case. For instance, by setting Soar’s decision
preferences to prefer SCT-proposed operators only when no task-oriented operators are
available, one gets the behavior predicted by Festinger’s theory.

5. Modeling Imitational Behavior

An attractive feature of social comparison is its hypothesized prevalence in human
group behavior, i.e., its generality across different behaviors. Indeed, we believe that
the SCT model we present in this paper is sufficiently general to account for a wide
variety of group behaviors. This is in contrast to many existing computational models,
that typically focus on specific tasks. In previous work [7, 8] we evaluated the use
of the SCT model in generation of different pedestrian movement phenomena. Here,
we provide additional evidence for such generality by describing the application of
the SCT model to the problem of generating imitational behaviors in loosely-coupled
groups.

In the next section, we describe the experiment setup. We then briefly describe
a pilot experiment comparing the two SCT implementation approaches (Section 5.2),
based on which one of the approaches is dropped from further consideration. We then
describe experiments examining the remaining approach in simulating a crowd of vir-
tual agents (Section 5.4), and contrast this with the behavior of a human crowd (Section
5.5).

5.1. Experimental Setup

Unlike individual imitation, where one individual imitates a role model, crowd im-
itational behavior spreads across a group of individuals who dynamically select role
models for imitation. Imitation in a crowd occurs more loosely, as the imitation role
models do not necessarily intend to play their role, and indeed may not even know
that they are being imitated. Also, the imitators potentially switch their comparison
targets from one moment to the next. Psychology literature describes such imitational
behavior as one of the keystones of crowd behaviors [16].

In order to simulate imitational behavior we used position and direction as the
agents’ feature set, as these are obvious observable features. For each observed agent
and for every difference found, the SCT process proposes a corrective operator to be
performed in order to minimize the difference in the selected feature. In this task,
the corrective operators were ’move-to’ (minimizing distance to the observed agent,
correcting position differences) and ’turn-to’ (imitating angle of the observed agent,
turning to the same direction as observed agent).

In addition to the proposed SCT operators, Soar also proposes operators based
on their suitability for the current goal, and based on a monitoring mechanism which
proposes operators seeking information. In this task, goal operators were ’turn-to’ (a
random angle); the monitoring mechanism operators turned towards previously seen
agents.
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5.2. A Pilot Experiment: Comparing SCT Implementations

We began evaluating the SCT implementations by running a small-scale pilot ex-
periment, in which we presented to three subjects the resulting simulated behavior of
both approaches (SCT as a problem-solving approach and SCT as on-going approach)
and afterwards ask their opinion regarding the simulated behavior. All subjects claimed
that SCT as a problem-solving approach provide unrealistic behavior, and in particular
that the agent’s behavior was completely individual, and the agents did not appear to
coordinate or influence each other in any way. It became clear that the problem-solving
approach simply would not do. Below, we describe the two implementations for this
experiment, and explain the results.

5.2.1. On-Going SCT
For our experiments, several basic task-oriented operators and SCT operators were

implemented, to allow the agents to move about, turn towards each other, measure
distances to others, etc. Thus one thread of control, always running, is in control of the
agent’s actions towards whatever tasks it was given. The additional thread of control
which is also always running is the SCT process.

Here an addition to the SCT model became necessary. Suppose an agent X decided
to turn towards the same angle as an agent Y that is next to it. For instance, suppose
agent X , facing West, sees agent Y looking North. Agent X now imitates agent Y ,
and also turns to the North. Due to the limited field-of-view of X , it would lose track
of Y once it makes the turn. From that point on, it could no longer keep track of Y ,
to minimize additional differences. This would cause it to become overly reactive,
turning about immediately to seek Y again, or to select a different operator altogether
(now that Y could no longer be imitated).

We thus found it necessary to utilize two mechanisms: (i) a memory mechanism
that keeps track of the whereabouts of agents, once seen; and (ii) a monitoring mech-
anism that occasionally would turn towards remembered agents, to provide an update
on their state (for the purpose of comparison). Both of these mechanisms (memory and
monitoring) are of course present in many cognitive architectures [23, 22], and are not
necessarily linked to SCT. We thus leave discussion of such mechanisms outside of this
paper.

We used Soar preference rules to rank the feature weights such that the position fea-
ture gets higher priority than direction. This means that a closest agent is considered
to be more similar, however the chosen feature for correction is direction. The Smax

value was unbounded, which means that there is no such thing as too similar. In our
case Soar can propose corrective operator with value equal to zero if there is no correc-
tion to make with respect to the observed agent. We used additional Soar preference
rules to give higher priority to exploration mechanism operators than to goal operators.
Thus, each agent prefers the SCT operators (’turn to’) and in the case when there are
no seen agents (i.e. there is no proposed SCT turn-to operator) an agent will prefer
the exploration mechanism operators, and only afterwards the goal operators. The re-
sulting simulated behavior has the agents standing in their initial locations, turning to
some direction (often those of some other agent near them) or doing nothing.
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5.2.2. SCT as Problem Solving
Implementing the SCT as problem-solving process in Soar architecture proved an

interesting challenge. In particular, we quickly discovered that in the initial implemen-
tation, the reason agents using it did not display social behavior was that the SCT pro-
cess (as a problem solving activity) was rarely, if ever, called. In imitational behavior,
the task-oriented operator that promote agent towards its current goal, is a turn-to oper-
ator which orients the agent toward a direction of interest. This operator is constantly
available for the agent, since the agent can always turn, thus the "state no-change im-
passe" where no operator is proposed, never takes place. So we could not rely on the
SCT problem solving method to be called on state no-change impasses.

We thus switched to an alternate trigger for the SCT process. It could be triggered
as a response to an operator tie impasse, where there is a conflict, i.e., when task-
oriented operators compete with each other. Given that the agent could turn in any
direction, Soar proposed multiple turn-to operators (one for each separate target angle).
These competed with each other, creating a tie-impasse. Here, two approaches are
possible: To use preference rules (which prefer one operator over another) to prefer one
operator over the others (in which case, no impasse occurs, and thus no SCT process),
or to allow an impasse to occur. However, given that turn-to operators are always
possible, and are thus constantly proposed, the impasses would never end. The Soar
agent would be forever executing SCT processes to try to keep up with impasses.

Regardless of which tactic we tried, the resulting simulated behavior was indi-
vidual: The virtual agents ignored each other, and only performed their task-oriented
operators. This is what caused the subjects to so decidedly reject this approach.

5.2.3. Additional support for On-Going SCT
There is other evidence for rejecting the approach of social comparison as a problem-

solving activity, which is triggered only on impasse, i.e., only when the agent becomes
stuck in its goal-oriented activity. We discuss this now.

First, from psychological literature, we learn that people are always aware of other
people’s behavior, and indeed elaborations on social comparison theory expanded its
view on when comparison takes place. For example, Hakmiller [9] and Singer [24]
expanded the theory and demonstrated that people tend to confirm or reassure that their
actions or beliefs are the correct ones, by comparing themselves to others after making
their decisions. Thus according to this approach people tend to use social comparison
in parallel to their decision making process.

Second, results in other domains (pedestrian movement, gathering and crowding [6]),
show that even when used as a stand-alone algorithm, the SCT process must be con-
stantly active to produce reasonable results. Whenever it is used only when the agent is
"stuck", the quality of the simulation drops, and sometimes disappears altogether (i.e.,
the simulation fails).

Finally, treating SCT as on-going process is a more general approach, which in-
cludes the SCT as a problem-solving activity approach as its special case and provides
a compatibility with Festinger’s theory. However, the reverse is not true. Thus the
on-going approach is in fact more general.
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5.3. Evaluation of imitational behavior: Methodology

We conducted experiments to evaluate whether SCT can indeed generalize to ac-
count for imitational behavior in groups. Unlike the pedestrian movement domain,
where clear measures are available for objective measurement of the success of a model
(e.g., flow, lane changes), imitational behavior does not have clear standards of evalu-
ation.

We propose a method for evaluation of imitational behavior. We propose a ques-
tionnaire composed of general questions and specific tasks related questions. The gen-
eral questions can be used as a common method for evaluation of all kinds of imi-
tational behaviors. We rely on experiments with human subjects, which judged the
human crowd behavior and the resulting SCT behavior in comparison to completely
individual behavior (i.e., arbitrary decisions by each agent, independent of its peers),
and to completely synchronized behavior (i.e., all agents act in complete unison).

The first hypothesis underlying the experiments was that groups controlled by SCT
would generate behavior that would be ranked somewhere in-between the individual
and perfect-coordination models, i.e., that SCT would generate behavior that would
be perceived as coordinated, but not perfectly so. Another hypothesis is that hu-
man crowd behavior would also be ranked somewhere in-between the individual and
perfect-coordinated behaviors.

To examine the first hypothesis, we created three screen-capture movies of 11 Soar
agents in action. All movies were shot from the same point of view, and showed the
agents in the same environment. In all screen-capture movies there is one blue agent
that stands in front and turns up to 90◦ left or right. All others are red agents that act
according to one of the models.

In one movie (individual), the red agents act completely independently of each
other, randomly choosing an angle and turning to it. In another (unison), the red agents
act in almost perfect coordination, turning towards the same angle as the blue agent
almost instantaneously (small timing differences result from asynchronous responses
of the simulated environment). Finally, in the SCT movie, the red agents act according
to our model as described above.

These experiments were carried out using 12 subjects (ages: 18–40, mean: 28;
male: 6; additional 4 subjects dropped due to technical reasons). Each subject was
given a brief description of the appearance of the environment and agents, sometimes
aided by a snapshot from a movie (e.g., as in Figure 1). The subjects were told that the
purpose of the experiment was to evaluate the use of perception models embedded in
the agents; that there was a red dot—visible to the agents but not to the subjects—that
moves about on the walls surrounding the group. The agents’ goal is to individually
locate this dot, and then track it in place by turning around. The purpose of the cover
story was to focus the attention of the subjects away from group behavior and imitation,
so as to not bias the results. After the description, the movies were shown to the subject.

After each movie, the subjects were asked to fill a short questionnaire (described
below) based on what they saw. Each movie was shown only once. The order of
presentation of movies was randomly selected for each subject, to control for learning
and order effects. The questionnaire included the following questions:

1. If there is only one red dot in the room, to what degree did all agents see it? (1 -
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nobody saw the red dot; 6 - all agents saw it)
2. To what degree were the movements of the agents random? (1 - not random at

all; 6 - very random)
3. To what degree was there cooperation between the agents? (1 - no cooperation

at all; 6 - full cooperation)
4. To what degree was there agreement between the agents? (1 - no agreement at

all; 6 - full agreement)
5. To what degree were the agents coordinated in terms of the direction of their

movements? (1 -no coordination at all; 6 - fully coordinated)
6. How quickly did the agents find the red dot? (1 - dot not found at all; 6 - imme-

diately found)
7. To what degree were the agents related to each other? (1 - no relation at all; 6 -

tight relation)
8. Do you see any leaders? If so, how many? (1-11) (1- one leader; 11 - all agents

are leaders, i.e., no leader).

In this experiment, the subjects were asked to grade the movies on an ordinal scale
of 1–6, with 1 being a low score (typically associated with more individual behavior),
and 6 being a high score (typically associated with perfect unison). In order to keep
consistency in presentation of results, the scale of the second question (Non-Random)
was reversed. The results of the last question (Number of leaders) are presented sepa-
rately due to inconsistency in scale with other questions.

5.4. Results: Virtual Agents

In general, the responses to the questions in this experiment have placed SCT be-
tween the individual and unison models. Results are summarized in Figure 4(a) and
4(b). The questions in Figure 4(a) are associated with agents’ performance on a given
task. In the presented questionnaire the number of questions are 1, 3, 4 and 6. Figure
4(b) refers to more general questions (i.e. the same questions that were used in human
crowd movie). In the questionnaire the relevant numbers of questions are 2, 5, and 7.
The categories in the X-axis correspond to questions given to the subjects. The Y-axis
measures the median result. Each bar correspond to compared model and as explained
above we compare SCT model to Individual and Unison models.

(a) (b)

Figure 4: Results of questionnaire on agents performance.
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The results clearly demonstrate that the SCT model lies in between the individual
and perfect-unison model. While in some questions it appears to be somewhat closer to
the individual model, it is significantly different from it (ex. question #3: t(11) = 2.17
p = 0.02, one-tailed t-test, question #6: t(11) = 3.36 p < 0.01, one-tailed t-test).

Figure 5(a) shows the results for the question on the number of leaders. The median
result for the individual was 11 (i.e., every agent is a leader, or in other words, no
leader). For the unison model, the median result was 1. For the SCT model, the median
result was 3. In this question the SCT model result is very close to the Unison model.
According to t-test (one-tailed) the SCT model significantly differs from the Individual
model (t(11) = −2.24, p = 0.02). However, in comparison to Unison model there is
no significance found (t(11) = 0.51, p = 0.3).

We conducted an additional experiment, in which static images—snapshots from
the movies—were shown to subjects. However, as opposed to screen-capture movies
where the subject answered the questionnaire after seeing each movie only once, in this
experiment the subjects answered the questionnaire while watching still images.

We took three snapshots from each movie. The snapshots were taken at the same
time slot from the beginning, middle and the end of the movies. After filling the screen-
capture movies questionnaire, the snapshots from the movies were shown to the sub-
jects. The question presented to the subjects was: “If there can be more than one red
dot in the room and each agent is known to be fixating on a dot, how many red dots are
in the room?” The subjects were asked to grade each snapshot on an ordinal scale of
1–11 with 1 being a low result (i.e., all agents look at the same red dot) and 11 being
a high result (i.e., the number of red dots as the number of agents meaning all agents
look at different dots).

The results of this experiment are summarized in Figure 5(b). Again the categories
in the X-axis correspond to question given to the subjects. The Y-axis measures the
average of median results that belong to each model.

Again the results demonstrate that the SCT model lies in between the individual and
perfect-unison model and it significantly differs from the individual model (t(11) =
−2.86, p < 0.01, one-tailed t-test) and from perfect-unison model (t(11) = 2.58,
p = 0.012, one-tailed t-test).

(a) Number of leaders in screen-capture
movies.

(b) Screen snapshot results.

Figure 5: Additional results for the simulated agents.
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5.5. Results: Human Crowd
Another hypothesis underlying the experiments is that human crowd behavior would

also be ranked somewhere in-between the individual and unison models. To examine
this, we search for a human crowd movie where individuals perform the same action as
in simulated agents movies. We used a news clip movie which shows people, grouped
together, standing and waiting for some event to occur. The only action they perform
in the movie is to turn occasionally.

The experiment was carried out using 12 human subjects. These were not the same
subjects who participated in the first experiment (sections 5.1 – 5.4). Each subject, after
viewing a human crowd movie (Figure 6(a)) was asked to fill the same questionnaire
as in previous experiments. However, since in the human crowd movie there was no
cover story about red dot, there were some irrelevant questions that were dropped out.
The remaining questions are more general and not tied to a specific task.

(a) A human crowd. (b) Results: News clip.

Figure 6: Human crowd.

Results are summarized in Figure 6(b). As in previous results, the categories in
the X-axis correspond to questions given to the subjects and the Y-axis measures the
median result.

We compare the human crowd results to the individual and perfect-unison mod-
els results. It appears to be significantly different from the individual model in all
questions (t(22) = 7.20 p < 0.01, t(22) = 5.89 p < 0.01, and t(22) = −2.4
p < 0.05, respectively; t-test, one-tailed). However, in comparison to the perfect-
unison model, the results of the coordination and non-random questions are signifi-
cantly different(t(22) = −3.59 p < 0.01, and t(22) = 4.98 p < 0.01, respectively;
t-test, one-tailed). The results of the relationship question shows no significant different
between the perfect-unison and the news-clip movie (t(22) = −0.13, p = 0.44).

In response to the question “Do you see any leaders? If so, how many?”, the median
result in human crowd movie was 1.5. It is significantly different from the individual
model (t(22) = −3.71, p < 0.01, t-test, one-tailed) but not in comparison to the
perfect-unison (t(22) = −0.30, p = 0.38). When the subjects were asked to qualita-
tively discuss their answer to this question, many subjects reported that they don’t see
any leader, however “one must be present outside of the view of the movie, since the
crowd is waiting for something or someone”. However, when they were asked to refer
to only people seen in the movie, the answer was that there were several subgroups in
the seen crowd. While this qualitative answer is similar to the answer we received in
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asking similar questions about the simulation movies, we do not believe that this nec-
essarily suggests that the SCT model is completely accounting for realistic behavior.
In the future, we will focus more explicitly on the issue of subgroups, by adding the
following question to the questionnaire: “Are there any subgroups? If so, how many?”.

6. Conclusions

This paper presented a model describing crowd behavior, inspired by Festinger’s
social comparison theory [5]. The model intuitively matches many of the characteristic
observations made of human crowd behavior, in particular as described by major crowd
behavior theories.

We presented in detail two implementation approaches to social comparison pro-
cesses, in Soar cognitive architecture. The first approach treats social comparison as
a problem solving activity, to be triggered by uncertainty in the agents’ task-oriented
reasoning. The second approach treats social comparison as an on-going processes,
taking place in parallel to any task-oriented reasoning and actions. In early experi-
ments, it was shown that the latter approach is superior, and we discuss the reasons for
this choice in depth.

We report on experiments with human subjects, to evaluate the use of the on-going
SCT process in modeling imitational behavior in a group. Though there is a lack of
objective data against which the model can be evaluated, results of experiments with
human test subjects are promising and seem to match intuitions as to observed behav-
ior. The subjects ranked SCT to be a middle-ground between completely individual
behavior, and perfect synchronized (“soldier-like”) behavior. Independently, human
subjects gave similar rankings to a short news clip showing human crowds.

The research reported in this paper raises several implications for cognitive archi-
tecture and their structure, as it pertains to social reasoning.

• First, accepting that social comparison takes place in parallel to problem solving
activity implies that agent modeling—the process by which an agent keeps track
of other agents, monitors their behavior, and possibly infers their intention–is
carried out at an architectural level, in parallel. Based on this, it would seem
that agent-modeling, which forms the basis for social comparison, is in some
sense like learning: Always present, always taking place. The agent can choose,
perhaps, to what degree to follow up on its results, but the agent cannot turn it
off.

• Second, accepting that social comparison takes place constantly, in parallel to
task-oriented reasoning, we are now faced with the challenge of investigating
the timing of comparison: When do humans follow up on the results of the
comparison, and when do they ignore it? Does the tendency to follow up on
social comparison change between people? What affects this tendency? etc.

• Third, there is of course much more depth to social comparison, as the basis
for cognitive modeling. For instance, we know from psychology literature that
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the comparison process itself is more complex than the process captured in Al-
gorithm 1. For instance, psychology tells us that the process of selecting a tar-
get for comparison is much more involved than simply picking the most similar
agent [25].

.
We hope to pursue these implications and directions for further research in our fu-

ture work. We are particularly interested in continuing to investigate cognitive models
of social behavior and social reasoning.
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