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Abstract

One key issue facing robotic teams is effective coordina-
tion mechanisms. Many robotic groups operate within do-
mains where restrictions such as limiting areas of opera-
tion are liable to cause spatial conflicts between robots. Our
previous work proposed a measure of coordination, inter-
ference, that measured the total time robots dealt with re-
solving such conflicts. We found that a robotic group’s pro-
ductivity was negatively correlated with interference: Ef-
fective coordination techniques minimized interference and
thus achieved higher productivity. This paper uses this re-
sult to create adaptive coordination techniques that are able
to dynamically adjust the efforts spent on coordination to
match the number of perceived coordination conflicts in a
group. Our robots independently calculate a projected level
of interference they will encounter. By using this metric as a
guide, we are able to create adaptive coordination methods
that can quickly and effectively adjust to a given domain’s
spatial limitations. We present two adaptation heuristics
that are completely distributed and require no communi-
cation between robots. Using thousands of simulated tri-
als, we found that groups using these approaches achieved
a statistically significant improvement in productivity over
non-adaptive coordination methods.

1. Introduction

Groups of robots are likely to accomplish certain tasks
more quickly and robustly than single robots [3, 5]. How-
ever, the physical environment where such teams operate
often pose a challenge for the robots to perform properly.
For example, domains such as robotic search and rescue,
vacuuming, and waste cleanup are all characterized by lim-
ited operating spaces where the robots are likely to collide.
Improved coordination methods in such domains result in
more productive groups.

Our previous work [9] defined a measure called inter-
ference to facilitate comparison between various coordina-

tion methods. Interference is defined as the total time each
robot spends in resolving conflicts with other robots. This
not only includes the time robots collide, but also the time
robots spend preventing such collisions and the time they
engage in resolution behaviors after such an event. It was
found that a strong negative correlation exists between inter-
ference in a group and its productivity. However, this does
not mean that robots should avoid the coordination activi-
ties which constitute interference as such behaviors are of-
ten critical for achieving cohesive team behavior. Rather, it
was suggested that the coordination method of choice needs
to appropriately match the needs of the domain. As such,
interference should be kept to a minimum, while still suf-
ficiently high to meet the coordination requirements of the
environment.

This paper builds on this hypothesis by presenting two
applications whereby robots dynamically adapt their coor-
dination techniques based on the amount of interference
they project will be encountered. Our first method works
by tweaking the strength within one coordination method
to adapt to its environment. Our second approach proceeds
to dynamically self select between a range of mutually ex-
clusive coordination methods. In order to quickly adapt to
a changing environment, we use weight-based heuristics by
which every robot in the group is capable of quickly mod-
ifying its resolution methods to match its estimates of re-
source conflicts. Our approach is completely distributed,
and requires no communications between robots. We found
that our adaptive methods result in statistically significant
higher average productivity than that of non-adaptive meth-
ods regardless of the group size.

2. Interference versus Productivity

A strong inverse relationship seems to exist between a
robotic group’s productivity and the length of time these
robots engage in coordination behaviors. We previously
found [9] a strong negative correlation between the total
amount of time a robot spent in resolution behaviors, a con-



cept referred to as interference, and the productivity of the
group. While adding robots can speed the time to com-
plete certain tasks, and can even be necessary for complet-
ing other tasks, these robots can trigger collisions which de-
tract from the group’s performance.

Our previous work [9], contrasted various coordination
algorithms within the foraging domain. The foraging do-
main has been extensively studied, and is formally defined
as locating target items from a search region S, and deliver-
ing them to a goal region G [4]. Various coordination meth-
ods have been developed that could work within this do-
main [10, 3, 13, 8]. We compared algorithms including the
concepts of aggression [13], a dynamic bucket brigade [8],
and the use of a repulsion schema mechanism (noise group)
[1]. Among others, we compared three additional groups
called gothru, repel fix and timeout. Gothru represents ide-
alized group behavior without any possibility for interfer-
ence and can only exist in simulation. These robots were
never affected by obstacles, and were allowed to simply
pass through teammates. Repel Fix resolved collisions by
moving away from a teammate for a fixed period of time,
here set to 500 cycles. The timeout method only reacted
once a robot detected it had not sufficiently moved for 100
cycles. After this point, it attempted to become unstuck by
moving in a random walk for 150 cycles.
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Figure 1. Comparing Coordination Methods

Figure 1 graphically presents the results that motivate
this work. The X-axis represents the number of robots in
the group, and the Y-axis corresponds to the number of for-
aging pucks that the group brought to the goal region. No-
tice how Gothru is the only group to achieve positive gains
in productivity over all group sizes. The levels of interfer-
ence that existed in all other groups eventually caused the
group’s productivity to decrease with the addition of robots.
We found a very high negative correlation between the to-
tal time groups spent reasoning about and reacting to colli-
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sions, and the corresponding productivity. However, no one
group was successful in minimizing this level of interfer-
ence across all group sizes. Our conclusion was that static
groups are often not suited for minimizing interference over
all conditions. This paper describes how to create adaptive
coordination methods that are able to react to the dynamic
conditions within robotic domains and thus achieve better
productivity across all group sizes.

3. Adaptive Coordination

We focus on adaptive methods which use weight-based
heuristics to dynamically modify team coordination algo-
rithms to match perceived environmental conditions. By ob-
serving the triggers for episodes of interference, we be-
lieve it is possible to create coordination methods that move
between simple and complex techniques as needed. We
present two variations of this approach and their advantages
over static methods. In the first technique we have the robots
self adjust within one coordination method to match the per-
ceived environmental conditions. Our second technique in-
volves adaptation between distinct coordination algorithms.

In order to demonstrate the shortcomings within static
methods, we studied 5 variations of the repel group. We
chose values of 1, 50, 100, 200, and 500 cycles for the
length of time the repel group would repel after a projected
collision. As was the case in our previous work, we used
the robot simulator, Teambots [2], to collect data for these
groups. We left other details of our setup identical to the im-
plementation previously used. As such, Teambots [2] sim-
ulated the activity of groups of Nomad N150 robots in a
foraging area that measured approximately 5 by 5 meters.
We used a total of 40 target pucks, 20 of which where sta-
tionary within the search area, and 20 moved randomly. For
each group, we measured how many pucks were delivered
to the goal region by groups of 1 — 30 robots within 9 min-
utes. For statistical significance, we averaged the results of
50 trials with the robots being placed at random initial po-
sitions for each run.

The best variation of the repel coordination method de-
pended on the size of the group. As the group size grew,
robots required increasingly more aggressive coordination
methods to fight collisions. Among these groups, repel 50
had the highest productivity in groups up to 10 robots. Be-
tween 10 and 15 robots the repel 100 group did best. The
repel 200 group fared better over the next 5 robots, and the
repel 500 group had the highest productivity between 20 —
30 robots. The goal of our first adaptive approach is to cre-
ate an algorithm that can select the best repel amount for the
environment given the group size.

Adaptation could also help to switch between distinct co-
ordination methods. As figure 1 demonstrates, there is no
one best coordination method for all sized groups within
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Figure 2. Static Repel Group Productivity

our domain. Our noise group fared best in groups up un-
til 7 robots. The aggression method fared best in groups 8 —
17 robots. Repel500 had the highest average group produc-
tivity in groups 18 robots and more. Our second adaptive
approach aims to select between various coordination ap-
proaches based on the needs of the group.

Both of our adaption techniques are based on heuristics
that are sensitive to the triggers of interference the robots
face within their domain. As the robot senses the probabil-
ity of collisions is high, it uses more “expensive” interfer-
ence resolution mechanisms. If the threat of collisions is
low, more simple coordination methods are used. Specif-
ically, our algorithm works as follows: We first initialize
a base value, V;,,;;, representing the supposed interference
level the robot will encounter. For each cycle that passes
where a robot detects no impending collisions, it decreases
its value of V' by a certain amount, W,.,.,. For each cy-
cle where the robots sense a collision is likely, it increases
its value V' by a certain amount, W,,. Thus, the robots’
value V' which is constantly in flux and aims to model it-
self based on the projected amount of interference that par-
ticular robot independently encounters.

The coordination method used is based on the values
Vay, Vi, Ve, etc., within each robot. In our first adaptation
method, we translate the various values for V' into the num-
ber of cycles the repel method uses to repel once it detects a
collision is imminent. In our second adaptation method the
values for V' are used to switch between a set of coordina-
tion techniques ranging from “cheap” to “expensive” ones.
In both methods, when collisions are unlikely, the value V' is
low and thus coordination methods with little overhead will
be used. Thus, the interference will be low, and the level
of the group’s productivity will be high. When the robot
contains a high value of V, it will select more aggressive
coordination behaviors to more effectively resolve the pro-
jected collision. These expensive behaviors are needed to
prevent the robot from re-triggering its resolution behavior
for the same event. While these repulsion activities them-

selves constitute interference, these behaviors are a neces-
sary evil as more simple behaviors would not suffice.

4. Creating and Evaluating Adaptive Meth-
ods

We began by experimenting with various values for these
weights within our first approach of adapting within one co-
ordination method. We found many nearly optimal combi-
nations for the values of V;,,;¢, Wa,p, and Weq,r,. Our adap-
tive approach was flexible in that a value of V;,,;; being orig-
inally set too high was soon corrected by the weights in
Waown. Ultimately, we found that a value of V;,,;; = 350
seemed to work best. We used values for W .., ranging
from 0 to 200 based on how quickly the repel mechanism
was previously triggered. Our values for W, ranged from
0 to 550 based on how quickly the robot neared a collision.
This led to a heuristic that took a graduated approach — it
would adjust the amount it would repel in the case of a col-
lision fairly quickly up or down based on how frequently
collisions occurred within the domain.

Our second approach used the values of V' to switch be-
tween 3 distinct coordination methods — noise, aggression,
and repel500. The noise group has the least costly coordina-
tion method, and was most effective in small groups up until
7 robots. At the other extreme, the repel500 fared poorly in
small groups but had the best productivity in groups larger
than 17 robots. In our implementation we set the values of
both Wown and Wy, to be one. We set threshold values
of V for each of the three states at 100, 200 and 300 ac-
cordingly. Thus, if V' increased by a total of 100, the robot
would assume a more robust coordination method was re-
quired and would transition to use the next most expensive
coordination method, say from noise to aggression. If this
method was still insufficient to resolve this instance of a
projected collision, WW,,,, would increase the value of V" until
the next threshold was reached. Conversely, if that method
was sufficient to resolve that incident of a projected colli-
sion, the value of W, would begin to decrease the value
of V' and the robot could eventually move down to the next
lower method of coordination.

We found that our adaptive repel group produced statis-
tically significant higher levels of performance than that of
even the best static method we studied. For statistical signif-
icance we ran our adaptive group for 50 trials over a range
of 1 — 30 robots. The adaptive repel team on average col-
lected 1.5 pucks more than the best of the static groups.
Figure 3 graphically depicts the success of this group. We
conducted the two tailed paired t-test on our data to con-
firm the statistical significance of our findings. We com-
pared the averaged productivity values of our adaptive re-
pel group to all of the non-adaptive methods over the range
of 30 robots. All scores were far below the needed 0.05 for



significance with the highest p-value for the Null hypothe-
sis being only 0.00013 (between our dynamic group and the
repel 100 group).
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Figure 3. Productivity Graphs in Repel
Groups

Our adaptive coordination heuristic was even more effec-
tive when switching between methods. As figure 4 demon-
strates, our adaptive group averaged significantly higher
productivity than the 3 coordination methods it was based
on. Once again, we performed the two tailed paired t-test
on our data and found a p-value below 0.0001 between all
groups, demonstrating the strong statistical improvement.
In fact, in all groups sized over 2 robots, the adaptive group
always scored better than all static methods it was based
on, often by more than 20 percent. This result was unex-
pected. We had assumed adaptation would only be capable
of achieving results in line with the best levels of productiv-
ity for the methods it was based on, not significantly higher.

We believe that this adaption method is especially capa-
ble of capitalizing on fluctuations in interference levels, al-
lowing it to markedly outperform the static methods. We ob-
served that the number of collisions often vacillated sharply,
even within the course of one trial. This method’s ability to
change its fundamental coordination method facilitated its
adapting to these changes. Accordingly, the value of V' in-
side each robot also vacillated. We found that average val-
ues for V' of the robots in this method only ranged between
0 and 200 over the entire range of 1 — 30 robots. As a value
of V over 200 translated into using the extreme repel500
method, this implies that these adaptive groups never on av-
erage needed to stay within the most “expensive” coordina-
tion method. For example, in one trial of 25 robots, the en-
tire team clocked 78743 combined cycles in the original be-
havior, 15098 cycles in the aggression behavior, and 46848
in the repel500 behavior. We believe that this flexibility led
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Figure 4. Adapting Between Coordination
Methods

to the jump in productivity of these adaptive robots.

5. Related Work

Our adaptive methods are based on coordination al-
gorithms that use no communication and are not prepro-
grammed to operate only within certain portions of the
domain. The methods of Arkin and Balch [1], Vaughan
et al. [13], and Ostergaard et al. [8] all similarity use
heuristics to create group activity without communication
or prior knowledge of the operating environment. Other
algorithms such as those within the work of Fontan and
Matari¢ [10] and the territorial arbitration scheme in Gold-
berg and Mataric [3] prevent collisions by limiting robots to
specific areas within foraging domains. Jager and Nebel [5]
present an algorithm that can dynamically create these areas
in a vacuuming domain, but require the robots to communi-
cate locally. Another group of algorithms preassign values
so that certain robots inherently have a greater priority to re-
sources than others. Vaughan et al.’s fixed hierarchy system
[13] and Goldberg and Mataric’s caste arbitration algorithm
[3] implement variations of this idea on foraging robots.

The concept of attempting to have robots learn from their
environment has been extensively studied. Previous work in
Mahadevan and Connell [6] found reinforcement learning
based on Q Learning to be quite effective for a box push-
ing robot. While they concede that reinforcement learning
is especially slow to converge within robotic domains, using
a behavior based approach did speed the process. Matari¢
[7] studied various reinforcement learning approaches on
foraging robots and stressed that the time to learn can be
quite long if certain events, such as the inter-robot collisions
in our domain, occur sporadically. However, the time to
learn certain tasks could be diminished by using behaviors
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that use implicit knowledge of their domain. More specifi-
cally, several methods have also been proposed to use learn-
ing to create better coordination. One possibility is to have
team members explicitly communicate learned information
learned about their environment with others. Work by Tan
[12] represents one proponent of this approach. Other ap-
proaches, such as work by Sen et al [11] attempt to cre-
ate better coordination through implicitly learning informa-
tion about the domain. Our robots follow this second ap-
proach as they never communicate, and create their inter-
ference gauges by observing their environment.

6. Conclusion and Future Work

In this paper we present a method for dynamically ad-
justing coordination methods based on the conditions robots
sense in its operating domain. Our use of interference met-
rics allows us to create powerful adaptive heuristics based
on the projected amount of interference a robot will face.
We implemented two adaptive methods, one based on dy-
namically adjusting the strength within one coordination
method, and a second based on adapting between the funda-
mental coordination method used by the robots in the group.
In both cases we found a statistically significant improve-
ment in performance by using the adaptive methods, with
the second method strongly outperforming the basic static
coordination techniques it was based on. The spatial con-
strictions which cause interference in the foraging domain
are common to many areas such as waste cleanup, area cov-
erage in vacuuming, search and rescue domains, and plan-
ning collision-free trajectories in restricted spaces. We be-
lieve our approach of dynamic coordination methods will
greatly benefit designers of robotic teams in these domains
as well.

For future work, several directions are possible. The ad-
dition of explicit communication may speed the adaption
process within coordination groups. We leave for future
work contrasting our approach versus those with commu-
nication and traditional reinforcement learning. One main
disadvantage of our current approach lies in the manual ini-
tial work in setting the weights within our heuristic. Before
our adaptive coordination methods could begin, work was
needed to set the weights in our robots. It may be possi-
ble to simplify the process of initially setting these weights.
One possibility would be to pass information based on pre-
vious trials and use a combination of classical reinforce-
ment learning in addition to our heuristic based weight sys-
tem. It is possible that combining these approaches might
lead towards creating robot groups with even more effec-
tive adaptation.
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