
Active Perception at the Architecture Level: A Preliminary
Report

Niv Rafaeli
Computer Science Dept.
Bar Ilan University, Israel
rafaeln@cs.biu.ac.il

Gal A. Kaminka
Computer Science Dept. &

Gonda Brain Research Center
Bar Ilan University, Israel

galk@cs.biu.ac.il

ABSTRACT
Robots rely on a set of beliefs, while looping in an action-
perception cycle. These beliefs include results of the per-
ception process which is composed of a chain of actions that
use the agent’s sensors and computation power in order to
receive, fuse, filter and process information about the en-
vironment, to acquire new beliefs, and revise existing ones.
Current Belief-Desire-Intention (BDI) systems, which pro-
vide the architectural framework for this process, implicitly
assume that during run time the relevant beliefs over the
world are made available. However, in realistic, physical
environments this assumption often fails. Active perception
processes are the solution for handling missing information
during run time. However, in most of the cases they are
used ad-hoc for specific tasks. This article deals with ac-
tive perception in the architecture level. We present several
algorithms that integrate active perception into the BDI in-
terpreter loop. We show that different methods of imple-
mentation creates major differences in the running time of
the algorithms. We advocate the DSAP algorithm that takes
under consideration the limited available information in or-
der to minimizes the amount of time the agent has to invest
in execution of active perception processes.

Keywords
integration, active perception, architecture

1. INTRODUCTION
Intelligent robots rely on a set of beliefs, while looping

in an action-perception cycle. The set of beliefs contains,
among other things, the agent’s beliefs about the world.
These are the end result of a perception process which uses
sensors and computation power in order to receive, fuse,
filter and process information about the environment, to ac-
quire new beliefs, and revise existing ones.

One architectural framework for understanding this pro-
cess is called BDI (Belief, Desire, Intention). BDI archi-
tectures/systems have been used to relate how perceptual
processes generate and revise beliefs, which lead to reconsid-
eration of goals, which in turn leading to adoption of plans
(associated with specific intentions), to pursue of selected

To appear in: Proceedings of the Autonomous Robots and Mul-
tirobot Systems (ARMS) workshop, part of the AAMAS con-
ference, 2017. Non-archival publication.

goals. BDI-based robots have been used in numerous case
studies, investigations, and applications.

In this paper, we focus on the perceptual process of BDI-
based agents in general, though the challenge we tackle is
often raised in robots. Ketenci et al. [8] and So et al.
[15] describe two principled types of perception generating
these beliefs. A top-down process, known also as active per-
ception, is ideally controlled by the goal-oriented reasoning
process, enables the agent to turn its perception—by taking
actions—to the most relevant aspects of the environment
according to its task. A bottom-up process known also as
passive perception ideally originates from the sensors, allow-
ing goal-independent, and opportunistic perception.

In physical environments, passive perception is not enough.
The agent’s resources that are assigned to the perception
process are bounded; sensors have limited capabilities (e.g.
range, distance and more) and objects may be occluded, out
of range, etc.

Unfortunately, current BDI systems and particularly BDI
robotic agents use only passive perception. In existing for-
mulations of BDI, the basic assumption is that the agent
has all relevant beliefs, but what about the cases where an
agent needs to take an action in order to change the state
of its beliefs?

Shanahan [14] describe active perception as any form of
action that leads to acquiring of new information. Rang-
ing from short duration, low-level actions as applying a fil-
ter on a camera sensor to long-tern high-level actions as
opening a door in order to look on the other side. Subtle
knowledge-producing actions as asking a question or brows-
ing for information through a list [12] are also on this spec-
trum. Shanahan’s definition bounds together under the term
active perception various research fields that use to be con-
sidered separate, e.g. animate vision, active sensing, active
vision and more.

In recent years, designers of intelligent agents have been
using active perception capabilities in physical environment.
Unfortunately, the majority of the research in the field of ac-
tive perception deals with specialized algorithms for specific
tasks. In particular, there is little or no discussion of active
perception capabilities as part of a BDI loop, i.e., at the ar-
chitecture level. Instead, active perception is folded into the
task-specific plans and perceptual models of the agent.

In this article we investigate how active perception is to
be integrated in a BDI loop. We will present different pos-
sibilities for such extended BDI loops and compare them
analytically. We draw conclusions as their relative merits
and run-time complexity. One algorithm emerges a clear



winner over the others.

2. BACKGROUND AND RELATED WORK
Specific instances of active perception—for specific tasks—

have often demonstrated the usefulness of this capability [9,
13, 10, 4, 17]. For example, Alomonois et al. [1] prove that
vision problems can be solved much efficiently by an ac-
tive observer than by a passive one. Ballard [2] shows that
the visual computation of systems with active gaze control
mechanisms is vastly less expensive than passive systems.
However, these algorithms provide ad-hoc solutions for a
specific problems. Our approach is to enable an agent the
use of active perception capability as part of its architecture.

Weyns et al. [18] present a general model for active per-
ception, composed of three functionalities: Sensing, which
maps the environment to representation; interpreting, where
the agent turns representation to percepts (in BDI: beliefs);
and filtering, where the agent can give attention to the most
relevant information in the context of its current task. They
suggest a reusable framework that allows active change of
the agent’s perception process parameters to improve per-
ception. Our work is different in two ways. First, while
Weyns et al. focus their work on low-level actions, we ad-
dress also high-level behaviors (e.g. move inside room to get
a better look). Second, our work focuses on the integration
of active perception in the agent’s decision making not just
in the perception mechanism itself.

So et al. [15] use situation awareness (SA) as a meta
mechanism that able to switch between top-down goal-driven
and bottom-up data-driven models of information process-
ing. It has three layers. The third layer deals with projec-
tion to the near future, and here the top-down goal-driven
processes takes place: context and/or precondition clauses
determine beliefs that need to be refreshed. Our work is
different in several ways. First, So et al. suggested that the
active perception process will be triggered by the third layer
whenever it is needed. However, they left the question of
integration of active perception in the agent’s decision mak-
ing mechanism open. Furthermore, our mechanisms do not
use future projection of the agent’s state but plan’s clauses
only. And last, we extend So et al’s. definition for beliefs
that are relevant to active perception plans by taking under
consideration beliefs whose value was never known.

3. ACTIVE PERCEPTION IN A BDI LOOP
In this section we describe the problem of enhancing BDI

control loop with active perception and propose possible so-
lutions. First, (Section 3.1) we review the basic BDI al-
gorithm [11]. Next, we present a formal description of the
problem (Section 3.2). Finally, we describe four possible
BDI loop algorithms that integrate active perception (Sec-
tion 3.3).

3.1 The Basic BDI loop
We focus on enhancing BDI architectures with active per-

ception capabilities. However, there is no single standard
algorithm of a BDI architecture. Wooldridge [19, Chapter 4]
presented a detailed BDI architecture for practical reasoning
agents that allows the agent to reconsider its commitments
during runtime. Tambe [16] and Kaminka et al. [7, 6] de-
scribe BDI loops that integrate collaborative processes. De
Silva et al. [3] focus on BDI loops that support planning.

Others created versions of BDI loops with learning [5], and
more.

We therefore turn to the original algorithm presented by
Rao et al. [11]. Rao et al’s architecture uses three dynamic
data structures for the agent’s beliefs, desires and intentions
together with an input queue of events. The events the
system can recognize are both internal external events; they
are also assumed to be atomic and to be recognized after
they had occurred. The output of the system—the agent’s
actions—is also assumed to be atomic. Alg. 1 is the basic
BDI control-loop described in [11].

Algorithm 1 BDI Loop.

1: initialize-state
2: repeat

1. p:= Get-new-percept()

2. b:= Update-beliefs(b,p)

3. options:= option-generator(event-queue,b)

4. Px:= deliberate(options)

5. update-intentions(Px)

6. execute()

7. get-new-external-events()

8. drop-unsuccessful-attitudes()

9. drop-impossible-attitudes()

3: end repeat

In line 1 the agent initializes its state, often the initial
state includes the agent’s initial intentions and beliefs [19].
In line 2 the agent enters into a loop that contains several
steps:

1. option generator() reads the event queue and supply
a list of options. This is a list of plans which specify
the means of achieving future world states (the list
of future world states often referred to as the agent’s
desires).

2. deliberate() chooses an option to be adopted (inten-
tion). Although in their model Rao et al. talk about
adopting a set of intentions simultaneously, here, in
order to simplify our model we will assume that only
a single option is being selected.

3. The selected option (line 2.3) is pushed into the in-
tentions structure (i.e. the agent commits to execute
it).

4. If there is an intention to perform an atomic action the
agent executes it (execute()).

5. The agent updates the event queue with any external
event that happed during executions, while internal
events are being updated when they occur (line 2.5).

6. The agent then modifies the intention and desires struc-
ture by dropping successful desires and satisfied inten-
tions as impossible desires and unrealizable intentions
(lines 2.6–2.7).

The information about the means of achieving certain de-
sires represented as plans. Each plan has a body which
describes the subgoals or simple action needed to be done



in order for the plan to be successful. Each plan has pre-
conditions the specifies the conditions that must hold for the
plan to be executed. Often pre-conditions are represented
as first order logic formulas over the agent’s beliefs.

3.2 Architectural Active Perception
Algorithm 1 makes an implicit assumption that an agent

has beliefs over the world. However, realistically, some belief
values may be unknown or outdated (suspected to be no
longer correct). Therefore the assumption that the decision-
making process can use the beliefs values during run time
fails.

In the original BDI loop (Alg. 1) there is no explicit ref-
erence to such beliefs, or to mechanisms for handling them.
Any actions in service of active perception must be carried
by the agent executing Algorithm 1 as part of a plan or a
behavior for a specific task. In other words, it is up to the
option generation procedure to generate active perception
plans, or plans incorporating and interleaving active per-
ception actions.

In this article we deal with the problem of weaving active
perception plans into a BDI loop. In order to do so it is
necessary to modify the basic BDI algorithm so it will be
able to consider the execution of a goal driven process which
its goal is to update a set of unknown or outdated beliefs.

3.2.1 Which Beliefs Should Be Updated?
In order to decide if a plan can be selected for execution

the agent compares the plan’s preconditions to its beliefs
over the world and if they are satisfied, the plan is feasible
for execution.

It is clear that not all agent’s beliefs are important for
the process of decision making all the time. Kaminka [6]
introduces the notion of support that helps to describe the
relevant beliefs, who are the beliefs that important for the
decision making process. For a given belief k, whether it is
an atomic datum, or a complex data-structure support(k) is
the set of antecedent knowledge that gave k its value, typ-
ically through the application of a computational process.
support(k) is transitively closed; it includes the antecedents
of k, their antecedents, and so forth until raw perceptions
and axiomatic beliefs are reached.

Using the notation of support we can define Relevant be-
liefs:

Definition 1 (Relevant beliefs). A belief k is called
relevant to a plan p if one of the following conditions holds:

1. k ∈ support(v), where v is a belief directly used in p.

2. k ∈ support(termconds(p)), where termconds(p) is the
set of its termination conditions of p.

3. k ∈ support(preconds(p)), where preconds(p) is the set
of its preconditions of p

Based on Def. 1 we call the group of beliefs that the agent
should update missing beliefs, defined as follows:

Definition 2 (Missing beliefs). A belief is called miss-
ing if it is a relevant belief to p and either outdated or
unknown, where:

1. Outdated beliefs are beliefs whose value is known. How-
ever, their value is suspected of being wrong (e.g. due
to amount of time passed since last update).

2. Unknown beliefs are beliefs whose value was never set.

The definition for missing beliefs, covers all the beliefs
that are necessary for an agent selecting and executing a
plan p during run time. There are no other beliefs that can
be relevant to the agent’s operation. When their value is not
known, the agent cannot apply the selection and termination
mechanisms and also can not guarantee the execution of the
selected plan. Therefore missing beliefs are the beliefs that
it is necessary to apply active perception process in order to
acquire their value. In Alg. 1, the only relevant beliefs are
those explicitly used to guide option selection, i.e., beliefs
supporting preconditions.

3.2.2 A Formal Perspective on Active Perception in
the BDI Loop

Theoretically, when an agent knows everything about the
world, the set of optional plans O which is considered in
line 1 of each cycle is divided to two groups of plans. The
first, is a group of feasible plans F = {p1, ..., pn} where the
preconditions of plans in F are true, so they can be used
by the agent in the context. The second group is a group
of non-feasible plans N = {p1, ..., pm} where at least one
precondition of each plan in N is false, so plans in N can
not be used by the agent in the context.

In line 2 the agent chooses the plan it wants to commit
to, the deliberate() function chooses a plan Popt ∈ F . The
selection is optimal in the sense that deliberate() has the full
set of options to select from, using whatever knowledge it
can bring to bear on the selection process.

However, in reality, because the environment is hidden
and there are preconditions whose value is unknown because
they are supported by missing beliefs, the agent cannot par-
tition the plans in O to subsets F and N . Instead, the agent
has to classify the plans into one of three sets based on its
own beliefs: The first is F ′, a group of plans that the agent
believes belong to F . The second is N ′, a group of plans
the agent believes belong to N , and M ′, a group of plans
which their preconditions are not fully known, therefore they
cannot be part of F ′ and N ′:

1. F ′ = {p|p ∈ O,∀precond(p) = true}

2. N ′ = {p|p ∈ O, ∃precond(p) = false}

3. M ′ = {p|p ∈ O, ∃precond(p) = Missing, @precond(p) =
false}

An important observation is that although the agent can
execute only options that are in F ′, there is no guarantee
that the ideal selection Popt ∈ F ′j . It might also be in M ′.
In that case, the agent might choose to execute an active
perception plan in order to update values of missing precon-
ditions of candidate for Popt and reveal it.

The goal of active perception process is to update the
agent’s beliefs. The agent can move plan Pi from the missing
options set M ′ to the feasible option set F ′ by executing an
active perception plan aPi

k that supports plan Pi, per Def. 3
below:

Definition 3 (Supporting a plan). An active percep-
tion plan aP

k supports plan P if it sets the value of a missing
belief of P .

By applying a series of active perception plans, one can
eliminate all missing beliefs associated with a plan. This



process is called revealing, as defined below (Def. ??). Note
that in the scope of this paper, all missing beliefs are associ-
ated with preconditions, thus the reference to preconditions
in the definition.

Definition 4 (Revealing a plan). Revealing a plan
Pi is the process of executing a series of active perception
processes that support Pi, until one of the following two con-
ditions hold.

1. preconds(Pi) ` >, i.e., the preconditions of Pi provably
hold, and thus Pi will move from M ′ to F ′.

2. preconds(Pi) ` ⊥, i.e., the preconditions of Pi provably
do not hold, and thus Pi will move from M ′ to N ′.

A plan pi ∈ M ′ can move from group M ′ to F ′ only
if the agent will execute Api = {api

1 , .., api
k }, an unordered

set of active perception plans. Each api
j ∈ Api has a goal,

to updates values of relevant missing beliefs and thus pi’s
preconditions.

The set A′ = {Ap1 ∪ . . . ∪ Apm} is a union of all the
active perception plans in all the suggested active perception
processes for plans in M ′, it can be defined also as follow
A′ = {aj |aj ∈ Api, pi ∈M ′}

The original BDI interpreter (Alg. 1) chooses a plan Py

for execution from F ′ ⊆ F , but it might be that Popt /∈ F ′.
The original BDI algorithm does not consider these cases,
and therefore there is no guarantee that Py = Popt. In
other words, without active perception, Alg. 1 may make
sub-optimal selection decisions.

3.3 Possible Integrated Active Perception
We present four algorithms that integrate active percep-

tion in the BDI loop. Each algorithm is an incremented
improvement of its predecessor. The first algorithm (IAP,
Section 3.3.1), executes active perception plans for every
missing belief of the agent. IAP can be used when all miss-
ing beliefs must be revealed in order to make selection (i.e.
when determining Popt necessarily requires deliberating be-
tween all plans), however its cost is high. The ITAP algo-
rithm (Section 3.3.2) allows the agent to myopically select
between running an active perception or executing a feasible
plan instead, thus limiting the number of active perception
plans that are executed. However, we show that it may lead
to inefficiencies caused by its myopic selection. The SAP
algorithm (Section 3.3.3) resolves these inefficiencies, by re-
quiring the agent to commit to a plan to be revealed, before
executing all the active perception plans that reveal it. Fi-
nally, the DSAP algorithm (Section 3.3.4), makes the agent
commit to a plan to be revealed, but allows it to revisit the
decision and select the next active perception plan to be
executed.

3.3.1 Immediate Active Perception (IAP)
Alg. 2 presents the Immediate Active Perception method

(IAP). The key idea in IAP is that before executing any op-
tion from F ′, IAP executes all the possible active perception
plans in A′. By doing that, IAP makes sure that F ′ = F . In
this case, the selection function gets the whole F to select
from, therefore Py = Popt.

The difference from the original BDI loop is that here
the interpreter checks if there are any missing options M ′

(line 2). If there are any (line 3), the agent gets the active

perception plans A′ that reveals the plans in M ′ (line 4),
then the deliberator decides to which plan from A′ to commit
(line 5) and updates its intentions (line 6). If there are no
missing options the interpreter works as the original BDI
Loop.

Algorithm 2 IAP BDI Loop

1: initialize-state
2: repeat

1. options:= option-generator(event-queue)

2. F ′, M ′:= classify-options(options)

3. if M ′ 6= ∅ then

4. A′:= get-plans-for-missing-beliefs(M ′)

5. Px:= deliberate(A′)

6. else

7. Px:= deliberate(options)

8. update-intentions(Px)

9. execute()

10. get-new-external-events()

11. drop-unsuccessful-attitudes()

12. drop-impossible-attitudes()

3: end repeat

In IAP, as long as there are plans in M ′, the agent will
not choose any of the plans in F ′, but only execute active
perception plans.

We use the following running example to illustrate. Sup-
pose we have a robot that does not know its target location
and the location of its leader, It can consider three options:
to follow its target, to follow its leader, and to drive home.
The first two options have missing beliefs (in M ′, missing
options for short) and the third is feasible (in F ′). The IAP
interpreter will execute both active perception processes to
solve the missing options, it will look for the agent’s target
and look for the agent’s leader and only then will select one
of the original options.

There are two cases where the use of IAP algorithm is
optimal. The first, is when the agent must reveal all the
options in F ′ before determining Popt. It might occur when
the agent can identify and select Popt only if F ′ = F (relative
selection). In these cases the agent will need to sort all the
plans in M ′ to N ′ and F ′ in order to achieve F = F ′.

The second use case is where there is no cost for execut-
ing active perception processes. In this case, by performing
all the active perception process in A′, the agent achieves
F ′ = F and IAP will guaranty the selection of Popt with no
additional cost.

However, IAP will perform poorly when there is cost to
active perception, because it performs active perception pro-
cesses for all the plans in M ′ even for ones that are not
candidates for Popt.

3.3.2 ITerative Active Perception (ITAP)
ITAP (Alg. 3) solves the problem presented above. The

key idea is to allow the agent to choose its next plan for
execution whether it is in F ′ or in A′.

In line 2, like IAP, ITAP divides the options into two sets
M ′ and F ′ (missing and feasible options accordingly). In line
3 it creates a set of active perception plans A′ that reveals
the plans in M ′. In line 4 ITAP creates a union of all the



plans from F ′ and A′ these are the plans that are feasible
for execution. In lines 5 and 6 deliberate() selects the plan
and ITAP updates the agent’s intentions.

Back to the example: for the three original options, ITAP
replaces the missing options follow the leader and follow the
target with the relevant active perception processes—look
for the leader and look for the target—and then the selector
has to choose between the three options: look for the leader,
look for the target or drive home.

Algorithm 3 ITAP BDI Loop

1: initialize-state
2: repeat

1. options:= option-generator(event-queue)

2. F ′, M ′:= classify-options(options)

3. A′:= get-plans-for-missing-beliefs(M ′)

4. all-options:= F ′ ∪ A′

5. Px:= deliberate(all-options)

6. update-intentions(Px)

7. execute()

8. get-new-external-events()

9. drop-unsuccessful-attitudes()

10. drop-impossible-attitudes()

3: end repeat

The advantage of the ITAP Algorithm is that it considers
execution of plans that do not need any active perception
process. In ITAP, compared to IAP, the agent will execute
an active perception process only if it has been selected.
Therefore, in cases where active perception processes has
costs, the agent can choose and execute a candidate to Popt

from F ′ at any iteration and does not must execute first all
the plans in A′. The ITAP algorithm has a great potential
to prevent unnecessary execution of active selection plans.

However, ITAP is myopic. When the agent selects an ac-
tive perception process from A′, it does not consider that
A′ is a union of active perception plans that relate to vari-
ous missing options. Executing an active perception process
api
j ∈ Api will move pi to F ′ only if all the plans in Api will

be executed. ITAP treats the A′ as a whole set and ignores
that it is a union of various Api’s.

This can lead to inefficiencies. suppose there are k active
perception plans in A′ and Popt has two missing beliefs (so
there will be two active perception plans that need to be
executed Apopt = {apopt

1 , apopt
2 }). Suppose the agent chose

on the first iteration to execute apopt
1 and found that the

first precondition is true. The agent will ignore the relation
between apopt

1 to apopt
2 and may choose to execute the other

k − 2 plans in A′ before executing apopt
2 .

3.3.3 Selective Active Perception (SAP)
SAP (Alg. 4) solves the problem of ITAP by allowing the

agent to commit to a single plan Px which is a candidate to
be Popt (line 2). If Px is in M ′ (lines 3–4), SAP executes
the appropriate active perception processes Apx in a row
(lines 5–10) until the plan is revealed. Then in the next loop
iteration, the previous chosen Px can be chosen again if it
is in F ′. Line 8 executes the active perception plan without
exiting the for loop and line 9 terminates the for loop if Px

is not feasible. In case there are no missing options, SAP

executes Px (lines 12–13).

Algorithm 4 SAP BDI Loop

1: initialize-state
2: repeat

1. options:= option-generator(event-queue)

2. Px:= deliberate(options) . Px ∈ F ′ ∪M ′

3. F ′, M ′:= sort-options({Px})
4. if Px ∈ M ′ then

5. Apx:= get-plans-for-missing-beliefs({Px})
6. for apxi ∈ Apx do

7. update-intentions(apxi )

8. execute()

9. if Px ∈ N ′ then

10. continue

11. else

12. update-intentions(Px)

13. execute()

14. get-new-external-events()

15. drop-unsuccessful-attitudes()

16. drop-impossible-attitudes()

3: end repeat

The SAP interpreter takes under consideration the rela-
tions between the active perception processes and the plan
they reveal. SAP allocates active perception resources only
after the agent committed to the selected option Px. Once
the selection has been done, if it is necessary the agent will
execute a series of active perception processes Api. If as a
result of the execution of the active perception processes pi
is revealed as part of F ′, the selector can choose it for exe-
cution, otherwise the selector will choose another candidate

In the robot example, first, the robot will choose between
following the target, following the leader or driving home.
Let us assume that the robot chose following the leader.
Next, it will execute the appropriate active perception pro-
cess that finds the leader’s location and then, if it is feasible
the robot will consider following the leader.

Choosing Px a candidate to be Popt is difficult. The meth-
ods for selection can vary and depend on the information
supplied about the options. Lacking the information about
the options in M ′, Px’s order of selection from M ′ is a heuris-
tic function that keeps the order between the function’s it-
erations.

SAP focuses on the chosen plan Px and runs all the rele-
vant active perception process until the selected plan is be-
ing revealed. The advantage in this method is that it allows
the agent to disqualify methodically the chosen candidates
without interfere of other plans as happens in ITAP.

The disadvantage of SAP is that it runs Px’s active percep-
tion plans one after the other in a random order. Although
the order of execution is not important for revealing a cho-
sen Px, it is useful to allow the agent to choose the order of
execution for the active perception plans.

For example, a heuristic approach can use the informa-
tion that same beliefs b can support preconditions of n plans
{P1..Pn}. By executing an active perception process for be-
lief b the agent can disqualify all the supported plans to-



gether. In our next algorithm we would use SAP’s disquali-
fication advantage.

3.3.4 Double Selection Active Perception (DSAP)
We summarize the qualities we would like our algorithm

to achieve based on our analysis of the previous versions:

1. As in ITAP the desired algorithm should allow the
agent to decide during runtime between execution of
active perception process or execution of Px ∈ F ′.

2. As in SAP the desired algorithm should execute active
perception ak

i only when it is part of commitment to
reveal Pk.

3. The desired algorithm should allow the agent to choose
the order of active perception processes it runs.

Alg. 5 (DSAP) allows the agent to choose and commit
to revealing a single Px and then allows the agent to choose
again the next active perception plan within the domain of
plans who support Px.

As before, the algorithm first chooses one of the options
Px (line 2). As in SAP, the selection function is a heuristic
function intended to keep the order of selections, so if Px has
been selected in the previous iteration it is most likely to be
selected again. Then DSAP sorts the options to feasible
and missing options (line 3). If Px is a missing option the
algorithm starts a process of selection for the next active
perception. The algorithm gets Px’s missing beliefs Bpx (line
5) and all the missing beliefs from the plans in M ′ (line 6)
as a list (T ). Then DSAP checks (line 7) on the beliefs in T
in order to choose the missing belief bmax that is a missing
belief in Px and also appears in most of the plans in M ′

(using T ). In lines 8–9 the algorithm uses the appropriate
active perception plan and updates the agents intentions. In
line 12 the agent executes the selected plan.

Algorithm 5 DSAP BDI Loop

1: initialize-state
2: repeat

1. options:= option-generator(event-queue)

2. Px:= deliberate(options) . Px ∈ F ′ ∪M ′

3. F ′, M ′:= sort-options(options)

4. if Px ∈ M ′ then

5. Bpx:= get-missing-beliefs(Px)

6. T := get-missing-beliefs(M ′)

7. bmax:=argmaxb∈Bpx
count(b in T)

8. apxb :=get-plans-for-missing-belief(bmax)

9. update-intentions(apxy )

10. else

11. update-intentions(Px)

12. execute()

13. get-new-external-events()

14. drop-unsuccessful-attitudes()

15. drop-impossible-attitudes()

3: end repeat

This heuristic (lines 6-7) chooses the active perception
process that supports Px and also support the highest num-
ber of plans in M ′. In that way, if at the end of the active

perception process the precondition found to be false, the
maximal number of possible candidates is being disqualified.

Alg. 5 fills the requirements we described above. It allows
the agent to choose an option Px also from F ′, it executes
active perception plan ak

i only when it is part of commitment
to Px, and lastly, it allows the agent to choose heuristically
which active perception process will be executed.

4. A RUNNING TIME COMPARISON BE-
TWEEN THE FOUR ALGORITHMS

The execution of the algorithms can be divided into two
cases. Where there are no missing beliefs all four algorithms
will operate the same way. But, when there are missing be-
liefs the algorithms will operate differently. We show that
DSAP outperforms IAP in time complexity. It outperforms
ITAP. And at last, DSAP outperforms SAP when it delib-
erately chooses the next active perception process.

In the next sections we will assume a case where the agent
has k options in M ′ where each plan has l missing beliefs
and therefore l active perception plans need to be executed
before moving the selected Px to F ′.

4.1 DSAP is more efficient than IAP
In most of the cases, the run time of a single plan—such

as active perception plan—depends on various parameters
such as the plan structure and components, behavior’s ter-
mination conditions, the state of the world and the agent’s
perception process and world model. Due to the nature of
these parameters, in most of the cases the run time of a single
plan is being determined during execution time. Therefore
in the next sections we will assume that the running time of
all active perception plans is equal and denot it b.

When IAP interpreter gets to a decision junction it first
executes active perception processes for every missing be-
lief that is relevant to any of the given options. Assuming
that the number of options in a single selection is k and the
number of missing beliefs in each option is l. The time that
is added to the process as a result of the active perception
integration is: O(lkb). The time that will be invested in
active perception processes does not change with respect to
the order of selection of the candidates. Its worst case and
best case run time are the same.

In contrast, when the DSAP interpreter gets to a decision
junction it first selects an option and than executes a rele-
vant active perception process. In the worst case, the agent
will disqualify all Px and will run all the active perception
processes exactly as IAP. In the best case, when the agent
finds that the first Px ∈ F ′ the time that is added to the
process as a result of the active perception integration is
O(lb).

4.2 DSAP is more efficient than ITAP
ITAP selects the plans from set A without taking under

consideration the relations between the active perception
processes to the missing beliefs they reveal. While DSAP
first selects Px and then executes one of the supporting ac-
tive perception processes. Again assuming that there are k
plans where each plan has l missing beliefs with l active per-
ception supporting plans. We prove that DSAP outperforms
ITAP.

Theorem 1 and 2 prove that although that the running
time of DSAP and ITAP in the best case is the same, the



probability for DSAP to achieve the best case scenario is
higher.

Theorem 1. Let TDb and TIb be the run time of DSAP
and ITAP in the best case respectively. Then TDb = TIb =
O(lb).

Proof. 1. In the best case of ITAP, the agent will
select all l active perception processes of Aopt one after
the other and execute them. The running time is O(lb).

2. In the best case of DSAP, Popt will be selected at first
and the running time of l active perception plans will
be O(lb).

From 1 and 2 we see that TDb = TIb = O(lb).

Theorem 2. Let PIb and PDb be the probabilities for ITAP
and DSAP to run the best case scenario respectively. Then
PIb ≤ PDb.

Proof. 1. ITAP chooses an active perception process
to execute regardless of whether it supports Popt. There-
fore in the best case the probability for ITAP to ex-
ecute first all l active perception processes of Aopt

one after the other out of the l · k processes in A is

PIb =
1(
l·k
l

) .

2. In the best case of DSAP, Popt will be selected as the
first out of k candidates. The probability for this case

is: PDb =
1

k
.

3. From 1 and 2, when l > 1, PIb =
1(
l·k
l

) <
1

k
= PDb.

4. From 1 and 2, when l = 1, PIb =
1

k
=

1

k
= PDb.

From 3 and 4 PIb ≤ PDb.

The difference between PIb and PDb is significant. For
example, when l = 5 and k = 5 then PIb = 2 · 10−5 while
PDb = 0.2.

Theorems 3 and 4 show that in the worst case the run
time and the probability of both algorithms is the same.

Theorem 3. Let TDw and TIw be the run time of DSAP
and ITAP in the worst case respectively. Then TDw = TIw =
O(lkb).

Proof. 1. In the worst case of ITAP the agent selects
one of l active perception plans of Aopt as the last
plan to be executed. The agent will have to execute
the other active perception plans in A before, and as
A contains l · k plans, the run time is O(lkb).

2. In the worst case of DSAP, Popt will be selected the
last. Again the agent will have to execute all the other
plans in A, before executing the plans of Aopt. There-
fore the run time is O(lkb).

From 1 and 2 we see that TDw = TIw = O(lkb).

Theorem 4. Let PIw and PDw be the probabilities for
ITAP and DSAP to run the worst case scenario respectively.
Then PIw = PDw.

Proof. 1. In the worst case, ITAP chooses one of l
active perception plans of Aopt as the last out of l ·
k plans in A. The probability of this case is PIw =
l

l · k =
1

k
.

2. In the worst case, the probability of DSAP to choose

Popt as the last out of k candidates is PDw =
1

k
.

From 1 and 2 we see that PIw = PDw =
1

k
.

Figure 1 shows the difference between DSAP and ITAP
where l = 5 and k = 5. The graph shows the values of
PITAP and PDSAP which are the probabilities to reveal Popt

with less then x active perception processes using ITAP
and DSAP accordingly. The X-axis measures the number
of plans x which are revealed, where the last (xth) plan re-
vealed is Popt. The Y-axis measures the probability of reach-
ing x, i.e., the probability that less than x active perception
plans are executed before Popt is revealed.

Figure 1: The probability to check less then x plans
in DSAP and ITAP

The figure leads to two observations. First, for any x
between 1 to l · k, Pitap ≤ Pdsap. Second, the expected
number of active perception plans (for the case l = k = 5)
that has to be executed by ITAP is 22.6, while the expected
number of such plans is 15, if DSAP is used. This is an
improvement of 144%.

4.3 DSAP is more efficient than SAP
The key difference between SAP to DSAP is that after the

selection of Px and in cases that active perception processes
are needed, DSAP allows the agent to choose the order of
execution for the active perception plans while SAP executes
them in a random order.

Notice that each belief can support several options from
M ′. Therefore, when a belief is found to be false, it dis-
qualifies not only Px but other plans too. We show the use
of selection function that choose the order of active percep-
tion plans so the mean number of disqualified plans in each
iteration will be maximized.

Definition 5 (MNDP). The mean number of disqual-
ified plans (MNDP) of a plan Px is the expected number
of plans from M ′ that will be disqualified in the process of
revealing Px, by executing the active perception plans sup-
porting Px in a specific sequence (ordering) r. It is denoted
MNDP (Px, r).

Computing the NMDP is done through the following pro-
cedure. Let us assume that an agent choose plan Px that has



l missing beliefs, the agent has to execute l active percep-
tion plans in Apx in order to make Px feasible. Let R be a
set of all possible ordering of execution for the plans in Apx.
Let r ∈ R be an ordering of execution that the agent chose.
Let ai be the i-th active perception processes to be executed
by r. Let bai be the belief that ai resolves. Let pbi be the
probability that bai is true. Let gai be the number of plans
in M ′ that bai supports. The mean number of disqualified
plans (MNDP) is calculated as follows:

MNDP (PX , r) =(1− pb1) · gb1 + pb1 · (1− pb2) · gb2 + . . .

. . . + [

l−1∏
j=1

pbj ] · (1− pbl) · gbl

The yth plan in a specific ordering of the plans r will
disqualify gby plans in M ′ only if all the beliefs b1 . . . by−1

(that are related to the first y − 1 plans in r) are true and
by is false. The probability for this to happen is:

∏y−1
j=1 pbj ·

(1− pby).
In order to maximize the number of disqualified plans, the

agent should choose some ordering ropt ∈ R that maximizes
the MNDP value, such that ropt = argmaxr∈R(MNDP (Px, r)).
However, in order to do so, the agent needs to evaluate pbj—
the probability of belief b to be true—for each belief. With-
out prior knowledge about the world pbj can not be evalu-
ated. Therefore, we will assume the case of no information
where the probability for any belief j to be true (pbj) or false
(1− pbj) is 0.5.

When we assume that pbj equals to 0.5 the calculation of
MNDP is as follows:

MNDP (Px, r) = 0.5 · gb1 + ... + 0.5l · gbl =

l∑
x=1

0.5x · gbx

Theorem 5. Let Apx be a group of active perception plans
needed to be executed to reveal a plan Px. Let pbj equals to
0.5 for all the beliefs that plans in Apx resolves. Then, the
ordering of the plans in r that solves argmaxr∈R MNDP (Px, r)
is set by gbt ≥ gb(t+1), for all t < l.

Proof. 1. Let us assume for contradiction that there
are two active perception processes abx and aby for
two beliefs bx and by where g(bx) < g(by). In addition,
there is an ordering rfake = argmaxr∈R(MNDP (Px, r))
where abx is the i-th in rfake and aby is in the i + j
place. paj = 0.5 for any j.

2. paj = 0.5 for any j, therefore:

MNDP (Px, rfake) =

l∑
x=1

0.5x · gbx

3. gbx contributes 0.5i·gbx to the value of MNDP (Px, rfake),

while gby contributes 0.5(i+j)·gby. Their commune con-
tribution can be written as:

0.5i · (gbx + 0.5j · gby)

4. Due to the 0.5j factor that the later program on the
order rfake gets and because g(bx) < g(by). It is obvi-
ous that if bx and by will switch places in rfake their
contribution will be higher. Because

gby + 0.5j · gbx > gbx + 0.5j · gby, if g(bx) < g(by)

5. Therefore, rfake 6= argmaxr∈R MNDP (Px, r).
Contradiction.

4.4 Comparison summary
In the last two sections we presented four algorithms that

integrate BDI architecture with active perception. The main
difference between the algorithms is the use of the deliber-
ation mechanism. From our work it seems that there are
major differences. While IAP does not allow any deliber-
ation over the suggested active perception and executes all
of them, ITAP is losing information that makes the delib-
eration mechanism inefficient. SAP succeed to over come
ITAP’s difficulties by using the information about connec-
tion between the active perception plans. And finally, DSAP
improves SAP’s performance by allowing the use of heuristic
functions for a second selection.

The following table summarizes the differences between
the suggested algorithms:

IAP ITAP SAP DSAP
Worst case: O(lkb) O(lkb) O(lkb) O(lkb)
Best case: O(lkb) O(lb) O(lb) O(lb)

Best case probability: 1
1(
lk
l

) 1

k

1

k

Table 1: Time complexity and best case probability
for the presented algorithms

As IAP has no selection regarding the active perception
processes, its best case run time is worse then all other al-
gorithms. When considering the probability of achieving
the best case run time, we found that because ITAP does
not use the information regarding to connection between the
relations between the active perception processes, its prob-
ability to achieve the same performance as DSAP and SAP
is lower (Fig. 1) and also the probability to achieve the best
runtime. Furthermore, we showed that using the double
selection mechanism DSAP can outperform SAP by maxi-
mizing the number of disqualified plans in each iteration.

5. CONCLUSION AND FUTURE WORK
A basic building block in BDI is the set of beliefs an agent

has over the world. However, in many cases due to the
characteristic of the environment, there is no promise that
during run time the beliefs’ values will be available. active
perception processes are the solution for handling missing
beliefs during run time. However, in most of the cases they
are used as ad-hoc solutions for a specific need, and are
therefore assumed to be interleaved with the actions taken
by the agent when it executes it domain-dependent plans.

The purpose of this article is to deal with active perception
at the architecture level, specifically within the BDI loop.
We present four algorithms that integrate active perception
into the classic BDI loop. We show that different methods
of integration create major differences in the running time of
the algorithms. Finally, we suggested the DSAP algorithm
that takes under consideration the limited available infor-
mation in order to minimizes the amount of time the agent
has to invest in execution of active perception processes.



REFERENCES
[1] J. Aloimonos, I. Weiss, and A. Bandyopadhyay. Active

vision. International journal of computer vision,
1(4):333–356, 1988.

[2] D. H. Ballard. Animate vision. Artificial intelligence,
48(1):57–86, 1991.

[3] L. De Silva, S. Sardina, and L. Padgham. First
principles planning in BDI systems. In Proceedings of
the 8th International Conference on Autonomous
Agents and Multiagent Systems, volume 2, pages
1105–1112. International Foundation for Autonomous
Agents and Multiagent Systems, 2009.

[4] D. Fox, W. Burgard, and S. Thrun. Active markov
localization for mobile robots. Robotics and
Autonomous Systems, 25(3):195–207, 1998.

[5] A. Guerra-Hernández, A. El Fallah-Seghrouchni, and
H. Soldano. Learning in BDI multi-agent systems. In
International Workshop on Computational Logic in
Multi-Agent Systems, pages 218–233. Springer, 2004.

[6] G. A. Kaminka. No robot is an island, no team an
archipelago: Plan execution for cooperative
multi-robot teams. In ICAPS 2015 Workshop on
Planning and Robotics (PlanRob), 2015.

[7] G. A. Kaminka and I. Frenkel. Flexible teamwork in
behavior-based robots. In Proceedings of the Twentieth
National Conference on Artificial Intelligence
(AAAI-05), 2005.

[8] U. G. Ketenci, J.-M. Auberlet, R. Brémond, and
E. Grislin-Le Strugeon. Improved road crossing
behavior with active perception approach. In Proc.
Transportation Research Board Annual Meeting, 2012.

[9] D. Kinny, M. Georgeff, and J. Hendler. Experiments
in optimal sensing for situated agents. In Proceedings
of the Second Pacific Rim International Conference on
Artificial Intelligence, pages 1176–1182, 1992.

[10] Q. V. Le, A. Saxena, and A. Y. Ng. Active perception:
Interactive manipulation for improving object
detection. Standford University Journal, 2008.

[11] A. S. Rao and M. P. Georgeff. BDI agents: From
theory to practice. In ICMAS, volume 95, pages
312–319, 1995.

[12] R. B. Scherl and H. J. Levesque. The frame problem
and knowledge-producing actions. In Proceeding of the
AAAI conferance on Artificial Inteligance (AAAI 93),
pages 689–695, 1993.

[13] C. Schlegel, J. Illmann, H. Jaberg, M. Schuster, and
R. Wörz. Integrating vision based behaviours with an
autonomous robot. In Computer Vision Systems,
pages 1–20. Springer, 1999.

[14] M. Shanahan. Perception as abduction: Turning
sensor data into meaningful representation. Cognitive
science, 29(1):103–134, 2005.

[15] R. So and L. Sonenberg. The roles of active perception
in intelligent agent systems. In Multi-Agent Systems
for Society, pages 139–152. Springer, 2005.

[16] M. Tambe. Towards flexible teamwork. Journal of
Artificial Intelligence Research, 7:83–124, 1997.

[17] A. Unterholzner, M. Himmelsbach, and H.-J.
Wuensche. Active perception for autonomous vehicles.
In IEEE International Conference on Robotics and
Automation (ICRA), pages 1620–1627. IEEE, 2012.

[18] D. Weyns, E. Steegmans, and T. Holvoet. Towards
active perception in situated multi-agent systems.
Applied Artificial Intelligence, 18(9-10):867–883, 2004.

[19] M. Wooldridge. An introduction to multiagent
systems. John Wiley & Sons, 2009.


