The Giving Tree: Constructing Trees for Efficient
Offline and Online Multi-Robot Coverage

Noa Agmon Noam Hazon and Gal A Kaminka
The MAVERICK Group
Department of Computer Science
Bar llan University, Israel
{segaln, hazonn, gaji@cs.biu.ac.il

Abstract

This paper discusses the problem of building efficient coverage paths for
a team of robots. An efficient multi-robot coverage algorithm should result
in a coverage path for every robot, such that the union of all paths gener-
ates a full coverage of the terrain and the total coverage time is minimized.
A method underlying several coverage algorithms, suggests the use of span-
ning trees as base for creating coverage paths. However, overall performance
of the coverage is heavily dependent on the given spanning tree. This pa-
per focuses on the challenge of constructing a coverage spanning tree for
both online and offline coverage that minimizes the time to complete cov-
erage. Our general approach involves building a spanning tree by growing
sub-trees from the initial location of the robots. This paper first describes a
polynomial time tree-construction algorithm for offline coverage. The use
of this algorithm is shown by extensive simulations to significantly improve
the coverage time of the terrain even when used as a basis for a simple, in-
efficient, coverage algorithm. Second, this paper provides an algorithm for
online coverage of a finite terrain based on spanning-trees, that is complete
and guarantees linear time coverage with no redundancy in the coverage. In
addition, the solutions proposed by this paper guarantee robustness to fail-
ing robots: the offline trees are used as base for robust multi-robot coverage
algorithms, and the online algorithm is proven to be robust.

"And the tree was happy..” (Shel Silversteifhe Giving Tree)

*This work was funded in part by Israel’s Ministry of Science and Technology

1

1 Introduction

The general problem of covering an area by single or multi robot systems is a
fundamental problem in robotics. It has applications in various domains, from
humanitarian missions such as search and rescue and de-mining, to agriculture
applications such as seeding or harvesting, to, recently, household cleaning. The
problem was extensively investigated in both single-robot domains (e.g. [6,15,16])
and multi-robot systems (e.g. [13, 20, 21, 24]).

This paper discusses the problem of building efficient coverage paths for a
team of robots. In this problem, a team of robots, each equipped with some tool,
for example a sensor, are required to jointly sweep the entire given terrain while
minimizing the total coverage time. In our work, we assume that the area is di-
vided into cells, and the robots travel through all cells of the terrain. Following the
taxonomy presented in [5], the division of the area is an approximate cellular de-
composition, and we handle both online and offline coverage. In offline coverage,
the map of the area is given in advance, therefore the coverage paths of the robots
can be determined prior to the execution of the coverage algorithm. In online cov-
erage, the coverage has to be completed without the use of a map or any a-priori
knowledge of the area, and the coverage paths of the robots are constructed during
the execution.

Previous work has often pointed out that one advantage of using multiple
robots for coverage is the potential for more efficient coverage [5]. Another poten-
tial advantage of using multiple robots is that they may offer greatarstness
Even if one robot fails catastrophically, others may take over its coverage subtask.
In other words, as long as there exists one non-faulty robot, the coverage mission
will be completed successfully. Unfortunately, this important capability has been
neglected in most existing work on on-line algorithms.

Several methods are found in the literature for coverage by single and multi-
robot systems. One basic method that has received considerable attention is the
method presented by Gabriely and Rimon [10], where the authors describe a poly-
nomial timeSpanning Tree Coveragsdgorithm, better known as tHeTC algo-
rithm. In this method, Gabriely and Rimon offer a method for finding a hamil-
tonian cycle covering a terrain that satisfies some assumptions. In particular, it
is assumed that the robot is equipped with a square shaped tool db sience
the area was divided int&y cells of sizeD placed on a grid. The grid was then
made coarse such that each new cell is of 8i2eX 2D, and a spanning tree was
built according to this new grid. After such a tree was built, the robot follows the
tree around, creating a hamiltonian cycle visiting all cells of the original grid. The

2

idea was first broadened for a multi-robot system in [13], by the famiM8TC
algorithms. A different variation on this idea was introduced in [24].

When building the tree in a single robot system, the influence of the structure
of the tree is theoretically irrelevant for the coverage time. Clearly, one might want
to construct spanning trees with special characterizations, for example minimizing
the number of turns of choosing some preferred directionality. Yet, the coverage
time guaranteed by ti8TC algorithms is linear in the size of the grid, since each
cell except for the boundary cells is covered once, hence the total coverage time
is V.

On the other hand, in multi-robot systems, the structure of the tree can have
crucial consequences on the coverage time of the terrain. The choice of the span-
ning tree can change the robots’ initial positions with respect to each other from
being concentrated, i.e., placed as a bundle, to being scattered along the span-
ning tree path — all without actually changing the physical initial position of
the robots. The structure of the tree itself can therefore substantially decrease
the coverage time obtained by algorithms based upon it. Hence we concentrate
on building appropriate coverage spanning trees. The general method we follow
when building such trees in both scenarios — online and offline coverage, is to
gradually grow subtrees from the initial position of the robots.

Hence, the first part of this paper specifically deals with constructing spanning
trees for offline coverage that reduces the total coverage time of algorithms using
these spanning trees as base for coverage. The coverage time of a terrain is deter-
mined by the robot traveling through the longest period of time. In a system with
homogenous robots, this time corresponds to the longest distance traversed by a
single robot. We try to minimize this distance by creating trees where the robots
are placed as uniformly as possible around it. Therefore, when constructing the
trees we try to minimize the maximal distance between every two consecutive
robots along the spanning tree path. If such tree is obtained, we show that all
versions of theVISTC algorithm ran on these trees achieves substantially better
coverage time compared to their coverage time on other randomly generated trees.
Note that these trees, along with decreasing the coverage time of the algorithms
which use them as base for coverage, also enjoy the benefits of the algorithms
themselves. Specifically, if used as base for the familM&TC algorithms, it
promises robustness. The algorithm we propose has a polynomial time complex-
ity in the number of cells to be covered. This results in the surprising conclusion
that as we add obstacles to the terrain, the complexity of the tree construction
algorithm reduces, since the number of covered cells diminishes.

The second part of the paper deals with online coverage. We pregeatan-

3

teed robustmulti-robot on-line coverage algorithm. The algorithm is based on the
use of spanning tree coverage paths. It runs in a distributed fashion, using commu-
nications to alert robots to the positions of their peers. Each robot works within a
dynamically-growing portion of the work-area, constructing a local spanning-tree
covering this portion, as it moves. It maintains knowledge of where this spanning-
tree can connect with those of others, and selects connections that will allow it to
take over the local spanning trees of others, should they fail. We also address
the challenge of using the robust on-line multi-robot coverage algorithm with
physical vacuum cleaning robots. We present techniques useful in approximat-
ing the assumptions required by STC algorithms (e.g., known positions, within an
agreed-upon coordinate system). We show the effectiveness of our implemented
algorithm in extensive experiments.

2 Background

The challenge of covering a terrain by a team of mobile robots has received con-
siderable attention in the literature. The growing interest in this area is first and
foremost due to the fact that the coverage task is implementable in various do-
mains. Moreover, the concentration in multi-robot systems comes from the two
key features made possible by using multiple robots: (i) robustness in face of
single-robot catastrophic failures, and (ii) enhanced productivity, thanks to the
parallelization of sub-tasks. Many approaches can be found in the literature for
multi-robot coverage.

Choset [5] provides a survey of coverage algorithms, which distinguishes be-
tweenoffline algorithms, in which a map of the work-area is given to the robots
in advance, andnlinealgorithms, in which no map is given. The survey further
distinguishes betweefipproximate cellular decompositiowhere the free space
is approximately covered by a grid of equally-shaped cells, exatt decompo-
sition, where the free space is decomposed to a set of regions, whose union fills
the entire area exactly. Following Choset’s terminology, in this paper we focus on
both online and offline coverage, based on approximate cell decomposition of the
area.

We focus on spanning tree based coverage, first proposed by Gabriely and Ri-
mon in [10]. They proposed the basic method of dividing the terraindht 2D
cells, and described the polynomial time spanning tree coverage algo8ihd) (
for complete offline and online coverage of the terrain by a single robot. In [11],
they suggest two different algorithms for building an on-line tree, but the moti-

4

vation comes from the desire to create a spanning tree with a specific scanning
direction.

The generalization of the single-rob8T C algorithm to offline multi-robot
systems was first introduced by Hazon and Kaminka in [13]. They presented
several offline algorithms for multi-robot coverage of a terrain byMI®TC al-
gorithm, which guarantee robust, time-efficient and complete coverage. They de-
scribe two versions of thISTC algorithm: non-backtrackingISTC, and back-
trackingMSTC, herein referred to aNB_MSTC andB_MSTC, respectively. In
the NB_.MSTC algorithm the robots simply move in counterclockwise direction
along the spanning tree path until reaching the initial position of the following
robot if no faults occur, or take over the coverage path of the consecutive robot
otherwise. In thd8_MSTC the robots can backtrack over parts of their coverage
path, i.e., they can go both clockwise and counterclockwise. They have shown that
if the robots backtrack, the worst case performs up to twice as faster as in the non-
backtracking case, despite the redundancy. Other results by Hazon and Kaminka,
described in [14], provide an optimal polynomial time coverage algorithm, herein
referred to aOpt_ MSTC. The algorithm is similar to th&_MSTC algorithm
with modifications that assure the optimal coverage time given the initial loca-
tions of the robots and an initial spanning tree. The optimality is guaranteed only
for the backtracking method, i.e., if the robots go back and falbing the given
spanning tree Hence they promise to make the most (optimal) out of the given
tree and initial locations of the robots if the robots do not deviate from the path
dictated by the structure of the tree. We focus here on generating good trees for
such algorithms.

Work by Zheng et. al. [24] proposed an additional offline multi-robot coverage
algorithm, where their solution is based on dividing ieenspanning tree into
k subtrees, where there might exist path overlapping between robots. Their al-
gorithm performs better compared to bodB_MSTC andB_MSTC algorithms,
however their solution is not robust. In addition, they note that different choices
of trees may result is different coverage time, but did not further discuss the issue.

There have been additional investigations of online multi-robot coverage, for
example in the world of ant robotics. Wagner at. al. [23] propose a series of
theoretical multi-robot ant-based algorithms which use approximate cellular de-
composition. The algorithms involve little or no direct communications, instead
using simulated pheromones for communications or traces of robots. Some of
these algorithms solve only the discrete coverage problem and some offer com-
plete robust coverage, but not necessarily efficient. Recent work by Osherovich et.
al. [18] offer a robust coverage algorithm for ants in continuous domains. Sven-

5

nebring and Koenig [22] offer a feasibility study for ant coverage. They perform
experiments with real ant-robots and large-scale simulations. They show robust-
ness, but provide no analytic guarantees for completeness or efficiency.

Acar and Choset [1] presented a robust on-§imglerobot coverage algorithm
while their robustness quality is the ability to filter bad sensors readings.

Rekleitis et al. [19] uses two robots in online settings, using a visibility graph-
like decomposition (sort of exact cellular decomposition). The algorithm uses the
robots as beacons to eliminate odometry errors, but does not address catastrophic
failures (i.e., when a robot dies). In a more recent article, Rekleitis et al. [21]
extends the Boustrophedon approach [5] to a multi-robot version. Their algo-
rithm also operates under the restriction that communication between two robots
is available only when they are within line of sight of each other. Their solution,
though, is not robust to failures, i.e., it could stop functioning if one of the key
robots fails. In [17], Kong et. al. provide an improved algorithm for multi-robot
coverage with unbounded communication, where the algorithm is demonstrated to
be robust to failures (yet this property is not theoretically proven to be complete).

Butler et al. [4] proposed a sensor-based multi-robot coverage, in a rectilinear
environment, which based on the exact cellular decomposition. They do not prove
their robustness, and the robots could cover the same area many times.

The recent Brick & Mortar algorithm suggested by Ferranti et. al. [8] is an
online coverage algorithm that assumes the robots communicate using miniature
storage devices that are placed along the entire area, such that one device is placed
in each cell. The use of these devices is their solution to the extensive commu-
nication assumption, made by other online coverage algorithm, which is partially
made also in our work. Their work does not refer to the robustness of the coverage.
In addition, their solution might result in redundancy of the coverage.

Other approaches, other than ones based on cellular decomposition of the ter-
rain, can be found in the literature for multi-robot coverage. For example, in [3],
Batalin and Sukhatme offer two coverage algorithms by a multi-robot system in
which the robots spread out in the terrain, and move away from each other while
covering the area and minimizing the interaction between the robots. In their
work, they aim to achieve optimal coverageea and do not prove any formal
statement regarding optimality of coverage time. Yet, similarly to their work, our
offline tree construction algorithm uses the “spreading out” principle in building
the coverage tree.

3 Constructing trees for offline coverage

In this section we describe our method for improving offline coverage by a team
of robots. First, we show that the initial choice of the spanning tree has significant
impact on the coverage time. We then describe our scheme for tree construction
and some variants of the general method. Finally, we describe results from ex-
tensive simulations showing significant improvement in coverage time even when
the trees are used as base for the simp&tMSTC algorithm. Note that by
combining our tree construction algorithm with the familyM&TC algorithms,

we ensure efficient and robust multi robot coverage.

3.1 Motivation for building new spanning trees

In this section we describe the motivation behind our construction scheme of the
trees. First, we show that the structure of the spanning tree has crucial role in
the coverage time obtained by algorithms that use the tree as base for coverage.
We prove that any coverage algorithm, even an optimal one, cannot achieve low
coverage time as can be achieved by using a different tree. Second, we show
that a spanning tree, which by itself obtains the optimal coverage time, does not
necessarily exist, hence the theoretical optimal coverage time might remain un-
reachable in some cases. Last, we describe our definitiaptirhal spanning

trees and explain the rationale behind this definition.

3.1.1 Importance of the spanning tree structure

An optimal time coverage algorithm for a system withobots will (theoretically)
result in total coverage time df’]. Even the most basic multi-robot coverage
algorithm will result in such a coverage time if the robots are uniformly placed
along the spanning tree path, i.e., within distance of at rﬁ\%%rom one another.

We argue that the choice of spanning tree has crucial consequences on the
coverage time obtained by algorithms using the spanning tree as base for coverage.
This is more evidently seen in algorithms that do not diverge from the spanning
tree path, such as tiSTC algorithms. Consider, for example, tgpt MSTC
algorithm. These algorithms create optimal paths along the spanning tree for the
robots, not allowing (nonfaulty) robots to bypass one another during the execution
of the coverage algorithm. There, even in the worst initial distribution case in
which all robots are bundled in their initial position, the best possible improvement
will result in an improvement factor of approximately: from N — k + 1 to

% + 1. On the other hand, the improvement by spreading the robots along the
spanning tree can reach nearly a factok ofrom N — k + 1 to %

An illustration of the importance of the right choice of spanning tree is given
in Figure 1. The figure presents an example for a terrain in which 36, £ = 3
and two different trees are suggested as base for coverage. The spanning tree is
described by the bold lines, and we use the different kinds of dashed lines to de-
scribe the spanning tree path, each dashed line represents the distance between
two adjacent robots along the path. In order to clarify the example, the section
between each two adjacent robots is given a different background as well. Note
that in both grids the robots are initially located in the same positions. The tree in
Figure la places the robots uniformly along the tree path, thus a coverage time of
(%1 is easily obtained if the robots simply follow the tree path in a counterclock-
wise direction. However, in Figure 1b. the robots are placed arbitrarily along the
tree path, thus any multi-robot coverage algorithm, based on the spanning tree,
will find it hard to result in such coverage time.

Tl Tl
Dist. between R1 and R2: CRAIENNCERSNSS Dist. between R1 and R2:
12 spanning tree path cells -~ | | 3y :? 4 spanning tree path cells
Pekabsisln [SRESSE
[[] Dist. between R2and R3: o T 1 ¢ i [SS b [Dist betweenR2and R3:
12 spanning tree path cells : ‘F i | Ol == 4 spanning tree path cells
=M —- | LA | 1y
5 Dist. between R3 and RL: Dist. between R3 and RL:
12 spanning tree path cells a b 28 spanning tree path cells
R2 R3 R2 R3

Figure 1: lllustrating how different trees can influence coverage time.

A formal statement regarding the possible improvement in coverage time ob-
tained by algorithms vs. improvement obtained by changing the tree is given by
Theorem 1. First, let us introduce the following definition. Note that we distin-
guish between arocedurethat is executed on the input to generate the tree, and
algorithmwhich is the coverage algorithm executed given the input tree.

Definition: Given the initial positions ok robots on a terrain withV cells, let
M be the coverage time of the terrain obtained by the BdBIMSTC algorithm.
A procedureP or an algorithmA are said to ensure amprovement factot, if
the coverage time obtained INB_MSTC after applyingP on the input, or the
coverage time obtained k¥ on the same input i%.

Theorem 1. Any multi-robot coverage algorithm for homogenous robots based

8

on a spanning tree which does not divert from the spanning tree path will result in
a maximal improvement factor of at ma@st

Proof. Denote the distance between the initial location of roRpaind R;,; on

the spanning tree path by, (also known as the segment), and letD,, ., =
maxi<;<n{D;}. Clearly, the coverage time obtained BWB_MSTC is exactly

D,,.... Also, D,,.. determines the coverage time of any coverage algorihimat

does not divert from the spanning tree path. As the robots are homogenous and
cannot bypass one another (assuming they are nonfaulty), an improvement in the
coverage algorithm can reduce framy,,. to (%} if robots on the extremity of

D,.... should simply walk towards one another while covering the terrain. If there

is some other segment; which requires coverage time of sote- (%] , then

the new coverage time #& Note thatt’ can be smaller than the distanbe if an
algorithm allowing backtracking is permitted. In other words, the improvement

factor is
Dmax

<2
max{ (—D”z‘“ﬂ T

]

While the change of the coverage algorithm can result in an improvement
factor of at mos®, the example described in Figure 2 leads us to the conjecture
that improvement factor due to a change in the tree can reach almost the value
of k. As seen in Figure 2b, the coverage time obtainedByMSTC is N —

k = 56 — 3 = 53, while the coverage time obtained by the same algorithm on a
spanning tree constructed in a way that places the robots in an equally scattered
way along the tree (Figure 2a.) [évk;’ﬂ = 19, hence the improvement factor
obtained by changing the tree% ~ 2.8, which is almosk.

Length: Length:
""" 19 cells T TTTTT el
H il- i ()
””” 19 cells ' ! ® .) ST 2cdls
" 18 cells T TTes : T 53 cells
a. b.

Figure 2: An example of a case in which the improvement factor is alfnibshe
tree is appropriately constructed.

We have established the fact that the choice of a spanning tree can have far
reaching consequences on the coverage time of the terrain, possibly more than the

9

choice of the coverage algorithm. Moreover, a spanning tree that places all robots
within distance of at most | will, by itself, result in the optimal coverage time.
Unfortunately, such a tree does not necessarily exist. For example, in Figure 3,
N = 16, k = 2 and all possible spanning trees are described. The minimal
maximal distance between two consecutive robots over all possible spanning trees
is 10 cells, where] =[] = 8.

e) r=-[r0
e Ll
Heznlyeug

(106 = —1= = 117 1(142)

T-]-To T -0
7: T k Ex Ii
Lol] Q] e Q]

(14,2) il it T (14,2

Figure 3: An example of a case in which there is no spanning tree that has maximal
distance off /] = [£}] = 8 between consecutive robots along the spanning tree
path. The numbers in parenthesis describe the distance between two robots along

the spanning tree path.

In our tree construction scheme we will try to approximate this optimal dis-
persion of robots along the spanning tree. We will do that by trying to satisfy the
following objective, as much as possible. First, (¢be a grid withN/4 cells,
possibly containing obstacles (the obstacles are not counted as cells). deet
G's fine grid after dividing each cell into four cells of size

Objective: Given the initial locations ok robots on cells o7, find a spanning
tree of G that minimizes the maximal distance between every two consecutive
robots along the spanning tree path.

The idea behind this objective is that it spreads the robots as uniformly as
possible along the spanning tree path. The construction opéimaltree, that
will achieve exactly the objective, is believed to8&P-hard [24]. Hence our tree
construction algorithm can be considered as a heuristic algorithm for the problem
of finding the optimal tree for the coverage task.

3.2 Tree construction algorithm

In this subsection we describe a spanning tree construction algofiiteate_Tree.
This algorithm creates spanning trees while considering the initial location of all

10

robots in the team and the objective described above, i.e., it tries to minimize the
maximal distance between any two adjacent robots on the tree.

performhilling in these cells

k1 occupied cell
B cell from current subtree
[] unoccupied cell

Figure 4: lllustration of thedilling procedure.

The general algorithm, described in Algorithm 1, is composed of two stages.
In the first stage, a subtree is created gradually for each robot starting from the
initial position of the robot, such that in each cycle either one or two cells are
added to each subtree. Denote the subtree originat&gdlny 7»,. The cells are
chosen in a way that maximizes the distance from current expansion of all other
trees. The algorithm tries to find the longest possible path for the tree. When it
fails to continue, it tries to performilling, in which it looks for ways to “stretch”
the path as follows. It looks for two joint unoccupied cells adjacent to the path.
If it found such cells, then it adds them to the path as demonstrated in Figure 4.
If the algorithm failed to find more hills, then it expands the tree, from both sides
of the path, in @BFS (breadth-first-search) manner. It first attempts to add one
cell near the origin of the tree (initial position of the robot), then it checks for a
possible free adjacent cell of its sons, and so on, until the entire grid is covered by
all £ disjoint subtrees.

In the second stage of the algorithm, after sékcdubtrees are generated, it is
only left to connect them (second stage). Denote an edge connecting two different
treesTy, andTr, by br(Tr,, Tr;). As we are giverk subtrees to be connected
to one tree covering the entire grid, it is required to find- 1 bridges. These
bridges should be chosen in a way that the resulting tree does not contain cycles
or, equivalently, cover the entire grid. For examples i= 4 then possible valid
choice of bridges are
{bI‘(TRl , TRQ), bl"(TR1 R TR3), br(TRB, TR4)}, where
{br(Tr,,Tr,), br(TRr,, Tr,), br(Tr,, Tr,)} isinvalid, aslg, remains disconnected.
Create_Tree picks randomly a valid choice df — 1 bridges, and calculates the
maximal distance between two adjacent robots on the tree according fioe¢he

11

grid. It repeats the proces$ times, and reports the best tree it observed, accord-
ing to the above criterion. The value @fis chosen empirically.

Clearly, the algorithm provides complete coverage of the terrain, as the first
stage of constructing subtrees does not end before every cell is occupied by some
subtree. The first stage terminates, as in each cycle at least one cell is added to at
least one subtree, hence given a finite terrain the algorithm halts. A formal proof
of the completeness @reate _Tree is given in Lemma 2.

Algorithm 1 ProcedureCreate_Tree
1: Build k£ subtrees as follows.
2: for every robotR;, 1 < i < kdo
3: for each possible next cell (up, down, right, ledt)
4: Compute the Manhattan distance from the current location of all other
robots.
if more than one possible next move exibisn
pick the one whose minimal distance to any other robot is maximized.
if there is no next possible motieen
perform Procedurelilling from the last main branch.
if failed to find an unoccupied cell Hilling then
10: Branch-out in @8FS manner from the main branch
11: Find all possible bridges between thérees.
12: for i = 0 to max{k®, N} do
13: Atrandom, find a valid set of bridge3; between trees such that they create
one tree with allV vertices.
14: Compute the se$; of distances between every two consecutive robots on
the tree.
15: Best_Result is initialized with S;.
16: if the maximal value ird; is lower than the maximal value Best_Result
then
17: Best_Result — S;.
18: Return the tree associated wBest_Result.

Lemma 2. ProcedureCreate_Tree generates a tree that spans the entire graph
G.

Proof. Assume, towards contradiction, that there exists one¢#tlat is not cov-
ered by any subtreg&;, 1 < i < k. Since the map is finite, then there exists
some cellC* adjacent ta” that is connected to a sub-tree originated in the initial

12

location of some robof,. If C' was not covered by the algorithm, th&p has
necessarily finished all its phases - initial phad#ling and branching out. But

if, while branching out(” was passed through aiddwas empty, then it would
have added’ to 7, leading to a contradiction. If both’ andC’ are empty, then
there exists somé” € T,, such that”' is adjacent ta_”. Similarly, either we

get a contradiction, of"” also is not in7}. This continues until we get that either

all cells are not in any tree, or all cells are (by contradiction). The former case is
impossible, as at least the initial location of a robot belongs to its subtree, hence
we are done. O

Theorem 3. The time complexity dEreate_Tree algorithm isO(N? + k“N).

Proof. In the stage wheré subtrees are created, in the worst case when adding
one cell to a subtree the algorithm runs over all current cells in the subtree (dur-
ing Hilling or while branching out), hence the complexity is at m@$tvV?). In

the second stage, where the trees are connektedifferent choices of trees are
examined, each time the entire tree is traversed, thus the complexity of this stage
is O(k®N). Hence the entire complexity of the algorithm@ N? + k*N). If

the distance measure is shortest paths, then calculating all-pairs shortest paths is
O(N?) ([7)). O

3.2.1 Using different distance measures

ProcedureCreate_Tree, creates first subtrees, and then connects them. The
process of constructing thie subtrees is done while spreading each @aay

from the other trees. The distance measure used to determine how distant the
trees are was initially simply the Manhattan distance ([2]). In this work, we have
used three different distance measures: Manhattan distance, Euclidean distance
and Shortest paths (following Floyd’s all-pairs shortest paths algorithm [7]). Note
that the time complexity of the shortest paths algorithi®?{gv?), where the other
distance measures are calculatedifl).

The theoretical advantage of using shortest paths is enormous: As shown in
Figure 5, using the shortest paths measure can decrease the coverage titNe from
to N/2. The tree in Figure 5a was generated using the shortest paths measure, and
the tree in Figure 5b was generated using the Manhattan distance measure. Ini-
tially, there are twice as many cells below the horizontal corridor compared to the
number of cells above this corridor. Note that when generating the subtrees using
the shortest paths measure (Figure 5a) there are two possible bridges between the
trees - one near the initial positions of the robots and one at the endpoint of the

13

subtree. The latter bridge will be chosen with high probability. In the second tree
there is only one possible bridge connecting between the two subtrees. The dis-
tance between the two robots along the first spanning tree path (Figureb&).is

The distance between the two robots along the second spanning tree (Figure 5b,
generated using Manhattan distance$ #ne grid cells. Therefore the distance
changed frong® to N/2 just by using a the shortest paths distance measure.

Yet, in the average case using this measure did not make a difference — the re-
sults of runningMISTC algorithms on the trees generated using the three distance
measures converge. The reason, in our opinion, is that it requires a very specific
structure of the terrain in order for the shortest paths measure to make a signifi-
cant change. One terrain that will gain from using this measure is one with many
corridors (see example in Figure 5). In such a terrain, the difference between the
Manhattan distance and the shortest path is significant. Hence we conclude that
Create_Tree is adaptable in the sense that the distance measure can be changed
in order to fit the terrain.

== "

AN E==:)

UINESD

1= =—— subtreebyR1
= — subtreeby R2
&E ~~~ possblebridge
[.
Bﬁ'l =zzz chosen bridge

||
T 1 E:_% —— tour along thetree
g%{
a. b.

Figure 5: lllustrating the trees created using different distance measures by Pro-
cedureCreate _Tree: a. Manhattan distance and b. Shortest paths.

3.3 Evaluation

We have evaluated the effect of the tree construction algorifheate_Tree on
the coverage time obtained INB_MSTC, B.MSTC andOpt_MSTC. First, we

14

determine thex used by the algorithm. Then we describe extensive simulations
of Create_Tree with our chosenu.

3.3.1 Determininga

When connecting thé subtrees, procedufeéreate_Tree chooses at random
max{k*, N} times a set of bridges yielding a tree, and chooses the best option
between them. We have chosen the valiempirically to be2. We have seen that
if o = 2, then the coverage time obtained by M&8TC family of algorithms has
decreased substantially. A further improvement was seen inccase, but the
intensity of the improvement diminished, more evidently with the results of the
Opt_MSTC algorithm (see Figure 6).

Note that the time complexity is substantially highewit= 3 and rises from
NE?to NK3, i.e., an addition ofVE%(k — 1) operations. This becomes critical for
large N andk’s.

800 | NB_MSTC using alpha =1 —+— |
NB_MSTC using alpha =2 -----
) NB_MSTC using alpha =3 -
700 4 Opt_MSTC using alpha =1 -
iy Opt_MSTC using alpha =2 ---=--
600 | Opt_MSTC using alpha =3 --<-- d

500 |\

400

Coverage Time

300

200

100

5 10 15 20 25 30
Number of Robots

Figure 6: Comparingr = 2 to o = 3 for 1 to 30 robots, with13% of the area
contains obstacles (not disconnecting the area).

3.3.2 Experimental results,o = 2

The evaluation ofCreate_Tree on the coverage time obtained by the family of
MSTC algorithms was done while taking two other parameters under considera-
tion. First, the number of robots - froBto 30 robots. The second parameter is the
densityof obstacles in the terrain, i.e, the ratio between the number of obstacles
and the area size.

15

The coverage time obtained by the above algorithms on the trees constructed
by all three variants oCreate_Tree was compared against coverage time ob-
tained by the algorithms running on randomly generated spanning trees. The ter-
rain over which the experiment was ran wa)& 30 coarse grid€00 coarse cells,
or 2400 fine cells). We have first performed the experiment on a grid with no ob-
stacles (“clean” grid), then added at randdin(6.6%), 80 (13.3%), 100 (16.7%)
and160 (26.7%) obstacles to the coarse grid.

Each trial was run for every number of robots (frédmo 30) and for every
density of obstacles in the terrain. First, we have creat@dnput lines by each
tree construction method: randomly generated treedCandte _Tree generated
trees, where each input line represents a random initial distribution of the robots.
These input lines were later given to tN8_MSTC, B.MSTC andOpt MSTC
algorithms and the coverage times obtained by these algorithms were compared.

The average coverage times obtained by the algorithBix#MSTC and
Opt_.MSTC for are brought in Figure 7. The results show clearly that the aver-
age coverage time obtained by running algoritid&s MSTC and Opt MSTC
on trees constructed by algorith@reate_Tree are statistically significantly bet-
ter (using paired two-tailed t-test, the p-value always less fltari?) than the
average coverage time obtained by those algorithms when ran on randomly gen-
erated trees. Moreover, the coverage time obtained by running the simplest non-
backtrackinglSTC algorithm on the trees generated®seate_Tree is, in most
cases, even lower than tioptimal MSTC algorithm ran on randomly generated
trees. These results repeated in both dimensions in which the experiment was con-
ducted: number of robots and density of obstacles. The results from running the
experiment olB_MSTC are omitted for clarity reasons of the display, but they are
compatible with all other results.

An interesting result follows from comparing the improvement in coverage
time obtained by the algorithms after performi@geate_Tree with different den-
sity of obstacles in the terrain. While the improvement in the coverage time ob-
tained by the algorithms after runnir@reate_Tree remains statistically signifi-
cant compared to randomly generated trees, as the obstacles become more dense
the improvement lessens. For instance, the improvement rati) fimbots with
no obstacles for thB_MSTC andOpt_MSTC algorithms ar&8% and38%, re-
spectively. When the density of obstaclegG§: the improvement ratio decreases
to 48% and28% (respectively).

Figure 8 presents as an example the improvement ratio in coverage time be-
tweenCreate_Tree generated trees vs. randomly generated trees followed by the
executionNB_MSTC algorithm. Note that the repetitiveness of the phenomenon

16

Coverage time with no obstacles Coverage time with obstacle density 6.7%

1000 T T T T T T 1000 T T T T T T
NB_MSTC on random trees —+— NB_MSTC on random trees —+—
NB_MSTC on heuristic trees - 4 900 NB_MSTC on heuristic trees -
Opt_MSTC on random trees - Opt_MSTC on random trees —*
Opt_MSTC on heuristic trees = 1 : Opt_MSTC on heuristic trees =
° theoretical best case -—=-- | ° \ theoretical best case -—-+--
£ £
= =
Q @
g g
[o
> >
o o
(@] (6]
Number of Robots Number of Robots
Coverage time with obstacle density 13.3% Coverage time with obstacle density 16.7%
1000 T T T T T 1000 T T T T T
NB_MSTC on random trees —+— NB_MSTC on random trees ——
NB_MSTC on heuristic trees -—--»--- 900 | NB_MSTC on heuristic trees -——x-- 4
Opt_MSTC on random trees - Opt_MSTC on random trees =
Opt_MSTC on heuristic trees = 1 Opt_MSTC on heuristic trees -~ 1
° theoretical best case -—=-- | ° theoretical best case -—-#-- |
£ £
= [
[} @
j=} j=2]
o o
[o
> >
o o
(] (6]
Number of Robots Number of Robots

Coverage time with obstacle density 26.7%

1000 T T T u T T
NB_MSTC on random trees —+—

900 NB_MSTC on heuristic trees ——-—— 4
Opt_MSTC on random trees -

800 - Opt_MSTC on heuristic trees -]

theoretical best case ---

700

Coverage Time

Number of Robots

Figure 7: Results from comparing coverage time when using random trees vs.
trees generated usirigyeate_Tree algorithm.

17

is not absolute over all number of robots, but the trend is clear. Our initial expla-
nation for the reason of this phenomenon was that the Manhattan distance does
not capture the real distance between the robots when more and more obstacles
are added to the terrain. However, as stated previously, even when changing the
distance measure to shortest paths the results were not improved. We then deduce
that as more and more robots are added and as more obstacles are added to the ter-
rain, there is less freedom in constructing th&panning trees, i.e., the possibility
to spread the subtrees away from each other is limited.

An additional interesting results follows from comparing between the ratio of
improvement of the results obtained by bpt MSTC and theNB_MSTC algo-
rithms (Figure 8). In both cases the improvement ratio from usinGteate _Tree
generated trees is relatively high, although usingNiBeMSTC coverage algo-
rithm results in much higher improvement ratio. This change is originated in the
fact that if using the simpl®&IB_.MSTC algorithm the change in coverage time is
much more evident. Th@pt_MSTC algorithm by itself performs some improve-
ment in coverage time, so there is less to improve from that point.

0.6

4
o

0.55 05T

04 -
05 -

Improvement: Random vs. Smart
Improvement: Random vs. Createrree

e oS e K
A R R
/ . 03+t ERE o]
f " AN - P, e S
045 | SN e EHT
L/ - No holes —— 02 | (g No holes —— |
6.7% obstacle density ---*-- : : 6.7% obstacle density -—--»---
15 13.3% obstacle density - 13.3% obstacle density -
0.4 4/ 16.7% obstacle density = R 4 16.7% obstacle density o
- . 26.7% obstacle density -———=-- . 0.1 " | . 26.7% obstacle density -—-=-- B
5 10 15 20 25 30 5 10 15 20 25 30

Number of Robots Number of Robots

Figure 8: Comparison between the improvement ratio in coverage time obtained
by algorithmNB_MSTC (left) andOpt_MSTC (right) after generating trees ran-
domly vs. usingCreate_Tree algorithm with different density of obstacles in the
terrain.

4 Online spanning-tree based coverage

In this section we re-use the approach of growing and connecting local subtrees
in the online coverage case. Here, the robots do not have a-priori knowledge of
the work-area, i.e., the exact work-area boundaries and all the obstacles locations

18

(which are assumed to be static). We assume the robots know only their absolute
initial positions, and that they are able to communicate explicitly with one another.

4.1 Description of the on-line MSTC algorithm

We herein describe in details the online spanning tree based coverage algorithm,
and prove it is complete, non-redundant and robust to robot failures.

As mentioned previously, we divide the area into square cells ofigizeach
one consists of four sub-cells of size Denote the number of cells in the grid by
N, and denote the number of sub-cellsihy.e.,n = 4N. The area occupancy in
the beginning is unknown so every cell is initially considered to be empty.

The starting point of the algorithm is the work-area @&ntbbots with their
absolute initial positions:Ag, ..., Ay_;. The initial position of every robot is
assumed to be in an obstacle-free cell, and the robot should know its position.
One assumption the algorithm makes (similar to assumptions made previously
in[10,13]) is that robots can locate themselves within an agreed-upon grid decom-
position of the work area. In practice, of course, this assumption is not necessarily
satisfied. Section 4.2 below discusses methods for approximating this assumption
in practice, which we utilize in our work with physical robots.

We seek algorithms that ammmplete non-redundantandrobust An algo-
rithm is complete if, fork robots, it produces paths for each robot, such that the
union of allk paths complete covers the work area. By work area we mean to all
the cells which are not occupied by obstacles, and are accessible from at least one
of the robots’ initial positions. An algorithm is non-redundant if it does not cover
the same place more than one time. The robustness criteria ensures that as long
as one robot is still alive, the coverage will be completed. Another advantage of
this algorithm is that the robots return to their initial positions when the coverage
is completed which can facilitate their collection or storage.

The algorithms below are run in a distributed fashion, and generate on-line
coverage that is complete, non-redundant, and robust. Each robot runs the initial-
ization algorithm first (AlgorithmOMSTC_INIT), and then executes (in parallel
to its peers) an instance of the On-line Robust Multi-ro8dC — ORMSTC
(Algorithm 3). EachORMSTC instance generates a path for its controlled robot
on-line, one step at a time. Itis the union of these paths by the execution sequence
of the algorithm that guarantees to be complete, non-redundant, and robust.

We begin by describing Algorithr@MSTC_INIT (2). The initialization pro-
cedure constructs the agreed-upon coordinate system underlying the grid work

19

area. It then allows each robot to locate itself within the grid, and update its peers
on the initial position of each robot.

Algorithm 2 OMSTC_INIT()
1: Decompose the working area i@ x 2D cells (grid), agreed among all the
robots.

2: Decompose eachD x 2D cell into 4 sub-cells (siz®)
3: i < my robot ID

4: if A; # the middle of a sub-cethen

5. s; « the closest sub-cell

6: Movetos;

7. else

8 s, A;

9: S; «— the cell that contains;

10: AnnouncesS; as your starting location to the other robots
11: ReceiveS;, wherej # 1, starting cells of other robots
12: Update map withby, ..., Sk_1

13: Initialize connection|0. ..k — 1][0, 1] « null

Once the grid is constructed and robots know their initial positions, Algorithm
ORMSTC (executed in a distributed fashion by all robots) carries out the cov-
erage. This recursive algorithm receives two paramet&rsthe new cell that
the robot just entered, andl’, the old cell from which the robot has arrived. We
denote a cell with an obstacle in one or more of its four sub-cells, or one that con-
tains the robot’s own spanning tree edgeadsockingcell. In the first recursive
call to the algorithm, the argumeit is the robot’s starting celf;. W is chosen
such that it is consistent with future calls to the algorithm—closest {Eigure
9).

The idea behind Algorithn ORMSTC is that each robot gradually builds a
local spanning tree of uncovered cells that it discovers, while tracking the state of
any of its peers whose path it has met. The spanning tree is built by a depth-first-
like procedure: Scan for a non-occupied neighboring cell (Lines 1-2), build a tree
edge to it (Line 15), enter it (Line 16) and continue recursively with this cell (Line
17). If there is no free cell, the robot goes back along its local spanning tree to the
previous covered cell, exiting the recursion (Lines 18-20). See Figure 10 for an
illustration of an execution dDRMSTC.

During this gradually-expanding coverage process, the first time a riobot
meets a cell with roboj’s tree-edgei(# j), it examines its peer’s state (Lines

20

Figure 9: The 4 possible initial positions (marked with a dot), and their respective

recommended/.

(b) build a tree edge
and enter the new

cell

(a) scan for a non-
occupied neighbor-
ing cell

S
/

(d) robot1 meets robo® and

(c) return from cellX to par-
updates itgonnection array

ent celllW

Figure 10: Illustration of an execution &fRMSTC.

21

Algorithm 3 ORMSTC(W, X)

1:
2:
3:

© N2 g

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24.
25:
26:
27:
28:
29:

30:
31:
32:
33:
34:
35:
36:

Ni.4 < X's neighboring cells in clockwise order, ending with = N,
fori — 1to3do
if N; = blocking cellthen
continueto the next
if V; has a tree edge of robgt£ i then
check whether robat is alive
if robot; is alivethen
if connection[j][0] = null then
connection[j][0] < the edge fromX to N,
connection[j][1] < the edge fromX to N;
continue to the next
else{robot; is not alivet
remove roboy from connections array and broadcast it
mark j’s cells as empty on the map and broadcast it
construct a tree edge froii to N; and broadcast it
move to a sub-cell oiV; by following the right side of the tree edge
executeORMSTC(X, V;)
if X # 5, then
move back fromX to W along the right side of the tree edge
return from recursive call
if W # blocking cellthen
executeORMSTC(X, W)
move to sub-celk; along the right side of the tree edge
broadcast completion of work
while not all the robots announced completidm
if 37, s.t. connection[j][0] # null and robot; is not alivethen
markj’s cells as empty on the map and broadcast it
broadcast withdrawal of completion
decide which connectiorionnection[j][0] or connection[j][1] is closer
to s; when moving in clockwise or counter-clockwise direction along
your tree edges
move to this connection in the appropriate direction
X « your connection cell
Y « robotj’s connection cell
remove roboy from connections array and broadcast it
construct a tree edge froii to Y and broadcast it
move to a sub-cell oY by following the right-side of the tree edges
executeORMSTC(X, Y)

22

5-6). If robotj is still alive, roboti saves the edge which connects its tree to robot
J's tree asconnection[j][0] (Lines 7-9). From this point on, robowill update
connection[j][1] to save the last edge which connects its tree to r¢dtee, i.e.,
whenever robot meets a cell with robot's tree edge (Lines 10-11).

If, during this phase, robat discovers that roboj is not alive anymore, it
announces to the other robots that ropas dead. Then all robots delete the
entries for robotj from their connection arrays, and the cells which robptvas
responsible for are marked empty (Lines 12—-14). Rolaoid the other robots can
now build their spanning tree edges to these cells and cover them (see below for a
discussion of the case where two robots want to enter the same cell).

When a robot has no neighboring cells to cover, and it is back in its initial
position, it makes sure that” (this is the initial 1} given as input) is covered
(Lines 21-22). Then the robot finishes covering its starting cell and announces to
the other robots that it has completed its work (Lines 23-24).

However, the coverage process is not completed until all the robots announce
completion of their work. Until then, a robot who finishes its work monitors the
state of all the robots for whom it has a non-emptyinection entry (Lines 25—

26). If such a roboy is not alive, the robot sets all cells assignedjtm the

map to empty, and updates the other robots (Line 27). It then turns to cover robot
j's cells, thus withdrawing its previously-declared completion of its work (Line
28). The robot has two possibilities to reach rolystcells: Along the left side of

its spanning tree edges, till it reachegnection|;][0], the first connection edge
between it and robof’s path; or in an opposite direction along the right side of
the spanning tree edges, till it reachesnection[j][1], the last connection edge
between it and robgt The robot chooses the best option and moves to the chosen
connection edge (Lines 29-30). Now it can delete rgbfstom the connection
array (line 31), and continue to construct the spanning tree edges for the new cells
by recursively calling the algorithm (Lines 32—-36).

Algorithm ORMSTC makes several assumptions about the robots’ capabili-
ties. First, in lines 1-2, each robot explores its three neighboring cells. To do
this, each robot must have the ability to sense and determine if its three neighbor-
ing cells are free from obstacles. If the cell is partially occupied by an obstacle
it will not be covered. Second, the algorithm requires reliable communication.
Each informative message that a robot receives (a cell that is now occupied with
a tree edge, a dead robot, etc.) updates the map and overall world state (in the
memory of its peers). Obviously, there is also an assumption here that robots are
cooperative, in that when a robot is asked if it is alive, it broadcasts truthfully if it
can.

23

In lines 15 and 34 the robot constructs a spanning-tree edge. A synchroniza-
tion problem could occur if more than one robot wants to construct a tree edge
in the same cell. This can be solved by any synchronization protocol. For in-
stance, we can require robots to notify the others whenever they wish to construct
an edge to a cell). If a conflict overQ) is detected, robots can use their distinct
IDs to select who will construct the edge (e.g., highest ID), or they may allow the
robot with the smallest number of covered cells to go first (intuitively, this is the
most underutilized robot). The other robots tréaas a cell with another robot’s
spanning tree edge and continue with the algorithm.

We prove the completeness of tBRMSTC algorithm (Theorem 4). Each
robot constructs its own spanning tree and circumnavigates it to produce a closed
curve which visits all the sub-cells of the tree cells. Completeness is achieved by
ensuring that every cell (which is not occupied by obstacles and is accessible from
at least one of the robots’ initial positions) will have a tree edge connection from
one of the trees.

Theorem 4 (Completeness)Given a grid work-aredl A, and k robots, Algo-
rithm ORMSTC generates: pathsk;, such that J, k; = W A, i.e., the paths cover
every cell within the the work-area.

Proof. By induction on the number of robots

Induction Base (¢ = 1). with only one robotORMSTC operates exactly like
the On-line STC Algorithm which was proven to be complete for every work-area
(Lemma 3.3 in [10]).

Induction Step. Suppose it is known thdt — 1 robots completely cover every
work-area. We will prove it for: robots. Without loss of generality, let us con-
sider roboti. ExecutingORMSTC, 7 will build its local spanning tree edges, and
generate a path to cover some cells. The other robots treat these cells as occupied,
exactly as if they were filled with obstacles. Therefore all the other cells will be
part of £ — 1 paths and covered by the— 1 robots, according the induction re-
laxation. Robot treats all the cells of the othér— 1 robots as occupied cells, so

it will completely cover its cells according to the induction assumption. [

We now turn to examinin@RMSTC with respect to coverage optimality.
Previous work has discussed several optimization criteria [13], one of which is
redundancythe number of times a sub-cell is visited.

ORMSTC can be shown to be non-redundant. Theorem 5 below guarantees
that the robots visit all the cells only once (if no failure has occurred—see be-
low for a discussion of robustness). This guarantee is in fact a feature of many

24

spanning-tree coverage algorithms, as circumnavigating a tree produce a closed
curve which visits all the sub-cells exactly one time [10]. The non-backtracking
algorithm in [10], which is an off-line algorithm, divides this curve between the
robots to achieve a complete non-redundant coverage.

Theorem 5 (Non-Redundancy).If all robots use AlgorithmORMSTC, and no
robot fails, no cell is visited more than once.

Proof. If no robot fails, then each robot only covers the cells for which it builds
a tree edge. If there is already a tree edge to a cell, the robot will not enter it
(Line 5). Thus every cell is covered only by a single robot. Since robots never
backtrack, every point is only covered once.]

As key motivation for using multiple robots comes from robustness concerns,
we prove that AlgorithnORMSTC above is robust to catastrophic failures, where
robots fail and can no longer move. Lines 12—-14 and 25-36 guarantee the robust-
ness. If one robot fails, there is always at least one robot that will detect it and will
take the responsibility to cover its section (see below for formal proof). Conflicts
over empty cells are handled as described above.

Theorem 6 (Robustness)Algorithm ORMSTC guarantees that the coverage
will be completed in finite time even with upko- 1 robots failing.

Proof. Based on the completeness theorem (Theorem 4), any number of robots
can cover the work area. Thus if one or more robots fail, all the cells that were not
occupied by tree edges of the failing robots and are accessible to other live robots
will be covered. So all we have to prove is that cells with tree edges of a dead
robot, or cells which are accessible only to a robot that has died will be covered
by another robot. Such cells may exist due to the structure of the work area, or
because the dead robot covered a group of cells which blocks the access of other
robots to free cells.

Cells with existing tree edges of a robot are treated by the other robots as cells
with obstacles. According the completeness theorem, there is at least one robot
that will cover a neighboring cell of one of these cells, thus will have a connection
to this cell. There are two possible cases:

1. A robot failed before a robot that has a connection with it reached the con-
nection. In this case, lines 13-14 ensures that the dead robot’s covered cells
will be declared free so they will be covered by other robots.

25

2. A robot fails after all the robots that have a connection with it reached the
connection. In this case, lines 27 and 33 apply, to ensure that the robot’s
covered cells will be declared free so they will be covered by other robots.

In both possible cases, the freeing of cells previously-covered by the dead robot
also makes any cell which was only accessible to the dead robot accessible to
others. Based on the completeness theorem, at least one other robot is guaranteed
to reach all these cells. Thus the algorithm is proved robust. O

4.2 From Theory to Practice

In real-world settings, some of the assumptions underl{dMSTC can not

be satisfied with certainty, and can only be approximated. This section examines
methods useful for such approximations, and their instantiations with physical
robots.

In particular, we have implemented tiERMSTC algorithm for controlling
multiple vacuum cleaning robots, the RV-400 manufactured by Friendly Robotics
[9]. Each commercial robot was modified to be controlled by an small Linux-
running computer, sitting on top of it. A generic interface driver for the RV-
400 robot was built in Player [12], and a client program was built to control it.
Each robot has several forward-looking sonar distance sensors, as well as side-
ways sonars. One robot is shown Figure 11.

Figure 11: RV-400 robot used in initial experiments.

TheORMSTC algorithm (indeed, many of the STC algorithms) make several
assumptions. First, there are assumptions as to the work area being provided as
input. ORMSTC assumes, for instance, that the work-area has known bounds,
and that it is divided into a grid that is known by all robots (i.e., all robots have
the same division).ORMSTC assumes robots can communicate reliably, and

26

locate themselves within a global coordinate system. Fin@BRMSTC makes
assumptions about the sensory information available to the robots. In particular,
ORMSTC makes the assumption that each robot can sense obstacles within the
front, left, and right4 D cells.

One challenging assumption is that of a global coordinate system that all
robots can locate themselves within. In outdoor environments, a GPS signal may
in principle be used for such purposes (note that the position only has to be known
within the resolution of a sub-cell). However, in circumstances where a global
location sensor (such as the GPS) is unavailable, a different approach is needed.
In particular, this is true in the indoor environments in which the vacuum cleaning
RV-400 is to operate.

For the purposes of the experiments, we have settled on letting the robots know
their initial location on an arbitrary global coordinate system. Once the robots
began to move, however, they relied solely on their odometry measurements to
position themselves. In the future, we hope to experiments with alternative ap-
proaches.

One advantage dDRMSTC in this regard is that its movements are limited
to turns of90° left or right, and to moving forward a fixed distance. This offers an
opportunity for both reducing errors by calibration for odometry errors specific to
this limited range of movements, and by resetting after each step, thus avoiding
accumulative errors. Indeed, this was the approach taken in the experiments (see
next section).

Given a global coordinate syste@RMSTC also requires robots to agree on
how to divide up the work-area into a grid. This agreement is critical: Differences
in the division may cause grids created by different robots to be mis-aligned, or
overlap. To do this, the bounds of the grid have to be known, in principle. Once
the bounds are known, the robots only have to decide on the origin point for the
approximate cell decomposition.

Here again a number of approximating solutions were found to be useful.
First, one can have the robots use a dynamic work-area. During the initialization
phase, the robots determines the maximal distancgs, andY,,.... (along the X-
and Y- axes, respectively), over all pairs of robots. They then build a temporary
rectangular work-area around them, with sides greater or equal i, Y,,.c.. AS
the robots move about, they will push the boundaries of the work-area into newly
discovered empty cells that lie beyond the bounds, or they will encounter the real
bounds of the work area, which will be regarded as obstacles. A related approx-
imation is to provide the robots with an initial work-area that is known to be too
big, and allow the robots to discover the actual bounds. This was the technique

27

we utilized.

Robustness against collisions is an additional concern in real-world situations.
Normally, as each robot only covers the path along its own tree, Theorem 5 guar-
antees that no collisions take place. This separation between the paths of different
robots decreases the chance of collisions. In practice, localization, movement er-
rors, and the way the grid is constructed may cause the robot to move away from
its assigned path, and thus risk collision. We utilized our bumps sensors to cope
with this problem as they are often used as a key signal in vacuum-cleaning robots.
Our heuristic is to simply respond to a bump by moving back a little, waiting for a
random (short) period of time trying again. If bumps occur three times in a row in
the same location, the location is marked as a bound or obstacle. A more compli-
cated solution which requires more communication is to coordinate between the
robots that have adjacent tree edges when a collision is likely to occur.

A final challenge was offered by the robots’ limited sensor range. The robot is
equipped with ten sonar sensors which are not capable of sensing all three neigh-
boring cells of the robot cell at the same time as described in the algorithm require-
ments before. We solved this problem by dividing the original sensing and move-
ment phases to three steps. The robot first senses its first cell by turning its sensors
towards it. If it is empty, it continues with the regular algorithm flow. If not, in
moves forward to be as close as possible to the border of the next require-sensing
cell and only then it turns to sense it and continues with the algorithm. The same
procedure is performed to the third neighboring cell. Although it slowed down
the algorithm performance this fix enabled us to run the algorithm in the simula-
tion with the robots constraints, so it can be applied also to run the algorithm on
different real robots with limited sensors.

4.3 Experimental results

We conducted systematic experiments with our implementation (DRRSTC
algorithm, to measure its effectiveness in practice with the RV400 robot. The ex-
periments were conducted using the Player/Stage software package [12], a popular
and practical development tool for real robots. Initial experiments were carried
out with physical RV400 robots, to test the accuracy of the simulation environ-
ment used. However, to measure the coverage results accurately, the experiments
below were run in the simulation environment. Figure 12 shows a screen shot of
running example with six robots in one of the simulated environments used in the
experiments.

In the experiment, we focused on demonstrating thaDlR& STC algorithm—

28

Figure 12: Simulation screen shot of six robots covering@heeenvironment

and our implementation of it for real robots—indeed manages to effectively use
multiple robots in coverage. We ran our algorithm with 2,4,6,8 and 10 robots.
Each team was tested on two different environments. Jéneeenvironment had
irregularly-shaped obstacles, but was relative open. Rb@menvironment had
many rectangular obstacles, and represents a typical indoor office room. For each
team size and environment type, 10 trials were run. The initial positions were
randomly selected.

The results are shown in Figure 13. The X-axis measures the number of robots
in the group. The Y-axis measures the coverage time. The two curves represent the
two different environments. Every data point represents the average ten trials, and
the horizontal line at each point shows the standard deviation in each direction.

The results show that in both environments, coverage time decreases in gen-
eral when increasing the group size. However, we can also see that the marginal
coverage decreases with the addition of new members. This is a well-known phe-
nomenon (in economics, but also in robotics). It is due to the overhead imposed
on a bigger group of robots, in collisions avoidance and communication load. The
overhead cost can be also seen when comparing the two coverage times of the two
environments. Although the indoor environment is smaller, the coverage time is

29

16000 \ \

Cave —=—
— Room -
4 14000 T
c
5 L,
[&] NS
g/ 12000 r]
)
£ 10000 | Jf .
)
S 8000 |
2 »
o %
o 6000 r N i
o
m N
5: 4000 \%f«/—f—f,—:—,—;::ﬁ:;é i
2000 1 1 1 1 1
2 4 6 8 10

Number of Robots

Figure 13: Overall coverage time

almost the same because there are more obstacles and doors to pass and there is a
greater chance of collision with walls or other robots.

5 Conclusions

Many real-world coverage applications require multiple robots to completely cover
a given work-area, either with a given map of the area (offline coverage) or with
no a-priori knowledge of the area (online coverage). A popular approach for such
coverage rely on the spanning tree coverage method (initially introduced for single
robot coverage by Gabrieli and Rimon in [10]). All of the spanning tree coverage
algorithms initially depend on the selection of a spanning tree.

In this work we have discussed the importance of the structure of the spanning
tree on the coverage time obtained by algorithms that use this tree as base for cov-
erage. We used the same basic idea for tree generation in both online and offline
scenarios: constructing local subtrees, and from them generating a spanning tree.

First, we have focused on offline coverage. We have shown that the structure
of the tree can have crucial consequence on the coverage time. We have presented
an algorithm for constructing trees that is motivated by the objective similar to the
one defining an optimal tree, a problem that is thought tdvi/a-hard. We have

30

extensively tested the influence of the spanning tree structure on the coverage time
obtained by existing algorithms while taking several parameters under considera-
tion. In these simulations, we compared coverage time obtained by the family of
MSTC algorithms on trees constructed by our heuristic procedure against random
trees. Simulation results show that when using heuristic trees, then the resulted
coverage time obtained by all algorithms were statistically significantly better than
the results obtained by running the algorithms on randomly generated trees. More-
over, the average coverage time obtained by the simplest algorithm on spanning
trees created by our procedure were, in most cases, better than the average cover-
age time obtained by the best algorithm on randomly generated trees.

We then focused on online coverage. We reused the approach we took, to
develop an online robust coverage algorithm,@RMSTC, a multi-robot cover-
age algorithm which is able to cover an unknown environment. We analytically
showed thaDRMSTC algorithm is complete and robust in face of catastrophic
robot failures. As there is always a gap between theory and practice, we analyzed
the assumptions underlying the algorithmic requirements. We discuss various ap-
proximation techniques for these requirements, to allow the algorithm to work in
real world situations. Based on early trials with real-robots, we conducted sys-
tematic experiments with our implementation, to measurédXR#MSTC'’s effec-
tiveness in practice. The results show that the algorithm works well in different
environments and group sizes.

References

[1] E. U. Acar and H. Choset. Robust sensor-based coverage of unstructured en-
vironments. Innternational Conference on Intelligent Robots and Systems
pages 61-68, Maui, Hawaii, USA, 2001.

[2] N. Agmon, N. Hazon, and G. A. Kaminka. Constructing spanning trees for
efficient multi-robot coverage. IRroceedings of the IEEE International
Conference on Robotics and Automation (ICR2906.

[3] M.A. Batalin and G.S. Sukhatme. Spreading out: A local approach to multi-
robot coverage. IfProc. of the 6th Internat. Symposium on Distributed Au-
tonomous Robotic Systenpage 373382, 2002.

31

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

Z.J. Butler, A. Rizzi, and R. L. Hollis. Complete distributed coverage of
rectilinear environments. [MVorkshop on the Algorithmic Foundations of
Robotics March 2000.

H. Choset. Coverage for robotics — a survey of recent reséitmals of
Mathematics and Artificial Intelligen¢&1(1-4):113-126, 2001.

J. Colegrave and A. Branch. A case study of autonomous household vac-
uum cleaner. IIRIAA/NASA CIRFFSS Conference on Intelligent Robots for
Factory Field, Service, and Spack994.

T. H. Cormen, C. E. Leiserson, and R. L. Rivdstroduction to Algorithms
MIT Press, 1990.

E. Ferranti, N. Trigoni, and M. Levene. Brick&mortar: an on-line multi-
agent exploration algorithm. IRAroceedings of the IEEE International Con-
ference on Robotics and Automation (ICR2007.

Friendly Robotic®, Ltd. Friendly robotics vacuum cleaner.
http://www.friendlyrobotics.com/friendlyac/.

Y. Gabriely and E. Rimon. Spanning-tree based coverage of continuous
areas by a mobile roboAnnals of Mathematics and Atrtificial Intelligence
31(1-4):77-98, 2001.

Y. Gabriely and E. Rimon. Competitive on-line coverage of grid environ-
ments by a mobile robotComp. Geometry24:197-224, 2003.

B. P. Gerkey, R. T. Vaughan, and A. Howard. The player/stage project:
Tools for multi-robot and distributed sensor systemsPiloceedings of the
International Conference on Advanced Robqgtuages 317-323, Coimbra,
Portugal, Jul 2003.

N. Hazon and G. A. Kaminka. Redundancy, efficiency and robustness in
multi-robot coverage. liProceedings of the IEEE International Conference
on Robotics and Automation (ICRA005.

N. Hazon and G. A. Kaminka. On redundancy, efficiency, and robustness in
coverage for multiple robot$Robotics and Autonomous Systems, to appear
2008.

32

[15] S. Hedberg. Robots cleaning up hazardous wastdxpert pages 20-24,
1995.

[16] Y.Y. Huang, Z.L. Cao, and E.L. Hall. Region filling operations for mobile
robot using computer graphics. Rroceedings of the IEEE Conference on
Robotics and Automatigpages 1607-1614, 1986.

[17] C. S. Kong, A. P. New, and I. Rekleitis. Distributed coverage with multi-
robot system. InProceedings of the IEEE International Conference on
Robotics and Automation (ICRAJ006.

[18] E. Osherovich, V. Yanovski, Wagner I. A, and A. M. Bruckstein. Robust
and efficient covering of unknown continuous domains with simple, ant-like
a(ge)nts. Technical report, Technion, Israel, 2007.

[19] I. Rekleitis, G. Dudek, and E. Milios. Multi-robot exploration of an unknown
environment, efficiently reducing the odometry erroridternational Joint
Conference in Atrtificial Intelligence (IJCAlyolume 2, pages 1340-1345,
Nagoya, Japan, August 1997. Morgan Kaufmann Publishers, Inc.

[20] 1. Rekleitis, G. Dudek, and E. Milios. Multi-robot collaboration for robust
exploration. Annals of Mathematics and Atrtificial Intelligenc81:7—40,
2001.

[21] I. Rekleitis, V. Lee-Shue, A. Peng New, and H. Choset. Limited communi-
cation, multi-robot team based coveragelBEE International Conference
on Robotics and Automatippages 3462—-3468, 2004.

[22] J. Svennebring and S. Koenig. Building terrain-covering ant robots: A fea-
sibility study. Auton. Robots16(3):313-332, 2004.

[23] I.LA. Wagner, M. Lindenbaum, and A.M. Bruckstein. Mac vs. pc determin-
ism and randomness as complementary approaches to robotic exploration of
continuous unknown domain#ternational Journal of Robotics Reseaych
19(1):12-31, 2000.

[24] X. Zheng, S. Jain, S. Koenig, and D. Kempe. Multi-robot forest coverage. In
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS)005.

33

