
May 21, 2021 15:12 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-04 page 87

© 2021 World Scientific Publishing Company
https://doi.org/10.1142/9789811239922 0004

Chapter 4

Intelligent Agents are More Complex:
Initial Empirical Findings

Gal A. Kaminka and Alon T. Zanbar

Bar-Ilan University, Israel

galk@cs.biu.ac.il; atzanbar@gmail.com

4.1 Introduction

For many years, significant research efforts have been spent on investigating

methodologies, tools, models and technologies for engineering autonomous

agents software. Research into agent architectures and their structure, pro-

gramming languages specialized for building agents, formal models and

their implementation, development methodologies, middleware software,

have been discussed in the literature, encompassing multiple communities

of researchers, with at least partial overlaps in interests and approaches.

The fundamental assumption underlying these research efforts is that

such specialization is needed, because autonomous agent software poses en-

gineering requirements that may not be easily met by more general (and

more familiar) software engineering and programming paradigms. Special-

ized tools, models, programming languages, code architectures and abstrac-

tions make sense, if the software engineering problem is specialized.

A broad overview of the literature reveals that for the most part, the

truth of this assumption has been supported by qualitative arguments and

anecdotal evidence. Agent-oriented programming [1] is by now a famil-

iar and accepted programming paradigm, and countless discussions of its

merits and its distinctiveness with respect to other programming paradigms

(e.g., object-oriented programming, aspect-oriented programming) are com-

monly found on the internet. Agent architectures are commercially avail-

able as development platforms and are incorporated into products. Indeed,

agent-oriented software development methodologies are taught and utilized

in and out of academic circles [2–5].

87

https://doi.org/10.1142/9789811239922_0004

May 21, 2021 15:12 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-04 page 88

88 Artificial Intelligence Methods for Software Engineering

However, there is a disturbing lack of quantitative, empirical evidence

for the distinctiveness of autonomous agent software. Lacking such evi-

dence, agent software engineers rely on intuition, experience, and philo-

sophical arguments when they evaluate or advocate specialized methods.

This paper provides the first empirical evidence for the distinctiveness

of autonomous agent software, compared to other software categories. We

quantitatively analyze over 500 software projects: 140 autonomous agent

and robotics projects (from RoboCup, the Agent Negotiations Competi-

tions, Chess, and other sources), together with close to 400 automatically

selected software projects from github, of various types. With each, we

utilize general source code metrics, such as Cyclomatic Complexity, Cohe-

sion, Coupling, and others used by general software engineering researchers

to quantify meaningful characteristics of software (over 250 measures, see

below).

We conducted both statistical and machine-learning analysis, to deter-

mine (1) whether agents emerge as a distinguishable sub-group within the

pool, and (2) whether there are clear distinguishing measures. We find

that agent software is clearly and significantly different from other types

of software of comparable size. This result appears both when using man-

ual statistical analysis, as well as machine learning methods. Specifically,

autonomous agents software is significantly more complex (in the sense of

control flow complexity) than other software categories. We discuss poten-

tial implications of these results.

4.2 Background

There is vast literature reporting on software engineering of autonomous

agents: agent architectures, agent-oriented programming languages, formal

models and their implementation, development methodologies, middleware

software, and more. We cannot do justice to these efforts for lack of space.

For brevity, we use the term agent-oriented software engineering (AOSE)

to refer to the combined research area, encompassing the collective efforts

of the various communities engaged in relevant research. We emphasize no

bias in the selection of this name, and With due apologies to all the different

threads of work whose unique contributions are blurred by our choice.

AOSE is a thriving area of research, with at least one dedicated annual

conference/workshop and a specialized journal1 [1, 2, 6–9]. For the most

part, the arguments for the study of AOSE as distinct from general software
1International Journal of Agent-Oriented Software Engineering.

May 21, 2021 15:12 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-04 page 89

Intelligent Agents are More Complex: Initial Empirical Findings 89

engineering are well argued philosophically, and qualitatively pointing out

inherent conceptual differences between the software engineering of agents.

To the best of our knowledge, little quantitative empirical evidence — cer-

tainly not at the scale detailed below — has been offered to support these

important conceptual arguments.

Closely related, pioneering works into software engineering in robotics

(e.g., [10–16] similarly argue qualitatively for distinguishing software en-

gineering in robotics. Some emphasize specific middleware frameworks

(e.g., [10–12, 17–19]), while others focus on critical capabilities or ap-

proaches [20–23]). These are detailed and well-reasoned arguments, how-

ever the underlying implicit assumption is similar to those in AOSE: that

robotics software is sufficiently different from general software, that it mer-

its distinct methodologies and tools to ease software development. Indeed,

we report below that robot code is similar in some aspects to autonomous

agents code, but is not as easily distinguished from general software.

The rarity of quantitative investigations in AOSE (see below for notable

exceptions) is not for lack of quantitative methods in general software en-

gineering. Beginning with the 1970s pioneering research on Cyclomatic

Complexity [24] and Halstead measures [25] there have been many inves-

tigations both proposing quantitative metrics of software constructs, and

relating the measurements to software quality, development effort, software

type, and other attributes of interest [26–28]. For example, metrics such as

Cyclomatic Complexity, Coupling, and Cohesion — generated from anal-

ysis of the software source code and the program control flow graph —

have been shown to correlate with defects [24, 29, 30]. Maintaining their

values within specific ranges (or below some thresholds) tends to lower the

expected defect creation rate, and improve other measures of software qual-

ity. Development and exploration of software metrics continues today, e.g.,

for paradigms such as aspect-oriented programming [31]. See [32] for a

comprehensive survey.

Software metrics have been used to classify software, or cluster together

software based on measured characteristics, as we do in this paper [33]. For

example, De Souza and Maia defined software metric thresholds based on

context ([34]). [35] showed this approach is applicable for Android projects.

Another example can be found in [36], who found linkage between the size

and complexity of open source projects, to attractiveness of the project for

contributors.

Surprisingly, despite the prevalence and usefulness of software metrics

as noted above, the use of software metrics in intelligent agent and robot

May 21, 2021 15:12 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-04 page 90

90 Artificial Intelligence Methods for Software Engineering

software remains limited, and is not generally reported in relevant litera-

ture. Perhaps this is due to lack of data, or the relative novelty of prod-

ucts, which leads to sparse and relative rare expertise in commercial-grade

development. AOSE-specific software metrics, specialized to agent pro-

gramming paradigms and languages, have been proposed in AOSE research

circles [37–40], often specific to agent-oriented programming languages (e.g.,

2/3APL, JASON). Because of their specialized use cases, which prohibit

their use in general software, we were reluctant to use them in this study,

which uses general metrics to contrast software from many different cate-

gories.

4.3 Software Project Data Collection and Curation

We begin with an overview of the data collection and curation process. The

data collected will be used in the analysis processes described in Secs. 4.4–

4.5.

4.3.1 Data Sources

RoboCup. RoboCup is one of the oldest and largest annual global

robotics competition events in the world — taking place since 1997. The

event is organized in several different divisions. Within each division, there

are multiple leagues, with their own rules. For example, within the soccer

division, there were over the years up to three different simulation-based

leagues (2D, 3D, and coach), and several physical robot competitions (stan-

dard platform, small-size, mid-size, and two humanoid leagues). The com-

petitions themselves are between completely autonomous agents/robots; no

human in the loop. In most cases, the agents run in completely distributed

fashion, without a centralized controller.

The bulk of the code in the various leagues is written by graduate stu-

dents and researchers in robotics and artificial intelligence, some from top

universities in these fields. The simulation leagues follow an internal rule,

which requires all teams to release a binary version of their code within

a year following the competition. Source code release is not required, but

strongly encouraged. Indeed, we use the source code from many 2D simu-

lation league teams, downloaded from their repository server. In addition,

we used source code from other RoboCup soccer leagues, gathered from the

internet.

May 21, 2021 15:12 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-04 page 91

Intelligent Agents are More Complex: Initial Empirical Findings 91

Automated Negotiating Agent Competition (ANAC). The annual

International Automated Negotiating Agents Competition (ANAC) is used

by the automated negotiation research community to benchmark and eval-

uate its work and to challenge itself. The benchmark problems and evalua-

tion results and the protocols and strategies developed are available to the

wider research community. ANAC has similar properties to the RoboCup

in the sense of emphasizing autonomous agents. It is a popular competition

for software agent researchers, maintains a requirement that all the sources

of the agents participating in the competition are made available for re-

search. We collected ANAC software agent projects from the competition

web site.

Additional data. We additionally found open source robotics projects

from the DARPA Grand and Urban challenges, and from industrial projects

where our lab was involved in research.

4.3.2 Automatic Data Harvesting

From the sources above, we first collected agent and robot software

projects — all we could find and use: 2D RoboCup teams for which

source code is available, the ANAC agent projects, robotics software from

RoboCup and the other sources described above. We extended the search

for relevant software to github projects tagged chess, as problem solving is

a close AI domain.

GitHub has more than 24 million users and more than 67 million code

repositories. It is the largest repository of open source projects in the world.

GitHub exposes robust API for finding repositories using extensive query

language, which we used to find relevant project for analysis. Repositories

in GitHub are categorized by users using tags, which we used to categorize

software projects.

The process of collecting and filtering of repositories from GitHub was

automatic, as described in Fig. 4.1. The primary constraint in selecting

software projects is comparability. The source code collected for agents

uses C, C++, and Java, and so we restricted ourselves to projects in these

languages, to prevent language-specific bias in the metrics. Similarly, we

restricted ourselves to software size (measured in lines of code — LOC) in

comparable ranges.

• Programming languages : C, C++, Java

May 21, 2021 15:12 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-04 page 92

92 Artificial Intelligence Methods for Software Engineering

• high Level of maturity

• Distinct classification in github (for github projects)

• Size > 900 lines of code (LOC)

As a control group to the software projects above (focusing on AI and

agents), we similarly harvested software projects in domains very different

from agents or AI. Table 4.1 shows a breakdown of the number and cate-

gories of the harvested software projects in the dataset (almost a terabyte).

In total, there were 118 projects generally classified as autonomous agents

for software or virtual environments, 20 projects classified as autonomous

robots, and 377 projects in other categories. Table 4.2 lists the minimum,

maximum and median project size in each domain, measured in LOC.

Table 4.1 Software project data breakdown.

Classification Source Software Domain Size Maturity Indicator

Autonomous
Agents

RoboCup 2D simulation Virtual Robots 64 Qualification for RoboCup

ANAC Negotiating Agents 26 Qualification for ANAC

GitHub Chess-Playing Engines 28 > 5 GitHub stars

General GitHub

Audio 54

> 5 GitHub stars

Education 50

Finance 26
Games 34

Graphics 60

IDE 53
Mobile Applications 42

Security 58

Robots

DARPA Challenges Autonomous Car 2 Qualification for Challenge

RoboCup competition Soccer Physical Robots 15
Applied R&D Projects Robots 3

May 21, 2021 15:12 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-04 page 93

Intelligent Agents are More Complex: Initial Empirical Findings 93

Fig. 4.1 Automatic flow of selecting GitHub projects.

May 21, 2021 15:12 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-04 page 94

94 Artificial Intelligence Methods for Software Engineering

Table 4.2 Software projects min, max, and median LOC.

Software Domain Min, Max, Median Size in LOC

Virtual Robots 1010, 153661, 23495

Negotiating Agents 1031, 102816, 1352
Chess-Playing Engines 1084, 59108, 5311

Audio 1065, 1912860, 17010
Education 1026, 393360, 6933

Finance 1136, 450524, 10455

34 1393, 185784, 5064
Graphics 1168, 385036, 18769

IDE 1457, 401897, 32486

Mobile Applications 1210, 129366, 4658
Security 1214, 164228, 10341

Autonomous Car 117848, 117848, 117848

Soccer Physical Robots 15335, 793966, 54895
Robots 3131, 64028, 10588

4.3.3 The Measurement Pipeline

The essence of the process is the measurement, i.e., the generation of mea-

surements from applying code metrics to the software. We focus on source

code metrics in this paper. The source code of each project was processed

to extract two different data structures: a control flow graph, and a code

statistics database. These, in turn, are used to calculate several different

metrics. Additionally we save information on the context of the repository

(name, location, category) and other information like source code language,

competition results, the year in which the code was deployed, etc.

We used two different tools, independently, to allow validation of the

results: CCCC2 and Analizo.3 The two tools were run on two 24-core

XEON servers, each with 76GB of ram. Total CPU time is more than a

month.

The measurement tools provide the following general software metrics,

for different level of analysis (see [32] for detailed descriptions). As with the

restriction on choice of language, we are restricted to using general metrics

as they allow for measuring non-agent code. Otherwise, we’d be able to

use code metrics specific to AOSE [37–40], and specialized languages (e.g.,

2/3APL, JASON).

2http://cccc.sourceforge.net/.
3http://www.analizo.org/.

May 21, 2021 15:12 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-04 page 95

Intelligent Agents are More Complex: Initial Empirical Findings 95

Summary & Project Level Metrics:

• Total Lines of Code (total loc)

• Total Number of Modules (total modules)

• Total Number of Methods (total nom)

Module Level Metrics:

• Afferent Connections per Class (ACC)

• Average Cyclomatic Complexity per Method (ACCM)

• Average Method Lines of Code (AMLOC)

• Average Number of Parameters (ANPM)

• Coupling Between Objects (CBO)

• Coupling Factor (COF)

• Depth of Inheritance Tree (DIT)

• Lack of Cohesion of Methods (LCOM4)

• Lines of Code (LOC)

• Number of Attributes (NOA)

• Number of Children (NOC)

• Number of Methods (NOM)

• Number of Public Attributes (NPA)

• Number of Public Methods (NPM)

• Response for Class (RFC)

• Structural Complexity (SC)

We collected not only the raw metrics above, but also their aggregation in

various ways, so as to minimize the inherent loss of information. Thus for

each metric, we also computed its mean, mode, minimum value, maximum

value, quantiles (lower, max, median, min, ninety five, upper), standard

deviation, variance, skewness, and kurtosis. All in all, each software project

was represented by more than 250 measurements.

4.4 Statistical Analysis

We conducted two separate analysis efforts which had common general

goal. This section details the results of a statistical analysis, while the

next section presents the use of machine-learning analysis. The focus in

both is to reveal differences, if they occur, between the different software

categories, as expressed in the measurements of different metrics.

May 21, 2021 15:12 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-04 page 96

96 Artificial Intelligence Methods for Software Engineering

Every project is represented by approximately 250 different metrics. As

such, it is difficult to attempt to find differentiating metric by hand. We

therefore used a heuristic procedure to assist in finding promising features.

Algorithm 1 describes the procedure. We emphasize that this is a heuristic

procedure, to draw human attention to features of interest, not for statis-

tical inference.

The idea is to iterate over the software domains. For each domain

r, we separate it out from the others, and then use a two-tailed t-test to

contrast the distribution of the metric values in the domain and in all others.

For example, one iteration of the algorithm would run two-sample t-test

between the values of accm mean of projects in the RoboCup 2D against

the values of accm mean of all projects in the control group (tagged as ‘non

agent’).

A lower p value from the t-test is used as a heuristic, indicating that

potentially a good differentiating feature has been detected. We collect all

the domains differentiated by the metric f into a common set indexed by

f . We then look for sets larger than two. We use a threshold to avoid

distractions from a metric that may distinguish a specific domain from all

others, by chance.

Algorithm 1 Common differentiator algorithm

1: for all r ∈ Domains do

2: others← (Domains− {r})
3: for all f ∈ metrics do

4: if 2-tailed t-test(rf , othersf) < 0.05 then

5: CommonSetf ← CommonSetf
⋃
r

6: for all f ∈ metrics do

7: if |CommonSetf | >= 3 then . 3 or more clustered together?

8: selectedf ← CommonSetf
return all selectedf

Table 4.3 shows the output of the algorithm for each individual metric,

when listed in increasing order of probability (i.e., in order of decreasing

indication of separation power). The top four metrics are the ACCM mean

and its upper and median quantiles, and the Coupling Factor (CoF) met-

ric, which measures coupling between modules. These four metrics clearly

distinguish between the agent domains (RoboCup 2D Simulation, Chess,

ANAC agents).

May 21, 2021 15:12 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-04 page 97

Intelligent Agents are More Complex: Initial Empirical Findings 97

Table 4.3 The top distinguishing features in descending order, and the software

domains they cluster together.

Metric Repositories p Value

accm mean [RoboC-2D, Chess, ANAC] 1.18E-04
accm quantile upper [RoboC-2D, Chess, ANAC] 8.78E-04

accm quantile median [RoboC-2D, Chess, ANAC] 1.17E-03

total cof [RoboC-2D, Chess, ANAC] 1.19E-03
noa skewness [RoboC-2D, IDE, Graphics] 2.59E-03

nom quantile upper [RoboC-2D, ANAC, Audio] 6.27E-03

amloc quantile upper [RoboC-2D, Chess, ANAC, ...] 7.99E-03
nom mean [RoboC-2D, ANAC, Graphics, Audio] 1.07E-02

anpm quantile upper [RoboC-2D, ANAC, Graphics] 1.14E-02
noa kurtosis [RoboC-2D, Ide, Games, Graphics] 1.28E-02

We use the p value in Table 4.3 as a heuristic indicator for the human

analyst. It gives an indication of the strength of the clustering, independent

of the content of the cluster. Even if the agent domains could be distin-

guished from the others, we could easily expect other software domains

to be so clustered. However, the fact is that the strongest distinguishing

metrics put autonomous agents together, apart from other domains.

We then moved to examining the results visually, using box-plots to

display the distribution of specific metrics of each software domain. We

seek features which, as clearly as possible, distinguish the three classes of

domains.

Indeed some metrics clearly are different between domains. For example,

Fig. 4.2 show the box-plot distribution of the Lack-of-Cohesion (LCOM4)

metric, which received generally low rank by the heuristic procedure (i.e., a

relative high p value). Here, we clearly see that the RoboCup-Other-Leagues

group stands out, compared to the other software domains. However, it is

the only domain in the cluster, and does not distinguish the agents or robots

domains from others.

Other metrics may sometimes cluster together more than one domain,

but are not able to distinguish agents from non-agents code. For example,

Fig. 4.3 show the distribution of the Structural Complexity metric. We can

see that the inner-quantile range and median are similar between RoboCup

2D and Other RoboCup Leagues, suggesting some commonality in behavior

of the structure of classes and objects. However, it reveals no commonality

between the different domains of the same class (Agents, Robots, or General

Software). In other words, it distinguishes some domains from others (to

an extent) but does not cluster together domains that come from the same

software class.

May 21, 2021 15:12 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-04 page 98

98 Artificial Intelligence Methods for Software Engineering

Ro
bo
cup

-2D An
ac

Ch
ess

Au
tod
riv
ers

Ro
bo
-Pr
oje
cts

Ro
bcu

p-O
the
r-L
ea
gu
es

Gra
ph
ics

Se
cur
ity

Ro
bo
t-S
im
ula
tio
n
Ga
me
s

Au
dio Ide

Mo
bile

Ed
uca

tio
n

Fin
an
ce

2

4

6

8

10

12

Fig. 4.2 Box plot distribution of LCOM4 means. The vertical axis range is 0–12.

Ro
bo
cup

-2D An
ac

Ch
ess

Au
tod
riv
ers

Ro
bo
-Pr
oje
cts

Ro
bcu

p-O
the
r-L
ea
gu
es

Gra
ph
ics

Se
cur
ity

Ro
bo
t-S
im
ula
tio
n
Ga
me
s

Au
dio Ide

Mo
bile

Ed
uca

tio
n

Fin
an
ce

0

10

20

30

40

Fig. 4.3 Box plot distribution of the Structural Complexity metric for software domains.

The vertical axis range is 0–40. RoboCup 2D simulation and RoboCup-Other-Leagues
have larger variance and higher values than all other software domains.

In contrast, metrics that were ranked high by Alg. 1 visually show much

more promise. For example, Table 4.3 suggests the mean ACCM is and the

MLOC upper quartile are promising, in terms of their ability to distinguish

between agents and non-agent software. Figures 4.4 and 4.5 show the box

May 21, 2021 15:12 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-04 page 99

Intelligent Agents are More Complex: Initial Empirical Findings 99

Ro
bo
cup
-2D An

ac
Ch
ess

Au
tod
riv
ers

Ro
bo
-Pr
oje
cts

Ro
bcu
p-O
the
r-L
ea
gu
es

Gra
ph
ics

Se
cur
ity

Ro
bo
t-S
im
ula
tio
n
Ga
me
s
Au
dio Ide

Mo
bile

Ed
uca
tio
n

Fin
an
ce

1

2

3

4

5

6

7

analizo_accm_mean

Fig. 4.4 Box plot distribution of mean ACCM of software domains. The vertical axis

range is 0–8.

Ro
bo
cup

-2D
Ch
ess An

ac

Ro
bcu

p-O
the
r-L
ea
gu
es

Ro
bo
-Pr
oje
cts

Au
tod
riv
ers

Se
cur
ity

Mo
bile

Ed
uca

tio
n Ide

Ga
me
s

Fin
an
ce

Gra
ph
ics

Ro
bo
t-S
im
ula
tio
n
Au
dio

0

20

40

60

80

amloc_quantile_upper

Fig. 4.5 Box plot distribution of AMLOC upper quantile. The vertical axis range is

0–40.

plot distributions these metrics. Visually, in both figures, the box-plots

for the Agents class (RoboCup 2D, ANAC, Chess) are clearly prominent

relative to other software domains.

May 21, 2021 15:12 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-04 page 100

100 Artificial Intelligence Methods for Software Engineering

Interim Summary. We defer a discussion of the meaning of these find-

ings to Sec. 4.6. For now, based on the manual analysis procedure de-

scribed, we only state the hypothesis that ACCM and AMLOC metrics are

different between autonomous agents software and general software in other

domains. Moreover, it seems robotics code lies somewhere in between, in

terms of these metrics.

4.5 Machine Learning Analysis

A second approach for our investigation uses machine learning techniques,

to complement the manual analysis. Humans detect patterns in visualiza-

tions that computers may miss, yet may also fall prey to misconceptions.

Thus an automated analysis can complement the manual process.

We attempted to use several different machine learning classifiers to dis-

tinguish agent and non-agent software domains, with the goal of analyzing

successful classification schemes, to reveal the metrics, or metric combina-

tions, which prove meaningful in the classification.

Pre-processing the data. We filtered outliers at the top and bottom 3%

of the data (i.e., within the 3–97 percentiles). Aggregated features (total,

median, etc.) were removed to minimize the effect of project size on the

model, and to reduce the number of features (standing originally at around

250). The data was divided into a training (85%) and testing (15%) sets.

Classification procedure. We choose one vs many classification strat-

egy, similarly to the manual analysis above. Iterating over all software

classes, we trained a binary classifier to differentiate between samples of

one software domain (ex. Audio) to all other software classes. This cre-

ates an inherent imbalance in the number of examples presented, which we

alleviated by using random over-sampling of the minority class.

For classification, we used the following classification algorithms: Sup-

port Vector Machines, Logistics Regression, and Gradient-Boosted Decision

Trees. The implementations are open-source packages (scikit-learn4 and

XGBoost5). The performance of classifiers was carried out using two scor-

ing functions, familiar to machine learning practitioners: F1 and AUC (area

under the ROC curve). In both, a greater value indicates better perfor-

mance. Each of the tables below (Tables 4.4–4.6) shows the top classifiers

4https://scikit-learn.org/.
5https://github.com/dmlc/xgboost.

May 21, 2021 15:12 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-04 page 101

Intelligent Agents are More Complex: Initial Empirical Findings 101

Table 4.4 SVM top five scoring software domain classifiers.

Class Repositories F1 Score Feature Ranking

Agent Robocup-2D 0.67 [accm quantile median, accm quantile upper, noc mean]

Agent ANAC 0.62 [accm quantile lower, noa quantile lower, noc mean]
General IDE 0.33 [acc quantile lower, dit mean, noc quantile upper]

General Mobile 0.32 [acc quantile lower, acc quantile median, accm quantile lower]

General Graphics 0.20 [accm quantile lower, dit quantile lower, dit quantile median]

Table 4.5 Logistic Regression top scoring software classes.

Class Repositories AUC F1 Feature Ranking

Agent ANAC 0.99 0.80 [accm quantile upper, noa quantile lower, rfc quantile lower]

Agent Robocup-2D 0.97 0.70 [amloc quantile upper, noc mean, npa mean]
Robot Robcup-Other-Leagues 0.87 0.50 [amloc quantile lower, cbo mean, nom mean]

General IDE 0.77 0.44 [amloc quantile median, anpm mean, npa mean]

General Graphics 0.76 0.24 [anpm mean, lcom4 mean, mmloc mean]

built using the classification algorithms. In each, we list the top classifica-

tion results of a single domain versus all others. Our interest, however, is

not so much on being able to classify a specific domain, but instead in the

metrics used as features when classifying Agent software. The last column

of each table lists the most informative 3–4 features (metrics) used by the

classifier. Frequent recurrence may hint at important metrics.

Table 4.4 shows the top results from the SVM classifiers, in decreasing

order of performance. SVM classification output is only “Hard decision”

without probability distribution of the different classes and thus the AUC

score is not available for it. We used the default SVM parameters in the

implementation. The F1 scores in the table are far from indicating great

success, yet we note the presence of the mean ACCM metric in the list

of features important for classification for the repositories belongs to the

“Agent” class.

We next used classifiers built using Logistic Regression (LR). We used

L2 regularization, and stopping criteria of 100 iterations. The top LR

classifiers are reported in Table 4.5. In general their scores are lower than

the SVM classifiers reported above.

Finally, we used Gradient-Boosted Decision Tree classifiers. The idea

in this technique is to use an ensemble of decision trees based on subsets of

the samples and features, to lower the risk of over-fitting while maintaining

high accuracy. The classifiers were built using the XGBoost package, using

the default parameters. The results are shown in Table 4.6. Overall, the

results are much better than the other two classification attempts. Some

individual domain classifiers achieve high scores.

May 21, 2021 15:12 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-04 page 102

102 Artificial Intelligence Methods for Software Engineering

Table 4.6 Gradient Boosted Decision Trees top scoring soft-

ware classes, in decreasing order of F1 scores.

Agent/General Class (Domain) AUC F1

Agent Robocup-2D 0.97 0.85
Agent ANAC 0.98 0.67

Agent Chess 0.84 0.44

Robot Robcup-Other-Leagues 0.89 0.40
General Graphics 0.65 0.31

General Security 0.76 0.27

General Mobile 0.80 0.22
General Games 0.49 0.00

General Audio 0.56 0.00

General Robot-Simulation 0.66 0.00
General Education 0.66 0.00

General Finance 0.73 0.00
General IDE 0.75 0.00

Robot Robo-Projects 0.86 0.00

Most importantly, however, we note that the top performing classi-

fiers (1) are those that are able to distinguish agent software from other

types of software, and (2) utilize the mean ACCM and AMLOC metrics

in their classification decisions. These results concur with the conclusions

of the manual analysis described earlier. We also observe that software

from physical robots participating in RoboCup (domain: Robocup-Other-

Leagues) has also been classified successfully, using the AMLOC metric

(among other metrics).

4.6 Discussion

Ultimately, our goal in this investigation is not only finding out if there is

a difference between agent or robot software, and other software domains,

but also to uncover the nature of this difference. This section discusses the

results presented above, and attempts to draw conclusions, lessons, and

hypotheses for future investigations.

ACCM and Control Complexity of Agents. First, it is clear that the

ACCM measure is a recurring metric in successful classification schemes

distinguishing agent software from other software. This is true both in

the manual analysis, as well as in classifiers generated by machine learning

algorithms. In general, Agent software seems to have high ACCM mea-

surements, compared to other software domains. Robot software does have

May 21, 2021 15:12 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-04 page 103

Intelligent Agents are More Complex: Initial Empirical Findings 103

higher ACCM (on average) than non-agent software, but the difference is

much less pronounced than between Agent and general software. It is there-

fore immediately interesting to better understand what the ACCM actually

measures.

ACCM — Average Cyclomatic Complexity per Method — is a more

modern variant of the Cyclomatic Complexity (CC) metric introduced by

McCabe in 1976 [24]. Briefly, the cyclomatic complexity of software is a

measure of the number of possible execution paths through its control flow

graph. The more branching points, conditional loops, and decision points

in the software, the greater its CC. The ACCM measures the CC value at

the method level, for all methods within a module. It then computes the

mean of these measurements to introduce a single value which represents

the complexity of the module as a whole.

Cyclomatic Complexity has been generally shown to be inversely corre-

lated to code quality and defect frequency. Greater CC is correlated with a

greater number of defects in the software, persistent bugs, and other indica-

tions of poor design and code quality. Indeed, the correlation is sufficiently

accepted, that there exists recommended practices for the maintenance of

CC values of new software within accepted safe range, below the ACCM

measurements we generally see here.

Is Agent Software Inherently More Complex? (In short: YES!)

There are alternative explanations for the higher ACCM values we observe

in agent software: (1) that agent software is just inherently more complex,

because the tasks tackled by the software requires greater complexity in the

control flow of the software. Or, (2) that the agent code is just more buggy,

or written by programmers who are not as well-trained, e.g., too academic?

We offer evidence that the first explanation is the correct one, i.e., that

agent software is inherently more complex. One benefit of using competition

software in this study is that alongside the software metrics, we also have

clear quality metrics in terms of the success of the software. Specifically,

we show below (Fig. 4.6) a plot of the ACCM measure from a subset of

RoboCup software agent, vs the code effectiveness as measured by the mean

goal difference of the agents in competitions. We see a clear inverse relation

between the two: higher ACCM is associated with poor performance, just

as it is in other software domains. However, the ACCM of winning agents

is still higher than standard practice in software.

May 21, 2021 15:12 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-04 page 104

104 Artificial Intelligence Methods for Software Engineering

Fig. 4.6 ACCM (Average Cyclomatic Complexity per Module, vertical axis) vs Effec-
tiveness (here, measured by mean goal difference per game — horizontal axis, larger

is better). The goal difference was extracted automatically from log files of individual
games.

What about other measures? A critical look at the results of this

study raises the issue of other measures. It is true that ACCM is a clear

distinguishing characteristic of agent vs non-agent code. However, it is

not so clear that the machine learning classifiers can use it, ignoring other

metrics. Indeed, some very successful classifiers do not use ACCM at all.

Indeed, we saw also that the AMLOC measure is also a potentially good

metric from this respect, as well as the MMLOC measure.

While we do not refute the possibility that other metrics may be as good

as ACCM or complement it, we point out that many metrics are known to

be correlated in practice (see, e.g., [41]), and thus it may be that a machine

learning classifier using a particular metric could have also worked as well

with a different one, that is highly correlated. In particular, in our own

study here, we found that the Pearson correlation between AMLOC and

ACCM is 0.84, and the correlation between MMLOC and ACCM is 0.90.

So a preference for one metric over another does not necessarily mean that

the other metric was not as useful.

4.7 The Big Picture and Future Directions

This paper offers the first empirical evidence that agent software is in-

deed inherently different from other types of software, intended for other

domains. The empirical evidence was collected by analyzing hundreds of

May 21, 2021 15:12 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-04 page 105

Intelligent Agents are More Complex: Initial Empirical Findings 105

software projects of comparable sizes, using two different types of analysis.

In particular, we find that agent software has greater control flow complex-

ity in general, which conjecture to be inherent to the types of tasks agents

are deployed to solve — tasks that require autonomy in decision-making,

and thus careful deliberation over many possibilities.

Given this conclusion, it becomes clear that agent-oriented software

engineering can increase their impact by providing tools, methodologies,

and frameworks that directly tackle the issue of complexity. For instance,

agent architectures may be so successful because they assist in breaking

down the inherent complexity of tasks. We leave this question for future

work.

References

[1] Y. Shoham, Agent-oriented programming, Artif. Intell. 60, 1, pp. 51–92
(1993), http://dx.doi.org/10.1016/0004-3702(93)90034-9.

[2] L. Padgham, J. Thangarajah and M. Winikoff, Prometheus Research Direc-
tions, in Agent-Oriented Software Engineering. Springer, Berlin, Heidelberg,
ISBN 978-3-642-54431-6 978-3-642-54432-3, pp. 155–171 (2014), ISBN 978-3-
642-54431-6 978-3-642-54432-3, https://link.springer.com/chapter/10.
1007/978-3-642-54432-3_8.

[3] S. A. DeLoach, O-MaSE: An Extensible Methodology for Multi-agent Sys-
tems, in Agent-Oriented Software Engineering. Springer, Berlin, Heidelberg,
ISBN 978-3-642-54431-6 978-3-642-54432-3, pp. 173–191 (2014), ISBN 978-3-
642-54431-6 978-3-642-54432-3, https://link.springer.com/chapter/10.
1007/978-3-642-54432-3_9.

[4] J. J. Gomez-Sanz, Ten Years of the INGENIAS Methodology, in
Agent-Oriented Software Engineering. Springer, Berlin, Heidelberg, ISBN
978-3-642-54431-6 978-3-642-54432-3, pp. 193–209 (2014), ISBN 978-3-
642-54431-6 978-3-642-54432-3, https://link.springer.com/chapter/10.
1007/978-3-642-54432-3_10.

[5] O. Boissier, R. H. Bordini, J. F. Hübner and A. Ricci, Unravelling
Multi-agent-Oriented Programming, in Agent-Oriented Software Engineer-
ing. Springer, Berlin, Heidelberg, ISBN 978-3-642-54431-6 978-3-642-54432-
3, pp. 259–272 (2014), ISBN 978-3-642-54431-6 978-3-642-54432-3, https:
//link.springer.com/chapter/10.1007/978-3-642-54432-3_13.

[6] N. R. Jennings, On agent-based software engineering, Artificial Intelli-
gence 117, 2, pp. 277–296 (2000-03-01), http://www.sciencedirect.com/
science/article/pii/S0004370299001071.

[7] A. Sturm and O. Shehory, Agent-Oriented Software Engineering: Re-
visiting the State of the Art, in Agent-Oriented Software Engineering.
Springer, Berlin, Heidelberg, ISBN 978-3-642-54431-6 978-3-642-54432-3,
pp. 13–26 (2014), ISBN 978-3-642-54431-6 978-3-642-54432-3, https://

link.springer.com/chapter/10.1007/978-3-642-54432-3_2.

http://dx.doi.org/10.1016/0004-3702(93)90034-9
https://link.springer.com/chapter/10.1007/978-3-642-54432-3_8
https://link.springer.com/chapter/10.1007/978-3-642-54432-3_8
https://link.springer.com/chapter/10.1007/978-3-642-54432-3_9
https://link.springer.com/chapter/10.1007/978-3-642-54432-3_9
https://link.springer.com/chapter/10.1007/978-3-642-54432-3_10
https://link.springer.com/chapter/10.1007/978-3-642-54432-3_10
https://link.springer.com/chapter/10.1007/978-3-642-54432-3_13
https://link.springer.com/chapter/10.1007/978-3-642-54432-3_13
http://www.sciencedirect.com/science/article/pii/S0004370299001071
http://www.sciencedirect.com/science/article/pii/S0004370299001071
https://link.springer.com/chapter/10.1007/978-3-642-54432-3_2
https://link.springer.com/chapter/10.1007/978-3-642-54432-3_2

May 21, 2021 15:12 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-04 page 106

106 Artificial Intelligence Methods for Software Engineering

[8] E. Platon, N. Sabouret and S. Honiden, An architecture for exception man-
agement in multiagent systems, International Journal of Agent-Oriented
Software Engineering 2, 3, p. 267 (2008), http://www.inderscience.com/
link.php?id=19420.

[9] M. Winikoff, Future Directions for Agent-Based Software Engineering, Int.
J. Agent-Oriented Softw. Eng. 3, 4, pp. 402–410 (2009), http://dx.doi.

org/10.1504/IJAOSE.2009.025319.
[10] B. P. Gerkey, R. T. Vaughan and A. Howard, The player/stage project:

Tools for multi-robot and distributed sensor systems, in Proceedings of the
International Conference on Advanced Robotics (2003), http://cres.usc.
edu/cgi-bin/print_pub_details.pl?pubid=288.

[11] R. T. Vaughan and B. P. Gerkey, Really Reusable Robot Code and the
Player/Stage Project, in Brugali, D. (ed.), Software Engineering for Exper-
imental Robotics, p. 24 (2006).

[12] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger,
R. Wheeler and A. Ng, ROS: an open-source Robot Operating System, in
International Conference on Robotics and Automation, p. 6 (2009).

[13] D. Brugali, Software Engineering for Experimental Robotics. Springer (2007),
ISBN 978-3-540-68951-5, google-Books-ID: DEpsCQAAQBAJ.

[14] D. Brugali and P. Scandurra, Component-based robotic engineering (Part
I), IEEE Robotics Automation Magazine 16, 4, pp. 84–96 (2009).

[15] D. Brugali and A. Shakhimardanov, Component-Based Robotic Engineering
(Part II), IEEE Robotics Automation Magazine 17, 1, pp. 100–112 (2010).

[16] D. Brugali, Model-Driven Software Engineering in Robotics: Models Are
Designed to Use the Relevant Things, Thereby Reducing the Complexity
and Cost in the Field of Robotics, IEEE Robotics Automation Magazine 22,
3, pp. 155–166 (2015).

[17] D. Calisi, A. Censi, L. Iocchi and D. Nardi, Openrdk: A modular framework
for robotic software development, in IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 1872–1877 (2008).

[18] A. Elkady and T. Sobh, Robotics Middleware: A Comprehensive Literature
Survey and Attribute-Based Bibliography, Journal of Robotics 2012, pp. 1–
15 (2012), http://www.hindawi.com/journals/jr/2012/959013/.

[19] E. Tsardoulias and P. Mitkas, Robotic frameworks, architectures and mid-
dleware comparison, arXiv:1711.06842 [cs] (2017), http://arxiv.org/abs/
1711.06842, arXiv: 1711.06842.

[20] M. Montemerlo, N. Roy and S. Thrun, Perspectives on standardization in
mobile robot programming: the Carnegie Mellon Navigation (CARMEN)
Toolkit, in Proceedings 2003 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS 2003) (Cat. No 03CH37453), Vol. 3,
pp. 2436–2441 (2003).

[21] N. T. Dantam, K. B�ondergaard, M. A. Johansson, T. Furuholm and
L. E. Kavraki, Unix Philosophy and the Real World: Control Software for
Humanoid Robots, Frontiers in Robotics and AI 3 (2016).

[22] H. Bruyninckx, Open robot control software: the OROCOS project, in Pro-
ceedings 2001 ICRA. IEEE International Conference on Robotics and Au-
tomation (Cat. No. 01CH37164), Vol. 3, pp. 2523–2528 (2001).

http://www.inderscience.com/link.php?id=19420
http://www.inderscience.com/link.php?id=19420
http://dx.doi.org/10.1504/IJAOSE.2009.025319
http://dx.doi.org/10.1504/IJAOSE.2009.025319
http://cres.usc.edu/cgi-bin/print_pub_details.pl?pubid=288
http://cres.usc.edu/cgi-bin/print_pub_details.pl?pubid=288
http://www.hindawi.com/journals/jr/2012/959013/
http://arxiv.org/abs/1711.06842
http://arxiv.org/abs/1711.06842

May 21, 2021 15:12 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-04 page 107

Intelligent Agents are More Complex: Initial Empirical Findings 107

[23] N. T. Dantam and M. Stilman, Ach: IPC for Real-Time Robot Control,
Technical Report GT-GOLEM-2011-001, Georgia Institute of Technology
(2011).

[24] T. J. McCabe, A complexity measure, IEEE Transactions on Software En-
gineering SE-2, 4, pp. 308–320 (1976).

[25] M. H. Halstead, Elements of Software Science (Operating and Programming
Systems Series). Elsevier Science Inc. (1977), ISBN 978-0-444-00205-1.

[26] A. J. Albrecht, Measuring application development productivity, in IBM Ap-
plications Development Joint SHARE/GUIDE Symposium. Monterey, Cali-
fornia, pp. 83–92 (1979).

[27] C. Jones, Applied Software Measurement: Global Analysis of Productivity
and Quality, 3rd edn. McGraw-Hill, New York (2008).

[28] B. W. Boehm, Software Engineering Economics, 1st edn. Prentice Hall PTR,
Upper Saddle River, NJ, USA (1981), ISBN 0138221227.

[29] S. R. Chidamber and C. F. Kemerer, A metrics suite for object oriented de-
sign, IEEE Transactions on Software Engineering 20, 6, pp. 476–493 (1994-
06).

[30] R. V. Hudli, C. L. Hoskins and A. V. Hudli, Software metrics for object-
oriented designs, in Proceedings 1994 IEEE International Conference on
Computer Design: VLSI in Computers and Processors, pp. 492–495 (1994-
10).

[31] E. K. Piveta, A. Moreira, M. S. Pimenta, J. Araújo, P. Guerreiro and
R. T. Price, An empirical study of aspect-oriented metrics, Science of
Computer Programming 78, 1, pp. 117–144 (2012-11), http://linkinghub.
elsevier.com/retrieve/pii/S0167642312000287.

[32] N. Fenton and J. Bieman, Software Metrics: A Rigorous and Practical Ap-
proach, Third Edition. CRC Press (2014-10-01), ISBN 978-1-4398-3823-5,
google-Books-ID: lx OBQAAQBAJ.

[33] R. V. Kumar and R. Chandrasekaran, Classification of software projects
using k-means, discriminant analysis and artificial neural network, Interna-
tional Journal of Scientific & Engineering Research 4, 2, p. 7 (2013).

[34] L. B. L. De Souza and M. D. A. Maia, Do software categories impact coupling
metrics? in Proceedings of the 10th Working Conference on Mining Soft-
ware Repositories, MSR ’13. IEEE Press, ISBN 978-1-4673-2936-1, pp. 217–
220 (2013), ISBN 978-1-4673-2936-1, http://dl.acm.org/citation.cfm?

id=2487085.2487128.
[35] M. Stojkovski, Thresholds for Software Quality Metrics in Open Source An-

droid Projects, Master’s thesis, NTNU (2017).
[36] P. Meirelles, C. Santos Jr., J. Miranda, F. Kon, A. Terceiro and C. Chavez,

A study of the relationships between source code metrics and attractive-
ness in free software projects, in 2010 Brazilian Symposium on Software
Engineering. IEEE, ISBN 978-1-4244-8917-6, pp. 11–20 (2010), ISBN 978-
1-4244-8917-6, http://ieeexplore.ieee.org/document/5631691/.

[37] I. Garćıa-Magariño, M. Cossentino and V. Seidita, A Metrics Suite for
Evaluating Agent-oriented Architectures, in Proceedings of the 2010 ACM
Symposium on Applied Computing, SAC ’10. ACM, New York, NY,

http://linkinghub.elsevier.com/retrieve/pii/ S0167642312000287
http://linkinghub.elsevier.com/retrieve/pii/ S0167642312000287
http://dl.acm.org/citation.cfm?id=2487085.2487128
http://dl.acm.org/citation.cfm?id=2487085.2487128
http://ieeexplore.ieee.org/document/5631691/

May 21, 2021 15:12 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-04 page 108

108 Artificial Intelligence Methods for Software Engineering

USA, ISBN 978-1-60558-639-7, pp. 912–919 (2010), ISBN 978-1-60558-639-
7, doi:10.1145/1774088.1774278, http://doi.acm.org/10.1145/1774088.

1774278, event-place: Sierre, Switzerland.
[38] F. Alonso, J. L. Fuertes, L. Mart́ınez and H. Soza, Measuring the Pro-

Activity of Software Agents, 2010 Fifth International Conference on Soft-
ware Engineering Advances, pp. 319–324 (2010), doi:10.1109/ICSEA.2010.
55.

[39] F. Alonso, J. L. Fuertes, L. Martinez and H. Soza, Towards a set of Mea-
sures for Evaluating Software Agent Autonomy, in 2009 Eighth Mexican
International Conference on Artificial Intelligence, pp. 73–78 (2009), doi:
10.1109/MICAI.2009.15.

[40] M. Cossentino, C. Lodato, S. Lopes, P. Ribino and V. Palermo, Metrics
for Evaluating Modularity and Extensibility in HMAS Systems, in AAMAS
(2015).

[41] G. Jay, J. E. Hale, R. K. Smith, D. Hale, N. A. Kraft and C. Ward,
Cyclomatic complexity and lines of code: Empirical evidence of a stable
linear relationship, Journal of Software Engineering and Applications 02,
3, pp. 137–143 (2009), http://www.scirp.org/journal/doi.aspx?DOI=10.
4236/jsea.2009.23020.

http://doi.acm.org/10.1145/1774088.1774278
http://doi.acm.org/10.1145/1774088.1774278
http://www.scirp.org/journal/doi.aspx?DOI=10.4236/ jsea.2009.23020
http://www.scirp.org/journal/doi.aspx?DOI=10.4236/ jsea.2009.23020

	Intelligent Agents are More Complex: Initial Empirical Findings
	Gal A. Kaminka and Alon T. Zanbar
	Introduction
	Background
	Software Project Data Collection and Curation
	Data Sources
	Automatic Data Harvesting
	The Measurement Pipeline

	Statistical Analysis
	Machine Learning Analysis
	Discussion
	The Big Picture and Future Directions

