
Of Robot Ants and Elephants

Asaf Shiloni, Noa Agmon and Gal A. Kaminka
The MAVERICK Group

Computer Science Department
Bar Ilan University, Israel

{shilona,segaln,galk}@cs.biu.ac.il

ABSTRACT
Investigations of multi-robot systems often make implicit assump-
tions concerning the computational capabilities of the robots. De-
spite the lack of explicit attention to the computational capabili-
ties of robots, two computational classes of robots emerge as focal
points of recent research: Robot Ants and robot Elephants. Ants
have poor memory and communication capabilities, but are able
to communicate using pheromones, in effect turning their work
area into a shared memory. By comparison, elephants are com-
putationally stronger, have large memory, and are equipped with
strong sensing and communication capabilities. Unfortunately,
not much is known about the relation between the capabilities of
these models in terms of the tasks they can address. In this pa-
per, we present formal models of both ants and elephants, and in-
vestigate if one dominates the other. We present two algorithms:
AntEater, which allows elephant robots to execute ant algorithms;
and ElephantGun, which converts elephant algorithms—specified
as Turing machines—into ant algorithms. By exploring the compu-
tational capabilities of these algorithms, we reach interesting con-
clusions regarding the computational power of both models.

Categories and Subject Descriptors
F.1.1 [Computation by Abstract Devices]: Models of Computa-
tion—Relations between models; I.2.11 [Artificial Intelligence]:
Distributed Artificial Intelligence—Multiagent systems

General Terms
Theory, Algorithms

Keywords
Ant robotics, Computational Models, Multi-Robot Systems

1. INTRODUCTION
Investigations of multi-robot systems, from a computational per-

spective, often focus on algorithms for specific tasks and applica-
tions. Such algorithms make explicit their assumptions concerning
the sensing and actuation morphologies of the robots. However,
more often than not, assumptions as to the computational capabil-
ities of the robots are left implicit. They can be determined by
examining the requirements of the algorithms, and the basic set of
atomic actions they utilize.

Cite as: Of Robot Ants and Elephants, Asaf Shiloni, Noa Agmon and Gal
A. Kaminka, Proc. of 8th Int. Conf. on Autonomous Agents and Mul-
tiagent Systems (AAMAS 2009), Decker, Sichman, Sierra and Castel-
franchi (eds.), May, 10–15, 2009, Budapest, Hungary, pp. XXX-XXX.
Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Despite the lack of explicit attention to the formal computa-
tional capabilities of robots, two computational classes of robots
emerge as marking extreme points in recent research: Robot ants,
which have restricted computational and communication capabil-
ities, but can utilize pheromones to read/write messages in their
environment, and robot elephants, which have strong computation
and communication capabilities, but no pheromones. Other com-
putational classes lie somewhere in between these extremes, e.g.,
many types of swarm robotics models [1, 12] which often share
some computation restrictions with ants, but similarly to elephants,
do not have pheromones. We focus here on ants and elephants.

Robot ants [18] are usually memory-less (or have severe memory
limitations) and have relatively weak sensing abilities, if any [3,
17]. However, they can communicate through the environment, by
leaving behind pheromones which essentially turn the environment
into a shared memory. Robot ants have been shown to be able to
carry out impressive robotic tasks, such as terrain coverage [3, 17],
and foraging [5, 11].

Robot elephants seem—by comparison—significantly stronger
from a computational perspective. These have a large amount of
memory (as large as needed, for instance, to hold a full map of the
work area), and are equipped with strong sensing, computation, and
communication machinery. Robot elephants have similarly been
shown to work in the same tasks as above (e.g., [2]).

However, while researchers of ant-robotics and elephant-
robotics have tackled similar tasks, the actual computational capa-
bilities and limitations of the two models remain an open questions.
Empirical comparisons between solutions are difficult and rare, in
part due to the different metrics and experiment designs in each
community. Moreover, most robots in practice are more limited
than the prototypical elephants described above, but less restricted
than the robot ants; this makes distinguishing the underlying com-
putational advantages and disadvantages of different robot models
even more challenging.

In this paper, we seek to theoretically distinguish the two extreme
models and their basic computability capabilities. We present for-
mal models of both ants and elephants in a grid environment, and
investigate if one dominates the other, they are equivalent, or rather
each has its own advantage over the other and thus, they are incom-
parable. We present two algorithms: AntEater, which allows ele-
phant robots to execute ant algorithms; and ElephantGun, which
converts elephant algorithms—specified as Turing machines—into
ant algorithms.

By exploring the computational capabilities of these algorithms,
we reach interesting conclusions regarding the computational
power of both models. We find that a group of elephant robots can
easily simulate every ant algorithm run by a group of ant robots.
Moreover, we find that a single ant robot can fully simulate a single

elephant robot, given infinite space. However, we show that there
exist problems, which multiple elephants can solve and ants cannot.

2. BACKGROUND
Ant robots are usually described as memoryless or more formally

as finite state machines [17], i.e., having only a constant amount
of internal memory, the size of which is independent of the prob-
lem size. Furthermore, they typically have limited sensing capabil-
ities [3, 18]. What distinguishes the ants from other simple mobile
robots is the usage of pheromones to communicate with each other.
These pheromones are basically pieces of information that can take
any physical form such as chemicals [11], heat [10], markings [3]
etc.

Bruckstein and Wagner have shown algorithms for area coverage
by a team of ants, using evaporative [16] and non-evaporative [8]
markings. While some of these pheromones are laid by the robots
themselves [8], others are a part of the given workspace [17]. They
considered simple robots with a bounded amount of memory [17,
19] for their model of ant robots. Their works and additional works
by Koenig et al. [4] produced upper bounds for the time it takes
to complete a single or a repeated coverage by a swarm of ants.
However, none of the works above prove any concrete boundaries
on the ant model abilities in general.

It is important to differentiate between ants and other types of
swarms robots. All swarm robot models are decentralized and have
very limited sensorial and computational abilities [1, 12]. How-
ever, ants have the usage of pheromones that can be placed and
sensed, and by that transform their environment into a shared mem-
ory. Other swarm robot models exist which do not use pheromones,
and yet do not have the unbounded communications of robot ele-
phants [1, 12]. We do not investigate these in this paper.

Unfortunately, model comparisons of robots had not been of-
ten discussed. There is, indeed, an extensive theory of computa-
tion, which includes a hierarchy of calculating machines from finite
state machines to Turing machines [13]. O’Kane and LaValle [7]
produced a model for comparing the power of robot based on sen-
sory abilities, but did not address computational and memory dif-
ferences.

Several papers investigated classes of semi-synchronous [14]
and asynchronous [9] mobile robots that have all powerful sens-
ing abilities, such as taking a snapshot of the world, in contrast
to their weak memory functionality, no localization, and no sense
of direction. Some interesting boundaries to these robots’ abilities
were found, yet we do not know if those limits stand when these
robots are equipped with pheromones.

3. ELEPHANTS IMITATING ANTS
In this section, we provide formal definitions of the ant and ele-

phant models used throughout our work (Section 3.1). We then
begin to compare between the computational power of the models,
using a first algorithm (Section 3.2) that allows multiple elephants
to execute an algorithm for multiple ants. The next section (4) con-
siders a reverse case, where ants execute the algorithm of elephants
(under some restrictions).

3.1 Definitions
For simplicity, we will use a grid as the environment in which

the ants and elephants interact. Nonetheless, we note that some of
the proofs ahead are valid even on continuous domains.

We define the ant model as having a representative subset of
properties from the models discussed above. The capabilities of
the ant model are defined as follows:

Instruction set. Ants can:

• Move in all directions.
• Sense a limited radius around them
• Read and write arbitrary levels of multiple pheromone

types.
• Calculate any set of values - bounded by their compu-

tational power.

Memory and Computation. Ants are oblivious in the sense that
their memory is constant, and is very limited compared to
the size of the work area, allowing them to remember only a
constant number of moves back. From a computational point
of view, ants are finite state machines.

Communications. Ants have an unlimited amount of pheromones,
which are essentially traces that can be read from and be
written to space. The pheromones do not evaporate by them-
selves.

Localization. Ants have no means of localization.

Anonymity. Ants are anonymous, and cannot identify each other.

Homogeneity. Ants are homogenous; they all have the same capa-
bilities, and run the same algorithm.

Centralization. Ants work in a decentralized fashion.

To focus the comparison between the ant and the elephant mod-
els on issues rather than sensing (already handled by [7]), we as-
sume that the elephants have the same sensing capabilities as the
ants. The elephant model’s capabilities are defined below. We use
emphasized text to denote differences with ants:

Instruction set. Elephants can move in all directions, sense the
same limited radius around them as the ants.

Memory and Computation. Elephants have unbounded memory.
From a computational point of view, elephants are Turing
machines.

Communication. Elephants have reliable, instantaneous commu-
nications to all others.

Localization. Elephants can typically perfectly localize them-
selves on a shared coordinate system. We call these LF-Ants
(the L stands for localized). We also explore a variant of ele-
phants that cannot localize within a global grid, called NF-
Ants.

Anonymity. Elephants have distinct identities, and all know of
each other.

Homogeneity. Elephants are homogenous in the sense that they all
have the same capabilities and run the same algorithm.

Centralization. Elephants work in a decentralized fashion.

The difference in computational ability between models is mea-
sured by the ability to solve different classes of problems. We
define computational dominance similarly to the definition in [7].
Dominance is defined as follows:

DEFINITION 1. let AN and BM be models of N and M mobile
robots, respectively. Then:

• We say that AN dominates BM and notate it AN ¥BM if the
computational ability of AN is at least as powerful as those
of BM , i.e., if every problem solvable by BM is also solvable
by AN .

• We say that AN strictly dominates BM and notate it AN ¤

BM if AN ¥BM is true, and in addition there exists at least
one problem solvable by AN , but unsolvable by BM .

• We say that AN is equivalent to BM and notate it AN ≡ BM

if AN ¥ BM and BM ¥ AN .

3.2 The Anteater
In this section, we show that N LF-Ants (elephants with local-

ization) computationally dominate N ants in the sense that N LF-
Ants can simulate N ants, where N ≥ 1. To do this, we use an
algorithm AntEater, that is executed by the LF-Ant, and simulates
the behavior of the Ant. We prove that this algorithm transforms
the ants’ algorithm, while keeping the characteristics of the origi-
nal algorithm.

Algorithm 1 AntEater (Ant algorithmA, list of robots R, map M)
1: Initialize pointer p to point to first instruction in A.
2: while A has not stopped do
3: if step in p is to write pheromone level l in location (x, y)

then
4: write l in M(x, y)
5: else if step in p is read pheromone level l from location

(x, y) then
6: read value l from M(x, y)
7: else if Step in p is sense location (x, y) then
8: Sense location (x, y) in space
9: else if Step in p is calculate values (z0, ..., zn) then

10: Simulate calculation of (z0, ..., zn)
11: Broadcast M to all r ∈ R
12: if step in p is move to (x, y) then
13: Move to location (x, y) in space
14: Update M with current position from localization device
15: Set p to point to next instruction in A

The underlying idea in AntEater is to execute exactly the same
movements as the ant algorithm A, but distribute the shared mem-
ory created by the use of pheromones. The elephant receives a map
M , large enough to contain the work area, with current position
from localization device. Whenever A writes a pheromone value
in the environment, AntEater writes it in the internal map kept by
each LF-Ant robot. And wheneverA reads a pheromone value, the
map is accessed in memory to retrieve the value stored. The LF-Ant
robots continuously communicate their map information to each
other, thus making sure that their maps are identical—therefore
simulated pheromones written in one LF-Ant robot’s memory are
readily available to all others for reading. We formally show this in
Theorem 1.

THEOREM 1. Procedure AntEater, if executed by an LF-Ant,
achieves the properties of the ant algorithm it is given. Specifically,
it guaranties the same a. Task completion, b. Time complexity, and
c. Robustness to failures

PROOF. Task completion: Assume that the solution for a given
problem is a collection of paths and that this collection is achieved
by the ant algorithm at a certain time. Therefore, since AntEater
performs the same movements as the original ant algorithm A and
simulates its calculations and pheromones in space, the LF-Ants
will perform the same collection of paths and thus, will solve the
given problem.
Time complexity: Let O(m) be the time complexity of the original
ant algorithm A, such that m is the number of steps taken by the

ant. Since in every step AntEater is going over exactly the step
that would have been taken byA, its time complexity will be mc =
O(m), where c is the cost of broadcasting the robot’s map and thus,
is still a function of the number of robots. This can be achieved
because AntEater does not perform any extra actions per step
Robustness: AntEater preserves A’s original robustness, for they
eventually behave exactly the same. Lastly, as it emerges from line
2, AntEater assures termination in case the original ant algorithm
itself terminates.

We will use a coverage algorithm for ant robots called Mark-
Ant-Walk, proposed by Osherovich et. al. [8], in order to exemplify
the above theorem. The Mark-Ant-Walk algorithm is intended for
one or more memoryless robots who use pheromones as indirect
communication to perform a coverage task of an area. As adver-
tised, Mark-Ant-Walk guaranties full coverage of a continuous area
within n

⌈
d
r

⌉
+ 1 steps, where n is the number of cells in the do-

main, d is the diameter of the domain, and r is the radius of the
robot effector (although, the above algorithm does not know when
to stop). Also, it promises immunity to noise and robustness to
robot death: As long as at least one robot is alive, the area will be
complete.

The Mark-Ant-Walk algorithm is given below (Algorithm 2).
This algorithm is called continuously by each ant robots, with p
given as the current location (whose coordinates are unknown to the
robot). R(r, 2r, p) denotes the robot’s ability to sense pheromone
level at its current position p and in a closed ring of radii r and
2r around p. D(r, p) denotes the open disk radius r around the
robot in which it can set the pheromone level, and σ(a) denotes the
pheromone level at point a:

Algorithm 2 Mark-Ant-Walk (current location p)
1: Let x ← argminq∈R(r,2r,p) σ(q)
2: if σ(p) ≤ σ(x) then
3: for all u ∈ D(r, p) do
4: σ(u) ← σ(x)+1 {We mark open disk of radius r around

p}
5: Move to x

Therefore, if we run AntEater with Mark-Ant-Walk as an input
on LF-Ants with the same sensing capability yet with direct com-
munication instead of the ability to read and write pheromones,
it will behave as follows: First, the LF-Ant will initialize a map
with its own location on it and keep updating that map all along
its run time with information it receives from other robots. This
can be done since LF-Ants have enough memory to create such a
map. Then, in each step the LF-Ant will move exactly as the Ant
would have, use its effector just as the Ant would have, but instead
of placing pheromones, it will update their value in its own map.
Also, instead of sensing for pheromones it will fetch the pheromone
level from its own map. Eventually, after completing a step, it will
broadcast all other robots the changes it made to the map, in case
there are any. Based on Theorem 1, we maintain the original upper
bound of Mark-An-Walk. Moreover, we claim that not only does
the AntEater preserve the original ant algorithm, but with some
additions which are built specifically for a certain ant algorithm,
we can improve its run time, efficiency, and/or robustness. As an
example, the above Mark-Ant-Walk algorithm does not know when
to stop. This is due to its bounded memory, which is not a function
of the problem size and thus, cannot count steps to know to stop
after n

⌈
d
r

⌉
+ 1 steps, when it is assured that the area is covered.

However, our LF-Ant’s memory is not bounded and therefore, an
addition to the algorithm of counting steps and a condition to stop

after n
⌈

d
r

⌉
+ 1 improves the original algorithm.

Indeed, we show (Theorem 2) that a group of N LF-Ants com-
putationally dominates a group of N ants:

THEOREM 2. Let ANTN and LF−ANTN be the models pre-
sented in Subsection 3.1, where N is the number of robots, then
LF −ANTN ¥ ANTN for N ≥ 1.

PROOF. Following Theorem 1, every algorithm executed by
ants can be executed by LF-Ants, while completing the same goal
in at most the same computational complexity and while maintain-
ing the same characteristics. Therefore the computational ability of
N LF-Ants is at least as strong as the computational ability of N
ants.

3.3 LF-Ants and NF-Ants
The LF-Ants above use a shared coordinated system thanks to

their localization devices. This localization within a shared coor-
dinate system is a key component in their dominance over ants.
However, localization is not a trivial capability.

We therefore introduce the NF-Ant, which is a weaker version
of the LF-Ant model. The NF-Ant model is identical to the LF-Ant
model except it does not have a localization and thus, two or more
NF-Ants do not necessarily share the same coordinate system.

Hence, we provide a way for NF-Ants to simulate ants, of course,
without localizing themselves on a shared coordinated system. This
is done by an algorithm called AntEaterSpiral, which is com-
pounded from the following NFantSpiral algorithm and the pre-
vious AntEater algorithm.

Algorithm 3 NFantSpiral (list of robots R, map M)
1: if ID == 0 then
2: Set current location o as point of origin on M
3: r ← 1 { The number of robots traveling in the group }
4: while r < |R| − 1 do
5: Move within a clockwise spiral { recording movements }
6: if There exist a robot ri in point p then
7: Send robot ri point −p
8: r ← r + 1
9: Return to o

10: else
11: if received position p then
12: Set p as point of origin on M

The main idea in the above NFantSpiral algorithm is for one
robot to search for all other robots, update the new origin of their
coordinate systems as it own origin, and then return to it own start-
ing point.

To do so, all robots will receive a map large enough to contain
the work area and then will elect the robot with the lowest ID as
the leader (zero ID w.l.o.g). The leader will then start moving in
a spiral around its original position until it finds another robot. It
will then send the difference between its own origin and the robot
position as the robot’s new origin. The leader will continue search-
ing for other robots and will stop only if the group size equals the
size of the list of robots given as input, when it will then return
to its own origin. Lastly, in order to show that NF-Ants can simu-
late ants, they run the following AntEaterSpiral algorithm that first
calls NFantSpiral and then calls AntEater as before, except now
the map’s origin is not given, but decided upon spiraling.

Therefore, we can show that a group of N NF-Ants computa-
tionally dominate a group of N ants:

THEOREM 3. Let ANTN and NF − ANTN be the models
discussed above, where N is the number of robots, then NF −
ANTN ¥ ANTN for N ≥ 1.

Algorithm 4 AntEaterSpiral (Ant algorithm A, list of robots R,
map M)
1: Run NFantSpiral on (R, M) to assure a common coordinate

system
2: Run AntEater on (A, R, M)

PROOF. By applying AntEaterSpiral, a group of N NF-Ants
first agree upon the origin of their map, using NFantSpiral. From
that moment on, they are equivalent to a group of N LF-Ants,
which we have shown in theorem 2 to simulate any Ant algorithm
they are given. Thus, by running AntEater the group of N NF-
Ants simulates the group of N ants, and therefore NF −ANTN ¥

ANTN .

4. ANTS SIMULATING ELEPHANTS
So, we know that a group of N LF-Ants that are communicating

explicitly among themselves dominate a group of N ants, But, even
one LF-Ant dominates one Ant. That raises the question, whether
one Ant dominates one LF-Ant (Section 4.1), and whether N ants
dominate N LF-Ants (Sections 4.2 and 4.3).

4.1 A single ant
We have established the fact that a group of N LF-Ants dom-

inates a group of N ants for N ≥ 1. This is strongly based on
the communication between the LF-Ants. Therefore the question
that arises is whether a single LF-Ant still dominates a single Ant.
In other words, after neutralizing the communication factor, is an
LF-Ant computationally stronger than an Ant.

We consider the subset of the general LF-Ant model - the NF-
Ant model, in which the LF-Ants have no localization abilities. In
the following, we prove that, surprisingly, for NF-Ants the answer
is that one Ant is equivalent to one NF-Ant.

The intuition is that while an ant has constant limited memory
(making it equivalent to a finite state machine), it can use its own
pheromones in space to give the ant the external storage needed
to have the strength of a Turing machine, given it has an infinite
space to work in. Hence, in the proof we use a finite state machine
and a Turing machine as the Ant’s and NF-Ant’s computational
mechanisms respectively.

However, the ant robot will need to move in space for two in-
dependent purposes: First, to simulate the NF-Ant’s movements in
space. And second, to utilize pheromones for storage. Thus, it will
need to remember if it is simulating movements or conducting a
calculation.

To solve that, we will keep track of two virtual Turing machine
heads: The memory head, which moves during a calculation, and
the movement head, which moves during a movement of the physi-
cal robot. Also, we will add information to the pheromones, which
will point to the directions of each head: left, right, back, forth,
and here. So, instead of pheromones in the size of the origi-
nal NF-Ant alphabet Γ, we will use pheromones in the size of
5× 5× |Γ| = 25|Γ| due to a pointer with the direction to memory
head, a pointer with the direction to physical robot head, and the
original alphabet. Each of the first two pheromones can take the
form of all four basic directions as well as a symbol for pointing
out that the ant is located exactly where the head is. Note that we
restrict ourselves here to movements on a grid, and thus all direc-
tions include the four basic movements on a grid: left, right, back,
and forth (where the robot moves left and right without actually
turning).

Thus, when the ant simulates a calculation done by the NF-Ant,
it will move in space, acting as a a physical Turing machine. But, if

interrupted by a movement of the NF-Ant it will first follow its own
trail to find the physical robot head and once reaching the head, it
will move the head to the desired location. Similarly, when needed
to continue a calculation, the ant will follow the trail to the memory
head and once reaching the head, it will continue the calculation,
changing the trail to point to the new head location.

However, in order to accomplish the above routine, the ant will
need to be careful not to create loops of pointers or rather not to
follow old trails that lead nowhere. Therefore, when the ant moves
the memory head, it will both create a pointer to the memory head
in every step, even if there is already a pointer there, and create
a pointer to the movement head opposite of its own movement,
except when there is already a pointer there. On the other hand,
when the Ant moves towards the memory head it will not change
any pointers, but follow the pointers that already exist.

More formally, an NF-Ant is a Turing machine Elephant such
that:

Elephant = (Q, Σ, b, Γ, δ, s, F)

where Q is the set of states, Σ is the input’s alphabet, b is the blank
symbol, Γ is the tape’s alphabet, δ is the transition function, s is the
starting state, and F is the set of accepting states. We will define
the finite state machine ElephantGun as a Turing machine without
a tape (since both models are equivalent [13]), such that:

ElephantGun = (Q′, Σ′, b, Γ′, δ′, s′, F ′)

ElephantGun will have the states Q′ = Q ∪ Q”,s′ = s,F ′ = F
where Q” is a set of additional states that are specified below, and
transitions δ′ that are also specified below In addition it will have
an infinite amount of pheromones. Nevertheless, these pheromones
will be from a finite number of types, such that the symbols in Γ′

corresponds to all of the |Γ| × 5× 5 combinations of the triplet of
pheromones mentioned above, where the first element represents
the original alphabet Γ, the second points to the memory head, i.e.
left, right, back, forth, or here, and the third points to the physical
robot location with the same 5 options. Let us also define the op-
erator x such that ∀x ∈ {L, R, B, F, H}, L = R, R = L, B =
F, F = B, H = H where L = left, R = right, B = back,
F = forth, and H = here. Lastly, the input alphabet stays the
same and hence, Σ′ = Σ.

The new states Q”, will be composed as follows for each q ∈ Q
and Z ∈ {L, R, B, F, H}:

• qsetmem(R)- an intermediate state to update the current slot
as the memory head

• qsetmem(L)- an intermediate state to update the current slot
as the memory head

• qsetloc(Z)- an intermediate state to update the current slot as
the robot’s location

• qfind- an intermediate state to find the robot’s location

• qfind(Z)- an intermediate state to find the robot’s location
and move one slot to Z ∈ {L, R, B, F, H}

Also, for each q ∈ Q, q” ∈ Q”, a ∈ Γ, b ∈ Γ:

• qa,b,q”,R- an intermediate state to find the memory head’s
location and perform the (q, a) → (q”, b, R) transition

• qa,b,q”,L- an intermediate state to find the memory head’s
location and perform the (q, a) → (q”, b, L) transition

In addition, we will replace the transitions δ by the new set of
transitions δ′ such that every transition from the form (q, a) →
(q”, b, R) will be replaced by the following transitions, where
y ∈ {L, R, B, F, H}, z ∈ {L, R, B, F, H}, and t is the empty
pheromone:

• (q, (a, y, z)) → (qa,b,q”,R, (a, y, z), y) - for the case that the
ant is not on the memory head

• (q, (a, H, z)) → (q”setmem(R), (b, R, z), R) - for the case
that the ant is on the memory head

Also, we will add the following transitions, where S stands for no
movement:

• (qa,b,q”,R, (a, y, z)) → (qa,b,q”,R, (a, y, z), y) - continue
searching the memory head in the pointed direction

• (qa,b,q”,R, (a, H, z)) → (q”setmem(R), (b, R, L), R) -
found memory head, process transition, and move to the right

• (qsetmem(R), (a,t,t)) → (q, (a, H, L), S) - update mem-
ory head pointer to “here” and pointer to physical head

• (qsetmem(R), (a, y, z)) → (q, (a, H, z), S) - update mem-
ory head pointer to “here”

Likewise, every transition in the form (q, a) → (q”, b, L) will be
replaced by the following transitions:

• (q, (a, y, z)) → (qa,b,q”,L, (a, y, z), y) - for the case that the
ant is not on the memory head

• (q, (a, H, z)) → (q”setmem(L), (a, L, z), L) - for the case
that the ant is on the memory head

Also, we will add the following transitions:

• (qa,b,q”,L, (a, y, z)) → (qa,b,q”,L, (a, y, z), y) - continue
searching the memory head in the pointed direction

• (qa,b,q”,L, (a, H, z)) → (q”setmem(L), (b, L, R), R) -
found memory head, process transition, and move to the right

• (qsetmem(L), (a,t,t)) → (q, (a, H, R), S) - update mem-
ory head pointer to “here” and pointer to physical head

• (qsetmem(L), (a, y, z)) → (q, (a, H, z), S) - update mem-
ory head pointer to “here”

However, for every movement Z ∈ {L, R, B, F} and every z ∈
{L, R, B, F},y ∈ {L, R, B, F, H} of the physical robot, the ant
will have the following new transitions:

• (q, (a, y, z)) → (qfind(Z), (a, y, z), z)- for the case that the
ant is not on the physical robot head

• (q, (a, y, H)) → (qsetloc(Z), (a, y, Z), Z)- for the case that
the ant is on the physical robot head

Together with the following new transitions:

• (qfind(Z), (a, y, z)) → (qfind(Z), (a, y, z), z) - continue
searching the physical robot head in the pointed direction

• (qfind(Z), (a, y, H)) → (qsetloc(Z), (a, y, Z), Z) - found
physical robot head, update pointer, and move to the desired
direction Z ∈ {L, R, B, F}

• (qsetloc(Z), (a,t,t)) → (q, (a, Z, H), S) - update physi-
cal robot head pointer to “here” and memory head pointer to
where you came from

• (qsetloc(Z), (a, y, z)) → (q, (a, y, H), S) - update physical
robot head pointer to “here”

And lastly, for any action or sensing need to be done while the
ant is in its own physical location:

• (q, (a, y, z)) → (qfind, (a, y, z), z) - for the case that the
ant is not on the physical robot head

• (q, (a, y, H)) → (q, (a, y, H), S) - for the case that the ant
is on the physical robot head

Together with the following new transitions:

• (qfind, (a, y, z)) → (qfind, (a, y, z), z) - continue search-
ing the physical robot head in the pointed direction

• (qfind, (a, y, H)) → (q, (a, y, H), S) - found physical
robot head, the ant can sense or act

It is important to note that although it seems like the Ant’s com-
putational time will be huge relative to the NF-Ant’s, it is irrelevant
in our case since we are proving computability. There may be dif-
ferent methods, which will be more optimal in the sense of time
and/or space.

In order to be sure that the procedure of moving between the
memory head and the physical robot head does not include any
loops or dead ends, we prove the following two lemmas.

LEMMA 1. No loop of pointers can be created by
ElephantGun.

PROOF. Assume, towards contradiction, that there is a set of
pointers (x1, x2, ..., xn) pointing to head a such that ∀i, i =
1..n, xi → xi+1 mod n (w.l.o.g), forming a loop. Thus, there
exist no pointer xi which points to the inside nor the outside of the
loop. Also, none of xi is the head itself, otherwise it would not be
a loop. If the loop was created by head a itself, then the last pointer
in the loop will replace the first one and will point towards head
a and thus, break the loop. Otherwise, if the loop was created by
head b, the first pointer in the loop will not be replaced and will still
point towards head a. But head a is not a part of the loop, leading
to a contradiction.

LEMMA 2. At every instance in ElephantGun there is a path
of pointers between the two heads in each direction (not necessarily
the same path).

PROOF. Assume, towards contradiction, that there is no path of
pointers from head a to head b (w.l.o.g). Thus, there exist at least
one pointer in the path of pointers from a to b that does not lead to
b. Since the two heads start from the same place and since there is
no action of erasing, we can deduce that there was a path until the
above pointer was replaced, and not by b. But, although both heads
can add pointers, each of them can only replace its own pointers,
leading to a contradiction.

The former two lemmas therefore assure us that such consis-
tent movement between the memory head and physical head can
be achieved and thus, we can proceed towards constructing such
simulation of the NF-Ant by the ant. Thus, we reach the following
important conclusions: The first is that the ant’s finite state machine
with the assistance of the workspace is equivalent to the NF-Ant’s
Turing machine. This implies that the ant model is as least as strong
as the NF-Ant when involving only one robot (lemma 3).

LEMMA 3. The finite state machine ElephantGun, when
equipped with infinite amount of pheromones and being ran on
an infinite grid, is equivalent to the Turing machine Elephant
(NF −Ant).

PROOF. It is easy to see that one can construct such a finite state
machine. The new transitions, states, and alphabet, though each is
larger then the original, are still finite and thus, can be constructed
to simulate the Turing machine. Furthermore, once created, the
ElephantGun machine uses its infinite amount of pheromones as
the Turing machine’s alphabet and the grid it is located in as the
Turing machine’s tape to write in and read from. Lastly, the extra
transitions added allow the ElephantGun machine to simulate both
the Elephant’s movements and calculations independently.

THEOREM 4. Let ANT1 and NF −ANT1 be the models por-
trayed above correspondingly. Then, ANT1 ¥ NF −ANT1.

PROOF. Following Lemma 3, we can construct an ant that simu-
lates the NF-Ant model which has no localization. Therefore, each
problem that can be solved by the model NF − ANT1 can be
solved by ANT1. Thus, ANT1 ¥ NF −ANT1.

When combining Theorem 2 and Theorem 4, we get the follow-
ing conclusion for a single ant and a single NF-Ant.

COROLLARY 1. ANT1 ≡ NF −ANT1.

PROOF. Since we have shown in Theorem 2 that NF −
ANTN ¥ ANTN for N ≥ 1, then NF −ANT1 ¥ ANT1. Also,
we have shown in Theorem 4 that ANT1 ¥ NF −ANT1. There-
fore, ANT1 ≡ NF −ANT1.

4.2 Multiple ants
When investigating the problems involving N robots it seems

like we could easily find ones which are solvable by a group of N
LF-Ants, but unsolvable by a group of N ants. However, looking
more closely, we find that many of these problems are indeed solv-
able by a group of N ants, usually at the price of additional time
complexity. For instance, let the problem Meeting be defined as
follows.

DEFINITION 2. Meeting Given two mobile robots r1 and r2,
which are positioned on a 2-dimensional grid in positions (x1, y1)
and (x2, y2) respectively, we say that an algorithm A running on
both robots succeeds if and only if for every pair of points (x1, y1)
and (x2, y2), r1 and r2 meet within a finite time.

It is easy to construct an algorithm for two LF-Ants that can solve
Meeting like the following.

Algorithm 5 Manhattan (robot r)
1: broadcast initial position (xi, yi)
2: receive other robot’s position (x1−i, y1−i)
3: calculate mid point p of the manhattan distance between

(xi, yi) and (x1−i, y1−i)
4: move towards p

Since LF-Ants can communicate directly, the first two steps are
possible and so is the rest of the algorithm. The time complexity
for Manhattan is exactly the midpoint of the manhattan distance⌈ |y1−i−yi|+|x1−i−xi|

2

⌉
, which is optimal in a grid. We will denote

that time complexity as O(d) such that d =
⌈ |y1−i−yi|+|x1−i−xi|

2

⌉
.

Moreover, we have shown (Algorithm 3) that an NF-Ant can also
solve Meeting.

Figure 1: Meeting finite state machine. Current position is on
the middle square. Gray squares contain a pheromone, white
squares do not, and "X" squares signify a "don’t care". The
FSM halts when another ant is on one of the squares.

Nevertheless, there is also an ant algorithm which solves
Meeting, like the following Spiral algorithm, while using a state
machine to create a spiral and to meet the other ant (see Figure 1).

Algorithm 6 Spiral
1: walk in a spiral according to the state machine in Figure 1
2: if Other robot is within radius then
3: Move towards other robot

In this algorithm, the ant decides upon the next step according
to a finite state machine that considers the pheromone’s locations
within the eight squares surrounding it. In each step, the ant places
a pheromone in its own location and then move according to the
FSM. Whenever it senses another ant within its sensory radius, it
moves towards the other ant.

As we can see, in the worst case both ants will meet after creating
a spiral with a

⌈ |y1−i−yi|+|x1−i−xi|
2

⌉
radius. This spiral has a

total distance of
⌈

(|y1−i−yi|+|x1−i−xi|)2
4

⌉
and thus, O(d2) is its

time complexity. Note that this time complexity is only quadratic
relative to the time complexity of Manhattan.

So, are there any problems which cannot be solved by a group of
N ants?

4.3 Tragedy of the Common Ant
In this section we will prove by a counter example that a group

of N ants cannot fully simulate a group of N NF-Ants. As a result,
since N LF-Ants dominate N NF-Ants, then N LF-Ants dominate
N ants. In order to do this, we will define the following problem
we call LimitedKServer.

DEFINITION 3. LimitedKServer Let R = r1, ..., rN be a set
of mobile robots with sensing radiuses of M2

2N
each, all are posi-

tioned on a finite M × M grid such that all sensing radiuses are
disjoint and their union covers the whole grid. Let C = c1, ..., cx

be a set of calls and y be a positive integer such that y ≤ x < 2yM
where y is known, but neither C nor x is known. Assume that within
a finite period of time t, x calls are made such that no two calls are
made in parallel. Assume that every robot ri ∈ R can answer a
call immediately only within its sensing radius and that each call
lasts for one time cycle only. We say that an algorithm A succeeds
if and only if for every sequence of x calls, A answers exactly y.
Otherwise, A fails.

Note that the above problem is a variant of a physical k-server [6]
problem where there are a finite number of calls and the servers
need to collectively answer only an exact smaller amount of these
calls. This problem represents an abstraction of problems related
to the tragedy of the commons such as overfishing [15]. For our
purpose of showing that NF-Ants dominate ants we will first show
that there exist an algorithm called Fisherman for NF-Ants which
solves LimitedKServer. Following that, we will prove that there
exist no algorithm for ants which solves that same problem.

Algorithm 7 Fisherman (list of robots R, call limit y)
1: initialize local value calls to zero
2: while calls < y do
3: if a message ’CALL’ has been received then
4: increment calls
5: if calls = y then
6: break
7: else if there exist a call c within the robot’s call answering

radius then
8: broadcast ’CALL’ to all r ∈ R
9: increment calls

10: answer call

THEOREM 5. Algorithm Fisherman solves LimitedKServer
when running N NF-Ants.

PROOF. Let X be the finite set of calls. Since the N NF-Ants
cover the M ×M entirely, there exist no call that is overlooked by
all of the NF-Ants. Also, since each NF-Ant reigns over a disjoint
territory, no call is being answered by two NF-Ants. In addition,
since an NF-Ant is only occupied for one cycle per call and no two
calls are made in parallel, there is no situation in which an NF-
Ant is occupied and cannot answer a new call. Thus, after y calls
the herd of NF-Ants have answered exactly y calls and therefore,
each NF-Ant will break from the while loop upon receiving the y-
th ’CALL’ message. Lastly, there is no usage of localization along
the messages transferred by the NF-Ants and thus, the NF-Ants will
have no problem processing the algorithm.

Therefore, we can infer the following corollary directly.

COROLLARY 2. LimitedKServer can be solved by N NF-
Ants.

Now, if we inspect the ant behavior within LimitedKServer we
can reach the following lemmas:

LEMMA 4. There is no ant algorithm which solves
LimitedKServer when running N ants and at least one ant
moves from its initial position.

PROOF. Assume y = x. Therefore, if an ant algorithm involves
an ant moving from its initial position p at time t, there can always
exist a sequence with a call at time t at position p which will be
missed and thus, the algorithm will fail.

LEMMA 5. Every ant algorithmA solving LimitedKServer re-
quires at least one Ant to move from its position during its execu-
tion.

PROOF. Since ants do not have any direct communication, the
only way they can propagate information among themselves is by
leaving pheromones over the grid or moving towards each other,
both involve at least one ant moving. Now, suppose that there is an
ant algorithmA, which attempts to solve LimitedKServer without
any movement by any of the ants. Then, there is no way an ant
could know whether or not to answer the (y+1)-th call for it cannot
know that there were y calls before.

Based on Lemmas 4 and 5 we can now conclude:
THEOREM 6. There is no ant algorithm which solves

LimitedKServer when running N ants.

PROOF. Recall that we assume that the ant’s sensing radius is
identical to the LF-Ant’s sensing radius. Since ants do not have
explicit communication beyond their sensing radius, we can extract
from the above lemma that no information can be transferred from
one ant to another when trying to solve LimitedKServer. So, in
order to solve LimitedKServer, any ant algorithm would need to
know which calls to answer in advance, and since this information
is not available we conclude that there is no ant algorithm which
solves LimitedKServer when running N ants.

Tragedy on an Infinite Grid Now, we wish to investigate if an
infinite working space would assist ants to solve all the problems
LF-Ants can. Unfortunately, we discover that the computational
gap between the two models still holds. We show this by a small
refinement to the former LimitedKServer problem. We define
InfiniteKServer to be identical to LimitedKServer only that this
time the robots’ working space is infinite while all calls are still
made in the predefined M×M area. We claim that the Fisherman
algorithm solves InfiniteKServer when running N NF-Ants, since
Fisherman ignores the additional infinite working space and be-
haves exactly like in theorem 5.

However, similarly to Lemma 4, there is no ant algorithm which
solves InfiniteKServer when running N ants and at least one ant
moves from its initial position. This is because every ant algo-
rithm A solving LimitedKServer requires at least one ant to move
from its position during its execution, as we have seen in Lemma 5.
Therefore, NF − ANTN ¤ ANTN , regardless of the size of the
working space.

In other words, we reach the conclusion that not the memory
deficiency, but the lack of instant communication is what ultimately
differs the ants from the NF-Ants. Thus, even an infinite workspace
is not sufficient for ants to simulate NF-Ants in certain problems.

5. CONCLUSIONS
It was proposed that ant robots can perform difficult computa-

tional tasks despite their weak computational abilities [17]. How-
ever, the computational limits of this model are still not known.
We defined elephant, as the most used model of robots with strong
computational, sensing, and communication abilities and investi-
gated the computational relationship between the two models.

We have shown that assuming reliable, instantaneous communi-
cation, elephant robots can simulate any task done by ant robots and
therefore, are at least as computationally strong as ants. This result
is not surprising, as elephants are by definition stronger. However,
more surprisingly, we have also shown that given a large enough
space and infinite amount of pheromones, a single ant can simulate
any task done by a single elephant that has no localization abili-
ties. Unfortunately, this stops with multiple ants or elephants, as
we show that there exist some problems that can be solved by N
elephants, but not with N ants.

Now that the basic computability differences between these
models are known, we hope to extend the analysis to more real-
istic robots, which for the most part are in-between the two com-
putational extremes discussed above. We also seek to combine the
analysis with sensing models (e.g., as in [7]), determining com-
plexity tradeoffs for the subset of problems that are solvable by
both models, or finding out exactly how many ants are needed to
simulate an elephant in minimal time and space overhead.

Acknowledgements. We thank Alfred "Freddy" Bruckstein, Israel
Wagner, and Manuela Veloso for useful discussions. This research

was supported in part by ISF grant #1357/07.

6. REFERENCES
[1] E. Şahin. Swarm robotics: From sources of inspiration to

domains of application. In Swarm Robotics: SAB 2004
International Workshop, volume 3342 of Lecture Notes in
Computer Science, pages 10–20. Springer, 2005.

[2] N. Hazon, F. Mieli, and G. A. Kaminka. Towards robust
on-line multi-robot coverage. In ICRA, 2006.

[3] S. Koenig and Y. Liu. Terrain coverage with ant robots: a
simulation study. In AGENTS, pages 600–607, New York,
NY, USA, 2001. ACM.

[4] S. Koenig, B. Szymanski, and Y. Liu. Efficient and
inefficient ant coverage methods. Annals of Mathematics and
Artificial Intelligence, 31(1-4):41–76, 2001.

[5] T. H. Labella, M. Dorigo, and J.-L. Deneubourg. Division of
labor in a group of robots inspired by ants’ foraging
behavior. ACM Transactions on Autonomous Adaptive
Systems, 1(1):4–25, 2006.

[6] M. S. Manasse, L. A. McGeoch, and D. D. Sleator.
Competitive algorithms for server problems. J. Algorithms,
11(2):208–230, 1990.

[7] J. M. O’Kane and S. M. LaValle. On comparing the power of
robots. International Journal of Robotics Research,
27(1):5–23, January 2008.

[8] E. Osherovich, A. M. Bruckstein, and V. Yanovski. Covering
a continuous domain by distributed, limited robots. In ANTS
Workshop, pages 144–155, 2006.

[9] G. Prencipe. CORDA: Distributed coordination of a set of
autonomous mobile robots. In ERSADS, pages 185–190,
May 2001.

[10] R. Russell. Heat trails as short-lived navigational markers for
mobile robots. In ICRA, volume 4, pages 3534–3539, 1997.

[11] R. Russell. Ant trails: An example for robots to follow? In
ICRA, volume 4, pages 2698–2703, 1999.

[12] A. J. Sharkey. Robots, insects and swarm intelligence.
Artificial Intelligence Review, 26(4):255–268, 2006.

[13] M. Sipser. Introduction to the Theory of Computation.
International Thomson Publishing, 1996.

[14] I. Suzuki and M. Yamashita. Distributed anonymous mobile
robots: Formation of geometric patterns. SIAM Journal on
Computing, 28:1347–1363, 1999.

[15] R. M. Turner. The tragedy of the commons and distributed
AI systems. In in Proceedings of the 12th International
Workshop on Distributed Artificial Intelligence, pages
379–390, 1993.

[16] I. Wagner, M. Lindenbaum, and A. Bruckstein. Distributed
covering by ant-robots using evaporating traces. IEEE
Transactions on Robotics and Automation,, 15(5):918–933,
1999.

[17] I. A. Wagner, Y. Altshuler, V. Yanovski, and A. M.
Bruckstein. Cooperative cleaners: A study in ant robotics.
International Journal of Robotics Research, 27(1):127–151,
2008.

[18] I. A. Wagner and A. M. Bruckstein. From ants to a(ge)nts: A
special issue on ant-robotics (editorial). Annals of
Mathematics and Artificial Intelligence, 31(1–4):1–5, 2001.

[19] V. Yanovski, I. A. Wagner, and A. M. Bruckstein.
Vertex-ant-walk: A robust method for efficient exploration of
faulty graphs. Annals of Mathematics and Artificial
Intelligence, 31(1–4):99–112, 2001.

