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ABSTRACT
There is significant interest in modeling teamwork in agents. In
recent years, it has become widely accepted that it is possible to
separate teamwork from taskwork, providing support for domain-
independent teamwork at an architectural level, using teamwork
models. However, existing teamwork models (both in theory and
practice) focus almost exclusively on achievement goals, and ig-
nore maintenance goals, where the value of a proposition is to
be maintained over time. Such maintenance goals exist both in
taskwork (i.e., agents take actions to maintain a condition while a
task is executing), as well as in teamwork (i.e., agents take actions
to maintain the team). This paper presents mechanisms for collab-
orative maintenance in both taskwork and teamwork, allowing for
flexible selection of the maintenance protocol. The mechanism is
integrated and evaluated in two teamwork architectures for situated
agent teams: DIESEL , an implemented teamwork and taskwork
architecture, built on top of Soar, and BITE , an architecture for
physical behavior-based robots. We provide details of these im-
plementations, and the results from experiments demonstrating the
benefits of support for collaborative maintenance processes, in sev-
eral dynamic rich domains. We show that the use of collaborative
maintenance leads to significant improvement in task performance
in all domains.

1. INTRODUCTION
In recent years, it has become widely accepted that it is possible

to use machine-executable teamwork models to automate collab-
oration at an architectural level. Such models separate teamwork
from taskwork, allowing the deployer of a team of agents to focus
her efforts on programming the skills and knowledge necessary for
the specific task. Executable teamwork models have been utilized
successfully in synthetic agents for training and simulation [15],
robotics [14, 7], industrial distributed systems [6], and collabora-
tive user interface [12].

However, existing models only account for a subset of phenom-
ena associated with teamwork. Specifically, existing teamwork
models focus almost exclusive on achievement goals, where the
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value of a proposition is to be changed from its current settings to
another. Agents form a team and agree on a task to be executed
(goal to be reached, i.e., proposition to hold in some future state),
and then dissolve the team once the task is completed. Sequences
of tasks are carried out by constant dissolving and re-formation of
the team in question, per task [16].

Human and synthetic teams, however, must also tackle mainte-
nance goals, where the value of a proposition is to be maintained
over time. Such maintenance goals exist both in taskwork (i.e.,
agents take collaborative actions to maintain a condition while a
task is executing), as well as in teamwork (i.e., agents take actions
to maintain the team). Examples of maintenance goals in teamwork
include robust service maintenance [10, 9] and continual task allo-
cation [14]. Examples of maintenance goals in taskwork includes
continual information sharing and monitoring for robotic forma-
tions [1]. Architectures that only address achievement goals are
not sufficient for handling maintenance goals.

We use an example of taskwork maintenance to illustrate. Here,
a team of agents consists of multiple agents that follows a leader at a
distance. This is a simplified version of familiar robotic formation-
maintenance tasks (e.g., [1]), or the convoy task (e.g., [2]). Exist-
ing teamwork architectures, based on teamwork theory [2]), would
have the followers communicate with the leader (or otherwise mon-
itor it) to establish mutual belief that the distance is correct or in-
correct (goal achieved or unachieved). Based on failures, corrective
actions could be taken, which in essence react to the failures of the
robots. Similar cases occur in maintenance of teamwork.

But a different—and more efficient—approach would have the
followers and leader take proactive actions to maintain the dis-
tance, before it becomes too great. For example, the leader may
communicate its position to its followers, to help them speed-up or
slow-down incrementally, such that the distance never goes out of
bounds. The point is that here communications occur while main-
taining a condition, rather than when it unmaintained. With very
few exceptions (see Section 2), existing teamwork theory and team-
work architectures do not account for such communications.

This paper addresses maintenance goals in situated agent teams,
from an architectural perspective. First, we show how to integrate
maintenance conditions into a behavior-hierarchy, used for control-
ling each individual agents. Building on this infrastructure, we
present several contributions: (i) a mechanism for collaborative
maintenance of taskwork conditions by team-members, allowing
them to flexibly select different maintenance protocols; (ii) the re-
use of this mechanism to maintain teamwork-structure conditions;
and (iii) the integration of this mechanism in two teamwork archi-
tectures, for different tasks.

We evaluate these contributions in two different teamwork archi-
tectures, and in different environments: DIESEL , implemented on



top of Soar [13] and used in virtual worlds, and BITE [7], used
for controlling teams of physical robots. We report on experiments
evaluating the use of collaboratively-maintained maintenance con-
ditions in contrast to existing approaches, using either achievement
goals, or individual maintenance processes. We show that the col-
laborative maintenance mechanism leads to significantly improved
performance in different tasks and domains.

2. RELATED WORK
Most teamwork architectures to date have only allowed for

achievement goals, and we therefore focus here only on those that
have addressed maintenance goals to some extent.

Kumar and Cohen [10, 9] extended the theory of Joint Intentions
to include maintenance. They define the goal of maintaining p as
follows: if the agent does not believe p, it will adopt the goal that
p be eventually true. The maintenance goal is persistent (PMtG) if
p is believed false at least until the agent either believes that it is
impossible to maintain p or that the maintenance goal is irrelevant.

While we build on the theoretical developments of [10, 9], our
work differs significantly. First, we extend maintenance of team
structure to hierarchical teams, including team-subteam relations.
We also address goal maintenance in hierarchical task decomposi-
tion. Second, our implementations in DIESEL and BITE allow for
arbitrary, context-dependent protocols (some by using communica-
tions, some not) for collaborative goal maintenance, where Kumar
et al. have used a fixed protocol. Finally, while Kumar and Co-
hen’s work has been applied to teams of web services, our focus
is on modeling synthetic humans in virtual environments, and in
robotic tasks.

STEAM [15], implemented in Soar [13], focuses for the most
part on achievement goals. However, a first step towards extend-
ing STEAM towards maintenance goals was introduced in [16].
Here, maintenance is addressed through persistence in the commit-
ment of agents to the team, while executing a task. Four categories
of teams are introduced: PTPM, a persistent team consisting of
persistent members; PTNM, a persistent team consisting of non-
persistent members; NTPM, a temporary form of a team consisting
of persistent members; and NTNM, a temporary form of a team
consisting of non-persistent members. This work was the first to
discuss reorganization (team hierarchy maintenance) in a team, i.e.,
PTNM.

To enable persistent teams in STEAM, agents individually rea-
son about expected team utilities of future team states, to decide
on how to best maintain the team in face of intermittent failures
in teamwork. DIESEL , described in this paper, deals with PTPM
teams, i.e., persistence of team structure. We refer to this as team-
work maintenance. However, in contrast to [16], DIESEL and BITE
also address collaborative maintenance in tasks (taskwork mainte-
nance). Moreover, we propose a single mechanisms for both, and
offer flexibility to the designer and agents in deciding on protocols
and behaviors to be used proactively and reactively.

CAST [17] addressed the issue of proactive information ex-
change among teammates, using an algorithm called DIARG,
based on petri net structures. CAST shows the importance of
team communication regarding information that might assist task
achievement for individual members in a proactive manner, and
aim to reduce communication. This approach, based on the theory
of Joint Intentions, does not include maintenance of goals. In par-
ticular, CAST’s communications focus on informing other team-
mates of discovered facts that may trigger preconditions. The use
of communications (or other actions) to maintain currently existing
tasks is not addressed.

ALLIANCE [14] is a behavior-based control architecture fo-

cused on robustness, in which robots dynamically allocate and re-
allocate themselves to tasks, based on their failures and those of
their teammates. ALLIANCE offers continual dynamic task allo-
cation facilities, which allocate and re-allocate tasks to agents while
they are collaborating. It uses fixed teams, in the sense that addition
and removal of robots from the team is handled by human interven-
tion and it assumes that robots can monitor their own actions, and
those of others. Our work differs in that we focus on maintenance
not only of assignment of agents to tasks, but also of the joint exe-
cution itself.

3. MAINTENANCE IN TEAMWORK
We propose a new architectural mechanism that allows the au-

tomation of maintenance both of the team structure and of the be-
havioral structure. Our architecture extends structures common to
situated agent architectures. It is composed of four structures:

1. A behavior graph (recipe), that defines the decomposition
and temporal constraints on the task-oriented behavior of the
agents.

2. A team hierarchy that defines the organizational structure
and chain of command.

3. A set of domain-independent reusable task-maintenance be-
haviors, referenced by the recipe.

4. A set of domain-independent reusable team-maintenance
protocols, referenced by the team hierarchy.

Structure 1 is common to many situated agent architectures (e.g.,
[11, 5, 13]). Structure 2 is an addition, which appears only in archi-
tectures managing teamwork, such as STEAM [15], and previous
versions of BITE [7]. These two structures are described in Section
3.1. The last two structures (3 and 4) are unique to our approach,
and described in Section 3.2.

3.1 Common Structures in Situated Agent
Teams

We begin by a brief overview of situated agent control, upon
which the maintenance mechanism is based. Each agent is con-
trolled by a connected, directed graph, that defines a structure by
which agents achieve their goals. Each node in the graph is a
controller, called a behavior (in Soar, operator). Each behavior
has preconditions which enable its selection (the agent can select
between enabled behaviors), termination conditions (which deter-
mine when its execution must be stopped, if previously selected)
and application code containing the actual code for execution while
the behavior is running.

Edges in the graph have two types: Decomposition edges specify
how a controller can be decomposed into sub-controllers (execut-
ing sub-tasks); sequential edges specify the temporal ordering of
behavior execution. The graph is arranged such that cycles are al-
lowed along sequential links, but not along decomposition links: A
node can follow itself temporally, but cannot be its own ancestor.
We allow for reactivity: A behavior is not always selected when its
predecessor terminates. Instead, the agent’s control process may
choose to select a different behavior that is selectable (as long as
it is a first child of an active parent). The graph is referred to as a
recipe [4], a plan hierarchy [15], or behavior graph [7]. We will
use these terms interchangeably.

An example recipe is shown in Figure 1. Vertical edges sig-
nify decomposition (i.e., from a behavior to sub-behaviors needed
to execute it); horizontal edges signify temporal ordering, from a



behavior to those that should ideally immediately follow it. Here,
the recipe has two nodes called explore-decision and explore-
movement. As a rule, we read recipes left to right: Thus explore-
decision is considered the first child. Only once it terminates, can
explore-movement be selected. explore-decision has two first
children, i.e., two alternative decompositions. Only one of them is
to be selected for execution.

explore-decision explore-movement

elaborate-target elaborate-no-target

Figure 1: An example recipe.
To maintain knowledge of the organizational structure of the

team, a second structure—team hierarchy—is used. This structure
is a tree, in which internal nodes represent subteams, and leaves
denote individual agents. Edges represent team-subteam relations.
Although teamwork architectures differ in how they achieve this,
they utilize this structure to automatically determine which agents
are parts of which subteam, so that when a behavior is selected by
an agent, this selection is automatically coordinated with the other
members of the team. This is done by maintaining a pointer from
each behavior, to the team-hierarchy node that is associated with it.
Mechanisms for such automated coordination are described else-
where ([6, 15, 7]) and will not be discussed here further. Both
DIESEL and BITE , described here, take a similar approach.

3.2 Collaborative Maintenance Behaviors
To facilitate maintenance, we add a third type of condition to the

preconditions and termination conditions already associated with
each behavior. Maintenance conditions are propositions whose
value is to be maintained throughout the lifetime of the behavior.
Such conditions can be a conjunction or disjunction of predicates
(referred to as events).

Maintenance conditions can typically be maintained in one or
two ways: By taking proactive actions to maintain the condition
true; and by taking reactive actions when the condition becomes
false. The latter option (reactive maintenance) is similar in spirit to
the use of a sequence of achievement actions in order to maintain a
condition. However, the former type has no such translation. Thus
the two types are different, and indeed, must be distinguished in the
definition of the behavior.

To maintain the condition, we allow the definition of mainte-
nance behaviors, which are to be associated with specific main-
tenance conditions, and with specific types of maintenance (reac-
tive or proactive). If a reactive maintenance behavior is defined,
then the architecture will trigger it once the maintenance condition
breaks. If a proactive maintenance behavior is defined, the archi-
tecture will trigger it once the behavior is selected, so that it execute
while the original behavior is running.

Though the use of maintenance conditions in integrated architec-
tures is rare, the key novelty described in this paper is the ability to
tie specific team behaviors to these conditions. The behaviors will
be triggered automatically by DIESEL or BITE , to be executed
jointly, in a coordinated manner, by the team or subteam associ-
ated with the behavior. It thus becomes possible to collaboratively
maintain a condition, rather than individually.

For example, suppose a behavior B that moves the agents around
has a maintenance condition on it to maintain visual tracking of the

leader. Because B is a team behavior, it will be executed by the
leader and the follower jointly. As a result, both leader and fol-
lower are mutually responsible for maintaining the condition. The
maintenance behavior M then becomes itself a team-behavior, to
be executed jointly by the leader and follower even as they are ex-
ecuting B (i.e., move around). An example of such a maintenance
behavior may have the leader continually communicate its current
position, and the follower orienting itself towards this position.
Teamwork maintenance. Just as task-execution behaviors can
have associated maintenance conditions, so can the team hierar-
chy be maintained by the use of team-maintenance conditions. As
in the behavior hierarchy, these conditions are a set of conjunctions
and disjunctions of predicates (referred to as events), needed to be
maintained or denied throughout the execution of a task. Since
maintenance operators act in order to maintain a possible team
state, they are suited to allow team reconfiguration, all under the
same teamwork mechanism. For example, if during the execution
of a recipe sub-tree it is critical to maintain the number of team-
mates in the group fixed, such a team-maintenance condition could
be easily defined, and the teamwork mechanism, can act in turn if
such a condition fails, by joining a new team, recruiting new agents
or even merging two teams. All whilst continuing execution of the
mission.

4. TWO IMPLEMENTATIONS
We have implemented the maintenance mechanism described

above in two different architectures. DIESEL , built on top of
the Soar integrated cognitive architecture [13], was built from the
ground up with collaborative maintenance in mind. The other im-
plementation revisited the BITE behavior-based multi-robot archi-
tecture [7], and extended it to support maintenance behaviors. The
two architectures were used in very different settings, and it is thus
evidence of the generality of the mechanism that it was successfully
integrated in both. We describe the implementations below.

4.1 DIESEL

We use Soar for the implementation of our architecture. While a
comprehensive description of Soar is beyond the scope of this pa-
per, we provide a brief overview here. Soar is a general cognitive
architecture for developing systems that exhibit intelligent behavior
[13]. It is a rule-based (production rules) language. Soar uses par-
allel, associative memory (the rules), along side a graph-structured
global working memory, which all rules can access and modify. All
knowledge relevant to the current problem is identified and brought
to bear via the rules. These trigger the proposal, selection, execu-
tion, and termination of operators, which are also implemented us-
ing rules. Soar has belief maintenance through a computationally
inexpensive truth maintenance algorithm. Deliberation in Soar is
mediated by preferences, which allow agents to bring knowledge
to bear in order to make decisions. Soar recognizes conflicts (im-
passes) in selection knowledge and automatically creates subgoals
(new state spaces) to resolve the impasses. Once an agent comes to
a decision that resolves an impasse, it summarizes and generalizes
the reasoning during the impasse. This summary information can
be used by an integrated explanation-based learning mechanism, to
automatically create new rules that chunk problem-solving results
for future use.

The DIESEL teamwork architecture is implemented as a set of
Soar rules, running as a separate mechanism on top of the underly-
ing Soar architecture. The complete DIESEL engine is composed of
approximately 100 Soar productions (IF-THEN rules), of which 23
implement the recipe structure and associated mechanisms, and 25
implement the basic teamwork capabilities (including team hierar-



chy, collaborative maintenance mechanisms, and basic communi-
cations).

In DIESEL , maintenance behaviors (whether collaborative or in-
dividual) are triggered based on events (termination conditions),
with no regard to the behavior (in Soar, operator) currently execut-
ing. Thus once the programmer writes a maintenance operator for a
predicate p, the operator will be triggered to maintain p regardless
of which operator has p as a maintenance condition. This design
choice has the advantage that operators for maintaining predicates
of interest can be easily re-used within the agent code. However,
the disadvantage is that this leaves no room for flexible selection
of maintenance operators: The same maintenance operators would
be proposed, regardless of the execution context (current running
operators). BITE takes the inverse approach, as described below.

DIESEL has been applied in two separate virtual environments,
and for different tasks. It has been used in Soar agents for the
GameBots environment [8], an adversarial game environment that
enables qualitative comparison of different control techniques. Fig-
ure 2 shows a screen-shot of Soar agents in the GameBots domain,
running DIESEL .

Figure 2: Soar agents in the GameBots environment, running
DIESEL . Each agent has limited field of view and range, and
may move about, turn, grab objects, etc.

4.2 BITE
BITE is a behavior-based teamwork architectures for robots.

Previous versions of it (without the maintenance mechanisms) were
used in controlling Sony AIBO robots moving in formation [7]
(Figure 3). The version we use is implemented for the player-stage
system, a de-facto standard API for controlling different types of
physical and simulated robots [3], rather than only AIBOs; code
running in the simulation can be used with few modifications on
the physical robots. Figure 4 shows a view of BITE -controlled
robots moving in formation, in the player-stage simulator.

The key novelty in BITE is its micro-kernel design, in which
all protocols for coordinating multiple robots are taken out of the
system, and are made into a library from which the user (the de-
ployer of a robot team) can choose protocols, mixing them within
the same task (but not within the same behavior) as she sees fit.
Thus in BITE , unlike previous architectures, the designer can tell
a team of robots to use a bidding protocol to decide on their as-
signments to roles in a formation, and a different protocol to assign
themselves other tasks. These protocols and coordination proce-
dures are grouped together as social behaviors.

The use of BITE in formation-maintenance tasks has brought up
the need for the integration of a maintenance mechanism within the
architecture. Most formation-maintenance algorithms rely on vi-
sual tracking of a leading robot, by its followers, to maintain a fixed

Figure 3: Sony AIBO robots moving in formation.

Figure 4: Robots running BITE in the player-stage API. The
robots form a diamond. The lines mark visual field of view.
Boxes with filled blocks show the colors perceived by each
robot.
distance and angle to the leader (see, for instance [1]). In earlier
versions of BITE , which only allowed for collaborative achieve-
ment goals, such maintenance was always done ad-hoc, within the
controlling behaviors. As a result, formation-maintenance in BITE
did not exploit the automated teamwork mechanisms in the archi-
tecture: The leading robot took no part in maintaining its distance
from its followers.

However, once the maintenance mechanism is introduced into
BITE , then all of a sudden a range of novel possibilities emerge.
For instance, it is now possible to write the formation maintenance
task in terms of reusable angle, and distance maintenance behav-
iors. Moreover, it is now possible to have BITE automatically have
the leader communicate its position or take other actions, such that
its followers can track it more easily. Moreover, the implementa-
tion in BITE allows to easily see the difference between individual
and collaborative maintenance.

Figure 5 shows the behavior graph, social behaviors, and main-
tenance behaviors in BITE , for the formation-maintenance task.
Figure 5(a) shows the behavior structures when using the collabora-
tive maintenance mechanism. Figure 5(b) shows the same task, but
with individual maintenance. The upper-left corner of Figure 5(a)
explains the notation: Solid lines indicate structural links (decom-
position and sequence constraints); dashed lines indicate pointers
to social behaviors, to be triggered whenever BITE triggers auto-
mated coordination (see [7] for details, which are outside the scope
of this paper).

The behavior-graph for the task is in fact quite small. There are
three top-level team behaviors: Select-leader, Walk and Search.



(a) BITE with collaborative maintenance behaviors.

(b) BITE with individual maintenance behaviors.

Figure 5: Collaborative and individual maintenance behaviors in BITE .
Select-leader is the first behavior, where a leader for the formation
is selected by application-specific code. Then, the team of robots
jointly selects Walk to begin the movement. The joint selection of
Walk is carried out automatically by an appropriate social behavior
(separated by a dashed box, in the figures). If one of the robots
fails to monitor the leader, then the team will jointly terminate this
behavior and select Search to re-organize. As possible decompo-
sitions of each of these team behaviors, the robots may individually
select behaviors based on their role.

In Figure 5(b), maintenance of the leader in sight, and mainte-
nance of distance and angle to the leader, are all done through indi-
vidual maintenance behaviors (sf Watch Leader, Keep Angle, Keep
Distance in the figure). The fact that these are individual main-
tenance behaviors is established structurally: They are tied to the
Slave behavior, which is executed individually, as a decomposi-
tion of Walk. Here, it is strictly up to the followers, executing these
behaviors, to maintain the conditions of the formation.

In Figure 5(a) these maintenance behaviors are tied not to the in-

dividual follower behaviors, but to the team behavior Walk. Auto-
matically, the maintenance behaviors are treated as team behaviors,
and their execution is thus synchronized (by the same mechanisms
that synchronize execution of the regular behaviors). Their ele-
vation to the status of collaborative maintenance behaviors offers
new possibilities for maintenance, e.g., the use of communication
by the leader. These increased options are the reason for the many
additional behaviors in Figure 5(a) as compared to 5(b).

5. EVALUATION
To evaluate the contribution offered by the introduction of col-

laborative maintenance in DIESEL and BITE , we conducted a num-
ber of experiments with both architectures, each in its respective
application environment. Together, the application of the mecha-
nisms to a variety of domains provide evidence for its usefulness as
a general architectural component.

The experiments were designed to answer a number of hypothe-



ses. A first set of experiments (Section 5.1) provides evidence that a
proactive maintenance mechanism (which acts to preserve the value
of the maintenance condition before it is falsified) is preferable to
the use of reactive responses to the breaking of the maintenance
condition. A second set of experiments (Section 5.2) then con-
siders the hypotheses that collaborative maintenance is preferable,
and leads to improved results, compared to individual maintenance
(even using the same mechanism). A final set of experiments (Sec-
tion 5.3) demonstrates how team reconfiguration occurs using the
maintenance mechanism with the team hierarchy, rather than the
behavior graph.

5.1 Individual Achievement vs. Maintenance
The first set of experiments focused on establishing the impor-

tance of a proactive maintenance mechanism (even for individual
execution), compared to the reactive use of a sequence of achieve-
ment actions to correct the value of maintenance condition. These
experiments were carried out with DIESEL .

We built a small two-agent team in the GameBots domain [8].
In all experiments, we used the same recipe (Figure 1), with minor
changes needed for each scenario discussed. The recipe consists of
exploration and movement. During the exploration phase (behavior
explore-decision), one of the two child behaviors can be proposed:
elaborate-no-target in case there is no available target present, and
elaborate-target in case there are one or more. In the first case,
the agent will tilt its pan-zoom camera, scan or rotate, and in the
second case, a behavior will summarize target data, and propose all
available options. explore-decision’s termination condition is that a
target has been selected. Respectively, this is explore-movement’s
precondition. In this case, a child behavior will be in charge of all
movement actions taken by the agent in order to reallocate itself to
a given target location.

Our first experiment examines DIESEL ’s explicit support for
maintenance goals, using the idea of task-maintenance behaviors
that execute in parallel to the task-achievement behaviors. In this
experiment, two agents are placed side by side on one end of a long
corridor, closed off by walls at both ends. One agent is a leader,
the other a follower. The leader runs until reaching the wall and
then runs back. The follower’s task is to run after the leader. In the
individual achievement case, the follower will look for the leader
whenever it loses sight of it. In the individual maintenance case,
the follower will continuously orient itself such that the leader is
centered in its field of view (regardless of the direction in which
the follower is running).

We are prohibiting any communications at this stage, since the
task is purely individual for now. The follower will scan until it sees
the leader, and run towards it. During each time tick, if the follower
agent sees the leading agent, an internal event (see-leader) is fired
and logged. Each configuration was run 10 times. In each run, the
simulation’s duration was about two minutes in real-time, approx-
imately 9000 decision-sense-act Soar cycles and fifty seconds in
Unreal Tournament clock-time.

The results from this experiment are summarized in Table 1. We
use two measures: The first column measures the percentage of
time (averaged across the ten trials) in which the leader was seen,
i.e., the maintenance conditions was indeed maintained. The sec-
ond column measures the number of behavior switches taking place
on average, in each run. A reduced number of behavior switches is
one desired outcome of using maintenance behaviors in parallel to
task execution. This reduces thrashing and allows for greater use
of context in Soar and similar architectures. The three rows corre-
spond to the results for the achievement configuration, the proactive
maintenance configuration, and a one-tailed t-test of the statistical

% Time leader in sight # Behavior switches
Achievement 50% 6
Maintenance 66% 4.1
one-tailed t-test 0.01 0.001

Table 1: Individual achievement (reactive maintenance) com-
pared to individual proactive maintenance.
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Figure 6: see-leader event logged by the follower agent. No
maintenance conditions.
significance of the results.

The results clearly demonstrate the need for a proactive mainte-
nance mechanism. In both measures, the agents using maintenance
(even individually) have come up significantly on top, compared to
the achievement-only configuration.

Figure 6 shows the same results, from a different perspective.
It shows the event’s occurrence during the ten simulation runs. In
the figure, The X-axis shows the time. The Y-axis separates the
ten trials: Each dot shows the presence of the see-leader event in
memory, at the give time, for the given trial. The figure shows that
in all the experiments conducted without maintenance, after a short
period of time, the follower lost the leader. This is due to the change
in direction of the leading agent (back to the start location after
reaching the wall) which occurred during the follower’s movement.
In addition, sometimes when the follower agent locates the leader
right away, it is only for a short period of time. This is due to the
fact that the leader agent chose its target and began moving towards
it, exiting from the follower’s line of sight before the follower had a
chance to react. This forced the follower agent to switch behavior,
and re-locate its target.

Figure 7 shows 10 additional trials, this time when an explicit
maintenance condition was put in place. Here, we added an in-
dividual task-maintenance condition to the recipe of the follower,
instructing it to keep the leader in focus while moving. The fig-
ure shows that now, the follower agent no longer loses track of the
leader, since it actively pans to track the leader. This is an exam-
ple of how task related goals can be set apart from maintenance
related goals, adding new flexibility to behavior-based architec-
ture and clarity to the code: It was achieved without changing the
explore-movement or move-to-target behaviors, allowing to keep
them simple and compact.

5.2 Collaborative vs. individual maintenance
The results in the previous section show the importance of main-

tenance during behavior execution. However, one could point out
that no teamwork is really being tested in these scenarios since
no communication or coordination takes place. Thus perhaps the
improvements we are seeing in transition from only carrying out
achievement actions, to using the maintenance mechanism, are lim-
ited to the individual. In other words, is there really any benefit to
collaborative maintenance, compared to individual maintenance?

This time, we use BITE to answer this question. We have created
two versions of a BITE behavior graph, implementing a diamond-
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Figure 7: Maintenance of the see-leader event by the follower.

shaped formation for four simulated robots. In the collaborative
maintenance version (Figure 5(a)) the simulated robots use collab-
orative maintenance, whereby the leader takes responsibility for
maintaining the distance and angle to its followers, and commu-
nicates its movements so that they can calculate their own new po-
sitions. In the individual maintenance version (Figure 5(b)), the
followers use maintenance behaviors to visually keep track of the
leader’s position, but the leader is not responsible for this distance.

We conducted multiple trials using BITE in both individual and
collaborative maintenance configurations. We set up five obstacle
courses, marked A through E. In course A the simulated robots
moved straight, but a long fence, parallel to the movement direc-
tion, separated the right-most robot from the leader. In course B,
the leader took a sharp turn that caused it to be blocked from the
view of the rear follower (it was occluded by the leftmost robot).
Course C was a repeat of course A, but here the fence was miss-
ing portions in regular intervals (forming a kind of dashed fence).
These caused the rightmost robot to repeatedly lose sight of the
leader, and then catch up with it again. Course D consisted of sim-
ple movement forward with no obstacles. Course E consisted of
a short segment forward, then a 90-degree turn to the left, another
short segment, and then a 90-degree turn to the right (all of this
with no obstacles).

Each course was repeated 5–10 times in each configuration (col-
laborative, individual). We measured the time to complete the
course, and the average error in maintaining the formation. This
error was calculated by examining the distance between the actual
position of each simulated robot, and the position it should have
ideally maintained given the position of the leader.

Figures 8 and 9 show the results from these experiments. In both
figures, the dark column shows the results of using collaborative
maintenance, and the light column shows the results of using indi-
vidual maintenance. The vertical lines on the bars mark standard
deviations. The figures show that in all courses, the use of col-
laborative maintenance leads to significantly improved results (see
below for a discussion of courses A and B). All results were found
to be significant using a one-tailed t-test, except for the difference
in time in course E, where no significant difference was found.

In courses A and B, the individual maintenance versions of the
task could not complete the course, and so these runs had to be
stopped. Nevertheless, we measured the positional error until the
point in which the simulated robots were stopped. This lead to the
seemingly contradictory result that in course B, the positional er-
ror was lower with individual maintenance than with collaborative
maintenance. This was because course B consisted of a very sharp
turn in which necessarily positional errors increase. Since the indi-
vidual maintenance version were stuck before the sharp turn, their
position error appeared smaller.

We stress the difference between individual and collaborative
maintenance goals using another experiment with DIESEL . Here,

Figure 8: Results from the BITE experiments: Maximum time
in courses A and B indicates that the experiment had to be
stopped for lack of progress.

Figure 9: Results from the BITE experiments: Position Error.
we chose a square-shaped corridor, in which the leader could
run indefinitely. With every turn, the leader could potentially be
blocked from the view of the follower, and thus the agents had
many opportunities to lose each other. Using individual mainte-
nance, the leader would not be responsible for maintenance of the
distance to the follower, and it would be up to the follower to carry
out all actions necessary to maintain the distance. In collaborative
maintenance, both leader and follower share the burden for main-
taining the goals of the team.

To see this, we manually introduced a failure into the scenario
above, where the follower was physically blocked from moving
forward. While the follower agent proactively seeks to maintain
the presence of see-leader events, the leading agent uses reactive
maintenance, meaning it acts only when such an event drops. In
this failure case, once the follower stopped tracking the leader, the
leader’s positive-maintenance is proposed (even while it was head-
ing to its designated target), and the leader waits.

Figure 10 shows the results of such a case. The figure shows
on the X-axis the passage of time (in Unreal Tournament seconds).
The Y-axis shows the distance between the follower and leader.
With individual maintenance, the distance between leader and fol-
lower continue to grow after the failure occurs. However, with team
maintenance, distance between both agents is kept throughout the
artificially-introduced failure.

5.3 Teamwork Maintenance
The previous sections have evaluated the use of maintenance in

the context of task behaviors. One novelty in the mechanism we
introduced is that it can be re-used for maintaining the team hier-
archy in face of catastrophic failures to individual agents. We call
this teamwork-maintenance, to contrast with task-maintenance de-
scribed in the previous sections.

To demonstrate team-maintenance in DIESEL , we divided four
agents into two groups, each consisting of a leader and a follower.
We defined a single team-maintenance condition in each team, stat-
ing that each agent should have a coordinator at any given moment.
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Figure 10: Distance between leader and follower, in cases of
individual and team goal maintenance.
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Figure 11: Maintenance of team hierarchy: Distance between
bot4 and bot3, bot1.
In each team, the coordinator was initially set to be the leading
agent. In team A, consisting of bot1 and bot2, it was bot1, and
in team B, consisting of bot3 and bot4, it was bot3. This was
part of the team-hierarchy for each agent. Both teams followed
the same recipe previously described, with the two leaders inde-
pendently leading their respective followers in constant movement
along the corridor.

To show teamwork maintenance in action, we deliberately
blocked any contact with bot3 and hid it during the first half of
the experiment. As a result, bot4, changed its coordinator, and be-
gan following bot1, by joining team A. After running half of the
experiment in such a manner, we removed the blocking on the orig-
inal coordinator, bot3, thus allowing bot4 to fall back to its original
team, team B. Figure 11 shows the distance between bot4 and bot1,
and between bot4 and bot3. The figure shows how in the distance
between bot4 and bot3 (the hidden leader) was greater than the dis-
tance between bot4 and bot1 (the alternate leader). The situation
is reversed once bot3 is seen again, and bot4 switches back to its
original leader.

Switching teams in this example is achieved by a team-
maintenance behavior (operator, in Soar), which manipulates
bot4’s team-hierarchy. The behavior works by checking whether
at any given time a coordinator is unreachable. If so, then the be-
havior finds a new team in which there is a team coordinator and
change the organizational membership of the agent to be a part of
the other team. Since this is only a maintenance behavior, as op-
posed to a regular one, if the exception is resolved, the maintenance
behavior is terminated, and regular order is restored.
6. CONCLUSIONS AND FUTURE WORK

This paper argued for the introduction of a general mechanism
for collaborative goal maintenance in teamwork architectures. We
presented such a mechanism, and described its integration within
two implemented architectures for teamwork: DIESEL , an archi-
tecture built on top of the Soar cognitive architecture [13]; and
BITE , an architecture for controlling teams of behavior-based
robots. We empirically demonstrated that the use of proactive
maintenance leads to improved performance compared to reliance

on achievement actions (also used as a reactive form of goal main-
tenance). We also showed that the use of collaborative mainte-
nance, in which all team-members take responsibility for main-
taining the team goals, leads to improved results compared to in-
dividual maintenance. Finally, we showed how the maintenance
mechanism can be used to maintain the team structure. This allows
the programmer to focus more clearly on achievement and main-
tenance aspects of the task, and to separate completely the issue
of how to maintain the team-structure in face of catastrophic fail-
ures. Future work includes exploring a diverse set of maintenance
protocols for taskwork and teamwork.
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