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Abstract

Robots in formations move while maintaining their relative positions in a pre-
defined geometric shape. Previous work has examined formation-maintenance al-
gorithms that would ensure the stability of the formation. However, for each geo-
metric formation, an exponential number of stable controllers exists. Thus a key
question is how to select (construct) a formation controller that optimizes other de-
sired properties, such as sensor usage for robustness. Thispaper presents a moni-
toring multi-graph framework for formation controller selection, based on sensor-
morphology considerations. We instantiate the monitoringmulti-graph frame-
work, and present several contributions. First, we show that graph-theoretic tech-
niques can be used to compute optimal sensing policies that maintain a given for-
mation. In particular, sensor-optimal control laws for separation-bearing (distance-
angle) formation control can be automatically constructed. Second, we present a
protocol allowing controllers to be switched on-line, to allow robots to adjust to
permanent and intermittent sensory failures. We report results from comprehen-
sive experiments using this technique with physical robots. The results reveal the
efficacy of the technique in practice. In particular, we showthat the use of the dy-
namic protocol allows formations of physical robots to movesignificantly faster
and with greater precision, while reducing the number of formation failures due
to sensor limitations. Finally, we demonstrate how the representation facilitates
the selection of a formation leader according to different social criteria, and the
control of sensor-heterogeneous robots.
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Chapter 1

Introduction

Making a group of robots move autonomously in formation is a challenge which
has been of significant interest in recent years. Addressingthis challenge is im-
portant for many applications in the real world, from military missions, such as
the use of autonomous vehicles for supply-chains, or deception, to robotic enter-
tainment. Various formation maintenance algorithms have been suggested (e.g.,
[3, 4, 17, 11, 9, 20, 19, 21, 5, 16]).

In the popularleader-referencedapproach to formation-maintenance (forma-
tion control) tasks, robots maintain their relative position with respect to their
peers, according to a desired geometric shape. The algorithms assign each ro-
bot with a single or multiple neighboring robots (targets) that it must monitor, to
maintain the given geometric shape while moving. The movement of the group is
derived from the movement of a special target, called theleader, which does not
follow any other target. Instead, the leader moves based on the location of the goal
(or is operator-controlled). Those monitoring it automatically move to maintain
their relative positions. Those monitoring them then reactas well, etc. The set
of assigned targets, the leader, and their associated controller type are called the
control graphin [11, 9].

Previous work has examined constraints on a given control-graph, that would
ensure the stability of the formation. In particular, two popular methods for such
control areSeparation-Bearing Control(SBC), andSeparation-Separation Con-
trol (SSC) [15, 9]. In both, a single robot is chosen as the leader ofthe formation.
In SBC, each robot (except the leader) must maintain a given distance (separa-
tion) and angle (bearing) with respect to an assigned target. In SSC, each robot
(excluding the leader) maintains its distance with respectto two different targets.
It has been shown that control-graphs, which induce SSC or SBCcontrollers for
each robot, and satisfy other constraints (e.g., connectivity, a single leader, etc.),
are sufficient to maintain stable formations. Both SSC and SBC have been used
in formation-control of simulated and real robots (e.g., [3, 15, 16]).
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However, for each geometric formation, an exponential number of stable pos-
sible control graphs exists [9]. Thus a key question is how toselect (construct) a
control graph that optimizes desired properties other thanstability. Many of these
desired properties have to do with each robot’s sensor morphology—the type,
placement, and configuration of sensors on robot bodies. Forinstance, a control-
graph in which one robot must pan its camera backwards (relative to the direction
of movement) is most likely less preferable than one in whichthe same robot can
monitor a target ahead of it. Unfortunately, previous work has often ignored the
role of sensor morphology in selecting between control graphs (see Section 2 for
a detailed discussion, and notable exceptions).

This paper presents a graph-theoretic framework for control-graph selection
based on sensor-morphology. The framework represents alternative sensing schemes
in amonitoring multi-graph, in which directed weighted edges, denote monitoring
capabilities (sensors or communications) and their associated costs. By applying
graph-theoretic techniques, optimal control graphs can beefficiently constructed.

We instantiate the monitoring multi-graph framework, and present two con-
tributions. First, we provide an efficient method for automatically constructing
sensor-optimal control-graphs for SBC control. This construction also includes
selecting the best leader for the group. Second, we present aprotocol allowing
control-graphs to be switched on-line, to enable the robotsto adjust to handle
permanent and intermittent sensory failures. Finally, we demonstrate the useful-
ness of the framework in automated construction of control graphs for sensor-
heterogeneous robots, and in selecting leaders.

To evaluate these contributions, the monitoring multi-graphs framework has
been fully implemented in simulation and with Sony AIBO robots. The Con-
struction of a variety of control graphs, according to a defined team of robots, is
presented. We show the results of extensive experiments, which demonstrates the
robustness of the formations as a result of using the monitoring multi-graphs. We
empirically show that use of the framework leads to significantly increased preci-
sion, better performance, and robustness to changing environmental conditions.

This thesis is organized as follows. Section 2 presents related work and back-
ground for the formation-maintenance problem in robotics.Section 3 introduces
the notions of a monitoring multi-graph and control graph and describes the process
of generating the latter from the former. This section also describes the importance
of leader selection. Section 4 presents a dynamic control-graph switching algo-
rithm for recovery from formation failures. Results of comprehensive experiments
with physical robots and through simulation are presented in Section 5. Section 6
provides a summary and discusses possible directions of future work.
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Chapter 2

Related Works

The literature on formation control is vast, thus we will focus the on most rel-
evant studies. To the best of our knowledge, all previous works on formation-
maintenance in robotics have made the assumption that sensor configuration matches
the control algorithms. Moreover, existing works often assume all robots are
homogeneous, and thus do not generate monitoring rules thatare individually-
tailored to the sensing capabilities of different agents within the formation. Our
work addresses these open issues. Additional differences with existing work are
discussed below.

Maintaining formation while moving requires the robots to locate themselves
according to reference points. [2] examine three techniques for the robot to iden-
tify its position. The first one isUnit-Center-Referencedwhere the robots place
themselves according toX,Y coordinates defined by the formation. The second
is Leader-Referencedwhere all the robots situate themselves relative to one robot
who has chosen to lead the group. The last method isNeighbor-Referencewhere
each robot locates itself correspondingly to one predestined robot. Their study
compares the methods by using teams of up to four physically homogeneous ro-
bots. Our approach is suitable for leader-referenced and neighbor-referenced ap-
proaches.

Desai et al.[9, 12, 8] expand the neighbor-reference method, and show that for-
mation can be maintained if each robot monitors an angle and distance to another
robot, or distances to two other robots. An un-weighted control graph describes
the monitoring from a global perspective. Desai et al. do notdiscuss selection
of an optimal control graph; indeed they assume omni-directional sensing. How-
ever, they discuss switching the geometric shape defining the formations (and
their associated control graphs) to tackle terrain changes. Thus our framework
complements theirs.

In order to construct control graph we elaborate the notion of the monitoring
graph introduced by Kaminka and Bowling [18].They defined monitoring graphs,
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as directed graphs where vertices denote robots, and edges denote monitoring ca-
pabilities. An edge(a, b) exists in the graph if robota is able to monitor (observe,
communicate with) robotb. They were able to show that certain conditions of the
structure of the monitoring graph, corresponding to monitoring conditions of the
team-members, must exist in order for the team-members to detect disagreements
despite uncertainty in monitoring. Our work extends the monitoring graph in two
manners. First, we represent multiple ways in which monitoring can be done (e.g.,
multiple sensors) as multiple edges between a pair of vertices, i.e., we use multi-
graphs. Second, we use weights on edges to denote the robot’scosts for using
the monitoring device associated with the edge. We show how to assign costs to
edges in the context of formation-maintenance tasks.

Fredslund and Mataric [16] describe a general algorithm that generates an
angle-distance monitor rule for each robot in the formation. The location of robots
in formation is determined only by the arbitrary robots’ ID and the formation they
aim to build. The position of the robot determines which robot it has to follow and
which robot will lead the team. This work under assumed sensing capabilities.
The monitoring rules were supplemented by communications for robustness. Our
algorithms allow for automated selection of the leader, andconsider the unique
sensor configuration of each robot.

Fierro et al. [15] analyzed the stability of SBC and SSC controllers, and
proposed using manually-constructed control laws to allowup to three robots to
switch between alternative SSC and SBC schemes, in essence, switching between
alternative control graphs on-line without relying on communications. Our work
complements their results by providing (i) a method for optimal selection of al-
ternative control graphs, for an unbounded number of robots; (ii) a protocol using
communications for making synchronized control-graph decisions, in a distrib-
uted fashion.

Lemay et al. [19] and Michaud et al. [20] present a method for quantifying
the cost of using the sensors to determine distance and angleto a neighbor. They
provide an algorithm where each robot senses its distance and angle from the
others. It then broadcasts this information. Using this knowledge, each robot finds
the robot to follow according to the one with the smallest deviation of angles and
distance combination to it. However, this is used only in selecting the formation
positions of all robots. In contrast, our method uses cost information, after the
positions have been assigned, to select the optimal target for each robot. Also,
we use additional sensory cost factors for the initialized control graph **in order
to allow** (Ruti: it was: as for allowing) dynamic switching of control graphs
on-line.

Naffin and Sukhatme [21] suggest an on-line method allowing agroup of ro-
bots to organize into formation. They designed an approach to grow a formation,
one robot at a time. Vision limitations, such as lack of cameras pointing back-
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wards, are used in determining the robots’ arrangement in the formation. The
order of gathering along with these limitations determine the selected robot to
lead the formation, and the placement of the other members. While we have not
addressed the issue of how robots choose their positions within a formation, we
have developed a general method that allows heterogeneous robots to select the
best sensing scheme that maintains the formation. We have also provided an al-
gorithm for selecting the formation leader optimally.

Balch and Hybinette [4] apply social potential fields which use attraction and
repulsion to position robots within their relative positions in a defined formation.
This technique is robust to obstacles in the path of the robots. This is an important
challenge our approach does not yet take into account. However, their technique
cannot guarantee robots will form into the desired shape.

Dudenhoeffer and Jones [13] also based their work on the principle of social
potential fields. They deal with a large scale group of robots. Each robot combines
two main elements: sensors and behaviors. The sensors are designed to be able
to scan an area of2200 (with expansion possibility). This enables the robot to
detect some of its team members. The behavior is composed of abasic wandering
behavior, group formation behavior above and collision avoidance at the top. This
architecture is built for a diverse set of team goals, including the examination of
surroundings. Our algorithm is designed for a specific purpose of movement in
formation. The robots **must (Ruti: it was: have) to follow only one robot each,
rather than compute a social potential field.

Carpin and Parker [5] present a platform for the formation maintenance prob-
lem. Their platform is based on a situated automaton in a team’s operation level
which is affected by states of the robot at the individual level. The group level
contains three states: following, waiting and recovering.The waiting and recov-
ering states are designed to get over dynamic obstacle by waiting for them to move
on. Our algorithm is managed as a situated automaton composed from these main
states. Recovery operation in our algorithm, performed by updating the control
graph, demands coordination between the team’s members. Toensure this co-
ordination, the recovery state itself being composed from "wait" and "recover"
states.

An alternative to our work, that increases robustness, is toutilize global knowl-
edge and continuous communications. Parker [22] examines the need to combine
local information with global knowledge in order to carry out cooperative tasks.
She investigated this issue in formation-maintenance problems. As shown in her
work, adding global knowledge to the local knowledge may improve task per-
formance. However, since this information is very expensive and may even be
unachievable, we try to reduce the need for general knowledge.

Another issue is tracking the trail of the target robot. Chiemand Cervera
[6] propose using the distance and the angle from the trackedrobot, detected by
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sensors, to build the Bézier curve. Following these curves enable more accurate
tracking. Our work handles the issue of which robot to track and not how to track
it, thus complementing their work.

Investigations have also been conducted on formation stability [23], splitting
and joining formations [1, 21], obstacle avoidance with formations [4, 10] and
switching formations [11, 9]. Our study does not deal with these issues and we
leave these questions for future research.
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Chapter 3

Cost-Optimal Formation Control
Graphs

In this chapter we begin by describing the use of monitoring multi-graphs to ana-
lytically represent various ways in which a robot may monitor its peers by obser-
vation or communication (Section 3.1).

We then describe how a multi-graph can be used in formation-maintenance
tasks to assist in the automatic generation of monitoring rules for robots, such that
coordinated movement is maintained. We elucidate how our method is useful for
a group of heterogeneous robots (Sections 3.2).

Finally we explain the importance of the formation leader, the robot that will
lead the team in the formation-maintenance task. (Section 3.3).

3.1 Monitoring Multi-Graphs in Formation Control

We introduce the use of multi-graphs to represent the monitoring capabilities of
robots in a multi-robot system. Amonitoring multi-graphis a tuple〈V,E〉 where
V is a set of vertices denoting robots, andE is abag(sometimes called multi-set)
of weighted edges{〈u, v, w〉}, each linking two verticesu, v ∈ V , and having a
non-negative weightw ∈ N. SinceE is a bag, an edge linking two vertices may
appear more than once (even with the same weight).

Edges denote monitoring capabilities. An edge< u, v, w > exists if robotu is
able to monitor (sense, communicate to, observe, or otherwise gain knowledge of
the state of) robotv in some distinct fashion, e.g. through a specific sensor. The
weightw indicates the monitoring robot’s cost for using the sensor.As multiple
sensors (or methods) may exist for one robot to monitor another, multiple edges
may exist with various costs. When a robot can monitor another, the reverse is not
always true. Thus edges are directed, i.e.,< u, v, w >∈ E ;< v, u, w >∈ E.
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In practice, most tasks require monitoring to be selective.A monitoring multi-
graph can be useful in such reasoning, and can allow the robotto represent moni-
toring options which it has available, and the costs involved. The robots can reason
about their monitoring decisions in the context of global monitoring constraints.
The following sections will present techniques for such reasoning.

We use monitoring multi-graphs to represent the sensory capabilities of robots
in the formation. Here, vertices (denoting robots) have an associated position
which denotes the associated robot’s position in the formation, relative to its peers.
The multi-graph is constructed such that it takes into account the positions of
the robots, and their (possibly heterogeneous) sensor configurations, in terms of
range, field of view, and panning angles.

The input into the construction phase is a given formation that leads to the
assignment of robots to places in the formation, essentially a multi-graph with no
edges. The initial pose of all robots is towards the direction of the movement.
Previous work typically assumes that teams are homogeneous, and thus do not
address preferences of allocation of robots to places. Though we do not make
such an assumption (see below), we leave allocation for future work.

For each robot (vertex), we add edges by considering its sensors, which can
be used for monitoring other robots. We focus on sensors thatcan provide iden-
tification, distance, and bearing to other robots, for instance, a combination of
cameras and distance sensors. We exclude sensors that cannot be used for mon-
itoring others, such as location (e.g., GPS), distances traveled (e.g., odometry),
etc.

At the beginning of task each robot has information about allother members
of its team. The information includes each robot’s sensor morphology, and its
place with respect to the leader of the group. Simple calculation reveals distances
and angles between each pair of robots. Taking into account these parameters
relative to a sensor’s characteristics leads to the cost involved. The cost will be
the weights of the edges.

The weight of an edge is an indication of itsexpectedcost-of-usage: Smaller
weights indicate better lower costs, and thus greater preference for usage. This
cost can be computed based on any number of factors, however we empirically
found the following three factors to be useful in practice: sensing distance limits,
field of view limits, and panning angle (rotation of the field of view with respect
to the center of the robot). We therefore focus on these factors in this paper. Other
factors (e.g., for modeling energy consumption, communication bandwidth and/or
reliability, etc.) will be addressed in future work.

We assign a cost to each factor for each relevant range of values. For instance,
Table 3.1 shows an example of a set of such assignments, for a hypothetical robot
(used in the simulation experiments). The first column (attribute) marks the sen-
sor attribute in question—distance, field of view, or panning angle. The second
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Attribute Range Cost

Distance (mm) [0, 450] 0.4

(450, 600] 0.75

Field of View [−30◦, 30◦] 0.2

(30◦, 50◦] 0.4

[−50◦,−30◦) 0.4

Pan [−90◦, 90◦] 0.6

Table 3.1: Type-1 Robot Sensor Configuration.

1 �
3

(a) Pan0◦.

� �
�

(b) Pan30◦.

1
2

3

(c) Pan90◦.

Figure 3.1: Monitoring possibilities change based on sensor panning.

column (range) marks the values (ranges of values) for whichwe wish to specify
costs. The costs are noted in the final column. Notice that several ranges may
be possible for each attribute, which may differ in their costs or range of values.
Again recall that lower costs signify higher preferences.

Figure 3.1 shows the Type 1 robot using its single sensor at different pan an-
gles. Each curved subregion denotes monitoring areas with different costs. The
two arcs differentiate distance limitations. The numberedsquares denote other
robots. Figure 3.1-a, for instance, shows the robot panningstraight ahead (at0◦).
Square 1 shows a robot that is outside of the distance range ofthe monitoring, re-
gardless of the panning angle or the field of view. The bottom right robot (square
3) cannot be monitored given the current pan and field of view.The remaining
robot (square 2) is currently within the central field of view. Figures 3.1-b,c show
all robots in the same positions, but with different panningangles for the sensor.

To compare alternative sensing possibilities, we use edgesfrom the monitoring
robot to the other (monitored) robots. An edge will be created for each sensor.
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This is done as follows.
First, we compute the area covered by a sensor, given its field-of-view possi-

bilities, distance ranges, and pan options. For a field-of-view range[fmin, fmax],
a pan range[pmin, pmax], and a distance range[dmin, dmax], the area covered is a
curved region enclosed by the distance range, and defined by the arcs at an angle
[pmin+fmin, pmax+fmax]. Multiple pan, field-of-view, and distance range options
give rise to multiple curved regions, which may overlap. Forinstance, based on
Table 3.1, the leftmost field-of-view range covers the arc[−50+−90,−30+90] =
[−140, 60] degrees, the central field of view covers[−30 + −90, 30 + 90] =
[−120, +120] degrees, etc.

Then, we find robots that are within each region. For each of these robots, we
create a temporary directed edge from the monitoring robot.Since the positions
of vertices in the multi-graph correspond to geometric positions in the formation,
the distance between two robots corresponds to the length ofthe line connecting
them, and the angle between any two robots can be computed relative to the initial
pose which faces the direction of movement.

For instance, Figure 3.1 presents a robot with only one sensor. The left top
robot is outside of the distance range of the robot’s monitoring according to this
sensor. Thus there would be no edge from the monitoring robotto this left top
robot. Figures 3.1-a, and b, show multiple ways in which the robot ahead of the
monitoring robot (and slightly to the left) can be monitored—within the central
field of view (when the pan angle is set to0◦) and within the left field of view (pan
angle set to30◦). Thus two temporary edges to robot would be created.

In the next step we compute the weight of each temporary edge,as a function
of the costs of the distance, field-of-view and pan ranges involved. We use a
weighted sum function to combine cost factors into a single cost value for the
weight of the edge.

weight(e) =
∑

i

wi · cost(i)

wherei is the sensor attribute in question (distance, field-of-view, pan angle),wi

is the weight of the sensor attribute, andcost(i) is the cost of using the sensor
attribute in the given configuration (i.e., the appropriatetable entry).

Finally, all temporary edges constructed according to the same sensor are
merged to one edge. This edge receives the weight of the edge with the lowest
weight from the edges that have merged. This edge is added to the monitoring
graph. As a result, a maximum of one edge per combination of robot to moni-
tor and sensor exists in the multi graph. The process of building the monitoring
multi-graph is depicted in Algorithm refalg:MultiGraphGenerate

In real-world settings, robots may occlude each other. Thusthe last step after
initializing the monitoring multi-graph includes removalof physically occluded

15



Algorithm 1 MultiGraphGenerate()
1: Multi-graphMG ← ∅
2: for each robotri participates in taskdo
3: Definei as vertex donatesri in multi-graphMG
4: Locatei in its place
5: for each vertexi do
6: for each vertexj do
7: disti,j ← Calculate distance fromi to j

8: anglei,j ← Calculate angle fromi to j

9: for each vision sensork of robotri do
10: w ← CalculateWeight(disti,j, anglei,j, k)
11: if w is a finite numberthen
12: Add edgeei,j,w from i to j toMG
13: ReturnMG, directed weighted multi-graph

edges. As embodied robots occlude each other, any robotx positioned on an
edge between a pair of other robotsa, b will block their view of each other. Thus
any edges{< a, b >,< b, a >} are removed from the monitoring multi-graph.
When applying this technique with physical robots, we have found it useful to
consider occlusion even ifx is not positioned exactly on the edges betweena and
b, to account for the size of the physical body of an occluding robot. This step is
described in Algorithm 2.

In addition the body of a monitoring robot may block itself from sensing other
robots. Edges suffering from this situation also have to be removed during this
step. This issue will be handled in future work.

Algorithm 2 RemoveOcclusion(multi-graphMG)
1: for each bag of edgesEi,j from vertexi to vertexj do
2: for each vertexh do
3: disti,j ← Calculate distance fromi to j

4: disti,h ← Calculate distance fromi to h

5: anglei,j ← Calculate angle fromi to j

6: anglei,h ← Calculate angle fromi to h

7: if anglei,j ≈ anglei,h anddisti,h < disti,j then
8: Remove allei,j,w ∈ Ei,j fromMG
9: ReturnMG, directed weighted multi-graph
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The result of this process (after it is repeated for all robots, and all sensors)
is a weighted, directed, monitoring multi-graph where vertices denote robots (in
their relative positions), and (multi-)edges represent all possible ways in which
the robots can monitor each other, given their sensors and their limitations.

Assumptions about the similarity of robots in the group are not made during
this process of graph generation. Edges from each vertex aredefined according to
a robot represented by this vertex. Each edge represents thefeatures of one sensor
keeping track of a given distance and angle. Thus the algorithm is suitable for a
heterogeneous group of robots. Each robot may have its own sensors’ configu-
ration and morphology. The only condition is that robot’s sensors details will be
predefined and known by all members of the team. (see Section 5).

From this step forward, the algorithm manipulates only the graph and not the
robots, as shown in the following sections. The only way in which the heterogene-
ity of the group and the sensors’ configuration find expression is in the monitoring
multi graph generation. All the knowledge that is relevant to the algorithm is rep-
resented in this multi-graph.

3.2 Computing Optimal Control Laws

Now that the monitoring multi-graph is complete for a given formation, it can be
used to induce individual controllers for each robot, such that if all robots maintain
the distances and angles represented by the selected edges,the formation will be
correctly maintained. In particular, we show how to use a version of Dijkstra’s
single-source shortest paths (S3P) algorithm to constructSBC controllers for each
robot, that guarantee optimal-cost formations.

In SBC, a robot—calledleader—is responsible for determining the overall
global path (e.g., by deferring to a human operator [14] or byusing a path planner).
Each of the other robots (followers) is given an individually-tailored control rule,
restricting it to maintain a given distance and angle (with respect to the direction
of movement) to itstarget—either the leader, or another follower—that in turn
monitors its own target. Separation-Bearing control (SBC) thus relies on a single
monitoring link for each robot.

We can deduce the SBC monitoring rules from the monitoring multi-graph,
by choosing edges that signify sensor choices. The edges length and angle with
respect to the initial position signify the separation and bearing, respectively. For
now, we assume that the leader position has been pre-determined (however below
we show how the leader may be optimally selected). Given the leader, a formation
graph can be maintained using SBC under the following conditions:

1. The out-degree of the leader robot is 0.
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2. The out-degree of every tracking robot is exactly 1 and theoutgoing edge is
pointing to its target.

3. A path exists from every follower to the leader.

The first condition guarantees that the leader does not have to monitor anyone
to fulfill its role. The second condition guarantees that every robot (other than
the leader) has target which it can monitor for separation and bearing. The final
condition guarantees that the formation is connected such that all sequences of
robots monitoring others will eventually monitor the leader. In other words, it
guarantees that the leader robot is indeed positioned such that it is capable of
leading, given how it is monitored.

We define a formation graph as optimal, if in addition to the conditions above,
it also guarantees that each individual robot monitors the leader, directly or in-
directly (transitively) using the minimal sensor cost. In general, this cannot be
achieved by simply selecting the least costly edge of each robot’s position, since
such local selection may cause robots to form a cycle. In other words the ro-
bots monitor each other instead of the leader. Moreover, such local selection does
not address a key challenge: a robot’s overall monitoring cost in the context of a
formation also depends on its target’s monitoring cost. This is because a robot’s
position depends on its target, and thus shorter paths to theleader reduce latency
in position update. To be precise, it may be better to monitora robot at a higher
local cost to guarantee that overall the path from the targetto the leader is shorter
and less expensive.

Fortunately, graph-theoretic algorithms have already been devised to address
such challenges. In particular, we use a version of Dijkstra’s S3P algorithm (de-
scribed in [7]). However, rather than compute the shortest path from a source
vertex to all others, we compute the SingleTargetShortest Path. This is easily
done by traversing edges backwards.

Another deviation from Dijkstra’s algorithm is that it mustbe modified to
work in multi-graphs. In particular, its edge-selection policy now must consider
multiple edges between any two vertices. It can be shown thatthis does not change
the optimality of the algorithm. Our proof relies on the optimality of Dijkstra’s
algorithm which in turn depends on a greedy step. The algorithm begins with a
source vertex that donates the leader in our scenario. Each iteration the algorithm
chooses the next vertex, the one with the lowest cost of the total path from the
vertex to the leader, and updates the other vertex with the lowest cost possible.
If two edges with different weights exist between the same vertices the one with
lowest cost will be chosen, since this leads to a lower total cost. In fact we can look
at an edges’ bag as one edge with a cost equal to the minimal weight. Modifying
this step such that it considers multiple edges does not modify the result of this
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step. After a vertex has been selected, all of its outgoing edges can be ignored.
According to the Dijkstra algorithm, none of them will be used in the rest of the
algorithm.

This step in which edges are selected also touches on a final modification of
Dijkstra’s algorithm for our purposes. In theory, any ties in alternatives (i.e., edges
lead to the same total weight) can be broken arbitrarily by the algorithm, since the
selection will not affect optimality. In practice, however, we have found it useful
to reducehops, i.e. the number of edges that leads from a given robot to the
leader. The reason for this is that the more edges there are inthe path the more
robots it may effect. Each deviation of a robot in the path maycause deviation
for all the robots following it directly or transitively. Moreover, response time
increases since it is composed of the response times of all robots in the path. A
long response time makes formation maintenance difficult.

To overcome these influences we break ties in such a manner as to prefer edges
that minimize hops. This is done by introducing secondary uniform weights on
each edge that are used to count hops to the leader. These weights are updated in
the algorithm’s iterations as the total path’s weight. If two vertices have the same
total paths’ weight, the one with the smallest number of hopswill be selected. In
cases where the number of hops is also equal, the robot with the lowest ID will be
chosen.

Using the modified Dijkstra’s algorithm (Algorithm 3), a single edge is se-
lected optimally for each robot except the leader. These edges form an SBC
control-graph to be executed by the robots, i.e., the algorithm induces a control
graphG from the monitoring multi-graphMG. Because each edge is specific
to the robot in which it originates, the SBC control law of eachrobot is individ-
ually tailored to the monitoring capabilities of the robot.This enables sensor-
heterogeneous robots as mentioned before.

3.3 Leader Selection

We have seen above, that given a leader, we can calculate the best formation graph
for its followers. However, it is also possible to find the best leader for the team.
Leader selection has great influence on fulfilling the formation maintenance task.
The leader is the one that is responsible for movement and determining the path
and speed. Keeping the leader alive and maintaining contactwith it is a necessary
condition for completion of the task. The important assignment of choosing a
leader should take under consideration two criteria: (i) The ability of the chosen
robot to lead the group; and (ii) the ability of the group to follow this robot. These
issues are discussed below.

As mentioned, the leader can choose its path by using a path planner, or by
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Algorithm 3 ModifiedDijkstraAlgorithm()
STATIC: dist - vector hold total weight from each vertex to theleader target -
vector hold target of each vertex (robot) sensor - vector hold sensor used for each
robot monitoring its target weight - vector hold cost of using best sensor for each
robot monitoring its target hops - vector hold number of hopsfrom robot i to the
leader

1: for each vertexi ∈MG do
2: target[i]← null

3: sensor[i]← null

4: weight[i]← null

5: hops[i]← null

6: S ← ∅
7: Q ← All vertices inMG
8: while Q 6= ∅ do
9: u← Closest vertex fromQ

10: Q = Q− u

11: S = S ∪ u

12: for all verticesv where bag of edgesEv,u from v to u existsdo
13: w ←Minimal weight of edge inEv,u

14: k ← Sensor used forev,u,w ∈ Ev,u

15: if weight[u] + w < weight[v] OR (weight[u] + w = weight[v] AND
hops[u] + 1 < hops[v] then

16: weight[v] = weight[u] + w

17: target[v] = u

18: hops[v] = hops[u] + 1
19: MGnew ← ExtractDijkstraGraph(MG, target, weight)
20: ReturnMGnew

Algorithm 4 ExtractDijkstraGraph(multi graphMG, targets’ vectortarget,
weights’ vectorweight)

1: MGnew ← ∅
2: Copy vertices fromMG toMGnew

3: for all vertex i in multi graphMGnew do
4: Add edgeei,target[i],weight[i] toMGnew

5: ReturnMGnew
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control graph Social optimal cost Individual optimal cost

Figure 3.2-b 6 7

Figure 3.2-c 10 8

Table 3.2: Social Vs Individual optimal control graphs’ cost

relying on a human operator. In any case it should be equippedwith the appro-
priate capabilities. For example, a wide view of the environment can be useful in
finding a path where the group can pass with minimal problems such as obstacles
and turns. Stable communication is needed in order to receive commands from
a human operator, and to remain attentive to the team members’ state. In cases
of a group of heterogeneous robots, choosing the robot that physically matches
this function is very significant. However, we leave the issue of choosing the best
robot to lead the team with the above parameters for future work.

The criterion we used in our work for selecting the leader is the ability of the
other robots on the team to monitor it. Each member of the teamhas to be able
to directly or indirectly observe the leader. Placement of the robots relative to the
leader and their sensors determine this ability. A control graph is defined as a
graph that contains a path from each vertex to one specific vertex that denotes the
leader. A graph for a group where vertexi represents the leader contains exactly
one outgoing edge from each vertex except vertexi, which has no outgoing edge.
Thus a different control graph is needed for each selected leader.

The selection of the best leader for the group depends on the task definition.
Two optimality criteria for control graphs are possible: Minimal social (global)
cost, or minimal cost for each robot. As in other areas of multi-robot systems,
these two optimality criteria do not necessarily coincide,and indeed it is possible
to construct graphs that are socially-optimal, yet they arenot individually optimal.

Figure 3.2 shows the following for a given monitoring multi graph: (a) the
socially-optimal control graph (b) the individually-optimal control graph (c). Dif-
ferent robots assigned as robot 4’s target in the two controlgraphs. The total cost
of formations (b) and (c) are shown in table 3.2.

When choosing to minimize the social (global) cost of monitoring in a team,
a minimum spanning tree of the multi-graph could be used. However, we be-
lieve that this optimality criteria is inappropriate for SBCformation maintenance,
because it allows pathological cases in which the global monitoring cost is min-
imized, while specific robots monitor the leader through very long or expansive
paths. The movement of the leader triggers and controls the movement of its fol-
lowers, and as a result, latency in their responses is a function of the number of
monitoring edges that exist between each one and the leader and their quality.

In contrast, leader selection based on individual-optimality is much more ro-
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Figure 3.2: Social- and individual-optimal control graphs.

bust. The total weight of the path from a robot to the leader represents the cost of
monitoring the leader. The higher the total cost, the less reliable the monitoring
using this monitoring rule, and thus less preferable. The sum of the evaluated total
cost for each robot is used as an estimation for the quality ofthe total graph

We found that the best control graph for our task is the one with minimal
cost for each robot. In order to find the best leader, based on the above criteria,
we iterate through all team-members, setting each as the leader (temporarily) and
computing the resulting formation graph. If a legal controlgraph is received (con-
nected graph), we then compute the total weight of the formation graph. Once we
have gone through all the leaders, we choose the leader for whom the total weight
of all paths to the leader in the formation graph is the smallest. The Pseudo code
of the algorithm presented in Algorithm 5.

Algorithm 5 LeaderSelection(multi-graphMG)
1: for each vertexi inMG do
2: Di ← ModifiedDijkstraAlgorithm(MG, i)
3: if connected graphDi existsthen
4: ci ← EvaluateGraphWeight(Di, i)
5: Returni whereci is minimal
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Algorithm 6 EvaluateGraphWeight(control graphDi, vertexi)
1: sum← 0
2: for each vertexj in Di do
3: sumj ← 0
4: while j 6= i do
5: ej,k,w ← Find the outgoing edge from vertex j
6: sumj = sumj + w

7: j ← k

8: sum = sum + sumj

9: Returnsum
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Chapter 4

Dynamic Switching of Control
Graphs

Generation of an SBC control law for each robot is done automatically, based
on theexpectedcost of using the robot’s sensors. However, during deployment,
sensors may act differently from what is anticipated, due tocatastrophic or inter-
mittent failures. For instance, a camera may get stuck in a particular angle, or
lighting conditions may inhibit the ability to track specific colors.

To address this issue, we propose a distributed protocol that allows robots
to dynamically switch control-graphs while maintaining their formation (Section
4.1). This protocol assumes that new costs are assigned to edges that are affected
by failures. Section 4.2 discusses the translation of perceived failures into cost
changes.

4.1 A Protocol for Control-Graph Switching

A protocol for dynamically switching control-graphs of a given formation must
explicitly or implicitly coordinate the robots in the process of switching. Uncoor-
dinated switches may result in two or more robots following each other, cyclically,
instead of the leader.

We present a distributed protocol for such coordinated switching. The protocol
involves several steps (Algorithm 7).

1. If a robot fails to monitor its current target it first broadcasts a message to
all team-members, to let them know that a re-computation of the graph is
needed. During this phase, any number of robots may broadcast in parallel.

2. Each robot that receives the message halts the movement, and adds it to a
local list of robotsR that require re-assignment of targets and sensors. The
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robot receiving the message no longer attempts to maintain the formation,
and will not report on any readjustment it wishes to make while at this stage
of the protocol.

3. All robots make sure that all messages have been received and processed.
This can be done either by having receivers acknowledge received commu-
nications, or in a more simplified manner (but less reliably)by having a
timeout mechanism that ensures no new messages are generated.

4. All robots call on Algorithm 8 to determine the setRk of robots in the team
that are potentially affected (i.e., transitively) by a change in the initial list
of robots’ target assignments.

5. All re-execute the ChangeTarget algorithm on the monitoring multi-graph
MG, to update the control graph. However, because only the subset of
team-membersRk is affected, decisions for other robots do not have to be
revisited.

Algorithm 7 DynamicSwitching()
1: R ← ∅
2: G ← the current control graph
3: while truedo
4: if I lost my targetthen
5: Stop movement and wait
6: Add my name toR
7: Broadcast "wait for me" message to all members
8: Start timeout counter
9: if got "wait for me" massage from robotri then

10: Add ri toR
11: Stop movement and wait
12: if not running timeout counter allreadythen
13: Start timeout counter
14: if timeout overthen
15: Rk ← GetverteciesToUpdate(G,R)
16: Gnew ← TargetsReassignment(MG,Rk)
17: if my name∈ Rk then
18: Arrange myself accordingGnew

The GetverteciesToUpdate algorithm (Algorithm 8) essentially computes all
robots that areupstreamfrom an affected robot, where upstream is taken to mean
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traversing the control-graph edges backwards, from the leader to the outmost fol-
lowers. The algorithm follows edges backward, from the initial set of robots,
adding additional affected robots as it goes. It halts when no new affected robots
can be discovered.

Robots not contained in the affected robots groupRk do not have to search
for a new target. This is because of the optimality of Dijkstra’s greedy selection
of edges in constructing the control graph. When generating the control graph
from the monitoring graph, each robot is assigned a target with the cheapest path
to the leader. Any other choice of target would lead to a path with equal or higher
costs. The only changes that take place in the monitoring graph, as a result of
failures, involve increased costs of one or more edges. Paths composed of these
edges might become more costly, so robots using these paths—and upstream of
the modified edges—should look for cheaper alternatives. Robots downstream
from the modified edges do not need to search for new targets: Since a cheaper
path to the leader did not exist for them before, there is no possibility it will now.

Algorithm 8 GetverteciesToUpdate (control graphG, robotsR)
1: Rk ← ∅
2: V ← R
3: while ∃v ∈ V do
4: Removev from V , put intoRk

5: for all ej,v, edges from robotj to v do
6: Insert vertexj to V

7: ReturnRk

The protocol above can be executed in parallel by all team-members, or us-
ing a centralized computation which will distribute the result. When executed
in parallel, care must be taken to ensure that (i) the robots begin their decision-
making in a synchronized manner (i.e., work on the same initial list of robotsR
and have the same knowledge about where the failure occurred); (ii) arrive at the
same choices in the re-computation of the control graph. Thefirst requirement
can be enforced in several ways. We chose to enforce it by introducing a timeout
mechanism: Once a robot announces that a re-computation is necessary, other ro-
bots have a certain time period in which they can add to the list. When a robot
receives a message to wait it stops all its behaviors and waits. Thus it is impos-
sible for it to lose its target at this period. The timeout ensures that all messages
sent will be sent and received by all the robots before any of the members begin
the new calculation. As for the second requirement, to prevent parallel execution
of Dijkstra’s algorithm from making different decisions, any ties are arbitrarily
broken by preferring the robot with the lower ID.

Another possible method is to assign the task of centrally computing the switch
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Algorithm 9 TargetsReassignment(control graphG, robotsR)
1: Copy vertecies and edge fromG to multi graphMG
2: for all i, vertex representing roboti inR do
3: for all vertexj ∈MG do
4: disti,j ← Calculate distance fromi to j

5: anglei,j ← Calculate angle fromi to j

6: for all vision sensork of roboti do
7: weighti,j,k ← CalculateWeight(disti,j, anglei,j, k)
8: w ← Weightweighti,j,k with the probability for monitoring’s failure

according to history
9: Add edgeei,j,w from i to j toMG

10: vleader ← the vertex representing the leader inG
11: Gnew ←ModifiedDijkstraAlgorithm(MG, vleader)
12: if no connected graphGnew existsthen
13: vleader ← LeaderSelection(MG)
14: Gnew ← ModifiedDijkstraAlgorithm(MG, vleader)
15: ReturnGnew

for the team to one robot (or an external computer). The centralized unit collects
all sent massages announcing the need for re-computation, runs the recovery al-
gorithm (Algorithm 8 and then Algorithm 9) in order to updatethe control graph,
and broadcasts the results to each team member. Each robot receiving the new
control graph starts following its target as indicated therein.

The weakness of the centralized method is its requirements of communication
bandwidth and reliability. Additional communications arerequired since, in addi-
tion to the messages informing everyone of failures (and requesting them to stop),
the centralized unit must also send the results of the computation to all robots. In
contrast, in the distributed protocol, each robot made its own calculation.

Communication reliability is also significantly important in the centralized
protocol. The centralized unit must have knowledge of all the failures that have
taken place. In the distributed system, an unreceived message may affect only the
robot that missed it, or may not affect it at all (if the messages concern a branch of
the control graph that is separate from its own). In the centralized protocol, if the
centralized unit missed a message, it will affect the entiregroup. Consequently
the whole computation of a new control graph will be affected.
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4.2 Failures as Cost Changes

The initial parameters of the sensors of each robot do not change by themselves
as a result of the failure. If the switching protocol is basedon the information in
the initial monitoring graph, the same control graph will begenerated. Thus some
type of method is needed to make a decision as to whether and how to modify the
costs in the monitoring graph, to cause the creation of a new control graph when
a switch occurs. To do this, we must first decide on the nature of the failure.

Some failures are minor and intermittent, resulting from sudden and short
changes to the environment in which the sensor operates, e.g., a temporary short-
lived lighting change, or a slight tremor of the camera due toa slip. Such failures
may not necessarily lead to a switch in the control graph.

In contrast, other failures require a more thorough treatment (i.e., switching
a control-graph). Some of these may be temporary (but for a relatively long du-
ration), such as when taking a sharp turn around an obstacle:The target may
disappear from view (blocked by the obstacle) until the turnis completed. Other
such failures are permanent, e.g., due to a catastrophic sensor malfunction.

The challenge is to tell the difference between these two types of failures at
run-time. On the one hand, if we treat any failure as permanent (modifying the
cost of the appropriate edge to infinite), then intermittentfailures may cause the
monitoring graph to quickly become unconnected, and break the formation. On
the other hand, if we are too relaxed in treating failures, then no control-graph
switching would occur, and a failure would not be treated by the system.

One possible solution is to record the occurrence of failures, and draw conclu-
sions from the frequency and duration of repeating failures. For this purpose we
keep a table, called theimpossible monitoring table. This table records the rele-
vant part of the target switching history. Intuitively, foreach roboti, with target
robot j, using sensork, the value in the〈i, j, k〉 entry indicates the likelihood of
roboti to experience difficulties in monitoring robotj using its sensork. Initially,
all entries are set to zero. Each time a roboti loses its targetj using sensork
and causes a dynamic switch, the entry for〈i, j, k〉 grows. The higher the value,
the less reliable the edge in question. The values can be normalized to produce a
probability distribution.

When running the TargetsReassignment algorithm (Algorithm 9) the infor-
mation in theimpossible monitoring tableis used to update the weight of the
edges. The higher the value in an entry, the higher the weightof the matching
edge will be set. When the value in the entry is 1, the corresponding edge re-
ceives an infinity value and it will be considered as having been removed from the
monitoring graph. The function mapping the table entries into cost adjustments
is likely domain-dependent, and is left for future work. Whenusing the entry in
a distributed switching protocol, it is important that all the robots will have the
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same values in theimpossible monitoring tablesince this parameter takes part in
updating the control graph. Difference in entry values may cause generation of
different control graphs for the team members.

The above method considers edge cost changes in the monitoring multi-graph,
and as a result, in the generated control graph. As a result, an arrangement where
the previous selected leader continues to lead the group maybecome impossible
or costly. Selecting a new robot as a leader is required in this case.

Switching a leader is a complicated and expensive task. The control graph
experiences many changes as a result of assigning a new robotas a leader. Some-
times changes demand that robots turn in place. In the real world unnecessary
turning results in significant loss of localization accuracy, and should be elim-
inated as much as possible. But when no other solution can be found leader
switching is a possible solution for fulfilling the task. Whenno possible con-
trol graph is generated by the extended Dijkstra’s algorithm (Algorithm 3) a new
leader is chosen using the leader selection algorithm (Algorithm 5) and an appro-
priate control graph is generated. Each robot checks if it has been assigned a new
target and rearranges itself accordingly. Now movement canresume.
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Chapter 5

Experiments

Our evaluation of the use of monitoring multi-graphs in coordination movement
involves several stages. We first exemplify a series of experiments on physical
robots (Sony AIBOs) demonstrating how automatically-generated, static control
graphs are used in the real-world (Section 5.1). The resultsshow that fixed non-
switching control graphs can result in diverse performancequality. Then, we
prove** (Ruti: it was: show) that the use of the dynamic switching of control
graphs solves this problem: In extensive experiments, dynamically-switching for-
mations have proven to be more robust and to out perform a fixedcontrol graph
formation (Section 5.2). Finally, we show that the monitoring rules that are pro-
duced using our technique for heterogeneous robots, given the desired forma-
tion and the robots’ sensor specification tables. This evaluation demonstrates that
sensor configurations can significantly affect formation monitoring rules (Section
5.3).

5.1 Fixed Control Graphs

A question remains as to the efficacy of the approach in real-world settings, in
which robots’ monitoring constraints are real, and the resulting monitoring rules
are actually used. To address this question, we conducted a series of experiments
according to the technique described above with formation maintenance tasks us-
ing real world robots.

The first set of experiments uses fixed control-graphs, generated from the mon-
itoring multi-graphs, to control formations of Sony AIBO ERS-7 robots. Colored
stickers that were glued to these dog look-alike robots’ rear side help to distin-
guish between them. Each of these robots has a single camera on its panning head
which can be used to detect color blobs in its≈ 120◦ view-field ([−59◦, 59◦]),
although in practical terms, the effective view-field is
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Attribute Range Cost

Distance [200, 1500] 0.4

Field of View [−35, 35] 0.5

Pan [−90,−40) 0.7

[−40, 40] 0.2

(40, 90] 0.7

Table 5.1: Sensor Specification, AIBO

([−35◦, 35◦]). Using such color identification, the robot can identify others,
when appropriately color marked. The head also contains an infra-red range
sensor which can measure distances in the[200mm, 1500mm] range, with some
uncertainty. We treat the head (camera and distance sensor)as a single logical
sensor, providing bearing to another robot (identified in the camera image, at a
computable angle to the body of the observer), and distance.The head pans90◦

left and right, and thus the maximal practical angle range for its vision, when
combined with the practical field of view of[−35◦, 35◦], is [−125◦, 125◦]. How-
ever, our experience has revealed that maintaining the pan angle in the[−40◦, 40◦]
range tends to produce better results. Based on the manufacturer’s specifications
and our experience with the robot, we generated sensor cost specifications for the
robot (Table 5.1).

To test our technique, we used it to generate control graphs for the triangular
formation specified in Figure 5.1-a, and the diamond formation in Figure 5.1-
b. Both formations are tilted. For instance, in the triangle,Gavri (the leader)
is 20 degrees to the right of Shayke, with respect to the direction of movement.
We do not expect the formations to be maintained perfectly, and some leeway in
angles and distances is built into the monitoring rules so asto account for sensor
uncertainty.

Using Table 5.1, we used our technique to produce alternative control graphs
for the formations. We discuss the triangle formation first.In the first (normal)
case, the resulting SBC formation had Gavri as the leader (seeFigure 5.1 for the
robots’ names), and the other two robots monitoring it directly (Figure 5.2-a). To
experiment with different monitoring rules, we modified thesensor specification
table such that the cost of panning in the range[50◦, 90◦] was 0.7, and infinity
anywhere else (forcing the AIBO to look sideways, with only40◦of leeway). This
case simulated a failure, for instance, where the camera panmotor got stuck.
Providing this modified input to our algorithm produced a different monitoring
graph, where Shayke monitored robot Poly, which in turn monitored robot Gavri
(Figure 5.2-b).

31



−100 −50 0 50 100 150 200 250 300
−350

−300

−250

−200

−150

−100

−50

0

 Shayke

 Gavri

Poli

(a) Ideal Triangle.

−500 −400 −300 −200 −100 0 100 200

−600

−500

−400

−300

−200

−100

0

Shayke

Poli
Ubu

Gavri

(b) Ideal Diamond.

Figure 5.1: Ideal formations in fixed control-graph experiments. Robot names are
shown.
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(a) Shayke follows leader. (b) Shayke follows Poly
(right robot).

Figure 5.2: AIBO robots executing static triangle SBC control-graphs. Note the
position of the bottom robot’s (Shayke) head.

In the diamond formation, when Gavri is the leader of the formation, in prin-
ciple, many control graphs are possible. They are all presented in Figure 5.4. In
practice, when using AIBO ERS-7, only control graphs a-f are suitable to fulfill
the task. Graphs j-l also describe possible control graphs according to the AIBO’s
specifications but they yielded very poor performance in practice since these spec-
ifications demand that at least one robot keep an angle of110◦.

We restricted the algorithm to control graphs in which the last robot, Shayke,
was the only one to select different targets. This was accomplished by tweaking its
associated cost table, i.e. in effect rendering it heterogeneous from its peers. Thus
we experimented with three control graphs: Shayke monitoring the leader (Figure
5.3-a), the right follower (Figure 5.3-b), and the left follower (Figure 5.3-c). All
of the control graphs were generated automatically.

We ran 15 trials with each of these alternative SBC formations(a total of 75
trials). In these trials, the leader was controlled manually to determine an obstacle-
free straight-line of about six meters in length. The objective was to contrast the
stability and robustness of the different control-graphs under reasonable operating
conditions.

Distance from the desired position is an important parameter for this task per-
formance, as it is a measure of the error in formation maintenance. Figure 5.5
shows the average deviation from the desired place of all of the robots participat-
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(a) Shayke follows Leader. (b) Shayke follows Poly.

(c) Shayke follows Ubu.

Figure 5.3: AIBO robots executing static diamonds SBC control-graphs. Note the
position of the bottom robot’s (Shayke) head.
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(a) (b) (c) (d) (e) (f) (g) (h)

(i) (j) (k) (l) (m) (n) (o) (p)

Figure 5.4: All possible control graphs for a group of 4 robots keeping a Diamond
formation

ing in the formations, except the leader. In the triangle formation (Figure 5.5-a)
we see that when Shayke followed the leader, the error was much smaller than in
the other case. This is construed from the fact that the deviation in the position of
the right robot (which followed the leader) was the same in both cases. However,
when Shayke on the left followed the right robot (Poli) rather than the leader, the
error in its position increased significantly. This can alsobe seen in Figure 5.6-a
as explained below.

In contrast to the triangle formation, the results of the diamond formation (Fig-
ure 5.5-b) are more tricky. Although it seems that the best formation was main-
tained when Shayke followed the leader, the opposite is true. The reason for this
is that deviation is measured as an absolute value. When Shayke monitored the
right or left robot, deviation of the three robots (except the leader) was high but
in the same direction. The received diamond was geometrically similar to the de-
sired one. But when the leader monitored, while the left and the right robots were
slightly behind the place they had to be, Shayke was too closeto the leader. As a
result the whole structure was not maintained. This can be seen clearly in 5.6-b.

Another interesting point raised by these graphs is the difference in position
errors, of the robots that had the same target throughout allthe experiments. The
deviation was supposed to remain the same since their monitoring rule did not
change. We believe the difference was the result of the effect of Shayke on
the other team’s member. Shayke’s behavior was not the same in all the exper-
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iments since its control rule changed. When Shayke lost its target it signaled the
whole group to wait while it re-acquired its target. The recovery from this waiting
process affects the formation maintenance of these robots.

Figure 5.6 provides a visual presentation of the resulting formations, as repre-
sented by the average positions of robots with respect to each other. Figure 5.6-a
shows the two triangle formations, while Figure 5.6-b displays the three diamond
formations. Each figure also plots the ideal formation for comparison. The for-
mations are shown in anX,Y coordinate system measuring millimeters. For the
purpose of comparison, the leader is positioned at(0, 0). The position of the other
robots is determined using the measured distance and angle from their targets.

Qualitatively, it can be seen that large variances exist in the quality of the
formations when maintained statically by different control graphs. In the triangle
formation, the control graph in which Shayke monitors the leader directly yielded
a much better formation maintenance than the control graph in which Shayke
monitored the leader indirectly, through another robot. However, in the diamond
case, the reverse is true. Here, two control graphs yielded good results; both of
these control-graphs monitored the leader indirectly. In contrast, the control graph
in which Shayke monitored the leader directly shows that theformation was not
maintained.

Analysis of the results displayed in Figure 5.6 is not trivial, because the angles
and distances are inter-related. For instance, a robot failing to maintain a distance
from its target, will inevitably lead to apparent deviations in its angle with respect
to the third robot. As a result several issues arise.

First we will explain the occurrence in the triangle formation. In terms of
consistency, it is clear that Poli’s (the right robot’s) relative position was not very
different in both formations, though it was slightly more behind in first case, where
Shayke, the left robot, followed the leader. This was expected, as Poli’s monitor-
ing rule did not change between the two cases. The error in theposition of Poli
was 7.7cm in the first case, and 5.3cm in the second case (whereShayke followed
Poli). Compared to the ideal length of this edge (35cm), the error in the first case
was 22.2% and in the second case the error was approximately 15.3%.

On the other hand, Shayke’s position errors were statistically significantly dif-
ferent between the two cases. A two-tails t-test (assuming different variances)
results in a null hypothesis probability of (p < 3.028× 1012). In the first case, the
difference is 6.65cm (19%). In the second case, 26cm (74.6%).

We believe that Shayke’s lagging behind was the result of itsreliance in the
second case on a target, which itself must rely on a target. Compared to the first
case (where the left robot monitored the leader directly), there would likely be
some latency in Shayke’s responses to the movements of the leader, since they
were moderated by Poli. Our choice of Dijkstra’s algorithm as the basis for the
formation generation is motivated by such latency. However, here, we forced
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Figure 5.5: Position Errors.
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Figure 5.6: Ideal and actual robot positions.
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the robot (in the second case) to look only sideways, and thusit had to find a
longer route than necessary. One conclusion is that monitoring latency can affect
a multi-robot system—in this case, a team moving in formation—even in small-
scale, prototype settings such as those described in the experiment. For instance,
the leader could have moved more slowly or communicated its movements, to
reduce the effects of latency.

However, in the diamond formation, formations in which Shayke didnot fol-
low the leader directly, performed better. We believe that this is due to the effec-
tive sensor range of the robot, which causes unreliability in color detection. In
the AIBO robot the vision’s sensor we used is combined from both a color detec-
tion camera and a distance measurement device. Two parameters have to be taken
under consideration when evaluating the costs over distances. The first is the dis-
tance measurement and the second is the color detection and identification. The
specification we defined related only to the distance detection, which is equal for
the entire200mm− 1500mm range. Blob detection quality was not included in our
specifications since we found that the detection of color blobs becomes unreliable
with distance. This made Shayke lose the leader intermittently, causing it to move
closer to the leader.

Another parameter associated with task performance in formation mainte-
nance is the number of times robots lose their targets. Here again we compared
this factor only relating to Shayke. We distinguished between two type of losses.
The first, little losses, refers to a threshold for the number of consecutive video
frames whose loss is considered normal. In our case, this threshold was set to 4,
thus up to 4 consecutive frames in which the target is not tracked are considered
normal, and are not declared a failure. The second type of loss (calledbig losses)
refers to a larger threshold (11 in our case) over consecutive frames. When this
threshold is passed, the robot activates the dynamic recovery algorithm.

Experiencing a large number of little losses or big losses indicates low per-
formance. The recorded losses in these experiments, for thetwo formations, are
presented in Figure 5.7. Results regarding the triangle formation (Figure 5.7-a)
support our previous conclusions that following the leaderyields better results
than following Poli. In the diamond formation (Figure 5.7-b) the situation is dif-
ferent. According to these results Shayke should follow therobot located at the
smallest angle (first Ubu with10◦, than the leader with20◦ and finally Poli with a
50◦ angle).

Even if these results seem to contradict our conclusions from the average ro-
bots’ positions (Figure 5.6), this is not the case. The formation was better kept
when Shayke monitored the right robot than when it monitoredthe leader. But
because of the wide angle between Shayke and Poli a little deviation from the de-
sired place caused Shayke to lose Poli. When following the leader, since the angle
needed was only10◦, even when the formation was broken, Shayke was able to
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continue sensing the leader. The conclusion is that in unpredictable environments,
e.g. when unexpected sharp turns might happen, it is very important to select a tar-
get robot whose likelihood of loss is small, even at the expense of maintaining the
correct position. Conversely, where recovery from losses issimple, monitoring
robot leading to the formation being better maintained is being preferred.

5.2 Dynamically Switching Control-Graphs

The principal lesson from the first set of experiments is thatstatic formation con-
trol graphs can lead to markedly different results, depending on a number of fac-
tors. Thus, we wanted to evaluate the ability of dynamically-switching control
graphs to compensate for such limitations, and yield betterand more robust for-
mations.

To experiment with this, we re-executed the diamond formation experiments,
contrasting a static control graph with that of the dynamically-switching control
graph, using the switching protocol described above. In both cases, the robots
began with the same control graph. In the dynamic cases, theywere allowed
to switch to a different target while in the static cases the same control graph
was generated at all times. To control and trigger such switches, we varied the
big lossthreshold determining whether a robot believed its target to be lost. A
smaller number indicates that the robot is very quick to consider its target to be
lost, and thus is a good simulation under noisy sensing conditions. A large number
indicates that the robot is willing to wait a relatively longtime before declaring it
has lost its target1. We used values of 4, 20, and 40 to simulate noisy conditions.
Each configuration was repeated 15 times, for a total of 90 trials. Unlike the
previous set of experiments, the velocity of the leader was fixed, and thus less
time for finishing the course indicates improved performance.

We focus on Shayke since it is the only robot whose target changed dynam-
ically. At the beginning we compared the deviation of the actual distance and
angles to the leader (Gavri) to the desired (distance of 69.28cm, angle of20◦).
The results are presented in Figures 5.8 and 5.9, respectively. In both figures the
Y-axis represents the error.

Although our algorithm showed no improvement in the distance measurement,
we believe that the formation was maintained better using the dynamic switching.
The reason is that while deviation in distances shows no unequivocal improve-
ment, using the dynamic switching shows great improvement in angle mainte-
nance. Table 5.2 shows the results of two-tailed t-tests (assuming unequal vari-
ance) comparing the average deviations of distances and angles in the static and

1The numbers actually denote the number of consecutive frames in which the target was not
identified
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dynamic cases.

Distances Angles

Consecutive losses = 4 0.670389076 0.008502755

Consecutive losses = 200.038246941 0.000466375

Consecutive losses = 400.869657866 0.000013119

Total 0.736290326 0.000000015

Table 5.2: Likelihood of null hypothesis, using a two-tailed t-test comparing the
average deviation from the desired distance / angle of Shayke to the leader.

The explanation detailed above can be visualized in Figure 5.10. The figure
draws the average positions of robots in the diamond formation, in the case of
static and dynamic control graphs, for each value of the threshold. The positions
are calculated by placing the leader at the (0, 0) point and using the detected
angles and distances of the robots to their leader to find there relative place. As
can be seen in the figures, the dynamic control graph yields results that are (i)
more consistent across the experimental conditions; and (ii) closer to the ideal
form of formation.

Figure 5.11 provides quantitative analysis of the same phenomenon. Here, the
Y-axis represents the error in placement of Shayke in the fixed and dynamic con-
trol graph techniques. This time the values take both distances and angles under
consideration and provide better evaluations of the formation maintenance. As
can be seen in the figure, the dynamic switching technique leads to significantly
smaller errors under all three conditions.

We examined additional performance measures. Figure 5.12 shows the time
that it took the formation to finish the course, i.e., the smaller the value the better.
The X-axis shows the different threshold settings, simulating different perception
errors. The Y-axis represents the time. The figure shows thatthe dynamically-
switching technique leads to significantly smaller durations needed to finish the
task. Repeated two-tailed t-tests (assuming unequal variance) confirm a statisti-
cally significant difference between dynamic and static techniques, under all con-
ditions, as depicted in Table 5.3.

In addition we examined the percentage of time needed to fulfill the task. First
we checked the percentage of time the whole group remained connected, i.e.,
all the team members moved as a group, derived from the leader’s movement.
In Figure 5.13 the Y-axis displays the percentage of time thegroup remained
connected, thus the larger the value the better. The figure shows two advan-
tages of the dynamic-switching approach. First, the percentage of time the team
remained connected was significantly higher than with the static control graph
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Figure 5.12: Time to complete course.

Case p-value

Consecutive losses = 4 0.0000092176

Consecutive losses = 20 0.0000001005

Consecutive losses = 40 0.0000265963

Total 0.0000000000005

Table 5.3: Likelihood of null hypothesis, t-test for duration needed to fulfill task.
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Figure 5.13: Percentage of time the group remained connected.

(Two tails t-test assuming an unknown variance shows statistical significance of
p < 2.40109 × 10−15) . Second, and perhaps more importantly, the percentage
essentially remains constant despite the significant change in the environmental
conditions. This is in contrast to the static control graph approach, whose perfor-
mance was lower, and also inconsistent across the controlled conditions.

A second benefit was revealed when we examined the percentageof time the
formation was maintained. i.e., angles and distances were within their tolerance
levels. We examined the percentage of time the formation wasmaintained by
defining "formation maintenance" in three ways: (i) distances were within their
tolerance levels (ii) distances of the angles were within their tolerance levels (iii)
both the distances of the angles and the distances were within their tolerance lev-
els. The results appear in Figures 5.14-a, 5.14-b and 5.14-c, respectively. We
defined the tolerance for angles as 10 degrees and for distances as 15cm.

According to each of these three parameters, dynamic switching is superior
to the static control graph. These results are statistically significant for almost all
factors (distance only, angle only and the intersection of distance and angle) and
values of consecutive losses before activating the switching procedure.p-values
for two-tailed t-test assuming unequal variance are presented in table 5.4

Finally we compared the number of calls to the dynamic switching procedure.
As explained previously, in all sets of these experiments the dynamic switching
procedure was activated when Shayke lost its target for a predefined number of
sequential frames. This number was set at first to 4, than to 20and finally to 40.
In the static cases we used this procedure to generate the same control graph each
time. The number of switches in the dynamic cases was statistically significantly
lower than in the static cases. Table 5.5 provides the p-values resulting from two
tailed t-tests (unequal variances) of the dynamic and static cases in each instance.
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Figure 5.14: Percentage of time formation was maintained.
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Distances Angles Distances and Angles

Consecutive losses = 4 0.1293250 0.00000290 0.0000001

Consecutive losses = 200.0006321 0.0001473 0.0000085

Consecutive losses = 400.0440063 0.0000368 0.0000039

Total 0.0000613 0.0000000 0.0000000

Table 5.4: Likelihood of null hypothesis, t-test for percentage of time formation
was maintained.

Case p-value

Consecutive losses = 4 0.0000185102

Consecutive losses = 20 0.0000000990

Consecutive losses = 40 0.0000029815

Total 0.00000000000067

Table 5.5: Likelihood of null hypothesis, t-test for the number of switches in static
Vs. dynamic cases.
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Figure 5.15: Target’s switching.
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Attribute Range Cost

Distance [0, 100] 0

(100, 800] 0.1

Field of View [−36◦, 36◦] 0.1

Pan [−5◦, 5◦] 0.1

Table 5.6: Type 2 Robot Sensor.

Attribute Range Cost

Distance [0, 310] 0.4

(310, 675] 0.7

Field of View [−30◦, 30◦] 0.2

Pan [−90◦,−5◦) 0.6

[−5◦, 5◦] 0.4

(5◦, 90◦] 0.6

Table 5.7: Type 3 Robot Sensor.

5.3 Multi-Graphs for Heterogeneous Teams

We defined four types of robots, with which we created a variety of formations.
The sensor specification for each robot appears in Tables 5.6–5.8, which follow
the same format as Table 3.1. Table 5.8 provides the data on multiple sensors.
The details are shown for the first sensor, and the rest replicate its distance and
field-of-view ranges, though at different panning values.

We experimented with different formations and different combinations of these
robots, and produced monitoring multi-graphs and resulting formation graphs. All
the graphs were produced automatically using the algorithms described above.

Figure 5.16 illustrates the formation graphs for triangular formations with
seven robots, of type 3 (Fig. 5.16-a) and type 4 (5.16-b). In the latter, given
the possibility of using a sensor at a pan angle unavailable to the first, it was
cheaper for a trailing robot to directly monitor a robot farther from it, but only
once removed from the leader), as opposed to monitoring a closer robot that is
much more removed from the leader. This shows the importanceof using individ-
ual monitoring costs as the optimal criterion, and thus the choice of the Dijkstra’
algorithm.

Figure 5.17 displays the results for a square formation witheight robots. Here
we show both homogeneous teams (Figures 5.17-a,b; all robots of the same type),
and non-homogeneous teams (Fig. 5.17-c). In the latter, therobots in positions
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Sensor Attribute Range Cost

1 Distance [0, 400] 0.1

(400, 900] 0.2

Field of View [−20◦, 20◦] 0.3

Pan [0◦, 10◦] 0.1

2–8 Distance, F.o.V Same as above

Pan◦ [−180,−170], [−82,−72]

[−36,−26], [36, 46], [72, 82] 0.1

[108, 118], [114, 124]

Table 5.8: Type 4 Robot Multiple Sensors.
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Figure 5.16: Triangular, 7 Robots.
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(c) Mixed types 1,2,3.

Figure 5.17: Square, 8 Robots.

0,2,5 are of type 1, positions 1,4,6,7 contain type 2 robots,and position 3 holds a
robot of type 3.

In a final set of experiments, we demonstrated the use of the complex stairs
formation technique with 9 robots. Figures 5.18-a,b,c showhomogeneous teams
(type 4, 1, and 3, respectively). Figure??-d depicts the result of using a mixed
team: Positions 1,4 have robots of type 1; positions 0,2,5,7hold robots of type 2;
positions 3,6 contain robots of type 3, and finally a robot of type 4 is in position
8.

These results demonstrate that the technique optimizes forindividual monitor-
ing costs, and thus considers the sensor morphologies of therobots involved. Not
all robots are created equal (at least in terms of sensors), and thus must be treated
differently when coordinating between them. The results show that use of this au-
tomated technique facilitates the creation of monitoring rules for heterogeneous
teams, where different members of the teams have different sensor morphologies.
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Figure 5.18: Stairs, 9 Robots.
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Chapter 6

Conclusions and future work

We presented a novel representation for reasoning about formation control graphs,
based on directed weighted monitoring multi-graphs. We have shown that the ap-
proach allows the use of graph-theoretic techniques, to address key open prob-
lems. In particular, we have provided novel techniques that(i) optimally ac-
count for sensor morphology and constraints in generating distributed formation-
maintenance SBC controllers; (ii) allow sensor-heterogeneous teams; and (iii) al-
low robots to dynamically switch formation control graphs for added robustness.
We have demonstrated the use of the technique in systematic experiments with
physical robots, and have shown that the use of our techniques leads to significant
improvement in both performance and robustness to environmental conditions.

Although a large body of literature exists on formation-maintenance, the area
of constructing a formation controller that optimizes the control graph based on
desired properties of robots has scarcely been discussed. In our work we initially
describe a robust solution to this problem but much is left for future work.

First we should consider additional attributes relevant todetermining the cost
of an edge, e.g. the ability to detect specific color. Our experiments together with
the manufacture’s definitions show that in the AIBO’s the quality of detecting
blob depends on its color. In our experience, if the ability of robot to identify its
target is based on color detection, then all incoming edges to a vertex with specific
colors will involve higher costs, since the difficulty may lie in the target’s color,
not in their individual sensors.

Also the movement capabilities may affect target assignment. The control
graph constructor has to suit the monitoring rule’s to the group’s movement di-
rection and the possible walking directions of each robot. For example, if a robot
cannot walk backwards it will not be able to follow a robot behind it even if it can
monitor it. The first time this target will move with the predefined group move-
ments direction, it will deviate from the desired position (which has changed), and
may even totally lose its target.
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The relative importance of the cost factors (attributes, e.g., distance, field of
view and pan), has to be estimated and evaluated. In our current work we used
∀iwi = 1 in the cost function

weight(e) =
∑

i

wi · cost(i)

. Reexamination may reveal that one parameter has less influence on the moni-
toring performance than the other. In this case, the appropriate weightwi should
receive a lower value than the others. In addition, more complicated cost func-
tions can be considered. We use the above linear function were other function
may prove better in reality.

Another key question is how to recognize which failure caused the robot to
lose its target. Sometimes inability to monitor one robot points at difficulties
monitoring other robots. Identification of the reason may help prevent more losses
in the future by avoiding the assignment of inappropriate targets. For example, in
the case where the robot sensors are stuck in a specific angle may completely
obstruct a specific target from being monitored. Not only should this target not
be chosen again but all robots placed along the current-impossible angles should
not be taken into consideration. Another example is the casewhere the camera of
a robot has lost the ability to recognize a specific color. In case all robots have
signed in, that color should not be chosen as a target of that robot.

When the cause of the failure is known the weight given in the impossible
monitoring table can be selected in a more accurate way and might be updated not
only for the robot that experiences the failure and its current target. Weight should
also be given to the history of the target reassignment process.

Evaluation of the other weights used in the algorithm is alsoan important point
to be discussed in future work. All the algorithms are based on predefined cost
definitions for each sensor and range. These costs are used toevaluate weights
of edges in the monitoring multi graph and to select the best control graph. The
more accurate the costs reflect reality, the better the selecting of a control graph
and the less the unexpected failures (which are not the result of external factors).

Finally we have to discuses the allocation of the robots according to their
properties. Our work defines a heterogeneous team of robots where each robot is
accessorized with its own sensor types and configuration. Weassume the place of
each robot is predefined and the only question is which robot will be assigned to
the best target to follow. In future work we will discuss how to best place each
robot in the formation. The place of a robot in the formation defines its distance
and angles for each of the other members. It facilitates determining the weight
of the edge in the respective control graph. In the case of a heterogeneous team,
each arrangement may lead to a different optimal control graph. The algorithm
will search for the one that generates the best control graph.

54



A significant part of the allocation issue is the selection ofthe robot best fit
to function as the leader. In addition to the monitoring the weights of the multi
graph’s edges, the ability of a robot to lead a group also has to be considered when
selecting the best possible control graph.
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