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Abstract

Robots in formations move while maintaining their relativ@sgpions in a pre-
defined geometric shape. Previous work has examined famataintenance al-
gorithms that would ensure the stability of the formatioroweéver, for each geo-
metric formation, an exponential number of stable corgrsliexists. Thus a key
guestion is how to select (construct) a formation contraliat optimizes other de-
sired properties, such as sensor usage for robustnesspapes presents a moni-
toring multi-graph framework for formation controller setion, based on sensor-
morphology considerations. We instantiate the monitormgti-graph frame-
work, and present several contributions. First, we showghaph-theoretic tech-
niques can be used to compute optimal sensing policies thatam a given for-
mation. In particular, sensor-optimal control laws foraegtion-bearing (distance-
angle) formation control can be automatically constructelcond, we present a
protocol allowing controllers to be switched on-line, téoal robots to adjust to
permanent and intermittent sensory failures. We repotuitefrom comprehen-
sive experiments using this technique with physical robdke results reveal the
efficacy of the technique in practice. In particular, we sliloat the use of the dy-
namic protocol allows formations of physical robots to mesignificantly faster
and with greater precision, while reducing the number ofrfation failures due
to sensor limitations. Finally, we demonstrate how the espntation facilitates
the selection of a formation leader according to differettial criteria, and the
control of sensor-heterogeneous robots.
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Chapter 1

| ntroduction

Making a group of robots move autonomously in formation ihallenge which
has been of significant interest in recent years. Addreghisgchallenge is im-
portant for many applications in the real world, from mifitanissions, such as
the use of autonomous vehicles for supply-chains, or dewegb robotic enter-
tainment. Various formation maintenance algorithms haenbsuggested (e.g.,
[3,4,17,11,9, 20, 19, 21, 5, 16]).

In the populatleader-reference@pproach to formation-maintenance (forma-
tion control) tasks, robots maintain their relative pagitwith respect to their
peers, according to a desired geometric shape. The algariffssign each ro-
bot with a single or multiple neighboring robotsaiget9 that it must monitor, to
maintain the given geometric shape while moving. The movemkthe group is
derived from the movement of a special target, callede¢héeer, which does not
follow any other target. Instead, the leader moves baselelotation of the goal
(or is operator-controlled). Those monitoring it autoroally move to maintain
their relative positions. Those monitoring them then reectvell, etc. The set
of assigned targets, the leader, and their associatedodlentlype are called the
control graphin [11, 9].

Previous work has examined constraints on a given contegig that would
ensure the stability of the formation. In particular, twgptar methods for such
control areSeparation-Bearing ContrdISBC), andSeparation-Separation Con-
trol (SSC) [15, 9]. In both, a single robot is chosen as the leadiredormation.
In SBC, each robot (except the leader) must maintain a giveardie (separa-
tion) and angle (bearing) with respect to an assigned tatge$SC, each robot
(excluding the leader) maintains its distance with resfetwo different targets.
It has been shown that control-graphs, which induce SSC or &@®@ollers for
each robot, and satisfy other constraints (e.g., connggtavsingle leader, etc.),
are sufficient to maintain stable formations. Both SSC and S& lheen used
in formation-control of simulated and real robots (e.g, 18, 16]).



However, for each geometric formation, an exponential nematb stable pos-
sible control graphs exists [9]. Thus a key question is hoselect (construct) a
control graph that optimizes desired properties other ghalpility. Many of these
desired properties have to do with each robot’s sensor notwgir—the type,
placement, and configuration of sensors on robot bodiesinstance, a control-
graph in which one robot must pan its camera backwards ifrelat the direction
of movement) is most likely less preferable than one in wiiiehsame robot can
monitor a target ahead of it. Unfortunately, previous woal loften ignored the
role of sensor morphology in selecting between control lggggee Section 2 for
a detailed discussion, and notable exceptions).

This paper presents a graph-theoretic framework for cbgtaph selection
based on sensor-morphology. The framework representaaliiiee sensing schemes
in amonitoring multi-graphin which directed weighted edges, denote monitoring
capabilities (sensors or communications) and their agsaticosts. By applying
graph-theoretic techniques, optimal control graphs caeffi@ently constructed.

We instantiate the monitoring multi-graph framework, amdsent two con-
tributions. First, we provide an efficient method for autoicely constructing
sensor-optimal control-graphs for SBC control. This cargton also includes
selecting the best leader for the group. Second, we pregeratacol allowing
control-graphs to be switched on-line, to enable the robmtadjust to handle
permanent and intermittent sensory failures. Finally, wsdnstrate the useful-
ness of the framework in automated construction of contraplgs for sensor-
heterogeneous robots, and in selecting leaders.

To evaluate these contributions, the monitoring multiptpgframework has
been fully implemented in simulation and with Sony AIBO rahotThe Con-
struction of a variety of control graphs, according to a dafiteam of robots, is
presented. We show the results of extensive experimentshwlemonstrates the
robustness of the formations as a result of using the mamgenulti-graphs. We
empirically show that use of the framework leads to signifiyaincreased preci-
sion, better performance, and robustness to changingoemuental conditions.

This thesis is organized as follows. Section 2 presenttetlaork and back-
ground for the formation-maintenance problem in robotesction 3 introduces
the notions of a monitoring multi-graph and control graptl describes the process
of generating the latter from the former. This section aksscdibes the importance
of leader selection. Section 4 presents a dynamic contegkgswitching algo-
rithm for recovery from formation failures. Results of cormpensive experiments
with physical robots and through simulation are presemesgkiction 5. Section 6
provides a summary and discusses possible directionswkfutork.



Chapter 2
Related Works

The literature on formation control is vast, thus we will iscthe on most rel-
evant studies. To the best of our knowledge, all previousksvon formation-
maintenance in robotics have made the assumption thatrsemdgguration matches
the control algorithms. Moreover, existing works oftenuase all robots are
homogeneous, and thus do not generate monitoring rulesatbandividually-
tailored to the sensing capabilities of different agentthiwithe formation. Our
work addresses these open issues. Additional differentthsewisting work are
discussed below.

Maintaining formation while moving requires the robots @cdte themselves
according to reference points. [2] examine three techsidoethe robot to iden-
tify its position. The first one i&Jnit-Center-Referencedhere the robots place
themselves according t8§, Y coordinates defined by the formation. The second
is Leader-Referencedhere all the robots situate themselves relative to onetrobo
who has chosen to lead the group. The last methdikighbor-Referencerhere
each robot locates itself correspondingly to one prededtiobot. Their study
compares the methods by using teams of up to four physicatlydgeneous ro-
bots. Our approach is suitable for leader-referenced aigthiner-referenced ap-
proaches.

Desai etal.[9, 12, 8] expand the neighbor-reference metnutishow that for-
mation can be maintained if each robot monitors an angle etante to another
robot, or distances to two other robots. An un-weighted rmbmgfraph describes
the monitoring from a global perspective. Desai et al. dodistuss selection
of an optimal control graph; indeed they assume omni-doeat sensing. How-
ever, they discuss switching the geometric shape definiagdimations (and
their associated control graphs) to tackle terrain changésis our framework
complements theirs.

In order to construct control graph we elaborate the notfath@® monitoring
graph introduced by Kaminka and Bowling [18].They defined itwoimg graphs,



as directed graphs where vertices denote robots, and edgesgdnonitoring ca-
pabilities. An edgéa, b) exists in the graph if robat is able to monitor (observe,
communicate with) robdt. They were able to show that certain conditions of the
structure of the monitoring graph, corresponding to mamitpconditions of the
team-members, must exist in order for the team-memberdéatidisagreements
despite uncertainty in monitoring. Our work extends the it@oimg graph in two
manners. First, we represent multiple ways in which moimtpcan be done (e.g.,
multiple sensors) as multiple edges between a pair of wsitice., we use multi-
graphs. Second, we use weights on edges to denote the robstsfor using
the monitoring device associated with the edge. We show bagsign costs to
edges in the context of formation-maintenance tasks.

Fredslund and Mataric [16] describe a general algorithnh ¢jemerates an
angle-distance monitor rule for each robot in the formatiime location of robots
in formation is determined only by the arbitrary robots’ IBdethe formation they
aim to build. The position of the robot determines which itabbas to follow and
which robot will lead the team. This work under assumed sgnsapabilities.
The monitoring rules were supplemented by communicationsobustness. Our
algorithms allow for automated selection of the leader, emkider the unique
sensor configuration of each robot.

Fierro et al. [15] analyzed the stability of SBC and SSC cdlars, and
proposed using manually-constructed control laws to alipwo three robots to
switch between alternative SSC and SBC schemes, in essairiihingg between
alternative control graphs on-line without relying on commitations. Our work
complements their results by providing (i) a method for wyati selection of al-
ternative control graphs, for an unbounded number of rolfits protocol using
communications for making synchronized control-graphigieas, in a distrib-
uted fashion.

Lemay et al. [19] and Michaud et al. [20] present a method fangifying
the cost of using the sensors to determine distance and engleeighbor. They
provide an algorithm where each robot senses its distandeaagle from the
others. It then broadcasts this information. Using thisKiedge, each robot finds
the robot to follow according to the one with the smallestiagon of angles and
distance combination to it. However, this is used only iresihg the formation
positions of all robots. In contrast, our method uses cdstimation, after the
positions have been assigned, to select the optimal tangetaich robot. Also,
we use additional sensory cost factors for the initializedtl graph **in order
to allow** (Ruti: it was: as for allowing) dynamic switchingf @ontrol graphs
on-line.

Naffin and Sukhatme [21] suggest an on-line method allowiggoap of ro-
bots to organize into formation. They designed an approaghndw a formation,
one robot at a time. Vision limitations, such as lack of caasgrointing back-
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wards, are used in determining the robots’ arrangementdarfdimation. The
order of gathering along with these limitations determine $elected robot to
lead the formation, and the placement of the other membersleWi have not
addressed the issue of how robots choose their positiohsnwvatformation, we
have developed a general method that allows heterogenebatsrto select the
best sensing scheme that maintains the formation. We hagegabvided an al-
gorithm for selecting the formation leader optimally.

Balch and Hybinette [4] apply social potential fields whicle astraction and
repulsion to position robots within their relative positin a defined formation.
This technique is robust to obstacles in the path of the solidtis is an important
challenge our approach does not yet take into account. Hawiheir technique
cannot guarantee robots will form into the desired shape.

Dudenhoeffer and Jones [13] also based their work on theiptenof social
potential fields. They deal with a large scale group of robBech robot combines
two main elements: sensors and behaviors. The sensorssigael to be able
to scan an area af20° (with expansion possibility). This enables the robot to
detect some of its team members. The behavior is composeoksi@awandering
behavior, group formation behavior above and collisiondamace at the top. This
architecture is built for a diverse set of team goals, inclgdhe examination of
surroundings. Our algorithm is designed for a specific psepaf movement in
formation. The robots **must (Ruti: it was: have) to followlgrone robot each,
rather than compute a social potential field.

Carpin and Parker [5] present a platform for the formationnteaiance prob-
lem. Their platform is based on a situated automaton in a’teaperation level
which is affected by states of the robot at the individuaklevihe group level
contains three states: following, waiting and recoverihige waiting and recov-
ering states are designed to get over dynamic obstacle ibyg/éor them to move
on. Our algorithm is managed as a situated automaton cormfmse these main
states. Recovery operation in our algorithm, performed latipg the control
graph, demands coordination between the team’s membergnsre this co-
ordination, the recovery state itself being composed frorait'wand "recover”
states.

An alternative to our work, that increases robustness,usiline global knowl-
edge and continuous communications. Parker [22] examingesded to combine
local information with global knowledge in order to carryt@mooperative tasks.
She investigated this issue in formation-maintenancelenad. As shown in her
work, adding global knowledge to the local knowledge mayrionp task per-
formance. However, since this information is very expemsind may even be
unachievable, we try to reduce the need for general knowledg

Another issue is tracking the trail of the target robot. Chiani Cervera
[6] propose using the distance and the angle from the tracieat, detected by
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sensors, to build the Bézier curve. Following these curvebklermore accurate
tracking. Our work handles the issue of which robot to trawtt aot how to track
it, thus complementing their work.

Investigations have also been conducted on formationlgyal@3], splitting
and joining formations [1, 21], obstacle avoidance withmations [4, 10] and
switching formations [11, 9]. Our study does not deal witesth issues and we
leave these questions for future research.
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Chapter 3

Cost-Optimal For mation Control
Graphs

In this chapter we begin by describing the use of monitorindfirgraphs to ana-
lytically represent various ways in which a robot may monite peers by obser-
vation or communication (Section 3.1).

We then describe how a multi-graph can be used in formatiamtenance
tasks to assist in the automatic generation of monitorifesrior robots, such that
coordinated movement is maintained. We elucidate how ouihoaes useful for
a group of heterogeneous robots (Sections 3.2).

Finally we explain the importance of the formation leadee tobot that will
lead the team in the formation-maintenance task. (Secti®n 3

3.1 Monitoring Multi-Graphsin Formation Control

We introduce the use of multi-graphs to represent the mongaapabilities of
robots in a multi-robot system. Aonitoring multi-graphis a tuple(V, E) where

V' is a set of vertices denoting robots, afids abag(sometimes called multi-set)
of weighted edge$(u, v, w)}, each linking two vertices, v € V, and having a
non-negative weighty € N. SinceF is a bag, an edge linking two vertices may
appear more than once (even with the same weight).

Edges denote monitoring capabilities. An edge, v, w > exists if robotu is
able to monitor (sense, communicate to, observe, or oteergain knowledge of
the state of) robot in some distinct fashion, e.g. through a specific sensor. The
weightw indicates the monitoring robot’s cost for using the seng@rmultiple
sensors (or methods) may exist for one robot to monitor ampthultiple edges
may exist with various costs. When a robot can monitor anpthereverse is not
always true. Thus edges are directed,<eai,v,w >€ E H#< v,u,w >€ E.
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In practice, most tasks require monitoring to be selectvmonitoring multi-
graph can be useful in such reasoning, and can allow the tolepresent moni-
toring options which it has available, and the costs invblvEhe robots can reason
about their monitoring decisions in the context of globalnmharing constraints.
The following sections will present techniques for suctsogang.

We use monitoring multi-graphs to represent the sensorglthgoes of robots
in the formation. Here, vertices (denoting robots) have ssoeaiated position
which denotes the associated robot’s position in the faonatelative to its peers.
The multi-graph is constructed such that it takes into aotdle positions of
the robots, and their (possibly heterogeneous) sensorgewafions, in terms of
range, field of view, and panning angles.

The input into the construction phase is a given formatiat thads to the
assignment of robots to places in the formation, essepaathulti-graph with no
edges. The initial pose of all robots is towards the directd the movement.
Previous work typically assumes that teams are homogenandsthus do not
address preferences of allocation of robots to places. Jihowe do not make
such an assumption (see below), we leave allocation fordwtrk.

For each robot (vertex), we add edges by considering itsosgnahich can
be used for monitoring other robots. We focus on sensorscdraprovide iden-
tification, distance, and bearing to other robots, for inséa a combination of
cameras and distance sensors. We exclude sensors that barused for mon-
itoring others, such as location (e.g., GPS), distanceslwd (e.g., odometry),
etc.

At the beginning of task each robot has information aboubtér members
of its team. The information includes each robot’s sensorpimalogy, and its
place with respect to the leader of the group. Simple calicmaeveals distances
and angles between each pair of robots. Taking into acctwsetparameters
relative to a sensor’s characteristics leads to the costvad. The cost will be
the weights of the edges.

The weight of an edge is an indication of @spectectost-of-usage: Smaller
weights indicate better lower costs, and thus greater peée for usage. This
cost can be computed based on any number of factors, howevemgpirically
found the following three factors to be useful in practicensing distance limits,
field of view limits, and panning angle (rotation of the fieldvweew with respect
to the center of the robot). We therefore focus on thesergatdhis paper. Other
factors (e.g., for modeling energy consumption, commuiundandwidth and/or
reliability, etc.) will be addressed in future work.

We assign a cost to each factor for each relevant range cévakor instance,
Table 3.1 shows an example of a set of such assignments, jqodhetical robot
(used in the simulation experiments). The first columniite) marks the sen-
sor attribute in question—distance, field of view, or pagnémgle. The second
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Attribute \ Range \Cost‘

Distance {nm) [0, 450] 0.4
(450, 600] 0.75
Field of View [—30°, 30°] 0.2

(30°,50°] | 0.4
[—50°,-30°) | 0.4
Pan [—90°,90°] | 0.6

Table 3.1: Type-1 Robot Sensor Configuration.

(a) Parn°. (b) Pan30°. (c) Panao°.

Figure 3.1: Monitoring possibilities change based on sepanning.

column (range) marks the values (ranges of values) for wieehvish to specify
costs. The costs are noted in the final column. Notice thagraévanges may
be possible for each attribute, which may differ in theirtsa® range of values.
Again recall that lower costs signify higher preferences.

Figure 3.1 shows the Type 1 robot using its single sensofffareint pan an-
gles. Each curved subregion denotes monitoring areas Widreht costs. The
two arcs differentiate distance limitations. The numbesgqdares denote other
robots. Figure 3.1-a, for instance, shows the robot parstirzgght ahead (dr°).
Square 1 shows a robot that is outside of the distance rantye ofionitoring, re-
gardless of the panning angle or the field of view. The bottigit robot (square
3) cannot be monitored given the current pan and field of vi€éhe remaining
robot (square 2) is currently within the central field of vidvigures 3.1-b,c show
all robots in the same positions, but with different panrangles for the sensor.

To compare alternative sensing possibilities, we use edgesthe monitoring
robot to the other (monitored) robots. An edge will be crddte each sensor.

14



This is done as follows.

First, we compute the area covered by a sensor, given itsdfeliew possi-
bilities, distance ranges, and pan options. For a fieldi@fyange|f,.in, fmaz),

a pan rangep,,in, Pmaz|, and a distance randé,;,, d....|, the area covered is a
curved region enclosed by the distance range, and defindtelarts at an angle
[Pmin~+ frnin, Pmaz + fmaz]- Multiple pan, field-of-view, and distance range options
give rise to multiple curved regions, which may overlap. Fstance, based on
Table 3.1, the leftmost field-of-view range covers the[a@) + —90, —30+90] =
[—140,60] degrees, the central field of view covers30 + —90,30 + 90] =
[—120, +120] degrees, etc.

Then, we find robots that are within each region. For eacheddhobots, we
create a temporary directed edge from the monitoring roBotce the positions
of vertices in the multi-graph correspond to geometric f@ss in the formation,
the distance between two robots corresponds to the lendtiedine connecting
them, and the angle between any two robots can be compugivedb the initial
pose which faces the direction of movement.

For instance, Figure 3.1 presents a robot with only one sefidwe left top
robot is outside of the distance range of the robot’s momi¢gpaccording to this
sensor. Thus there would be no edge from the monitoring rabttis left top
robot. Figures 3.1-a, and b, show multiple ways in which thgot ahead of the
monitoring robot (and slightly to the left) can be monitoredithin the central
field of view (when the pan angle is setit9 and within the left field of view (pan
angle set t®0°). Thus two temporary edges to robot would be created.

In the next step we compute the weight of each temporary edge function
of the costs of the distance, field-of-view and pan rangeslved. We use a
weighted sum function to combine cost factors into a singist walue for the
weight of the edge.

weight(e) = Zw,— - cost (i)

wherei is the sensor attribute in question (distance, field-ofvyjgan angle)w;
is the weight of the sensor attribute, angt (i) is the cost of using the sensor
attribute in the given configuration (i.e., the appropriatae entry).

Finally, all temporary edges constructed according to tmes sensor are
merged to one edge. This edge receives the weight of the eitlgehs lowest
weight from the edges that have merged. This edge is adddt: tmbnitoring
graph. As a result, a maximum of one edge per combination lwdtrtdo moni-
tor and sensor exists in the multi graph. The process of ingjlthe monitoring
multi-graph is depicted in Algorithm refalg:MultiGraphGerate

In real-world settings, robots may occlude each other. Thedast step after
initializing the monitoring multi-graph includes remowail physically occluded

15



Algorithm 1 MultiGraphGenerate()
1: Multi-graph MG « ()
2: for each robot; participates in tasko

3: Define: as vertex donates in multi-graph Mg
4:  Locatei in its place

5. for each vertex do

6. for each vertey do

7: dist; ; — Calculate distance fromto j

8: angle; ; + Calculate angle fromto j

o: for each vision sensdr of robotr; do
10: w « CalculateWeight(ist; ;, angle; ;, k)
11: if w is a finite numbethen
12: Add edgeg; ;,, from: to j to MG

13: Return Mg, directed weighted multi-graph

edges. As embodied robots occlude each other, any rolpatsitioned on an
edge between a pair of other robat® will block their view of each other. Thus
any edge§ < a,b >,< b,a >} are removed from the monitoring multi-graph.
When applying this technique with physical robots, we hawnébit useful to
consider occlusion even ifis not positioned exactly on the edges betweamd
b, to account for the size of the physical body of an occludoigpt. This step is
described in Algorithm 2.

In addition the body of a monitoring robot may block itsetirin sensing other
robots. Edges suffering from this situation also have todmaved during this
step. This issue will be handled in future work.

Algorithm 2 RemoveOcclusion(multi-grapiG)

1: for each bag of edge,; ; from vertex: to vertex; do

2. for each vertexh do

3: dist; ; — Calculate distance fromto j

4 dist; , <+ Calculate distance fromto h

5: angle; ; «+ Calculate angle fromto j
6: angle; ;, + Calculate angle fromto h
.
8
9:

if angle; ; = angle; ;, anddist; , < dist; ; then
: Remove alk; ; ., € E; ; from MG
Return Mg, directed weighted multi-graph
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The result of this process (after it is repeated for all repand all sensors)
is a weighted, directed, monitoring multi-graph where iee denote robots (in
their relative positions), and (multi-)edges represehpassible ways in which
the robots can monitor each other, given their sensors aaditinitations.

Assumptions about the similarity of robots in the group asemade during
this process of graph generation. Edges from each vertedefireed according to
a robot represented by this vertex. Each edge represerftsatioees of one sensor
keeping track of a given distance and angle. Thus the algons suitable for a
heterogeneous group of robots. Each robot may have its omsos® configu-
ration and morphology. The only condition is that robot'asa&'s details will be
predefined and known by all members of the team. (see Segtion 5

From this step forward, the algorithm manipulates only tregg and not the
robots, as shown in the following sections. The only way imotthe heterogene-
ity of the group and the sensors’ configuration find expressian the monitoring
multi graph generation. All the knowledge that is relevarthte algorithm is rep-
resented in this multi-graph.

3.2 Computing Optimal Control Laws

Now that the monitoring multi-graph is complete for a givemfhation, it can be
used to induce individual controllers for each robot, sttt if all robots maintain
the distances and angles represented by the selected ddgémmation will be
correctly maintained. In particular, we show how to use aieer of Dijkstra’s
single-source shortest paths (S3P) algorithm to cons8B€t controllers for each
robot, that guarantee optimal-cost formations.

In SBC, a robot—calledeader—is responsible for determining the overall
global path (e.g., by deferring to a human operator [14] ardigg a path planner).
Each of the other robotgdllowers is given an individually-tailored control rule,
restricting it to maintain a given distance and angle (wabpect to the direction
of movement) to itdarget—either the leader, or another follower—that in turn
monitors its own target. Separation-Bearing control (SBC$ tialies on a single
monitoring link for each robot.

We can deduce the SBC monitoring rules from the monitoringtinguaph,
by choosing edges that signify sensor choices. The edggthland angle with
respect to the initial position signify the separation ardrng, respectively. For
now, we assume that the leader position has been pre-datstitiiowever below
we show how the leader may be optimally selected). Giverghedr, a formation
graph can be maintained using SBC under the following carti

1. The out-degree of the leader robot is 0.
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2. The out-degree of every tracking robot is exactly 1 andtiigoing edge is
pointing to its target.

3. A path exists from every follower to the leader.

The first condition guarantees that the leader does not lmaweohitor anyone
to fulfill its role. The second condition guarantees thatrgwvebot (other than
the leader) has target which it can monitor for separatiahtzaring. The final
condition guarantees that the formation is connected swahall sequences of
robots monitoring others will eventually monitor the leadén other words, it
guarantees that the leader robot is indeed positioned $athttis capable of
leading, given how it is monitored.

We define a formation graph as optimal, if in addition to thedibons above,
it also guarantees that each individual robot monitors daelér, directly or in-
directly (transitively) using the minimal sensor cost. lengral, this cannot be
achieved by simply selecting the least costly edge of ealsbtiposition, since
such local selection may cause robots to form a cycle. Inrotleeds the ro-
bots monitor each other instead of the leader. Moreoveh Ewal selection does
not address a key challenge: a robot’s overall monitorirgj otothe context of a
formation also depends on its target’s monitoring cost.sThibecause a robot’s
position depends on its target, and thus shorter paths tedder reduce latency
in position update. To be precise, it may be better to momitasbot at a higher
local cost to guarantee that overall the path from the tamgte leader is shorter
and less expensive.

Fortunately, graph-theoretic algorithms have alreadynlibised to address
such challenges. In particular, we use a version of Dijks@8P algorithm (de-
scribed in [7]). However, rather than compute the shortes from a source
vertex to all others, we compute the Singlarget Shortest Path. This is easily
done by traversing edges backwards.

Another deviation from Dijkstra’s algorithm is that it mulse modified to
work in multi-graphs. In particular, its edge-selectiodipgonow must consider
multiple edges between any two vertices. It can be showrhisatioes not change
the optimality of the algorithm. Our proof relies on the omlity of Dijkstra’s
algorithm which in turn depends on a greedy step. The algoribegins with a
source vertex that donates the leader in our scenario. Eselion the algorithm
chooses the next vertex, the one with the lowest cost of tta path from the
vertex to the leader, and updates the other vertex with tvedbcost possible.
If two edges with different weights exist between the sanrtéocss the one with
lowest cost will be chosen, since this leads to a lower tatsi.dn fact we can look
at an edges’ bag as one edge with a cost equal to the minimghtvéflodifying
this step such that it considers multiple edges does notfgntitg result of this
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step. After a vertex has been selected, all of its outgoirgeedan be ignored.
According to the Dijkstra algorithm, none of them will be dga the rest of the
algorithm.

This step in which edges are selected also touches on a firdificadion of
Dijkstra’s algorithm for our purposes. In theory, any tiesiternatives (i.e., edges
lead to the same total weight) can be broken arbitrarily lyatllgorithm, since the
selection will not affect optimality. In practice, howeyeare have found it useful
to reducehops i.e. the number of edges that leads from a given robot to the
leader. The reason for this is that the more edges there d@ne ipath the more
robots it may effect. Each deviation of a robot in the path roayse deviation
for all the robots following it directly or transitively. Meover, response time
increases since it is composed of the response times oftaitson the path. A
long response time makes formation maintenance difficult.

To overcome these influences we break ties in such a manrepesfér edges
that minimize hops. This is done by introducing secondarnjoum weights on
each edge that are used to count hops to the leader. Thedetsvaig updated in
the algorithm’s iterations as the total path’s weight. lbtwertices have the same
total paths’ weight, the one with the smallest number of hejide selected. In
cases where the number of hops is also equal, the robot vetlowest ID will be
chosen.

Using the modified Dijkstra’s algorithm (Algorithm 3), a gie edge is se-
lected optimally for each robot except the leader. Thesegdgrm an SBC
control-graph to be executed by the robots, i.e., the algorinduces a control
graphg from the monitoring multi-graphMG. Because each edge is specific
to the robot in which it originates, the SBC control law of eachot is individ-
ually tailored to the monitoring capabilities of the robothis enables sensor-
heterogeneous robots as mentioned before.

3.3 Leader Selection

We have seen above, that given a leader, we can calculatesh®bmation graph
for its followers. However, it is also possible to find the tlesder for the team.
Leader selection has great influence on fulfilling the fororamaintenance task.
The leader is the one that is responsible for movement aratrditing the path
and speed. Keeping the leader alive and maintaining cowitictit is a necessary
condition for completion of the task. The important assigninof choosing a
leader should take under consideration two criteria: (& @bility of the chosen
robot to lead the group; and (ii) the ability of the group ttdw this robot. These
issues are discussed below.
As mentioned, the leader can choose its path by using a patimed, or by
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Algorithm 3 ModifiedDijkstraAlgorithm()

STATIC: dist - vector hold total weight from each vertex to teader target -
vector hold target of each vertex (robot) sensor - vectod Behsor used for each
robot monitoring its target weight - vector hold cost of @sbest sensor for each
robot monitoring its target hops - vector hold number of hfspe robot i to the
leader

1: for each vertex € Mg do
target|i] <« null

sensorli] <« null
weight[i] « null

hopsl[i] < null

S0

. Q@ < All vertices inM¢gG

: while Q # () do

u <+ Closest vertex fron®
100 Q=0 —u

11:. S=8SUu

12:  for all verticesv where bag of edges,, ,, from v to u existsdo

n

© o N TR ®

13: w «— Minimal weight of edge in&, ,

14: k < Sensor used faf, .., € E,

15: if weight[u] + w < weight[v] OR (weight[u] + w = weight[v] AND
hops[u] + 1 < hops[v] then

16: weight[v] = weight[u] + w

17: target[v] = u

18: hops[v] = hops|u] + 1

19: MG, < ExtractDijkstraGraph{1G, target, weight)
20: Return Mg, ,c.,

Algorithm 4 ExtractDijkstraGraph(multi graph\§G, targets’ vectortarget,
weights’ vectorweight)

12 MG — 0

2. Copy vertices fromMG to MG,,..,

3: for all vertex i in multi graphMg,,..,, do

4. Add edge?i,target[i],weight[i] to Mgnew

5. ReturnMgG,,..,
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control graph| Social optimal cost Individual optimal cost
Figure 3.2-b 6 7
Figure 3.2-c 10 8

Table 3.2: Social Vs Individual optimal control graphs’ tos

relying on a human operator. In any case it should be equipébdthe appro-
priate capabilities. For example, a wide view of the envinent can be useful in
finding a path where the group can pass with minimal problarok as obstacles
and turns. Stable communication is needed in order to rea@mmands from
a human operator, and to remain attentive to the team mehdtats. In cases
of a group of heterogeneous robots, choosing the robot thaigally matches
this function is very significant. However, we leave the essfichoosing the best
robot to lead the team with the above parameters for futur&.wo

The criterion we used in our work for selecting the leadehesdbility of the
other robots on the team to monitor it. Each member of the teasto be able
to directly or indirectly observe the leader. Placementefrobots relative to the
leader and their sensors determine this ability. A contrapg is defined as a
graph that contains a path from each vertex to one specifievtrat denotes the
leader. A graph for a group where vertesepresents the leader contains exactly
one outgoing edge from each vertex except veit@hich has no outgoing edge.
Thus a different control graph is needed for each selectatble

The selection of the best leader for the group depends orasikedefinition.
Two optimality criteria for control graphs are possible: nifinal social (global)
cost, or minimal cost for each robot. As in other areas of knatiot systems,
these two optimality criteria do not necessarily coincagg indeed it is possible
to construct graphs that are socially-optimal, yet theynatendividually optimal.

Figure 3.2 shows the following for a given monitoring multagh: (a) the
socially-optimal control graph (b) the individually-optal control graph (c). Dif-
ferent robots assigned as robot 4’s target in the two cogtaeghs. The total cost
of formations (b) and (c) are shown in table 3.2.

When choosing to minimize the social (global) cost of moiitpin a team,
a minimum spanning tree of the multi-graph could be used. évew we be-
lieve that this optimality criteria is inappropriate for SB@mation maintenance,
because it allows pathological cases in which the globalitong cost is min-
imized, while specific robots monitor the leader throughyvleng or expansive
paths. The movement of the leader triggers and controls thement of its fol-
lowers, and as a result, latency in their responses is aiftumot the number of
monitoring edges that exist between each one and the lead¢hair quality.

In contrast, leader selection based on individual-opiitya much more ro-
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(a) The monitoring (b) A social- (c) An individual-
multi-graph. optimal  control optimal  control
graph. graph.

Figure 3.2: Social- and individual-optimal control graphs

bust. The total weight of the path from a robot to the leadpresents the cost of
monitoring the leader. The higher the total cost, the |lebahie the monitoring
using this monitoring rule, and thus less preferable. Tine sithe evaluated total
cost for each robot is used as an estimation for the qualitigeofotal graph

We found that the best control graph for our task is the oné wiinimal
cost for each robot. In order to find the best leader, baseti@atove criteria,
we iterate through all team-members, setting each as tdedégemporarily) and
computing the resulting formation graph. If a legal cong@ph is received (con-
nected graph), we then compute the total weight of the faomajraph. Once we
have gone through all the leaders, we choose the leader famviie total weight
of all paths to the leader in the formation graph is the sretill€he Pseudo code
of the algorithm presented in Algorithm 5.

Algorithm 5 LeaderSelection(multi-graph G)
1. for each vertex in MG do
2. D, — ModifiedDijkstraAlgorithm(Mg, 7)
3: if connected grapi; existsthen
4: ¢; — EvaluateGraphWeighff;, 7)
5: Return: wherec; is minimal
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Algorithm 6 EvaluateGraphWeight(control gra@h, vertex:)

1 sum «+— 0

2: for each vertex in D, do

3 sumj <0

4. whilej #ido

5 e;kw < Find the outgoing edge from vertex |
6: sum; = sum; + w

7 7k

8.  sum = sum + sum;

9: Returnsum
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Chapter 4

Dynamic Switching of Control
Graphs

Generation of an SBC control law for each robot is done autcalbt, based
on theexpectedcost of using the robot’s sensors. However, during deployme
sensors may act differently from what is anticipated, dueatastrophic or inter-
mittent failures. For instance, a camera may get stuck inracpéar angle, or
lighting conditions may inhibit the ability to track speciftolors.

To address this issue, we propose a distributed protocolatlaws robots
to dynamically switch control-graphs while maintainingithformation (Section
4.1). This protocol assumes that new costs are assignedjés ¢oat are affected
by failures. Section 4.2 discusses the translation of pexddailures into cost
changes.

4.1 A Protocol for Control-Graph Switching

A protocol for dynamically switching control-graphs of avgin formation must
explicitly or implicitly coordinate the robots in the prag=eof switching. Uncoor-
dinated switches may result in two or more robots followiagteother, cyclically,
instead of the leader.

We present a distributed protocol for such coordinatedchwiyy. The protocol
involves several steps (Algorithm 7).

1. If a robot fails to monitor its current target it first brazsts a message to
all team-members, to let them know that a re-computatiotefgraph is
needed. During this phase, any number of robots may brotitigazrallel.

2. Each robot that receives the message halts the movennenadals it to a
local list of robotsR that require re-assignment of targets and sensors. The
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robot receiving the message no longer attempts to mairttaifiormation,
and will not report on any readjustment it wishes to make evatlthis stage
of the protocol.

3. All robots make sure that all messages have been recendegracessed.
This can be done either by having receivers acknowledgévexteommu-
nications, or in a more simplified manner (but less reliattly)having a
timeout mechanism that ensures no new messages are gdnerate

4. All robots call on Algorithm 8 to determine the s@t, of robots in the team
that are potentially affected (i.e., transitively) by a iba in the initial list
of robots’ target assignments.

5. All re-execute the ChangeTarget algorithm on the momigpmulti-graph
MG, to update the control graph. However, because only theesudis
team-member®,, is affected, decisions for other robots do not have to be
revisited.

Algorithm 7 DynamicSwitching()
1: R« 10
2. G < the current control graph
3: whiletruedo
if I lost my targethen
Stop movement and wait
Add my name tdR
Broadcast "wait for me" message to all members
Start timeout counter
if got "wait for me" massage from robgt then
10: Addr;to R

© o N TR

11: Stop movement and wait
12: if not running timeout counter allreadliyen
13: Start timeout counter

14:  if timeout overthen

15: R — GetverteciesToUpdaté(R)

16: GOnew < TargetsReassignmen(G, Ry)
17: if my names Ry then

18: Arrange myself according,,.,

The GetverteciesToUpdate algorithm (Algorithm 8) essdigticomputes all
robots that areipstreanfrom an affected robot, where upstream is taken to mean
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traversing the control-graph edges backwards, from thaelet® the outmost fol-
lowers. The algorithm follows edges backward, from theiahiset of robots,
adding additional affected robots as it goes. It halts whenew affected robots
can be discovered.

Robots not contained in the affected robots gr@pdo not have to search
for a new target. This is because of the optimality of Dijg&stigreedy selection
of edges in constructing the control graph. When generahegcontrol graph
from the monitoring graph, each robot is assigned a targittive cheapest path
to the leader. Any other choice of target would lead to a path @qual or higher
costs. The only changes that take place in the monitoringhgras a result of
failures, involve increased costs of one or more edges.sRatmposed of these
edges might become more costly, so robots using these patis-tpstream of
the modified edges—should look for cheaper alternatives. o®Botlownstream
from the modified edges do not need to search for new targéise & cheaper
path to the leader did not exist for them before, there is resipdity it will now.

Algorithm 8 GetverteciesToUpdate (control graghrobotsRk)
1. Ry« 0
22V «R
3: whiledv € V do

4.  Removev from V, put intoR,

5

6

7

for all e;,,, edges from robof to v do
Insert vertex; to V
. ReturnR,

The protocol above can be executed in parallel by all teammpees, or us-
ing a centralized computation which will distribute theuks When executed
in parallel, care must be taken to ensure that (i) the robegsnbtheir decision-
making in a synchronized manner (i.e., work on the samealrisit of robotsR
and have the same knowledge about where the failure ocgu(i¢arrive at the
same choices in the re-computation of the control graph. fifeerequirement
can be enforced in several ways. We chose to enforce it bydating a timeout
mechanism: Once a robot announces that a re-computati@céessary, other ro-
bots have a certain time period in which they can add to the When a robot
receives a message to wait it stops all its behaviors andgwakus it is impos-
sible for it to lose its target at this period. The timeoutwees that all messages
sent will be sent and received by all the robots before anh@®itembers begin
the new calculation. As for the second requirement, to prieparallel execution
of Dijkstra’s algorithm from making different decisionspyaties are arbitrarily
broken by preferring the robot with the lower ID.

Another possible method is to assign the task of centraltymding the switch

26



Algorithm 9 TargetsReassignment(control grapfrobotsik)
1. Copy vertecies and edge froghto multi graphMG
2: for all i, vertex representing roboin R do
3. for all vertexj € MG do
dist; ; — Calculate distance fromto j
angle; ; + Calculate angle fromto j
for all vision sensok of robot: do
weight,; ;, «+ CalculateWeight(ist; ;, angle; ;, k)
w «— Weightweight; ; , with the probability for monitoring’s failure
according to history
o: Add edgex; ; ,, fromito j to MG
10: vieader < the vertex representing the leadeGin
11: G,ew <— ModifiedDijkstraAlgorithm(M G, vicader)
12: if no connected grapf,.., existsthen
13:  Ueader < LeaderSelection{1G)
14:  Gew < ModifiedDijkstraAlgorithm(MG, vicader)
15: ReturngG,,c.,

© N o gk

for the team to one robot (or an external computer). The abn&d unit collects
all sent massages announcing the need for re-computatios the recovery al-
gorithm (Algorithm 8 and then Algorithm 9) in order to updaite control graph,
and broadcasts the results to each team member. Each rcbotimg the new
control graph starts following its target as indicated dr@r

The weakness of the centralized method is its requiremétsnomunication
bandwidth and reliability. Additional communications aeguired since, in addi-
tion to the messages informing everyone of failures (andesting them to stop),
the centralized unit must also send the results of the caatipatto all robots. In
contrast, in the distributed protocol, each robot madevits calculation.

Communication reliability is also significantly importamt the centralized
protocol. The centralized unit must have knowledge of @l féilures that have
taken place. In the distributed system, an unreceived rgessay affect only the
robot that missed it, or may not affect it at all (if the messsagoncern a branch of
the control graph that is separate from its own). In the edimgd protocol, if the
centralized unit missed a message, it will affect the emgmmup. Consequently
the whole computation of a new control graph will be affected
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4.2 FailuresasCost Changes

The initial parameters of the sensors of each robot do natgehy themselves
as a result of the failure. If the switching protocol is basadhe information in
the initial monitoring graph, the same control graph willgemerated. Thus some
type of method is needed to make a decision as to whether antbhoodify the
costs in the monitoring graph, to cause the creation of a mewral graph when
a switch occurs. To do this, we must first decide on the natliteedfailure.

Some failures are minor and intermittent, resulting frorddan and short
changes to the environment in which the sensor operatesadgemporary short-
lived lighting change, or a slight tremor of the camera dua $tip. Such failures
may not necessarily lead to a switch in the control graph.

In contrast, other failures require a more thorough treatnfiee., switching
a control-graph). Some of these may be temporary (but folaéively long du-
ration), such as when taking a sharp turn around an obstdtie:target may
disappear from view (blocked by the obstacle) until the isrcompleted. Other
such failures are permanent, e.g., due to a catastrophsoseralfunction.

The challenge is to tell the difference between these twedyf failures at
run-time. On the one hand, if we treat any failure as permafreadifying the
cost of the appropriate edge to infinite), then intermitfaiires may cause the
monitoring graph to quickly become unconnected, and breaKdrmation. On
the other hand, if we are too relaxed in treating failureentho control-graph
switching would occur, and a failure would not be treatedHsygystem.

One possible solution is to record the occurrence of fasluaad draw conclu-
sions from the frequency and duration of repeating failuFes this purpose we
keep a table, called thenpossible monitoring tableThis table records the rele-
vant part of the target switching history. Intuitively, feach robot, with target
robot j, using sensok, the value in thei, j, k) entry indicates the likelihood of
robot: to experience difficulties in monitoring robgusing its sensok. Initially,
all entries are set to zero. Each time a robtiises its targej using sensok
and causes a dynamic switch, the entry oy, k) grows. The higher the value,
the less reliable the edge in question. The values can beatiaad to produce a
probability distribution.

When running the TargetsReassignment algorithm (Algorithnth® infor-
mation in theimpossible monitoring tablés used to update the weight of the
edges. The higher the value in an entry, the higher the welfjtite matching
edge will be set. When the value in the entry is 1, the corredipgnedge re-
ceives an infinity value and it will be considered as havingroeemoved from the
monitoring graph. The function mapping the table entrigs gost adjustments
is likely domain-dependent, and is left for future work. Whesing the entry in
a distributed switching protocol, it is important that dletrobots will have the
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same values in thnpossible monitoring tablsince this parameter takes part in
updating the control graph. Difference in entry values mayse generation of
different control graphs for the team members.

The above method considers edge cost changes in the mogitoulti-graph,
and as a result, in the generated control graph. As a resudirangement where
the previous selected leader continues to lead the groupoe@yme impossible
or costly. Selecting a new robot as a leader is required sndhse.

Switching a leader is a complicated and expensive task. ©h&a graph
experiences many changes as a result of assigning a newa®bdeader. Some-
times changes demand that robots turn in place. In the reddlwonecessary
turning results in significant loss of localization accytaand should be elim-
inated as much as possible. But when no other solution can Wl feeader
switching is a possible solution for fulfilling the task. Whano possible con-
trol graph is generated by the extended Dijkstra’s algori{Algorithm 3) a new
leader is chosen using the leader selection algorithm {&lga 5) and an appro-
priate control graph is generated. Each robot checks ifstideen assigned a new
target and rearranges itself accordingly. Now movementesimme.
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Chapter 5

Experiments

Our evaluation of the use of monitoring multi-graphs in @boation movement
involves several stages. We first exemplify a series of eéxyats on physical
robots (Sony AIBOs) demonstrating how automatically-gatest, static control
graphs are used in the real-world (Section 5.1). The reshtis/ that fixed non-
switching control graphs can result in diverse performagaality. Then, we
prove** (Ruti: it was: show) that the use of the dynamic switchof control
graphs solves this problem: In extensive experiments, myealy-switching for-
mations have proven to be more robust and to out perform a émattol graph
formation (Section 5.2). Finally, we show that the monitgrrules that are pro-
duced using our technique for heterogeneous robots, gherdésired forma-
tion and the robots’ sensor specification tables. This ew@n demonstrates that
sensor configurations can significantly affect formatiomitaring rules (Section
5.3).

5.1 Fixed Control Graphs

A question remains as to the efficacy of the approach in realewsettings, in
which robots’ monitoring constraints are real, and the ltegumonitoring rules
are actually used. To address this question, we conductedes ®f experiments
according to the technique described above with formatiamtanance tasks us-
ing real world robots.

The first set of experiments uses fixed control-graphs, géeefrom the mon-
itoring multi-graphs, to control formations of Sony AIBO ERSebots. Colored
stickers that were glued to these dog look-alike robots' sede help to distin-
guish between them. Each of these robots has a single camésgpanning head
which can be used to detect color blobs in4ts120° view-field (—59°,59°]),
although in practical terms, the effective view-field is
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Attribute \ Range \Cost‘

Distance [200,1500] | 0.4
Field of View | [—35, 35] 0.5

Pan [—90,—40) | 0.7
[—40,40] | 0.2
(40,90] | 0.7

Table 5.1: Sensor Specification, AIBO

([—35°,35°]). Using such color identification, the robot can identifherts,
when appropriately color marked. The head also containmfia-ied range
sensor which can measure distances in|[208,,,,, 1500,,,] range, with some
uncertainty. We treat the head (camera and distance semsa@r)single logical
sensor, providing bearing to another robot (identified i ¢amera image, at a
computable angle to the body of the observer), and distafce.head pango®
left and right, and thus the maximal practical angle rangetfvision, when
combined with the practical field of view ¢-35°, 35°], is [—125°, 125°]. How-
ever, our experience has revealed that maintaining themgle & the[—40°, 40°]
range tends to produce better results. Based on the mamaigespecifications
and our experience with the robot, we generated sensorpedfisations for the
robot (Table 5.1).

To test our technique, we used it to generate control graphthé triangular
formation specified in Figure 5.1-a, and the diamond foramatn Figure 5.1-
b. Both formations are tilted. For instance, in the triangavri (the leader)
is 20 degrees to the right of Shayke, with respect to the tineof movement.
We do not expect the formations to be maintained perfeatig, some leeway in
angles and distances is built into the monitoring rules st ascount for sensor
uncertainty.

Using Table 5.1, we used our technique to produce altematwtrol graphs
for the formations. We discuss the triangle formation filstthe first (normal)
case, the resulting SBC formation had Gavri as the leaderHigeee 5.1 for the
robots’ names), and the other two robots monitoring it diye@-igure 5.2-a). To
experiment with different monitoring rules, we modified gensor specification
table such that the cost of panning in the rafig#, 90°] was 0.7, and infinity
anywhere else (forcing the AIBO to look sideways, with ofilyof leeway). This
case simulated a failure, for instance, where the cameranmdaor got stuck.
Providing this modified input to our algorithm produced deatént monitoring
graph, where Shayke monitored robot Poly, which in turn riawad robot Gavri
(Figure 5.2-b).
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Figure 5.1: Ideal formations in fixed control-graph expemnts. Robot names are
shown.
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(a) Shayke follows leader. (b) Shayke follows Poly
(right robot).

Figure 5.2: AIBO robots executing static triangle SBC cong@phs. Note the
position of the bottom robot’s (Shayke) head.

In the diamond formation, when Gauvri is the leader of the fation, in prin-
ciple, many control graphs are possible. They are all ptegen Figure 5.4. In
practice, when using AIBO ERS-7, only control graphs a-f aitable to fulfill
the task. Graphs j-l also describe possible control grapbsrding to the AIBO’s
specifications but they yielded very poor performance icfica since these spec-
ifications demand that at least one robot keep an angle0st

We restricted the algorithm to control graphs in which thst fabot, Shayke,
was the only one to select different targets. This was actishgul by tweaking its
associated cost table, i.e. in effect rendering it hetaregas from its peers. Thus
we experimented with three control graphs: Shayke momnigathie leader (Figure
5.3-a), the right follower (Figure 5.3-b), and the left tmller (Figure 5.3-c). All
of the control graphs were generated automatically.

We ran 15 trials with each of these alternative SBC format{en®tal of 75
trials). In these trials, the leader was controlled mamualtletermine an obstacle-
free straight-line of about six meters in length. The olyectvas to contrast the
stability and robustness of the different control-graphdar reasonable operating
conditions.

Distance from the desired position is an important paramnietehis task per-
formance, as it is a measure of the error in formation maareea. Figure 5.5
shows the average deviation from the desired place of alle@fabots participat-
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(a) Shayke follows Leader. (b) Shayke follows Poly.

(c) Shayke follows Ubu.

Figure 5.3: AIBO robots executing static diamonds SBC cordraphs. Note the
position of the bottom robot’s (Shayke) head.
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Figure 5.4: All possible control graphs for a group of 4 radateping a Diamond
formation

ing in the formations, except the leader. In the trianglenation (Figure 5.5-a)
we see that when Shayke followed the leader, the error wak smaller than in
the other case. This is construed from the fact that the tlemian the position of
the right robot (which followed the leader) was the same ithlbases. However,
when Shayke on the left followed the right robot (Poli) rattiean the leader, the
error in its position increased significantly. This can disoseen in Figure 5.6-a
as explained below.

In contrast to the triangle formation, the results of therbad formation (Fig-
ure 5.5-b) are more tricky. Although it seems that the besh&ion was main-
tained when Shayke followed the leader, the opposite is ffhe reason for this
is that deviation is measured as an absolute value. When 8imagkitored the
right or left robot, deviation of the three robots (excep thader) was high but
in the same direction. The received diamond was geomdyrisiahilar to the de-
sired one. But when the leader monitored, while the left aeditjht robots were
slightly behind the place they had to be, Shayke was too ttod®e leader. As a
result the whole structure was not maintained. This can ée skearly in 5.6-b.

Another interesting point raised by these graphs is themiffce in position
errors, of the robots that had the same target throughothie@bxperiments. The
deviation was supposed to remain the same since their mimgtoule did not
change. We believe the difference was the result of the teifeShayke on
the other team’s member. Shayke’s behavior was not the samikthe exper-
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iments since its control rule changed. When Shayke lostrgetat signaled the
whole group to wait while it re-acquired its target. The nesry from this waiting
process affects the formation maintenance of these robots.

Figure 5.6 provides a visual presentation of the resultimmétions, as repre-
sented by the average positions of robots with respect to eher. Figure 5.6-a
shows the two triangle formations, while Figure 5.6-b dagglthe three diamond
formations. Each figure also plots the ideal formation fonparison. The for-
mations are shown in aN, Y coordinate system measuring millimeters. For the
purpose of comparison, the leader is positioned &t). The position of the other
robots is determined using the measured distance and angidlieir targets.

Qualitatively, it can be seen that large variances exishaduality of the
formations when maintained statically by different cohg@aphs. In the triangle
formation, the control graph in which Shayke monitors treelkr directly yielded
a much better formation maintenance than the control graphhich Shayke
monitored the leader indirectly, through another robotwieeer, in the diamond
case, the reverse is true. Here, two control graphs yielded gesults; both of
these control-graphs monitored the leader indirectlyoimi@ast, the control graph
in which Shayke monitored the leader directly shows thatffdhmation was not
maintained.

Analysis of the results displayed in Figure 5.6 is not tliMeecause the angles
and distances are inter-related. For instance, a robotdd maintain a distance
from its target, will inevitably lead to apparent deviatsan its angle with respect
to the third robot. As a result several issues arise.

First we will explain the occurrence in the triangle fornoati In terms of
consistency, it is clear that Poli’s (the right robot’s)atgle position was not very
different in both formations, though it was slightly morénbed in first case, where
Shayke, the left robot, followed the leader. This was exgaichs Poli’'s monitor-
ing rule did not change between the two cases. The error ipdbiion of Poli
was 7.7cm in the first case, and 5.3cm in the second case (Bhayée followed
Poli). Compared to the ideal length of this edge (35cm), therén the first case
was 22.2% and in the second case the error was approxim&t&yol

On the other hand, Shayke’s position errors were statitisignificantly dif-
ferent between the two cases. A two-tails t-test (assumifigreint variances)
results in a null hypothesis probability of & 3.028 x 10'?). In the first case, the
difference is 6.65cm (19%). In the second case, 26¢cm (74.6%)

We believe that Shayke’s lagging behind was the result akliance in the
second case on a target, which itself must rely on a target.p@oed to the first
case (where the left robot monitored the leader directhgre would likely be
some latency in Shayke’s responses to the movements of dderlesince they
were moderated by Poli. Our choice of Dijkstra’s algorithentlae basis for the
formation generation is motivated by such latency. Howeliere, we forced
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the robot (in the second case) to look only sideways, and ithd to find a
longer route than necessary. One conclusion is that mamgt¢éatency can affect
a multi-robot system—in this case, a team moving in fornmati@ven in small-
scale, prototype settings such as those described in thegiegnt. For instance,
the leader could have moved more slowly or communicated dgements, to
reduce the effects of latency.

However, in the diamond formation, formations in which Stegid not fol-
low the leader directly, performed better. We believe thét is due to the effec-
tive sensor range of the robot, which causes unreliabititgalor detection. In
the AIBO robot the vision’s sensor we used is combined fronh laotolor detec-
tion camera and a distance measurement device. Two pararhate to be taken
under consideration when evaluating the costs over disgarnkhe first is the dis-
tance measurement and the second is the color detectiomanification. The
specification we defined related only to the distance detectvhich is equal for
the entire200,,,,,, — 1500,,,, range. Blob detection quality was not included in our
specifications since we found that the detection of colopdlmecomes unreliable
with distance. This made Shayke lose the leader interntijffexausing it to move
closer to the leader.

Another parameter associated with task performance indbom mainte-
nance is the number of times robots lose their targets. Hgamave compared
this factor only relating to Shayke. We distinguished betweavo type of losses.
The first, little losses refers to a threshold for the number of consecutive video
frames whose loss is considered normal. In our case, theslibtd was set to 4,
thus up to 4 consecutive frames in which the target is noké@are considered
normal, and are not declared a failure. The second type sf(t@dledbig losse}
refers to a larger threshold (11 in our case) over consexéitames. When this
threshold is passed, the robot activates the dynamic recalgorithm.

Experiencing a large number of little losses or big lossescates low per-
formance. The recorded losses in these experiments, fawthérmations, are
presented in Figure 5.7. Results regarding the triangle doom (Figure 5.7-a)
support our previous conclusions that following the leagletds better results
than following Poli. In the diamond formation (Figure 5.ythe situation is dif-
ferent. According to these results Shayke should followrtimt located at the
smallest angle (first Ubu with0°, than the leader witB0° and finally Poli with a
50° angle).

Even if these results seem to contradict our conclusioms tie average ro-
bots’ positions (Figure 5.6), this is not the case. The fdiomawas better kept
when Shayke monitored the right robot than when it monitdhedleader. But
because of the wide angle between Shayke and Poli a littiati@v from the de-
sired place caused Shayke to lose Poli. When following tre#eleaince the angle
needed was only0°, even when the formation was broken, Shayke was able to
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continue sensing the leader. The conclusion is that in wigtable environments,
e.g. when unexpected sharp turns might happen, it is vergritapt to select a tar-
get robot whose likelihood of loss is small, even at the egparf maintaining the
correct position. Conversely, where recovery from lossesnigple, monitoring
robot leading to the formation being better maintained iadpereferred.

5.2 Dynamically Switching Control-Graphs

The principal lesson from the first set of experiments is shatic formation con-
trol graphs can lead to markedly different results, depgmdn a number of fac-
tors. Thus, we wanted to evaluate the ability of dynamiealiytching control
graphs to compensate for such limitations, and yield betteérmore robust for-
mations.

To experiment with this, we re-executed the diamond foroma¢ixperiments,
contrasting a static control graph with that of the dynatheswitching control
graph, using the switching protocol described above. I loases, the robots
began with the same control graph. In the dynamic cases, Weeg allowed
to switch to a different target while in the static cases thme control graph
was generated at all times. To control and trigger such besticwe varied the
big lossthreshold determining whether a robot believed its targdid lost. A
smaller number indicates that the robot is very quick to mersts target to be
lost, and thus is a good simulation under noisy sensing tiondi A large number
indicates that the robot is willing to wait a relatively lotime before declaring it
has lost its target. We used values of 4, 20, and 40 to simulate noisy conditions.
Each configuration was repeated 15 times, for a total of @0stri Unlike the
previous set of experiments, the velocity of the leader weaedfiand thus less
time for finishing the course indicates improved perfornganc

We focus on Shayke since it is the only robot whose targetgdduaynam-
ically. At the beginning we compared the deviation of theuatdistance and
angles to the leader (Gauvri) to the desired (distance of88®2 angle 0f20°).
The results are presented in Figures 5.8 and 5.9, respgctimeboth figures the
Y-axis represents the error.

Although our algorithm showed no improvement in the distameasurement,
we believe that the formation was maintained better usiaglymamic switching.
The reason is that while deviation in distances shows nouiwecpl improve-
ment, using the dynamic switching shows great improvemertnigle mainte-
nance. Table 5.2 shows the results of two-tailed t-tessu(asg unequal vari-
ance) comparing the average deviations of distances ardsaimgthe static and

1The numbers actually denote the number of consecutive Bamhich the target was not
identified
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dynamic cases.

Distances Angles
Consecutive losses = 4 0.670389076| 0.008502755
Consecutive losses = 200.038246941 0.000466375
Consecutive losses = 400.869657866| 0.000013119
Total 0.736290326/ 0.000000015

Table 5.2: Likelihood of null hypothesis, using a two-tdilietest comparing the
average deviation from the desired distance / angle of Shtythe leader.

The explanation detailed above can be visualized in Figur@.5The figure
draws the average positions of robots in the diamond foonain the case of
static and dynamic control graphs, for each value of thestiolel. The positions
are calculated by placing the leader at the (0, 0) point amiguke detected
angles and distances of the robots to their leader to fine tiedative place. As
can be seen in the figures, the dynamic control graph yieklsdteethat are (i)
more consistent across the experimental conditions; andl@ser to the ideal
form of formation.

Figure 5.11 provides quantitative analysis of the same @inemon. Here, the
Y-axis represents the error in placement of Shayke in thel faxa dynamic con-
trol graph techniques. This time the values take both digtsiand angles under
consideration and provide better evaluations of the folonataintenance. As
can be seen in the figure, the dynamic switching techniquisleasignificantly
smaller errors under all three conditions.

We examined additional performance measures. Figure hd®ssthe time
that it took the formation to finish the course, i.e., the demdhe value the better.
The X-axis shows the different threshold settings, sinmdpdifferent perception
errors. The Y-axis represents the time. The figure showsthigatynamically-
switching technique leads to significantly smaller dursgimeeded to finish the
task. Repeated two-tailed t-tests (assuming unequal e&jaronfirm a statisti-
cally significant difference between dynamic and statibmégues, under all con-
ditions, as depicted in Table 5.3.

In addition we examined the percentage of time needed tdl thifitask. First
we checked the percentage of time the whole group remainedected, i.e.,
all the team members moved as a group, derived from the lsaderement.
In Figure 5.13 the Y-axis displays the percentage of timedtwmip remained
connected, thus the larger the value the better. The figuesitwo advan-
tages of the dynamic-switching approach. First, the peagenof time the team
remained connected was significantly higher than with thécstontrol graph
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’ Case \ p-value
Consecutive losses =4 0.0000092176
Consecutive losses =20 0.0000001005
Consecutive losses =40 0.0000265963
Total 0.000000000000%

Table 5.3: Likelihood of null hypothesis, t-test for duatineeded to fulfill task.
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(Two tails t-test assuming an unknown variance shows statisignificance of
p < 2.40109 x 10~'°) . Second, and perhaps more importantly, the percentage
essentially remains constant despite the significant ghanthe environmental
conditions. This is in contrast to the static control grappraach, whose perfor-
mance was lower, and also inconsistent across the comtraieditions.

A second benefit was revealed when we examined the percenitéigee the
formation was maintained. i.e., angles and distances wehewtheir tolerance
levels. We examined the percentage of time the formation maimtained by
defining "formation maintenance" in three ways: (i) distaneere within their
tolerance levels (ii) distances of the angles were with@irttolerance levels (iii)
both the distances of the angles and the distances werenthisir tolerance lev-
els. The results appear in Figures 5.14-a, 5.14-b and 5.idspectively. We
defined the tolerance for angles as 10 degrees and for destaiscl5¢cm.

According to each of these three parameters, dynamic swidl superior
to the static control graph. These results are statisyisadinificant for almost all
factors (distance only, angle only and the intersectionisthdce and angle) and
values of consecutive losses before activating the switchrocedure p-values
for two-tailed t-test assuming unequal variance are ptesgdn table 5.4

Finally we compared the number of calls to the dynamic switglprocedure.
As explained previously, in all sets of these experimengsdynamic switching
procedure was activated when Shayke lost its target for defireed number of
sequential frames. This number was set at first to 4, than smaCinally to 40.
In the static cases we used this procedure to generate tleecgartmol graph each
time. The number of switches in the dynamic cases was statigtsignificantly
lower than in the static cases. Table 5.5 provides the pegalesulting from two
tailed t-tests (unequal variances) of the dynamic andcstases in each instance.
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Distances| Angles Distances and Angle#
Consecutive losses =4 0.1293250| 0.00000290 0.0000001
Consecutive losses = 200.0006321| 0.0001473 0.0000085
Consecutive losses = 400.0440063| 0.0000368 0.0000039
Total 0.0000613| 0.0000000 0.0000000

Table 5.4: Likelihood of null hypothesis, t-test for pertage of time formation

was maintained.

] Case

p-value

Consecutive losses =4 0.0000185102

Consecutive losses = 2

0 0.0000000990

Consecutive losses = 4

0 0.0000029815

Total

0.00000000000067

Table 5.5: Likelihood of null hypothesis, t-test for the rugen of switches in static

Vs. dynamic cases.
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Attribute \

Range \ Cost ‘

Distance [0, 100] 0
(100,800] | 0.1

Field of View | [-36°,36°] | 0.1
Pan [—5°,5°] 0.1

Table 5.6: Type 2 Robot Sensor.

’ Attribute \ Range \ Cost‘
Distance [0, 310] 0.4
(310,675] | 0.7
Field of View | [—30°,30°] | 0.2
Pan [90°,—5°) | 0.6
[—5°,5°] 0.4
(5°,90°] 0.6

Table 5.7: Type 3 Robot Sensor.

5.3 Multi-Graphsfor Heterogeneous Teams

We defined four types of robots, with which we created a warétformations.
The sensor specification for each robot appears in Table$ B6which follow
the same format as Table 3.1. Table 5.8 provides the data ttiplawsensors.
The details are shown for the first sensor, and the rest egplits distance and
field-of-view ranges, though at different panning values.

We experimented with different formations and differentimnations of these
robots, and produced monitoring multi-graphs and regyifinmation graphs. All
the graphs were produced automatically using the algosttiescribed above.

Figure 5.16 illustrates the formation graphs for triangdt@mations with
seven robots, of type 3 (Fig. 5.16-a) and type 4 (5.16-b). hinlatter, given
the possibility of using a sensor at a pan angle unavailabkbe first, it was
cheaper for a trailing robot to directly monitor a robot et from it, but only
once removed from the leader), as opposed to monitoring secimbot that is
much more removed from the leader. This shows the importahesing individ-
ual monitoring costs as the optimal criterion, and thus th@cee of the Dijkstra’
algorithm.

Figure 5.17 displays the results for a square formation aight robots. Here
we show both homogeneous teams (Figures 5.17-a,b; allsolbtte same type),
and non-homogeneous teams (Fig. 5.17-c). In the latteroibats in positions
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’ Sensor‘ Attribute ‘ Range ‘ Cost‘

1 Distance [0, 400] 0.1
(400, 900] 0.2
Field of View [—20°, 20°] 0.3
Pan [0°,10°] 0.1
2-8 | Distance, F.0.V Same as above
Par? [—180, —170], [—82, —72]
[—36, —26], [36,46],[72,82] | 0.1
[108, 118],[114, 124]

Table 5.8: Type 4 Robot Multiple Sensors.

(a) All type 3. (b) All type 4.

Figure 5.16: Triangular, 7 Robots.
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(a) All type 1. (b) All type 3. (c) Mixed types 1,2,3.

Figure 5.17: Square, 8 Robots.

0,2,5 are of type 1, positions 1,4,6,7 contain type 2 rolaoid, position 3 holds a
robot of type 3.

In a final set of experiments, we demonstrated the use of thplex stairs
formation technique with 9 robots. Figures 5.18-a,b,c shomogeneous teams
(type 4, 1, and 3, respectively). FiguP@-d depicts the result of using a mixed
team: Positions 1,4 have robots of type 1; positions 0,2)6ld@ robots of type 2;
positions 3,6 contain robots of type 3, and finally a robotypkt4 is in position
8.

These results demonstrate that the technique optimizésdwidual monitor-
ing costs, and thus considers the sensor morphologies oblioés involved. Not
all robots are created equal (at least in terms of sensard thas must be treated
differently when coordinating between them. The resultsistinat use of this au-
tomated technique facilitates the creation of monitorinigs for heterogeneous
teams, where different members of the teams have diffeegrstos morphologies.
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Figure 5.18: Stairs, 9 Robots.
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Chapter 6

Conclusions and future work

We presented a novel representation for reasoning abounatan control graphs,
based on directed weighted monitoring multi-graphs. Weelsdnown that the ap-
proach allows the use of graph-theoretic techniques, toeaddkey open prob-
lems. In particular, we have provided novel techniques (habptimally ac-
count for sensor morphology and constraints in generatistglolited formation-
maintenance SBC controllers; (ii) allow sensor-heterogaag¢eams; and (iii) al-
low robots to dynamically switch formation control graples &dded robustness.
We have demonstrated the use of the technique in systemaigziaments with
physical robots, and have shown that the use of our techsiga€s to significant
improvement in both performance and robustness to envieatahconditions.

Although a large body of literature exists on formation-ntanance, the area
of constructing a formation controller that optimizes tloatcol graph based on
desired properties of robots has scarcely been discussedr Wwork we initially
describe a robust solution to this problem but much is leftditure work.

First we should consider additional attributes relevartdtermining the cost
of an edge, e.g. the ability to detect specific color. Our expents together with
the manufacture’s definitions show that in the AIBO’s the duadf detecting
blob depends on its color. In our experience, if the abilityatot to identify its
target is based on color detection, then all incoming edgas/ertex with specific
colors will involve higher costs, since the difficulty mag lin the target’s color,
not in their individual sensors.

Also the movement capabilities may affect target assiginmdime control
graph constructor has to suit the monitoring rule’s to theugis movement di-
rection and the possible walking directions of each robot.example, if a robot
cannot walk backwards it will not be able to follow a robot lehit even if it can
monitor it. The first time this target will move with the prdiohed group move-
ments direction, it will deviate from the desired positiarh{ch has changed), and
may even totally lose its target.
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The relative importance of the cost factors (attributeg,, @istance, field of
view and pan), has to be estimated and evaluated. In ourntumeak we used
V,w; = 1 in the cost function

weight(e) = Z w; - cost (i)

. Reexamination may reveal that one parameter has less iofu@nthe moni-
toring performance than the other. In this case, the apjat@veightw; should
receive a lower value than the others. In addition, more dicated cost func-
tions can be considered. We use the above linear functior atier function
may prove better in reality.

Another key question is how to recognize which failure cautbe robot to
lose its target. Sometimes inability to monitor one roboinat difficulties
monitoring other robots. Identification of the reason mayp peevent more losses
in the future by avoiding the assignment of inappropriatgets. For example, in
the case where the robot sensors are stuck in a specific amglecompletely
obstruct a specific target from being monitored. Not onlyudtidhis target not
be chosen again but all robots placed along the currentssiple angles should
not be taken into consideration. Another example is the eésze the camera of
a robot has lost the ability to recognize a specific color. deecall robots have
signed in, that color should not be chosen as a target ofdhat r

When the cause of the failure is known the weight given in thpassible
monitoring table can be selected in a more accurate way agdk imé updated not
only for the robot that experiences the failure and its aurtarget. Weight should
also be given to the history of the target reassignment geoce

Evaluation of the other weights used in the algorithm is atsanportant point
to be discussed in future work. All the algorithms are basegmdefined cost
definitions for each sensor and range. These costs are ussdlt@mte weights
of edges in the monitoring multi graph and to select the bestrol graph. The
more accurate the costs reflect reality, the better the tsgdeaf a control graph
and the less the unexpected failures (which are not thetrefsexternal factors).

Finally we have to discuses the allocation of the robots @tog to their
properties. Our work defines a heterogeneous team of robbwseveach robot is
accessorized with its own sensor types and configuratioradsfeme the place of
each robot is predefined and the only question is which roldbbe/assigned to
the best target to follow. In future work we will discuss howltest place each
robot in the formation. The place of a robot in the formati@fikes its distance
and angles for each of the other members. It facilitatesrohéténg the weight
of the edge in the respective control graph. In the case ofexdgeneous team,
each arrangement may lead to a different optimal contrglgra he algorithm
will search for the one that generates the best control graph
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A significant part of the allocation issue is the selectiorinagf robot best fit
to function as the leader. In addition to the monitoring theighits of the multi
graph’s edges, the ability of a robot to lead a group alsodbs tonsidered when
selecting the best possible control graph.
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