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Summary. In this chapter we describe how the productivity of homogeneous robots scales
with group size. Economists found that the addition of workers into a group results in their
contributing progressively less productivity; a concept called the Law of Marginal Returns. We
study groups that differ in their coordination algorithms, and note that they display increas-
ing marginal returns only until a certain group size. After this point the groups’ productivity
drops with the addition of robots. Interestingly, the group size where this phenomenon occurs
varies between groups using differing coordination methods. We define a measure of interfer-
ence that enables comparison, and find a high negative correlation between interference and
productivity within these groups. Effective coordination algorithms maintain increasing pro-
ductivity over larger groups by reducing the team’s interference levels. Using this result we are
able to examine the productivity of robotic groups in several simulated domains in thousands
of trials. We find that in theory groups should always add productivity during size scale-up,
but spatial limitations within domains cause robots to fail to achieve this ideal. We believe that
coordination methods can be developed that improve a group’s performance by minimizing in-
terference. We present our findings of composite coordination methods that provide evidence
of this claim.

1 Introduction

Teams of robots are likely to accomplish certain tasks more quickly and effectively
than single robots [9, 12, 23]. To date, only limited work has been performed on
studying how performance scales with the addition of robots to such groups. Should
one expect linear, exponential, or decreasing changes in productivity as the group
size grows? Previous work by Rybski et al. [23] demonstrated that groups of identi-
cal robots do at times demonstrate marginal decreasing returns. As such, their pro-
ductivity curves resembled logarithmic functions; the first several robots within their
group added the most productivity per robot and each additional robot added succes-
sively less. In contrast, Fontan and Matarić [26] found that robotic groups reached
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a certain group size, a point they call ”critical mass”, after which the net productiv-
ity of the group dropped. Similarly, Vaughan et al. [29] wrote that the rule of ”too
many cooks” applies to their groups and adding robots decreases performance after
a certain group size.

Economists have studied the gains in productivity within human groups. Accord-
ing to their Law of Marginal Returns, if one factor of production is increased while
the others remain constant, the overall returns will relatively decrease after a certain
point [4]. As the size of the group becomes larger, the added productivity by each
successive worker is likely to become negligible, but never negative. This classical
model contains no reference to a concept similar to a ”critical mass” group size after
which the added worker decreases the total productivity of the group.

Our research goal is to understand when the marginal returns predicted by the
economic model would be consistently realized as work by Rybski [23] found they
were, and when adding robots would decrease performance as Fontan and Vaughan
[26, 29] described. Towards this goal, we first analyze several existing group coor-
dination algorithms and empirically observe the different groups’ productivity with
the addition of robots. We observe that the different coordination techniques affect
the productivity graphs of these groups during scale up.

To determine the cause for the differences between coordination algorithms, we
define a measure of interference that facilitates comparison, and find a high negative
correlation between group interference and productivity. Effective coordination al-
gorithms maintain marginal productivity over larger groups by reducing interference
levels. Using this result we are able to examine robotic group productivity in several
simulated domains in thousands of trials. We find that groups in theory always pro-
duce marginally, but that competition over space causes robots to deviate from this
ideal.

We believe this result can aid in studying the scalability qualities of robots. First,
our interference metric is useful post-facto, for understanding the scalability quali-
ties within robotic groups. The effectiveness of a coordination method can be judged
based on its ability to minimize interference. A team’s ability to scale will be ham-
pered if interference is not kept in check. Additionally, we believe interference can
be used in an online fashion to increase the group’s productivity and scalability. We
present preliminary results of composite coordination methods that indicate that our
interference metric can be used to adapt a group’s coordination activities to the needs
of the domain. For future work, we plan to further study the use of this metric in im-
proving the scalability, and performance qualities of robotic groups.

2 Related Work

The study of robotic groups is quite important for several reasons. Certain tasks
require groups of robots. For example, a large hazardous item might require the
combined strength of several robots to physically move it. Other tasks can be ac-
complished through groups of robots more quickly and robustly. Rybski et al. [23]
demonstrated that groups of robots are likely to finish certain collection tasks faster
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than one robot. Groups of inexpensive robots are also useful in certain domains
where there is a high probability damage will be incurred by any single robot. Thus,
tasks such as mine clearing are well suited for groups of inexpensive robots. In this
work we study the scalability qualities of these type of robotic tasks, but many of our
results are likely to be useful for other categories of robotic activity as well.

We study methods for improving upon the productivity of robotic groups through
improving the coordination methods in these groups. At the logical level, various
formal frameworks for teamwork have been proposed such as the joint intentions
theory of Cohen and Levesque [5], Grosz and Kraus’ SharedPlans [11], and Joint
Intentions [14] have been presented for creating a cohesive team unit. Several practi-
cal teamwork implementations have been proposed for dynamic environments based
on these models. The GRATE* teamwork method [14] is based on creating Joint
Recipes based on the needs of a specific domain. The STEAM [28] teamwork en-
gine is based on creating a set of domain independent team rules. All of these frame-
works revolve around having the members of the group agreeing to and maintaining
a mutual beliefs among all members of the group. These beliefs are often explicitly
communicated, and team members require robust sensing and communication capa-
bilities. Finally, a behavior based approach, Alliance [20], operates through members
of a robot team using impatience and acquiescence behaviors to create teamwork.
This approach does not explicitly model teamwork and relies on using team behav-
iors within each robot to create team cohesion.

A second model of group behavior revolves around swarm group behaviors,
instead of formalized teamwork. Swarm behaviors typically involve homogeneous
groups of members with limited processing and operating ability. Often these models
are inspired from group activity of animals [17, 21]. Such approaches are typically
best suited for domains where large groups are available, the task does not require
tight cooperation between group members, and robust sensing and communication
abilities do not exist in group members. Dudek et al. [6] present a taxonomy of these
and other possible categories.

Between these extremes lies numerous possibilities. Swarms could be created
with high level reasoning and sensing abilities. These large groups could use high
level team reasoning skills. For example, Scerri et al. [25] presents a scalable ap-
proach where large teams are based on dynamically evolving subteams. This work
presents the challange of creating effective coordination methods that can scale.
Novel coordination approaches are needed in addressing this issue.

Our research goal in this work is to understand how to increase the effective-
ness of robotic groups’ coordination during scale-up. Previous work by Fontan and
Matarić [26] noted that proper coordination lies at the root of effective group be-
havior. As such, the creation of effective coordination is critical for achieving high
productivity within a group. Our first step was to study how adding robots effects the
groups’ productivity. We wished to ascertain when adding foraging homogeneous
robots hurt group performance as [26] and [29] predict they will after a certain team
size, and when these robots continuously adds to the team’s performance as Rybski
et al. found [23].
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Several coordination methods have been developed for use within the foraging
domain. This domain is formally defined as locating target items from a search region
S, and delivering them to a goal region G [10]. We began by studying this domain
because of the wealth of existing research conducted within this environment [9, 10,
19, 23, 26, 29].

The foraging domain is characterized by a limited field of operation where spatial
conflicts between group members are likely to arise. Many other robotic domains
such as waste cleanup, search and rescue, planetary exploration and area coverage
share this trait. In fact, this paper demonstrates that our foraging results were equally
applicable within a second search domain.

We first studied the interplay between the success of group’s coordination and
the corresponding productivity during group scale up. Several coordination methods
have been developed for use within the foraging domain. For the sake of simplifying
the comparison, we initially only contrasted methods that operate on homogeneous
robots, do not require prior knowledge of the domain, and do no require any commu-
nication. Arkin and Balch [1] describe a system of using repulsion schema any time a
robot projects it is in danger of colliding. It additionally adds a noise element into its
direction vector to prevent becoming stuck at a local minima. Vaughan et al. [29] de-
scribe an algorithm that uses Aggression to resolve possible collisions by pushing its
teammate(s) out of the way. They posit that possible collisions can best be resolved
by having the robots compete and having only one robot gain access to the resource
in question. A third approach, is a dynamic Bucket Brigade mechanism [19]. In this
method, a robot drops the item it is carrying when it detects another robot nearby. In
theory, the next closest robot should retrieve the recently dropped object and carry it
closer to the goal. While this last method may be effective in foraging, it is limited to
certain domains. This coordination method is not appropriate for certain tasks such
as searching. It also requires the robot to drop and retrieve its target without cost - an
assumption that is not necessarily true in domains such as toxic cleanup.

Other foraging coordination algorithms exist that require advance knowledge of
physical details of the operating domain and/or use groups of heterogeneous robots.
Examples of these algorithms include the territorial allocation method developed
by Fontan and Matarić [26] and the territorial arbitration scheme in Goldberg and
Matarić [9]. Both methods limit each foraging robot to a specific area or zone and
thus prevent collisions. Thus, these methods assume that improved performance can
be achieved by specializing the robots to operate only within portions of the field.
Another group of algorithms preassigns values so that certain robots inherently have
a greater priority to resources than others. This group of coordination methods is
similar to the Aggression method mentioned [29], but it preassigns robots to be ag-
gressive or meek. The fixed hierarchy system within Vaughan et al. [29] and the caste
arbitration algorithm in Goldberg and Matarić [9] implemented variations of this idea
on foraging robots.

Other variations of these coordination methods exist within other domains. For
example, Jäger and Nebel [12] presented an algorithm that can dynamically create
limiting areas of operation for robots in a vacuuming domain, but require the robots
to communicate locally. Within the robotic soccer domain, various groups have been
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created that rely on allocating each group member to a role. Communication is then
needed to allocate and reallocate these roles. One example of this idea is within
Marsella et. al. [18].

Because the first group of algorithms require no communication, they seem more
suitable to scale to larger groups of robots. As they do not require prior knowledge
of the domain, they seem better suited for working with unknown or dynamic en-
vironments. More generally, a survey work done by Kraus [16] presented various
multi-agent coordination schemes and states that those requiring large overheads are
typically unable to scale beyond small groups. Similarly, Jones and Mataric [15]
point out that minimal robots, or those with low requirements for communication
or sensor input from teammates are more suited to scale to large swarms of robots.
Minimalistic methods have been used in collection tasks [10] and formation control
[8].

To date, only limited work exists on improving robot group scalability. The work
by Fontan and Matarić [26] found that groups of 3 robots performed best within their
foraging domain. Adding more robots only hurt performance when using their ter-
ritorial coordination method. Jäger and Nebel [13] presented a collision avoidance
technique for use in trajectory planning among robot groups that requires local com-
munication. They noted that their coordination method will not scale beyond groups
of 4 robots. Rybski et al. [23] found increasing marginal productivity up to groups
of 5 foraging robots, but did not study larger sizes.

Within the general agent community, Shehory et al. [27] presented a scalable
algorithm for a package delivery domain suitable for groups of thousands of agents.
He based his algorithm on concepts borrowed from physics. Later work by Sander et
al. [24] studied how computational geometry techniques could be applied to groups
in the same domain. Both found that group productivity did scale marginally with the
addition of agents and that a point existed where adding agents did not significantly
improve the productivity of their system. Their agents did not compete over physical
space, and they never found that adding agents hurt group performance. Specific to
the search domain, work by Felner et al. [7] studied the scalability qualities of their
PHA* algorithm, and found that their algorithm yields marginally better results with
the addition of agents. Our research goal is to understand when robotic teams would
similarly scale.

The Law of Marginal Returns, also often called the Law of Diminishing Returns,
is well entrenched as a central theory within economics. Most economic domains
have spatial limitations and other finite production resources. These limiting factors
cause the groups’ performance to typically increase marginally with the addition of
labor. Brue [4] demonstrated that economists from the Enlightenment Period until
modern times often did not provide empirical evidence for their theories. He con-
cluded, ”more empirical investigation is needed on whether this law is operational”
within new domains, and ”conjectures by 19th century economists about input and
outputs ... simply won’t do!” The first goal of this paper was to provide this robust
study for robotic groups.
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3 Comparing Group Coordination Methods

In this section we present our initial study of scalability within groups of forag-
ing robots. In order to minimize the factors involved in this experiment, we limited
our study to groups of homogeneous robots without communication where only the
coordination methods differed between groups. We were surprised to find that the
coordination method strongly impacted the scalability qualities of the group. While
every group demonstrated diminishing positive marginal gains up to a certain group
size, the shape of this graph varied greatly between groups.

3.1 Initial Experiment Setup

We implemented a total of eight coordination methods for use on foraging robots.
The Noise, Bucket Brigade and Aggression methods were based on previously pub-
lished methods described in the previous section. Our implementation for the Noise
team was included as the default team in the Teambots distribution [3]. The Bucket
Brigade coordination behavior was initiated once a robot detected a teammate within
2 robot radii. Then, these robots would drop the target being carried, move backwards
for 25 cycles, and finally revert to the random walk behavior. The Aggression group
was based on the random function of aggressive behaviors described in Vaughan et
al. [29]. For every cycle a robot found themselves within 2 robot radii of a teammate,
it selected either an aggressive or timid behavior. In order to decide, we had each
robot choose a random number between 1 and 100. If the random number was lower
than fifty, it became timid and back away for 100 cycles. Otherwise it proceeded
forward, mimicking the aggressive behavior. As all robots within two radii choose
whether to continue being aggressive every cycle, one or both of the robots assumed
the timid behavior before a collision occurred.

Our remaining five methods were based on variations of existing methods. Sim-
ilar to the Aggression group, the Repel Fix group backtracked for 100 cycles but
mutually repelled like the Noise group. The Repel Rand group moved backwards
for a random interval uniform over 1 – 200 and also mutually repelled. The Gothru
and Stuck groups both removed all coordination behaviors. The Gothru group was
allowed to ignore all obstacles, and as such spent no time engaged in coordination
behaviors. This ”robot” could only exist in simulation as it simply passes through
obstacles such as other robots. However, this group was still not allowed to exit the
boundaries of the field. We used this group to benchmark ideal performance with-
out productivity lost because of teammates. At the other extreme, the Stuck group
also contained no coordination behaviors but simulated a real robot. As such, this
group was likely to become stuck when another robot blocked its path. Like the
Stuck group, the Timeout group contained no repulsion vector to prevent collisions.
However, these robots did add noise to the direction vector after a certain threshold
had been exceeded where their position did not significantly change. The Timeout
group moved with a random walk for 150 cycles once these robots did not signifi-
cantly move for 100 cycles. If the timeout threshold was set too low, the robot may
consider itself inactive while approaching a target or its home base. However, if this



A Study of Scalability Properties in Robotic Teams 33

value was set too high, it did not successfully resolve possible collisions in a timely
fashion. We experimented with various values until we found that this combination
seemed to work well.

We used a well-tested robotic simulator, Teambots [3], to collect data on groups
of these foraging robots. We strongly preferred using a simulator as it allowed us
the ability to perform thousands of trials of various team sizes and compositions.
The sheer volume of this data allowed us to make statistical conclusions that would
be hard to duplicate with manually setup trials of physical robots. Using a simulator
also allows us to research behaviors, such as Gothru’s, that cannot exist with physical
robots.

In this experiment, Teambots [3] simulated the activity of groups of Nomad N150
robots. The field measured approximately 5 by 5 meters. Our implementation of
foraging followed Balch’s [2] multi-foraging task in which the robots attempt to
retrieve two or more types of objects. There were a total of 40 such target pucks,
20 of which where stationary within the search area, and 20 moved randomly. Each
trial measured how many pucks were delivered by groups of 1 – 30 robots within
9 minutes. For statistical significance, we averaged the results of 100 trials with the
robots being placed at random initial positions for each run. Thus, this experiment
simulated a total of 24,000 trials of 9 minute intervals.

The simulated robots we studied were based on the same behaviors. The only
software differences between the robots lay within their implementation of the pre-
viously described teamwork coordination behaviors. Each robot had three common
behaviors: wander, acquire, and deliver. In the wander phase, the robots originated
from a random initial position, and proceeded in a random walk until they detected
a resource targeted for collection. This triggered the acquire behavior. While per-
forming this second behavior, the robots prepared to collect the puck by slowing
down and opening up their grippers to take the item. Assuming they successfully
took hold of the object, the deliver behavior was triggered. At times the puck moved,
or was moved by another robot, before the robot was able to take it. Once this tar-
get resource moved out of sensor range, the robot reverted once again to the wander
behavior. The deliver behavior consisted of taking the target resource to the goal
location which was in the center of the field.

3.2 Initial Results

Figure 1 graphically represents the results from this experiment. Our X-axis repre-
sents the various group sizes ranging from 1 to 30 robots. The Y-axis depicts the
corresponding average number of pucks the group collected over its 100 trials.

According to the economic Law of Marginal Returns, marginal returns will be
achieved when one or more items of production are held in fixed supply while the
quantity of homogeneous labor increases. In this domain, the fixed number of pucks
acted as this limiting factor of production. Consequently, one would expect to find
production graphs consistent with marginal returns. However, only the Gothru group
demonstrated this quality over the full range of group sizes. All other groups con-
tained a critical point (CP1) where maximal productivity was reached. After the
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Fig. 1. Comparing Foraging Productivity Results during Group Size Scale-Up

group size exceeded this point, productivity often dropped precipitously. Eventu-
ally, the groups reached a level (CP2) where the addition of more robots ceased to
significantly negatively effect the groups’ performance.

With the exception of the Aggression, Repel Fix, and Repel Rand groups, all
groups’ productivity graphs differed significantly. For example, the Stuck group
reached its CP1 point with an average of only 20.94 pucks collected with groups
of 3 robots. The Aggression group reached a maximum of 30.84 pucks collected in
groups of 10 robots. Even among equally sized groups, the differences were large.
When comparing foraging groups of 10 robots, the Stuck group gathered only 8.58
pucks - far fewer than Gothru’s 35.62 pucks, while the Aggression group collected
30.52 pucks, only 5.2 fewer than Gothru. Large differences between the level of CP2
also existed between groups. Notice how the Bucket Brigade group maintained a
CP2 level near 12 pucks, while the Stuck and Noise group’s CP2 level was near 4
pucks. The Bucket Brigade mechanism was more effective even in large group sizes.

Our resulting research was motivated by these results. The Gothru group was
the only group capable of realizing marginal gains throughout the entire range of
30 robots. However, many groups demonstrated the positive quality of maintaining
increasing productivity over a larger range of robots. For example, the Noise group
only kept marginal gains until groups of seven robots, while the Aggression group
kept this quality through groups of 10 robots. We also found that the positive qualities
of improved performance and maintaining marginal performance over larger groups
are not always synonymous. The Noise group kept positive marginal performance
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over a smaller range than the Aggression group, yet performed better in groups sized
seven or less. A closer look at the various coordination models was needed to draw
lessons about how to create groups with both properties.

4 Why does Performance Drop?

We needed a mechanism for understanding why certain coordination methods were
more effective than others during size scale-up. We posited that differences among
robotic groups were often sparked from clashes in spatial constraints. Specific to
foraging, conflicts arose over which robot in the group had the right to go to the home
base first. As the group size grew, this problem became more common. This caused
the groups to deviate from the ideal marginal productivity, depicted by the Gothru
group, by greater amounts. The length of time robots clashed with their teammates
because of joint resources, such as the home base location, served as the basis in
comparing coordination models within any domain.

Previous work by Goldberg and Matarić [9] found a connection between the
level of interference a group demonstrated and its corresponding performance. They
defined interference as the length of time robots collide, and we began by using this
definition to equate between our coordination algorithms. This measure sufficed for
some robots, such as those simulated by the Stuck group, because they did not engage
in any other coordination behaviors. However, this metric of interference could not
explain the differences between all groups. Many robots, such as those simulated by
the Aggression group, never collided. If one takes the position that only collisions
constitute interference within robotic groups, these robots do not interfere. Yet we
clearly observed how the addition of robots detracted from the groups’ productivity
after its maximal productivity point.

In this section we present our measure of interference. We describe scale up ex-
periments in foraging and search domains that are characterized by resources that
lend themselves to group conflicts. We find that interference and productivity are
strongly negatively correlated in such domains, and use this metric to explain dif-
ferences in productivity between all teams. We posit that in the absence of spatial
conflicts, all teams should consistently demonstrate marginal gains during scale up.
We confirm this idea by easing the ”space crunch” in our domains and notice how
all groups consistently demonstrate marginal returns. We conclude that any domain
with group spatial conflicts will suffer from deviations in marginal performance once
the causes of interference cannot be resolved.

4.1 Interference: Measure of Coordination

We define interference as the length of time an agent is involved with, either phys-
ically or computationally, projected collisions, real or imaginary, from other robots
and obstacles. This period of involvement often extends well beyond the actual col-
lision between two robots. Any time spent before a supposed collision in replanning
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and avoidance activities must also be recorded. Similarly, all post-collision resolu-
tion activity must be included as well. Thus, according to our definition, the Gothru
group has zero interference because it never engages in any interference resolution
behaviors and represents idealized group performance. The Aggression group en-
gages in interference resolution behaviors before a collision ever happens. Its vari-
ous timid and aggressive behaviors to avoid collisions all constitute interference by
our definition. The Bucket Brigade group demonstrates that interference can exist
after a collision is prevented. For this group, one needs to measure the productivity
lost by handing off the resource from one robot to the next. Many times this group
lost productivity during this process because the second robot never properly took
the dropped target. Only this measure takes into the account the total interference
resolution process.

According to our hypothesis, we expected to see a negative correlation between
levels of interference and productivity in three respects. We reasoned that the degree
to which a group deviates from the idealized marginal gains is proportional to the
amount of average interference within the group. This can impact where the group
hits maximal performance. Those groups which reached CP1 with a small number
of robots spiked high levels of interference much faster than those where this point
was delayed. Second, even before groups hit their maximum productivity point, we
hypothesized that the more productive groups have lower levels of interference than
their peers. Finally, we expected that differences in where the productivity of the
groups eventually plateau can be attributed to the group’s saturation level of interfer-
ence. Those robots that more effectively deal with interference even in large groups
will have CP2 values at higher levels.

In order to confirm this hypothesis, we reran our eight foraging groups and logged
their interference levels according to our definition. The Gothru group never regis-
tered any interference. For all remaining groups, we used the simulator to measure
the number of cycles the robots in the groups collided. For all groups other than
the Stuck and Gothru groups, we additionally measured the number of cycles the
robots triggered interference resolution behaviors when they were not colliding. In
the Noise and repulsion groups, this represented the number of cycles spent in re-
pelling activities. In the Aggression group, it was the number of cycles spent in timid
and aggressive behaviors. In the Timeout group, this was the cycles spent trying to
resolve a collision once the robot timed out. In the Bucket Brigade group, inter-
nal behaviors alone did not suffice to measure interference by our definition. We
only recorded cycles spent when the robots came close to another and consequently
dropped the resource they were carrying. However, we could not measure the time
lost when the second robot did not effectively take that resource as we did not have
omnipotent knowledge of such events. As a result, our measurement for interference
for this group did not necessarily represent an exact measurement, but an underesti-
mate.

Figure 2 represents the result from this trial. The X-axis once again represents
the group size, and the Y-axis represents the average number of interference cycles
that each robot within the group registered over the 100 trials.
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Fig. 2. Interference Levels in Foraging Domain

We found that CP1 typically occurred for all groups when the average inter-
ference level within each robot of the group reached a level between 1500 and 2500
cycles. The longer the group was able to maintain classically diminishing returns, the
more cycles of interference were needed to cause the critical point. This is because
CP1 will only be reached once the productivity lost due to interference is larger than
the total marginal productivity of the group. Before this point, the total production of
the group increases, albeit marginally. For example, the Stuck group, which reached
its critical point with only four robots, needed closer to only 1500 cycles to cause
this critical point. The Aggression group hit CP1 with 10 robots, and consequently
needed approximately 2200 cycles to counter the productivity of more robots.

Even when viewing the differences between productivity among equally sized
groups, interference differences were significant. We found a very strong average
negative correlation of -0.94 between the groups’ performance and their interfer-
ence level over the entire range of 1 to 30 robots. For example, the Noise group most
closely followed the idealized Gothru productivity graph for groups up until 7 robots,
and registered significantly less interference than the other groups. This interference
resolution mechanism had little overhead, and needed fewer cycles to resolve a pos-
sible collision. However, this method didn’t scale well beyond this point. When the
group size became larger than seven, its interference levels grew exponentially and
the group’s performance quickly decayed. In contrast, the Aggression and other re-
pelling groups had significant levels of interference from the onset, but interference
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levels only grew linearly with respect to the group size. As a result, this group proved
more effective with larger group sizes.

We also found that the eventual performance plateau (CP2) was strongly cor-
related with interference. Some groups leveled off at significantly smaller interfer-
ence levels than other groups. For example, even in group sizes above 20 robots, the
Bucket Brigade group registered an average interference level of 400 fewer cycles
less than the Stuck group. Consequently, it collected on average over 5 pucks more
than this group at this level.

As one would expect, most groups performed equally well with one robot, as
coordination behaviors should only be triggered in groups of two robots or more.
The one exception was the Timeout group which collected on average 8.7 pucks with
one robot, or about 2 pucks fewer than the other groups. As we defined interference
as the time spend on resolving collisions, or even perceived collisions, such a result
is quite plausible. At times these robots timed out while slowing down to pick up a
puck or avoid an obstacle even by themselves. As we defined such internal reasoning
as interference, these robots interfered with themselves in the amount of about 1000
average cycles per trial.

Two of our groups have slight underestimates for interference; however, this did
not change our overall results. As previously mentioned, the Bucket Brigade group
interfered if a second robot did not successfully receive the resource handed off to
it. We found that this did occur at times when there were relatively small groups
of these robots. Thus, the correlation between their productivity and that of other
groups’ among groups of 2–6 robots dropped to -0.80. By discounting this range, the
average overall correlation reached almost -0.97. However, after 6 robots we found
that there were enough robots in the area to ensure a second robot would quickly
take the resource, and the amount of this underestimate was less significant. The
Noise group also registered an underestimate for interference. These robots actually
used two repulsion fields for collision resolution. They triggered a strong repulsion
field when they sensed another robot or obstacle 0.1 meters away. We only measured
the number of times this repulsion field was triggered. However, a second, much
weaker repulsion field was triggered from 1.5 meters away. In this instance, our
underestimate did not seem to significantly statistically detract from our results. With
or without the data from this group, the average correlation between groups was
-0.94.

4.2 Competing over Spatial Resources

We proceeded to study if our results were limited to foraging or were a general phe-
nomenon seen when robotic groups are faced with restriction production resources.
We created a new spatially limited search domain where the task goal was to find
the exit out of the room as quickly as possible. We placed groups of robots within a
room of 1.5 by 1.5 meters with one exit 0.6 meters wide. We reasoned a critical pro-
ductivity point would once again form in this domain. Too few robots would result in
a long search time until the exit was found. However, too many robots would cause
interference as the exit was only physically wide enough for one robot.
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Fig. 3. Search Time and Interference Measurements during Group Size Scale-Up
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We ran simulated trials of seven of our eight foraging groups ranging in sizes
from 1 - 23 robots (the room holds 23 robots) and averaged the results from 100 trials
for statistical significance. We omitted the Bucket Brigade group as this coordination
method was not relevant to this domain. We then measured the length of time it took
the first robot from each group to completely exit the room. We ended the trial at that
point and recorded the time elapsed. Thus, this experiment constitutes over 16,000
trials of variable length.

Figure 3 presents our productivity graphs and corresponding interference levels
from this experiment. The X-axis in both graphs depict the size of our groups. In the
upper section, we flipped the Y-axis to represent the search t ime of zero as the highest
point. As in our foraging graphs, we represent better performance as higher values
in this graph. In the lower graph the Y-axis represents our average measurement of
interference per robot in the group.

We found that the time to complete the search task was strongly negatively corre-
lated in our new domain as well. We observed that with the exception of the Gothru
group, all groups ceased to demonstrate marginal returns at some point. In the Repel
Fix group this point occurred with only 5 robots, while the Noise group reached this
point with 10. The Noise group had the lowest level of interference through groups
of 13 robots, and was able to most closely approximate Gothru’s performance un-
til this group size. After this point the Timeout group fared the best. We found that
certain interference resolution mechanisms work best in specific domains. While the
repulsion methods were quite effective in foraging, the interference levels in these
groups grew exponentially in this domain. Overall, the average statistical correla-
tion for groups of 1-23 robots between the time elapsed to exit the room and their
corresponding interference level was -0.94.

4.3 Easing Spatial Restrictions

According to our hypothesis, deviations of productivity in robot groups are strongly
correlated with interference. Once our foraging and search groups ceased to effec-
tively resolve interference they reached their critical group sizes. Adding more robots
only hurt the groups’ performance. We posit that the physical space limitations ex-
istent within many robotic groups often cause this interference. The one home base
area within the foraging domain and the one exit within the search domain create a
competition over space between robots that cannot always be properly resolved.

We were able to confirm that our robotic groups always demonstrated marginal
returns once restrictions over physical space were eased. We changed the foraging
group requirement of returning the pucks to one centralized home base location.
Instead, they were allowed to consider the pucks to be in the home base immediately.
With the exception of the Bucket Brigade group, we reused all 8 previously studied
foraging groups. Once again, we omitted this method because it was not applicable
to our new domain. We left all other environmental factors such as the number of
trials, the size and shape of the field and the targets to be delivered identical. Thus,
Teambots [3] simulated 21,000 trials of 9 minute intervals in this experiment.
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Fig. 4. Productivity of Groups in Modified Foraging Domain during Size Scale-Up

As figure 4 shows, all groups did indeed always achieve marginal returns in the
modified foraging domain. While Gothru still performed the best, the differences be-
tween it and other groups’ coordination methods were not as pronounced. The level
of interference all groups demonstrated was also minimal, and thus not displayed.
We concluded that not every foraging domain needed to have a critical point for
productivity where marginal gains during scale up ceased.

Within the search domain, we hypothesized that limitations in the room size and
width of the exits created the large amounts of interference during scale up. In order
to ease this restriction, we doubled the size of the room to become approximately 3
by 3 meters, and widened the exit to allow free passage out of the room by more than
one robot. Once again, we measured the time elapsed (in seconds) until the first robot
left the room and averaged 100 trials for each point. This experiment also constituted
over 16,000 trials of varying lengths. Figure 5 graphically shows that our modified
domain consistently realized marginal increases in faster search times with respect to
group size. Once again, interference levels were also negligible in our new domain.
Thus, we concluded that achieving marginal productivity gains was always possible
once competition over spatial resources was removed.

5 Improved Scalability through Coordination Combination

Our next step was to apply lessons based on our understanding of the coordination
methods we studied towards creating methods with improved productivity and scal-
ability properties. In this section we present our Composite Coordination Methods.
We found that it was possible to combine methods with different scalability prop-
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Fig. 5. Productivity of Groups in Modified Search Domain during Size Scale-Up

erties to create a new composite method. This method achieved higher productivity
levels in the foraging and search domains we studied. Surprisingly, we found that
our new composite method at times far exceeded the productivity levels of even the
that highest levels of productivity from the groups they were based on. We believe
that using multiple methods in tandem allowed robots to more effectively deal with
the spatial limitations that characterized their operating domain. This allowed for the
gains we found in these groups’ scalability properties.

5.1 Composite Coordination Methods

Our composite coordination methods combined the two best coordination methods
for any given domain. Our previous study demonstrated that it possible to order coor-
dination methods based on groups sizes where they are most effective. In the foraging
domain, the Noise group had the highest productivity in small groups, while the Ag-
gression group had higher productivity in larger groups. In the search domain, the
Noise group again had the highest productivity in the small groups with the Timeout
group faring better in larger group sizes. In both domains, our implementation for the
composite method was based on allowing these two simpler methods to be triggered
under different domain conditions.

Our implementation of the composite method in the foraging domain revolved
around using two different methods to attempt to prevent collisions. Robots first
used the Noise method, but if this method proved insufficient opted for the more ro-
bust Aggression method. Once a robot detected that another teammate came within
two robot radii away, it attempted to resolve a possible collision by inserting a slight
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repulsion and noise element into its trajectory. In cases when the probability of col-
lisions was low, as was the case in small group sizes, this behavior alone sufficed.
However, at times the spatial conflicts in the domain could no t be resolved through
this simple coordination behavior. For example, in large group sizes, the probabil-
ity that two or more robots mutually blocked became substantial. In these cases, the
robots continued to move closer despite the use of this method. Once the robots came
within a second, closer threshold, which we set to one robot radii, the second, more
robust Aggression method was triggered. The timid and aggressive behaviors in this
method were more successful in resolving spatial conflicts t han the simpler behaviors
in the Noise method. However, the interference overhead in the Aggression behavior
was higher, and not justified in situations where the simpler behavior sufficed. Thus,
by two different thresholds we attempted to match the correct collision prevention
behavior to the domain conditions.

We found this approach to be very effective within our foraging domain. Figure 6
displays the productivity of the composite foraging group, Noise + Aggression, com-
pared to the two methods it is based on. In the top portion of the graph we display
the average number of pucks retrieved (Y-axis) over different group sizes (X-axis).
The bottom graph displays the varying interference levels (Y-axis) as a function of
the group size. Notice how the composite group significantly outperformed the two
groups it was based on. We performed the two-tailed t-test between our composite
group and the two static ones it was based on. Both p-scores were well below 0.05
needed to establish the statistical significance, with the higher score of 0.003 found
between the Aggression group and the composite one. We also found that the re-
lationship between interference and productivity applies to this new group with a
strong negative correlation of -0.92 between all three group’s productivity and the
corresponding interference level averaged over the interval of 1 – 30 robots.

Our motivation in the search domain was similar, but our composite coordination
method was implemented slightly differently. In this domain we also created our
composite method between two methods – Noise and Timeout. These two methods
resolve collisions with different mechanisms. The Noise method attempts to prevent
collisions before they occur through repulsion. In contrast, the Timeout behavior was
purely reactive in nature and its behavior only was triggered after collisions already
occurred. Thus, a composite coordination method between these two methods was
able to created without two different distance thresholds. The Noise method behavior
was fully implemented to attempt to prevent collisions. The Timeout behavior was
also fully implemented. In cases when the Noise behavior did not prevent a collision,
this second behavior was effective in then resolving the conflict.

We also found that this approach yielded marked improvement in performance
and scalability properties for our search domain. Figure 7 displays the productivity
of the composite foraging group, Noise + Timeout, compared to the two methods it
is based on. In the top portion of the graph we display the average time to complete
the search task (Y-axis) over the different group sizes (X-axis). The bottom graph
displays the varying interference levels (Y-axis) as a function of the group size. No-
tice how the composite group again significantly outperformed the two groups it was
based on, especially in larger group sizes. We performed the two-tailed t-test between
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Fig. 6. Comparing a Composite Foraging Method to its Two Base Methods
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our composite group and the two static ones it was based on. Both p-scores were well
below 0.05 needed to establish the statistical significance, with the higher score of
0.004 found between the Noise group and the composite one. We also confirmed that
the relationship between interference and productivity applies to this new group with
a strong negative correlation of -0.98 between the three groups’ productivity levels
and their corresponding interference levels over the interval of 1 – 23 robots. It is im-
portant to note that the composite method in the search domain was able to eliminate
the critical group size that existed in every group we studied except for the theoretical
Gothru group. As such, this group demonstrated the best scalability quality from all
methods we studied – the group’s average productivity never significantly dropped
with the addition of robots. Further study was needed to understand why these com-
posite groups had significantly better productivity and scalability qualities than the
methods they were based on.

5.2 Studying How to Improve Scalability

Our interference metric was useful for understanding why the composite methods we
created were able to significantly outperform the simpler methods they were based
on. These composite methods had significantly lower levels of interference, allowing
marginal gains and larger productivity over larger groups. However, we believe that
coordination methods can be developed to improve the scalability capabilities of
robots. It is possible that our interference metric is not only useful post-facto, but can
facilitate online adaptation to improve performance even in dynamic and changing
environments. We have begun to study how to create adaptive methods based on
interference and have presented our initial results in [22].

We believe coordination methods that respond to the triggers of interference can
minimize the time spent resolving those instances. Throughout the course of one
trial, many spatial conflicts are likely to occur. The speed w ith which the robots
resolve these conflicts will determine the success of the rob ots to achieve higher
productivity and scalability properties. As such, we posit that a causal relationship
exists between a robot’s interference level and the corresponding productivity that
robot is able to contribute to its group. The more time spent on resolving coordination
conflicts, the less time will be left to perform the desired ac tion. Thus, if robots could
reduce their interference levels, they will consequently be able to achieve higher
productivity.

Our working hypothesis is that groups that effectively deal with interference
episodes are going to improve their productivity levels. While coordination behav-
iors themselves constitute interference, at times they are needed for achieving co-
hesive group behavior. Effective behaviors cannot realistically eliminate interfer-
ence. Optimal coordination methods behaviors can only minimize interference levels
given domain conditions. For example, in the foraging domain we studied, the Noise
method’s simpler coordination method contained little overhead. However, as col-
lisions within the domain became frequent, this method did not suffice, and robots
were not capable of successfully resolving space conflicts a nd thus loss productivity.
The Aggression method had an overhead that made it more effective in larger group
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Fig. 7. Comparing a Composite Search Method to its Two Base Methods
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sizes, but the larger interference overhead in this method made it less effective in
smaller group sizes.

We believe that our composite methods outperformed the static method because
of their improved ability to effectively match their coordination efforts to the needs of
their domain. This allowed these robots to change the time spent on resolving coordi-
nation conflicts based on the needs of the domain. Figure 8 dem onstrates the ability
of our composite method to resolve conflicts in a more timely f ashion. The graph
represents the percentage of foraging robots that on average collided throughout the
course of three trials (540 simulated seconds) in groups of 20 robots. The X-axis in
this graph represents the number of seconds that elapsed in the trial (measured in
ten second intervals), while the Y-axis measures the percentage of robots colliding at
that time in the Noise, Aggression, and Noise + Aggression methods. Notice that the
Noise group was ineffective in resolving collision instances in this group size and
thus throughout the trial nearly all robots were exclusively engaged in collision res-
olution behaviors. As a result, this group had the highest interference levels and the
poorest productivity. The Aggression group was able to more effectively deal with
collisions, but on average consistently spent more than half of their time resolving
spatial conflicts. In contrast, robots in the composite grou p were able, on average, to
resolve conflicts and thus reduce their interference levels . This resulted in the signif-
icantly higher productivity levels in this group over the two static ones it was based
upon.

Fig. 8. Average Percentage of Robots Colliding as a Function of Time
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When viewing spatial conflicts on a per trial basis, the fluctu ations in the in-
stances of interference and the robot’s ability to react to those fluctuations are even
more pronounced. We posit that the composite method used the Aggression method
in reaction to collisions becoming more frequent within the domain. To support this
claim we viewed the internal state of these robots over the course of our trials. Figure
9 displays three individual foraging trials of the composite group, again in groups of
20 robots. In the upper graph we mapped the percentage of robots that were engaged
in resolution behaviors (Y-axis) over the course of the trials (the Y-axis). The bottom
graph represents the internal coordination state of these robots as a number between
1 and 2. A value of 1 represents all robots being engaged in the Noise behavior, and
a value of 2 corresponds to all robots in the Aggression behavior. Groups on average
typically have a value between these extremes with robots autonomously choosing
different states based on how close its closest teammate is at that moment. Notice the
relationship between these two graphs with the composite robots using the Aggres-
sion behavior (an average state closer to 2) when collisions are more frequent. On
average over the entire time period, we found a strong negative correlation of -0.90
between these two graphs. This supports our claim that changes in interference can
be sensed autonomously by robots. We believe this allowed the composite groups
to achieve such a strong improvement in the productivity and scalability qualities of
these teams.

6 Conclusion and Future Work

In this paper we presented a comprehensive study on the productivity of robotic
groups during scale-up. As the size of robotic groups increased, effective coordina-
tion methods were critical towards achieving effective team productivity. The limited
space inherent in many environments, such as the foraging and search domains we
studied, makes this task difficult. Using our novel, non-domain specific definition of
interference, we were able to equate between the effectiveness of various existing co-
ordination algorithms. Our interference metric measured the total time these robots
dealt with resolving team conflicts and found a strong negati ve correlation between
this metric and the corresponding productivity of that group. Groups demonstrated
marginal gains only when their interference level was low. If the new robot added
too much interference into the system, it detracted from the group’s productivity
and marginal productivity gains would cease. Gains during scale-up would always
be achieved if interference was not present. We present our composite coordination
methods as an example of how to achieve improved scalability through minimizing
interference.

Many robotic domains also contain the limited space and production resources
that our foraging and search domains exemplify. We predict robotic groups involved
with planetary exploration, waste cleanup, area coverage in vacuuming, and planning
collision-free trajectories in restricted spaces will all benefit from use of our interfer-
ence metric. We plan to implement teams of real robots in these and other domains
in the future.
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Fig. 9. Fluctuations in Collisions over Time and the Corresponding Foraging Method

We demonstrated in our paper that the spatial restrictions within robotic domains
often prevented marginal gains from being realized as group sizes grew. The corol-
lary of this hypothesis is that marginal returns will always be achieved in domains
that do not clash over resources. It is not surprising that groups of agents should
therefore always realize marginal returns during scale up once group interference
issues have be resolved or are not applicable.

Many applications and extensions to our interference metric are possible. For fu-
ture work, we hope to address several directions for possibly extending our metric.
This paper limited its study to homogeneous robots without communication. Ad-
ditionally, we did not study coordination methods which require pre-knowledge of
their domain or algorithms that use other forms of preprocessing. We leave the study
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of how to widen our metric to allow contrasting robots with differing capabilities
such as communication, foreknowledge of domains, and preprocessing requirements
for future work. We are hopeful that our interference metric will be useful for a range
of applications.

References

1. R.C. Arkin and T. Balch. Cooperative multiagent robotic systems. In Artificial Intelli-
gence and Mobile Robots. MIT Press, 1998.

2. T. Balch. Reward and diversity in multirobot foraging, In IJCAI-99 Workshop on Agents
Learning About, From and With other Agents, 1999.

3. Tucker Balch. www.teambots.org.
4. Stanley L. Brue. Retrospectives: The law of diminishing returns. The Journal of Economic

Perspectives, 7(3):185–192, 1993.
5. Phil R. Cohen and Hector J. Levesque. Teamwork. Nous, 25(4):487–512, 1991.
6. G. Dudek, M. Jenkin, and E. Milios. A taxonomy for multi-agent robotics. Robot Teams:

From Diversity to Polymorphism, Balch, T. and Parker, L.E., eds., Natick, MA: A K Peters,
3:3–22, 2002.

7. Ariel Felner, Roni Stern, and Sarit Kraus. PHA*: Performing A* in unknown physical
environments. In AAMAS 2002, pages 240–247.
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