
On Redundancy, Efficiency, and Robustness in

Coverage for Multiple Robots

Noam Hazon and Gal A. Kaminka

The MAVERICK Group

Computer Science Department

Bar Ilan University, Israel

{hazonn,galk}@cs.biu.ac.il

Abstract

Motivated by potential efficiency and robustness gains, there is growing interest in

the use of multiple robots for coverage. In coverage, robots visit every point in a

target area, at least once. Previous investigations of multi-robot coverage focus on

completeness of the coverage, and on eliminating redundancy, but do not formally

address robustness. Moreover, a common assumption is that elimination of redun-

dancy leads to improved efficiency (coverage time). We address robustness and effi-

ciency in a novel family of multi-robot coverage algorithms, based on spanning-tree

coverage of approximate cell decomposition of the work area. We analytically show

that the algorithms are robust, in that as long as a single robot is able to move, the

coverage will be completed. We also show that non-redundant (non-backtracking)

versions of the algorithms have a worst-case coverage time virtually identical to

that of a single robot—thus no performance gain is guaranteed in non-redundant

coverage. Surprisingly, however, redundant coverage algorithms lead to guaranteed

performance which halves the coverage time even in the worst case. We present

a polynomial-time redundant-coverage algorithm, whose coverage time is optimal,

Preprint submitted to Elsevier 25 February 2008

and which is able to address robots heterogeneous in speed and fuel. We compare

the performance of all algorithms empirically and show that use of the optimal

algorithm leads to significant improvements in coverage time.

Key words: multi-robot systems, coverage, path-planning

1 Introduction

Area coverage is an important task for mobile robots, with many real-world

applications such as floor cleaning [5], de-mining [15], and surveillance by

unmanned aerial vehicles (UAVs) [3,10]. In these, a robot is given a bounded

work-area, possibly containing obstacles. The robot is assumed to have an

associated tool of a given shape [8]—often corresponding to the robot’s relevant

sensor or actuator range—that must visit every point within the work-area.

Since the tool size is typically much smaller than the work-area, the robot’s

task consists of finding and moving along a path that will take the tool over

the entire work-area. This is sometimes referred to as exhaustive geographical

search [19], or sweeping [9].

In recent years, there is growing interest in the use of multiple robots in

coverage, motivated by efficiency and robustness. First, multiple robots may

complete the task more quickly than a single robot, by dividing the work-

area between them. Second, multi-robot algorithms may succeed in face of

failures, since even if a robot fails, its peers might still be able to cover its

assigned area. Formally, a coverage algorithm is said to be complete if, for

any work-area, it produces a path that completely covers the work-area. We

want multi-robot algorithms to be not only complete, but also efficient (in

that they minimize the time it takes to cover the area), and robust (in that

2

they can handle catastrophic robot failures). We may additionally want the

algorithm to be non-redundant (non-backtracking), in that any portion of the

work area is covered only once.

Previous investigations that examine the use of multiple robots in coverage

focus on guaranteeing completeness and non-redundancy. However, much of

previous work does not formally consider robustness. Moreover, while com-

pleteness and non-backtracking properties are sufficient to show that a single-

robot coverage algorithm is also efficient (in coverage time), it turns out that

this is not true in the general case. Surprisingly, in multi-robot coverage,

non-redundancy and efficiency are independent optimization criteria: Non-

backtracking algorithms may be inefficient, and efficient algorithms may use

backtracking. Finally, the initial position of robots in the work-area signifi-

cantly affects the completion time of the coverage, both in backtracking and

non-backtracking algorithms. Yet no bounds are known for the coverage com-

pletion time, as a function of the number of robots and their initial placement.

This paper examines robustness and efficiency in multi-robot coverage. We

focus on coverage using a map of a static work-area (known as off-line cov-

erage [4]). We assume the tool to be a square of size D. The work-area is

then approximately decomposed into cells, where each cell is a square of size

4D, i.e., a square of four tool-size sub-cells. As with other approximate cell-

decomposition approaches ([4]), cells that are partially covered—by obstacles

or the bounds of the work-area—are discarded from consideration. We use

an algorithm based on a spanning-tree to extract a path that visits all sub-

cells. Previous work on generating such a path (called STC for Spanning-Tree

Coverage) have shown it to be complete and non-backtracking [8].

3

We present a family of novel algorithms, called MSTC (Multirobot Spanning-

Tree Coverage) that address robustness and efficiency. First, we construct a

non-backtracking MSTC algorithm that is guaranteed to be robust : It guar-

antees that the work-area will be completely covered in finite time, as long as

at least a single robot is functioning correctly. We analyze the best-case and

worst-case completion times for this algorithm, and find that in the worst-

case, the coverage time for k robots is essentially equal to that of a single

robot. Unfortunately, this worst-case scenario is common in coverage appli-

cations: This is where all robots start from approximately the same position

(e.g., doorway to the work-area). We further prove that this result holds for

any non-backtracking algorithm that uses STC paths.

We then present a second set of MSTC algorithms, which allows for some

backtracking: They may have a robot visit a cell twice, but no more. We

show that surprisingly, even though backtracking algorithms inherently involve

redundancy, their worst-case coverage time for k > 2 robots is half that of a

single robot. Two backtracking algorithms are shown. The first (simple) is

linear-time. However, in experiments, this algorithm had approximately the

same coverage-time as the non-backtracking algorithm.

We thus introduce a polynomial-time optimal backtracking MSTC algorithm,

and show empirically that its coverage time is significantly better than the

simple algorithm. These analytical and empiric results show that coverage

algorithms must distinguish between redundancy and efficiency. These two

criteria converge only in the single-robot case, but are distinct (and may be

mutually exclusive) in the general k-robot case.

The paper is organized as follows. The next section presents related work and

4

motivation. Section 3 defines the MSTC problem, and the non-backtracking

algorithm. Section 4 presents the simple and optimal backtracking algorithms,

and their extensions to heterogeneous robots. The next section (Section 5)

presents experimental results evaluating the coverage time of the different

algorithms. We conclude with a summary and brief overview of future work.

2 Background

Recent years are seeing much interest in multi-robot coverage algorithms, mo-

tivated by two opportunities made possible by using multiple robots: (i) ro-

bustness in face of single-robot catastrophic failures, and (ii) enhanced pro-

ductivity, thanks to the parallelization of sub-tasks.

Choset [4] provides a survey of coverage algorithms, which distinguishes be-

tween offline algorithms, in which a map of the work-area is given to the

robots, and online algorithms, in which no map is given. The survey fur-

ther distinguishes between Approximate cellular decomposition, where the free

space is approximately covered by a grid of equally-shaped cells, and exact de-

composition, where the free space is exactly partitioned. The work presented

in this paper focuses on offline, approximate-decomposition algorithms.

Our algorithms build on the single-robot off-line STC (Spanning-Tree Cover-

age) algorithm [8] that is an approximate cellular-decomposition technique. A

different approach to extending the STC algorithm to multiple robots can be

found in [6, 7]. This approach does not carry the robustness and performance

guarantees our algorithms provide.

Zheng et al. [27] describe Multi-Robot Forest Coverage (MRFC), another

5

multi-robot variant of the spanning-tree coverage framework. In their algo-

rithm, the work-area is divided into a set of spanning trees (a spanning forest),

which are then traversed separately by robots (i.e., each robot covers a single

tree in the forest). They show empirically that the MRFC algorithms pro-

vide better coverage time than the simple backtracking and non-backtracking

algorithms we present; a comparison against the optimal backtracking algo-

rithm presented in this paper has not been carried out. The efficiency gains

of MRFC come at a cost: MRFC relies on an assumption that more than

one robot can occupy a single cell at the same time, in contrast to our work.

Moreover, MRFC does not guarantee robustness.

Wagner at. al. [23–25] and later Osherovich et. al. [16] propose a family of

robust multi-robot ant-based algorithms which use approximate cellular de-

composition. The algorithms involve little or no direct communications, and

rely on no map memory, instead using simulated pheromones for communi-

cations. The algorithms are provably robust, but are not necessarily efficient:

In contrast to the minimal capabilities of ant robots (other than pheromone

use), our algorithms make use of the robots’ memory and broadcast com-

munication to carry out redundant coverage (backtracking over areas already

covered) only when strictly necessary to improve efficiency.

Svennebring and Koenig [21] offer a feasibility study of ant-based online cov-

erage. They perform experiments with real ant-robots and large-scale simula-

tions. They show that the algorithms result in robust coverage, but provide

no analytic guarantees of completeness or efficiency.

In contrast to our approximate cellular-decomposition approach, a number of

multi-robot coverage algorithms have focused on exact decomposition, which

6

provides improved coverage area. Kurbayashi et al. [14] suggest an off-line

centralized multi-robots coverage algorithm based on an exact cellular decom-

position. However, no guarantees on robustness are provided. Our coverage

algorithms are distributed and robust. Batalin and Sukhatme [2] offer two

coverage algorithms by a multi-robot system in which the robots spread out

in the terrain, and move away from each other while covering the area and

minimizing the interaction between the robots. In their work, they aim to

achieve optimal coverage area, and do not prove any formal statement regard-

ing optimality of coverage time.

Rekleitis et al. developed a family of important coverage algorithms. In [17],

they report on using two robots to cover an unknown environment, using a vis-

ibility graph-like decomposition (a type of exact cellular-decomposition). The

algorithm use the robots as beacons to eliminate odometry errors, and is thus

robust to positioning errors. However, it does not address catastrophic failures

(i.e., when a robot dies). Our work almost perfectly complements this work:

MSTC algorithms assume good positioning, but are robust to catastrophic

failures. In [18] and [13], they report on a multi-robot version of a coverage

method known as the Boustrophedon. The algorithm utilizes communications,

even under the restriction that communication between two robots is avail-

able only when they are within line of sight of each other, a restriction not

addressed in our work. However, there are no guarantees of robustness to

catastrophic failures.

While most multi-robot coverage algorithms focus on efficiency, Spires and

Goldsmith [19] present a robust off-line multi-robot algorithm based on an

approximate cellular decomposition, which uses a Hilbert space-filling curve.

Unfortunately, this works only in obstacle-free work-areas. Also, they do not

7

provide bounds on the performance of their algorithm, given the initial posi-

tions of the robots within the work-area. In contrast, we provide an algorithm

that handle obstacles, and is guaranteed to reduce the coverage time (com-

pared to the single-robot case) regardless of initial positions.

There are methods in operations research [20, 26], which tackle related prob-

lems. However, the goals of these methods is to optimize the the efforts to be

spent in searching for static or moving targets in a work-area. This task is

different from coverage in that (1) special attention has to be paid to the pos-

sible movement trajectories of the targets, and (2) the robots task terminates

as soon as a target is found, while coverage terminates only when the entire

area is covered.

3 Non-Backtracking MSTC

We focus in this paper on the off-line coverage case [4, 8], where the robots

have a-priori knowledge of the work-area, i.e. they have a complete map of

the work-area, its boundaries and all the obstacles (which are assumed to be

static). Each robot has an associated tool shaped as a square of size D. The

objective is to cover the work-area using this tool. In real-world applications,

the tool may correspond to sensors that must be swept through the work-

area to detect a feature of interest, and the size D may be determined by the

effective range of the sensors. Or, in vacuum cleaning application, the tool

may correspond to the opening of the vacuum itself, typically underneath the

robot. As with previous work [8], we assume robots can move continuously,

in the four basic directions (back/forth, left/right), and can locate themselves

within the work-area to within a sub-cell of size D. Note that this specifically

8

restricts our attention to cases where movement involves only two cells of size

D: The cell in which the movement originates and an adjacent target cell with

whom it shares an edge.

We divide the area into square cells of size 4D (each one consists of 4 sub-cells

of size D), while discarding cells which are partially covered by obstacles. We

define a graph structure, G(V,E). V is the nodes set, which are the center

points of each cell, and E is the edges set, which are the line segments con-

necting centers of adjacent cells. Then, we build a spanning tree for G using

any spanning-tree construction algorithm. We can affect the shape of the cov-

ering path by adding weights to the edges and building a minimum spanning

tree [1, 22]. This can be used, for instance, to reduce the number of turns, by

assigning horizontal edges greater weights than those of vertical edges [8].

We can now define the MSTC problem: We are given an STC path for a

given work area, and a set of k robots. We assume that the robots have initial

positions S0, . . . , Sk−1 within the cell decomposition of the work-area. In this,

we depart from previous work on multi-robot coverage which does not take

into account the initial positions of the k robots. The challenge is to assign k

portions of the STC path to the different robots, such that when all the robots

complete their assigned sub-paths, the entire work-area is covered.

We begin by examining an instance of this problem, where robots are assumed

to be homogeneous in their same speed and tool size D. We use N to denote

the number of cells in the grid, and n to denote the number of sub-cells. We

further assume that the work-area is contiguous, i.e., all cells of the work-area

are accessible from any starting position.

The coverage works in two phases. First, Algorithm 1 builds an STC path using

9

the method in [8] (briefly described above). Then, to carry out the coverage,

each robot uses its copy of this STC path, and its initial position on the path,

to follow a sub-path that is assigned to it (Algorithm 2). This is done while

making sure that robots make up for catastrophic failures of their peers. Note

that the execution of Algorithm 2 is complete decentralized, as each robot

executes its own independent copy.

Starting from S0, Algorithm 1 constructs a spanning tree for G. Moving along

a path which circumnavigates the spanning tree along a counterclockwise di-

rection orders the starting points as shown in Fig. 1. The construction of the

spanning-tree in this pre-process phase can be done by one robot and broad-

cast to the others, or it can be done by every robot independently while they

use the same algorithm for the building of the tree.

Algorithm 1 MSTC Path Plan(work-area W , robots’ initial positions
S0, . . . , Sk−1)
1: Arbitrarily pick the starting point S0

2: Starting from S0, construct P , an STC path of W (as described above).
3: Order the positions S0, . . . , Sk−1 along the STC, starting from S0 and moving

in a counter-clockwise direction.
4: Return P , ordered list of positions S0, . . . , Sk−1.

Fig. 1. The grid, the spanning tree and the paths for three robots.

Once the path has been constructed and divided into sections, Algorithm 2 is

10

executed in a distributed fashion by all robots. After the initialization phase

(lines 1–2), each robot starts to cover its section [Si, . . . , Sj), from its current

location Si to the initial position Sj of the next robot, along the STC in a

counterclockwise direction (lines 3–4, see Fig. 1). Lines 5–11 guarantee the

robustness: If one robot fails, the robot behind it takes the responsibility to

cover its section (see below for formal proof). To ease the notation, we denote

(a+b)modk as a⊕b, and (a−b)modk as aªb, where k is the number of robots.

Algorithm 2 Non-backtracking MSTC(STC path P , ordered positions
S0, . . . , Sk−1)
1: Let i ← my own id (in the range 0 . . . k − 1)
2: Let t ← i⊕ 1 // next robot’s position, cyclically
3: while current position 6= St − 1 do
4: Move towards St along STC, in counter-clockwise direction // this changes

current position
5: Announce completion of [Si, St)
6: while Rt is alive and [S0, . . . , Sk−1, S0] incomplete do
7: Wait
8: if Rt is not alive and [S0, . . . , Sk−1, S0] incomplete then
9: i ← t

10: t ← t⊕ 1
11: Goto 3 // Take over role of failing robot
12: Stop.

Note that the algorithm addresses communication requirements in general

form. In practice, communications can be implemented in many different ways.

For example, the status of liveness (lines 6, 8) can be determined by the robots’

sending of an ”I am alive” message every period of time. When a message is

not received by a robot after a defined timeout period, it is considered dead.

Alternatively, liveness can be checked when reaching the initial position of

another robot. Similarly, the announcement of section completion (line 5) can

be communicated in various ways.

We analyze these algorithms. First, to prove completeness and optimality we

remind the reader that circumnavigating the spanning tree produce a closed

11

curve which visits all the sub-cells exactly one time [8]. In Algorithm 1 the

STC curve is partitioned into k sections whose union is the whole path. That

leads to the completeness theorem below.

Theorem 1 (Completeness) Algorithm 1 generates k paths that together

cover every cell accessible from the starting cell S0.

PROOF. Previous work has shown that step 2 produces a path that covers all

cells (Lemma 3.3 in [8]). Step 3 partitions this path into k sections. Therefore,

the union of the k sections covers every cell accessible from S0. 2

Given the set of paths produced, Algorithm 2 makes sure the robots visit

all these cells only once (if no failure has occurred). The following theorem

applies.

Theorem 2 (Non-Backtracking) If all robots use Algorithm 2, and no

robot fails, no cell is visited more than once.

PROOF. If no robot fails, then each robot i only covers the section [Si, Si⊕1)

of the STC path (where if i = k, then cyclically i + 1 = 0). Thus every cell

is covered only by a single robot. Since robots never backtrack, every point is

only covered once. 2

Robustness. As one key motivation for using multiple robots comes from

robustness concerns, we prove that Algorithm 2 above is robust to catastrophic

failures, where robots fail and can no longer move. This result relies on an

assumption that robots which fail do not block live robots. While this is an

12

obvious concern with unmanned ground vehicles (UGVs), it is actually an

assumption that is satisfied in applications of coverage to unmanned aerial

vehicles [3, 10].

Theorem 3 (Robustness) Algorithm 2 guarantees that the coverage will be

completed in finite time even with up to k − 1 robots failing.

PROOF. The path is divided to k sections. We will prove that each section

will be covered. Due to the nature of the path generated, all the robots are

topologically moving in a circle, so the robot that is responsible to cover a

section has k − 1 robots behind it. This is correct for any section i. We will

prove that this section i will be covered, by induction on the number of robots

k.

Induction Base (k = 3). If robot Ri that is responsible to cover this section

is not dead before the completion of the cover of this section, then this section

is covered. Else, Riª1 or Riª2 is alive. If Riª1 is alive, according to line 6 in

the algorithm it will return to step 3 and cover this section. If only Riª2 is

alive, according to line 6 in the algorithm it will return to step 3 and cover

section i−1 (because Riª1 is not alive). Then the condition will be true again

because Ri is dead, and Riª2 will cover also section i.

Induction Step. Suppose it is known that if at least one of k robots is alive

section i will be covered. We will prove it for k + 1 robots.

If robot Ri that is responsible to cover this section is not dead before the

completion of the cover of this section, then this section is covered. Otherwise,

there is at least one of k robots behind it that is alive. According the induction

step, every section within k sections behind Ri will be covered, including the

13

section behind it. The robot that will cover this section will cover also section

i (according to line 6 in the algorithm, because Ri is not alive). 2

Robustness is guaranteed with a simple mechanism. There is no need to re-

configure the group after a robot failed. It also does not matter which robot

fails or how many robots failed at the same time.

Robustness against collisions is an additional concern with multiple robots.

Normally, as each robot only covers its own section, theorem 2 also guarantees

that no collisions take place, as the STC path never crosses itself. In practice,

localization and movement errors may cause the robot to move away from its

assigned path, and thus risk collision. Despite this, the separation between the

paths of different robots decreases the chance of collisions.

Efficiency. Additional important motivation for using multiple robots is the

possibility of reducing the coverage time by parallelizing portions of the cover-

age. In single-robot settings, guarantees of completeness and non-backtracking

are sufficient to show (in combination) optimality of coverage time, since ev-

ery cell is visited, but only once (the minimum). Thus n cells are covered in

n steps.

To analyze the number of steps required to complete the coverage, we have

to take into account the initial configuration. We define the running time as

the maximum over the steps that each robot has to go, max i∈kstep(i), where

step(i) is the total number of steps taken by robot i.

Using multiple robots, the hope is to reduce the coverage time to approxi-

mately n/k. Indeed, the following theorem shows this to be a best-case sce-

14

nario for Algorithm 2.

Theorem 4 (MSTC Non-Backtracking Best Case) The best running

time for Algorithm 2 is dn
k
− 1e

PROOF. The best-case scenario is when the starting positions S0, . . . , Sk−1

place the robots at equal distance from each other, thus partitioning the STC

path into k sections, each of size n/k. 2

Unfortunately, it turns out that the running time is critically dependent on

the initial positions of the robots. Indeed as the following theorem shows,

the worst case scenario for Algorithm 2 has a running time that is almost

equivalent to that of a single robot.

Theorem 5 (Uni-Directional Non-Backtracking Worst Case) The

worst running time for Algorithm 2 n− k − 1.

PROOF. The worst-case scenario is where all the robots start next to each

other, on adjacent cells. Since all robots move in the same direction, all but

one robot will only cover the cell they are on before reaching the end of their

assigned section. One robot will have a section assigned to that contains all

n− k remaining sub-cells (Fig. 2(a)). 2

The result demonstrates that the initial position of the robot within the work-

area can adversely affect the coverage time. Unfortunately, the worst-case

scenario may readily occur in real-world applications, e.g., vacuuming (all

robots start from a single doorway), de-mining (all robots start from a single

15

entry point to the mine field), or lawn mowing (all robots start at the mower

storage area).

This worst-case scenario may appear deceptively simple to address. One may

reason that by allowing another robot to head in the opposite direction, two

robots may cover the n − k section in parallel, thus completing the coverage

in approximately n/2 (Fig. 2(b)). However, it turns out that this is incorrect.

R0

R3

R1

R2

(a) Worst case, single-
direction.

R0

R3

R1

R2

(b) dual-direction solution
to single-direction worst-
case.

R0

R3

R1

R2

(c) Worst case, dual-
direction.

Fig. 2. Non-backtracking worst-cases, single and dual directions.

A more general result is proven below, and shows that the worst-case scenario

is in fact more general than for Algorithm 2. Indeed, it is applicable to any

STC-based algorithm that is non-backtracking, regardless of the direction of

movement of each robot.

Theorem 6 (General Non-Backtracking Worst Case) Any non-

backtracking covering algorithm based on partitioning the spanning tree path

to sections, has a worst-case running time of n− 2(k − 1)− 1.

PROOF. Consider the case where robots are positioned such that a single

empty sub-cell separates each pair (Fig. 2(c)). Because no backtracking is

allowed, only one of the extreme robots can cover the big part of the path.

16

The others, including the extreme robot from the other side, can cover only

the empty sub-cell next to them, regardless the method that the algorithm

chooses for deciding on a direction for movement. So we get k− 1 robots that

cover two squares (their square, and the square next to them), and one robot

that has to cover the rest of the path n− 2(k − 1)− 1. 2

In other words, there is no non-backtracking algorithm for setting the coverage

direction of the coverage for different robots such that the worst case above is

eliminated. We remind the reader that the requirement for non-backtracking

movement is inherited from the single-robot STC algorithm [8], where it also

leads to optimality in coverage time. The next section examines what happens

when we remove the requirement of non-backtracking movement.

4 Backtracking MSTC

We begin by examining the simplest case of backtracking MSTC algorithm,

and show that backtracking can lead to a lower worst-case coverage time

(Section 4.1). We then develop an optimal algorithm for the backtracking case

(Section 4.2).

4.1 Simple Backtracking MSTC

Let us examine an instance of the worst-case scenario of a non-backtracking

algorithm, with only two robots that are positioned such that there is a single

empty sub-cell between them. Without backtracking, one of the robots would

have to commit to covering the single sub-cell, while the other would then

17

be forced to cover the remaining n− 3 sub-cells. However, if we allow robots

to backtrack, then the robot that covers the single sub-cell would be able to

cover it, then backtrack, and head in the other direction. The two robots would

then meet approximately in the middle of the n− 3 section, thus halving the

coverage time.

Naturally, a new worst-case scenario can be found for this back-tracking case.

In this scenario, the initial positions of the two robots separated by are a third

of the STC path. One robot thus covers 2/3 of the path, while the other robot

goes a 1/3 of the path in one direction and then backtracks, but it can’t help

the first one in its section. The overall coverage time will be 2n/3.

To define a general back-tracking algorithm, let us first define a few helpful

notations. seci is the section that robot Ri is responsible to cover. Unlike in the

non- backtracking algorithm sometimes seci 6= [Si, Si⊕1) (The section which

starts at Si and ends just before Si⊕1 when moving in a counterclockwise

direction along the STC path, as defined before). We use |[Sl, Sj]| to denote

the length of the section [Sl, Sj], taken along the shortest path along the STC

cycle. The point Si +L is the point in a distance of L from Si when moving in

a counterclockwise direction along the STC path. D1i is the initial direction

of movement for robot i, while D2i is the direction of movement for robot i if

it has to backtrack.

We now turn to describing the MSTC backtracking algorithm. The first phase

of building the STC and ordering the starting point is the same as in the non-

backtracking case (Algorithm 1). We add another initialization phase where

the robots re-divide the sections if backtracking is needed (Algorithm 3). They

then follow the backtracking algorithm (Algorithm 4). We present here the

18

general case for k > 2 robots (the case of k = 2 robots is somewhat different,

and we skip it for lack of space).

The idea of the initialization phase is to allocate sections and directions of

movement to the robots. If there is no part of the path that is longer than half

of the entire STC path, all the sections and directions of movement are the

same as in the non-backtracking algorithm (Algorithm 3, lines 1–4). Otherwise,

the two robots that have this section between them share its coverage. One of

them will have to go in a clockwise direction, leaving to the robot next to it

(from the other side) to also cover the distance between them. To avoid the

case that this robot will have to cover more than half of the path because

of the backtracking, this robot gets help from one of its neighbors—the one

closest to it. They both cover half of the distance between them and return

to cover their original part of the path.

Fig. 3 illustrates the case where |[Si, Sj)| < |[Sj, Sf)|. In this case, Ri and Rj

cover together the distance between them and then backtrack. Ri returns to

help Rh to cover the path between them and Rj move to cover its original

pre-allocated section (Algorithm 3, lines 9–16). If Rj is closer to Rf than to

Ri, Rf and Rj cover together the distance between them and then backtrack.

Rj returns to cover Ri’s original section (because Ri helps Rh to cover its

section), and Rf move to cover its original pre-allocated section (Algorithm

3, lines 17–34). In this situation Algorithm 3 needs to distinguish between the

case of only three robots (lines 20–26) to the case of more than three robots

(lines 27–34).

The backtracking algorithm (Algorithm 4) follows the re-divided sections gen-

erated in the initialization phase, similarly to the way the non-backtracking

19

Algorithm 3 initialization phase(STC path P , ordered positions S0, . . . , Sk−1)
1: for all i such that 0 ≤ i ≤ k − 1 do
2: Let seci ← [Si, Si⊕1)
3: Let D1i ← counterclockwise
4: Let D2i ← null
5: if there is h such that sech > 1

2(
∑k

0 |[Si, Si⊕1)|) then
6: i ← h⊕ 1
7: j ← i⊕ 1
8: f ← j ⊕ 1
9: if |[Si, Sj)| < |[Sj , Sf)| then

10: sech ← [Sh, Sh + d |[Sh,Si)|+|[Si,Sj)|
2 e)

11: seci ← [Sh + d |[Sh,Si)|+|[Si,Sj)|
2 e, Si + d |[Si,Sj)|

2 e)
12: D1i ← counterclockwise
13: D2i ← clockwise
14: secj ← [Si + d |[Si,Sj)|

2 e, Sf)
15: D1j ← clockwise
16: D2j ← counterclockwise
17: else
18: D1j ← counterclockwise
19: D2j ← clockwise
20: if h = f then
21: sech ← [Sj + d |[Sj ,Sh)|

2 e, Sh + d |[Sh,Si)|+|[Sj ,Sh)|
2 e)

22: D1h ← clockwise
23: D2h ← counterclockwise
24: seci ← [Sh + d |[Sh,Si)|+|[Sj ,Sh)|

2 e, Si)
25: D1i ← clockwise
26: secj ← [Si, d |[Sj ,Sh)|

2 e)
27: else
28: sech ← [Sh, Sh + d |[Sh,Si)|

2 e)
29: seci ← [Sh + d |[Sh,Si)|

2 e, Si)
30: D1i ← clockwise

31: secj ← [Si, Sj + d |[Sj ,Sf)|
2 e)

32: secf ← [Sj + d |[Sj ,Sf)|
2 e, Sf⊕1)

33: D1f ← clockwise
34: D2f ← counterclockwise

algorithm does. Algorithm 4 also ensures that only after a robot finishes to

cover its section, even if it includes going in one direction and then backtrack,

it covers sections of dead robots. Thus this algorithm is also robust.

The algorithm’s completeness and robustness can be proven similarly to the

completeness and robustness of the non-backtracking Algorithm 2. With re-

spect to its backtracking, it can be shown that any point that is covered more

20

Ri

Rh

Rf

Rj

Fig. 3. An execution example of Algorithm 4. The indexes used are the same as in
the initialization phase.

Algorithm 4 Backtracking MSTC(STC path P , ordered positions S0, . . . , Sk−1)
Require: initialization phase
1: Let s ← my own id (in the range 0 . . . k − 1)
2: Let t ← s⊕ 1 // next robot’s position, cyclically
3: while current position 6= one end of your sec do
4: Move towards the end of your sec along STC, according your direction1

argument
5: if your direction2 6= null then
6: your direction1 ← your direction2
7: your direction2 ← null
8: Go to 3 // backtrack
9: else

10: Announce completion of your sec
11: while Rt is alive and there is i such that seci incomplete do
12: Wait
13: if Rt is not alive and and there is i such that seci incomplete then
14: s ← t
15: t ← t⊕ 1
16: Go to 3 // take over role of failing robot
17: Stop

than once, is covered by the same robot, and that there is no point that is

covered more than twice. We skip these proofs for reasons of space.

The best-case coverage time for the backtracking MSTC algorithm is the same

as for the non-backtracking version, i.e., n
k
−1. This is because in the best case,

21

the initial positions of the robots are equidistant, and the robots can cover

their sections without backtracking. The worst-case coverage time is analyzed

below:

Theorem 7 (Backtracking Worst Case) The worst-case running time for

Algorithm 4 is n/2− 1 when k > 2, and d2n/3− 1e when k = 2.

PROOF. There are two cases, depending on the value of k.

Case 1 (k = 2). In the worst case, one of the robots has a section x that

is less than or equal to half the path. If x is longer than a third (1/3) of the

entire path, the other robot covers a section less than 2/3 of the path, and

we are done. If x is equal to a 1/3 of the path, then the other robot covers

2/3 of the path, i.e., d2n/3 − 1e, and we are done. Otherwise, x is shorter

than a 1/3 of the path, i.e., x = n/3 − y, y > 0. The robot that covers x

backtracks over it. In this time the other robot passes twice that length, i.e.,

2(n/3 − y) = 2n/3 − 2y. At this point, the portion of the path remaining

uncovered is n − (n/3 − y) − (2n/3 − 2y) = 3y. The two robots cover it

together so each of them covers half of it. Hence, the total time taken by each

is 2n/3−2y +1.5y = 2n/3−y/2. If y is even, then, this is at most 2n/3−1. If

y is odd, then one robot covers by/2c and the other by/2c+ 1; i.e., the worst

time in this case is 2n/3− by/2c − 1 = 2n/3− 1.

Case 2 (k > 2). If there is no section that is longer than half of the path,

then when every robot covers its section, no robot covers more than half of the

path. On the other hand, if there is a section longer than half the path, then

necessarily it is the only one. We denote it as [Sh, Si) (as in the algorithm).

There are three possible cases:

22

• |[Si, Sj)| < |[Sj, Sf)|. |[Si, Sj)| + |[Sj, Sf)| < half of the entire path ⇒
|[Si, Sj)| < 1/4 of the entire path. Rj passes twice over half of [Si, Sj)

and over [Sj, Sf) so the its total path is: |[Si, Sj)| + |[Sj, Sf)| < half of

the entire path. Ri passes twice over half of [Si, Sj) and over [Sh, Si) un-

til it meets Rh. In the time that Rj passes half of [Si, Sj) and backtracks,

Rh passes this distance ([Si, Sj)) to Rj ⇒ The remaining area to cover

is (|[Sh, Si)| + |[Si, Sj)|)/2 ⇒ The number of steps for every one of them

is: |[Sh,Si)|+|[Si,Sj)|
2

+ |[Si, Sj)| = |[Sh, Si)|/2 + |[Si, Sj)|/2. |[Sh, Si)| ≤ n −
(|[Si, Sj)|+|[Sj, Sf)|)⇒ |[Sh, Si)|/2+|[Si, Sj)|/2 ≤ n−|[Sj, Sf)|/2 ≤ n/2−1

• |[Si, Sj)| ≥ |[Sj, Sf)| and h = f . This case could only happen with three

robots. The proof is analogous to that of the previous case.

• |[Si, Sj)| ≥ |[Sj, Sf)| while h 6= f . Rf passes twice over half of [Sj, Sf) and

over [Sf , Sf⊕1) , so its total path is |[Sj, Sf)|+ |[Sf , Sf⊕1)|. Rj passes twice

over half of [Sj, Sf) and over [Si, Sj) , so its total path is |[Si, Sj)|+|[Sj, Sf)|.
|[Sh, Si)| > half of the entire path ⇒ |[Si, Sj)| + |[Sj, Sf)| + |[Sf , Sf⊕1)| ≤
half of the entire path ⇒ Rj and Rf covered less than half of the entire

path. Rh and Ri passes half of [Sh, Si). |[Sh, Si)| < length of the entire path

⇒ Rh and Ri covered less than half of the entire path.

Thus in all cases, three or more robots take no more than n/2−1 to complete

coverage. 2

4.2 Optimal Backtracking MSTC

Algorithm 4 allows backtracking for only two robots and only in the case where

one robot has to cover more than half of the entire working area. It does not

generate an optimal allocation of robots to assigned sections and directions,

23

and thus, while it guarantees a better worst-case coverage time than the non-

backtracking algorithm of the previous section, its average performance can

be improved.

The optimal backtracking MSTC initialization algorithm below (Algorithm 5)

allows all robots to backtrack over any number of steps, in order to achieve

the best time for the given initial configuration, and given an STC path 1 .

Algorithm 5 is intended as a drop-in replacement for Algorithm 3, initializing

tasks for each robot. While intuitively it may seem that the run-time complex-

ity will grow combinatorially, with the number of possible allocations, it turns

out that given the discretization of the problem, a polynomial-time solution

exists.

The algorithm is described below. It assigns a solution to each robot, where

this solution is a tuple 〈R,L1, L2, D1, D2〉. R is the index of the robot in

question, 0 ≤ R ≤ k−1. L1 is the length of the section to take before switching

directions. L2 is the length of the section to take after switching directions. It

is measured from the robot’s initial position after it has backtrack to it. If no

switching is needed, its value will be zero. D1 is the first direction to take; D2

is the direction to take after traveling length L1 along the STC, in direction

D1. D1, D2 can therefore be cw (clockwise), ccw (counterclockwise), or null

(not switching direction).

The key to the algorithm resides in the discretization of the problem. Because

we divide the working area to cells and sub-cells, each robot can move a finite

number of steps. The algorithm calls algorithm Optimal (Algorithm 6) to check

all options for an optimal assignment of paths for one of the robots (Lines 1–

1 The problem of determining an optimal spanning-tree path is addressed in [1].

24

Algorithm 5 Optimal initialization phase(STC path P , ordered positions
S0, . . . , Sk−1)
1: 〈i, l1, l2, d1, d2〉 ← Optimal(P , S0, . . . , Sk−1)
2: assign 〈i, l1, l2, d1, d2〉 to robot i
3: time ← l1 · 2 + l2
4: if d1 = ccw then
5: area ← |[Si, Si⊕1]| − l1
6: else
7: area ← |[Si, Si⊕1]| − l2
8: for r ← [i⊕ 1, i⊕ 2, . . . , iª 1] do
9: if area · 2 ≥ time then // no time for backtracking

10: assign 〈r, area, 0, cw, null〉 to robot r
11: area ← |[Sr, Sr⊕1]|
12: else
13: if time− 2 · area ≥ time−area

2 then // backtrack the cw direction
14: assign 〈r, area,min(time− 2 · area, |[Sr, Sr⊕1]|), cw, ccw〉 to robot r
15: area ← max(|[Sr, Sr⊕1]| − (time− 2 · area), |[Sr, Sr⊕1]|)
16: else // backtrack the ccw direction
17: assign 〈r,min(time−area

2 , |[Sr, Sr⊕1]|), area, ccw, cw〉 to robot r
18: area ← max(|[Sr, Sr⊕1]| − time−area

2 , |[Sr, Sr⊕1]|)
19: if d2 = cw AND area < l2 then // fix the last assignment
20: assign 〈i, l1, area, d1, d2〉 to robot i
21: else if d1 = cw AND area < l1 then
22: assign 〈i, area, l2, d1, d2〉 to robot i

2). Given an optimal assignment for one robot the algorithm calculate the

other robots assignment of paths. First, robot i’s coverage time is calculated

(Line 3). We then check what is the remaining distance for the next robot,

r, to cover (Lines 4–7). Given this distance and the time frame, there are 3

possible options: r can only cover the remaining distance (Lines 9–11), it can

cover the remaining distance and backtrack to also cover part of the section

between it and robot r ⊕ 1 (Lines 12–15) or it can cover part of the section

between it and r ⊕ 1 and backtrack to cover the remaining distance between

it and i (Lines 16–18). For each of the above options we calculate robot r

assignment and the remaining area between it to the next robot, r ⊕ 1. This

assignment is done cyclically for all the robots (Line 8).

For each robot (line 2), Algorithm Optimal (Algorithm 6) checks all the pos-

25

sible steps that the robot can move in a counterclockwise direction along the

spanning tree path, until it reaches the robot next to it (line 3). For each

possible step, we check whether the robot should backtrack and move in the

opposite direction. We search for a length to move in the opposite direction

using a binary search (Lines 4–11). The total movement duration is the value

of that solution. For each solution we first check that it is valid, meaning that

within the solution duration time all the robots can complete to cover the rest

of the area (the procedure Check in lines 4,6 and in the function Search). We

then store this solution if it is the best so far (the procedure Solution in lines

7 and 11). We similarly test the other side, i.e. check all possible steps in the

clockwise direction along the spanning tree path, until it reaches the robot

next to it (lines 12–20).

Algorithm 6 Optimal(STC path P , ordered positions S0, . . . , Sk−1)
1: t ← ∅
2: for i ← 0 to k − 1 do
3: for l ← 0 to |[Si, Si⊕1]| do
4: if not Check(i, l, |[Si, Siª1]|) then
5: continue to next l
6: else if Check(i, l, 0) then
7: t ← Solution(i, l, 0, t)
8: break inner loop
9: else

10: r ← Search(0, |[Si, Siª1]|, i, l,′ right search′)
11: t ← Solution(i, l, r, t)
12: for r ← 0 to |[Si, Siª1]| do
13: if not Check(i, |[Si, Si⊕1]|, r) then
14: continue to next r
15: else if Check(i, 0, r) then
16: t ← Solution(i, 0, r, t)
17: break inner loop
18: else
19: l ← Search(0, |[Si, Si⊕1]|, i, r,′ left search′)
20: t ← Solution(i, l, r, t)
21: return t

The Check procedure works as follows. We get a configuration of robot, i,

and its movements, and have to calculate if the other robots can complete the

26

coverage in the same time it takes to robot i to complete its sections. The idea

is that when fixing the movement of one robot to determine overall coverage

time, all other robots have only one opportunity for movement within the same

time frame, so the check for the validity of the solution is linear in the number

of robots. First, robot i’s coverage time is calculated. To minimize the total

coverage time, if robot i has to backtrack, it will do so in the smaller section

(line 1). We then check what is the distance that the next robot can cover in

the same time. If there is a remaining area between the robots which both did

not cover it is not a valid solution (line 4). If not, this robot has a remaining

area between it and the robot next to it (lines 7,10) that has to be covered

in the same time frame, so we repeat the check between them. The check is

done cyclically for all the robots (line 3), and if the total area can be covered

within the time frame which was determined by the given configuration, the

solution is valid.

Algorithm 7 Check(robot i, ccw movement amount left, cw movement amount
right)
1: time ← min(left, right) · 2 + max(left, right)
2: area ← |[Si, Si⊕1]| − left
3: for r ← [i⊕ 1, i⊕ 2, . . . , iª 1] do
4: if area > time then
5: return false
6: else if area · 2 ≥ time then
7: area ← |[Sr, Sr⊕1]|
8: else
9: best ← max(time− 2 · area, time−area

2)
10: area ← max(|[Sr, Sr⊕1]| − best, 0)
11: if area > right then
12: return false
13: else
14: return true

The Solution procedure (Algorithm 8) creates a new solution tuple, if it is

better than the existing best solution t. First, in lines 1–3, the new solution

length is compared to the existing solution length. If the existing solution is

27

better or equal to the new solution, the existing solution is returned (line 4).

Otherwise, the new solution tuple is calculated. If the amount of CCW move-

ment left is zero, then the only movement is in the CW direction. The length

of that movement L1 is equal to the amount of movement in the CW direc-

tion, right, and the first direction to take is in the CW (clockwise) direction.

This is done in lines 5–8. A similar check is done for the opposite direction

(lines 9–12). However, if the solution calls for moving bi-directionally, than

the algorithm first checks which direction involves less movement, CCW (lines

13–17) or CW (18–22). In either case, the direction involving less movement

is taken first, since it will be backtracked-over in the counter direction.

Algorithm 8 Solution(robot i, ccw movement left, cw movement right, current
best solution t)
1: V AL ← min(left, right) · 2 + max(left, right)
2: tV AL ← min(tleft, tright) · 2 + max(tleft, tright)
3: if tV AL ≤ V AL then
4: return t
5: if left = 0 then
6: L1 ← right
7: D1 ← clockwise
8: D2 ← null
9: else if right = 0 then

10: L1 ← left
11: D1 ← counterclockwise
12: D2 ← null
13: else if left ≤ right then
14: L1 ← left
15: L2 ← right
16: D1 ← counterclockwise
17: D2 ← clockwise
18: else
19: L1 ← right
20: L2 ← left
21: D1 ← clockwise
22: D2 ← counterclockwise
23: return 〈i, L1, L2, D1, D2〉

The Search procedure (Algorithm 9) performs a binary search over the length

of a section between one robot to another. It gets a fixed movement length in

28

one direction for a specific robot, and searches for the shortest length that this

robot can move in the other direction, while still enabling the other robots to

complete the coverage of the remaining area in the same time it takes to this

robot to complete its two direction movement. This check is done with Check

procedure (lines 6, 11), recursively, until the length is found (lines 1–2). The

direction of search is determined by the ’type’ argument: a right search means

that the ’movement’ argument is a fixed counterclockwise movement along the

spanning tree, with a length of movement, so the search is done for the length

of the clockwise movement. A left search means the opposite. Before the call

to this procedure we examine that there is a valid solution with this robot

with the maximal possible movement (lines 4–5 in Algorithm 6) to guarantee

that the procedure will not be stuck in an endless loop.

Algorithm 9 Search(low border low, high border high, robot index i, one side
movement movement, type of search type)
1: if low = high then
2: return low
3: else
4: half ← b low+high

2 c
5: if type = ’right search’ then
6: if Check(i, movement, half) then
7: Search(low, low+high

2 , i, movement, ’right search’)
8: else
9: Search(half + 1, high, i, movement, ’right search’)

10: else
11: if Check(i, half , movement) then
12: Search(low, low+high

2 , i, movement, ’left search’)
13: else
14: Search(half + 1, high, i, movement, ’left search’)

Algorithm 6 generates the optimal allocation of robots to sections (and their

backtracking, if necessary), such that coverage is achieved at the best possible

time. This is proven in Theorem 8 below. The optimality is according to the

MSTC movement rules which we introduced before: All the robots move along

the same spanning tree without crossing it, and every robot backtracks only

29

on its own steps. The only case where a robot has to cover another robot’s

cell is where the latter failed and its entire allocated section has to be covered

by another robot.

Theorem 8 (Optimal MSTC Optimality) Algorithm 6 generates an op-

timal allocation of sections for a given STC path, such that the overall coverage

time is minimal.

PROOF. The value of an solution for a given initial configuration is its overall

coverage time. If this is optimal, then for each robot, its individual coverage

time is less than or equal to this value; and there exists at least one robot whose

coverage time is exactly that (otherwise this is not an optimal solution). By

choosing the best valid solution of each robot and comparing it to the other

robots’ best solutions, we guarantee finding the optimal solution. 2

The run-time of the allocation itself is polynomial in n and k. This is shown

in Theorem 9 below.

Theorem 9 (Optimal Backtracking Run-Time) Algorithm 6 runs in

time O(nk2 log n).

PROOF. The main loop is executed k times. In each phase there are 2 loops,

both executed at most O(n) times because this is the maximum number of

possible steps. In each loop the function Check is executed twice and then the

function Search and Solution (in the worst case). In the function Check there is

only one loop which runs k−1 times thus its running time complexity is O(k).

The function Search runs a binary search on one section of the spanning tree

30

path, and uses Check function in each phase so its running time complexity

is O(k log n). The function Solution uses only a constant number of check so

its running time complexity is O(1). So, the overall running time complexity

is O(nk2 log n). 2

Typically the number of robots is much smaller than the number of cells in the

area to be covered, i.e., k << n. Thus in applications, we expect the run-time

to be mostly affected by the n log n factor.

The actual running time can be further improved if the algorithm is modified to

skip checking values which are bigger than the largest initial section. However,

while this is a useful implementation note, it does not affect theoretical run-

time complexity.

4.3 Heterogeneous Robots

So far we assumed homogeneous robots, with equal speeds and fuel capacities.

Thus, the coverage time for a given section, between neighboring robots, was

considered equal regardless of which robot was chosen to traverse it. We now

briefly describe how heterogeneous robots, in speed and/or fuel capacity, can

be taken into account.

The optimal backtracking algorithm (Algorithm 6) works can be easily ex-

tended to address robots with heterogeneous speeds. The extension needed

involves modifying the way coverage time is calculated in the Check proce-

dure (Algorithm 7) and in the Solution procedure (Algorithm 8). Instead of

calculating coverage time based on the length of the section, it should be cal-

31

culated based on the length given the maximum speed of the robot in question

(lines 7,9-10 in Algorithm 7). With this modification, Algorithm 6 is guaran-

teed to return a solution that is optimal in coverage time, even taking into

account heterogeneous speed limits.

We will also want to consider the case where the robots are equipped with

different amount of fuel or different battery capacity. The simple algorithms

(Algorithms 2, 4) do not address this case, and may return a planned path

that cannot be executed by the robots, given their fuel capacity.

However, the optimal backtracking algorithm provides a solution in this case

as well. Algorithm 7 requires a modification in the calculation of the distance

that a robot can cover within a given time frame, such that the calculation

also takes into account the fuel available. With this change, the optimal back-

tracking algorithm is guaranteed to produce a solution that is feasible given

the robots’ fuel or battery constraints. However, this solution still minimizes

coverage time, rather than fuel consumption.

5 Experiments

We empirically evaluated the performance of the different algorithms presented

in this paper. In a first set of experiments, 3 to 30 robots were assigned for

covering a grid of size 30 × 20 cells, i.e., 2400 D-size sub-cells. In each trial

of the experiments, the number of robots was fixed, and their initial positions

were randomly generated. Then the different coverage algorithms were run

to calculate the coverage time. Each such trial was repeated 100 times. We

repeated these experiments for both an empty grid, as well as grid with 80 4D

32

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 5 10 15 20 25 30

Non-Backtracking
Simple Backtracking

Optimal Backtracking
Theoretical Best Case

(a) Empty grid.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 5 10 15 20 25 30

Non-Backtracking
Simple Backtracking

Optimal Backtracking
Theoretical Best Case

(b) Grid with obstacles.

Fig. 4. Results of experiments with different MSTC coverage algorithms. Each data
point is the average of 100 trials. The results in (a) were tested for significance using
a paired two-tailed t-test, with p = 2.5×10−17. The results in (b) had p = 8.8×10−18

in the same test.

obstacle cells, whose position was randomly generated.

Figure 4-a shows the results of these experiments, in the empty grid case. In

the figure, the X-axis shows the number of robots, while the Y-axis shows

the running time. The figure shows several curves. The worst-case curves were

calculated analytically, and show the worst-case coverage-times for the back-

tracking and non-backtracking algorithms. The best-case curve was also cal-

culated analytically, and is shown so as to provide a benchmark against which

to interpret the actual algorithms running times. Figure 4-b shows similar

results, but for the grid with obstacles.

The figure shows that the simple non-backtracking and backtracking algo-

rithms have a difference in performance for small teams, but converge and

show the same run-time for larger teams. However, the optimal backtracking

algorithm is clearly superior to the two techniques (note the statistical sig-

nificance test results in the caption). This shows that the run-time can be

significantly improved by carefully considering how the initial positions of the

robots affect their planned coverage paths.

33

We thus wanted to explore further the affect of the initial positions of robots

on their performance. In the experiments above, the initial positions were

randomly generated, and thus in the limit, their average position would have

been a distance of n
k

from each other, i.e., the best case. However, real-world

settings typically do not have the flexibility of landing robots in their perfect

initial positions.

To better simulate real-world conditions, we ran a second set of experiments,

where 3–30 robots were assigned to bases, and the number of bases (and their

positions) were controlled. For a team of k robots, we allowed for b bases,

where 1 ≤ b ≤ k. We then split the k robots into the b bases, and randomly

selected the position of each base. When b = 1, it is the worst case for the

non-backtracking case (or close to it), where all robots start from the same

position. When b = k, it is the case of the experiments above.

Figure 5 shows a subset of the results of these experiments. In all sub-figures,

the Y axis shows the total number of robots in the bases, and the Y axis

shows coverage time. In Figure 5-a, all robots leave from a single base. The

two backtracking algorithms converge to a value much below that of the non-

backtracking algorithm, whose faced with its worst case (approximately). In

Figure 5-b, the performance of the three robots is clearly differentiated, yet in

Figures 5-c,d the simple backtracking and non-backtracking algorithms con-

verge (as we saw in the first set of results, above). In all figures, however, the

optimal algorithm significantly outperforms its competitors.

The experiments described above evaluate the performance of the different

MSTC algorithms, but do not contrast them with closely-related offline cover-

age algorithms, such as MRFC [27], or robust ant-robotics approaches [23–25].

34

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 5 10 15 20 25 30

Non-Backtracking
Backtracking

Optimal Backtracking

(a) b = 1.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 5 10 15 20 25 30

Non-Backtracking
Backtracking

Optimal Backtracking

(b) b = 5.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 5 10 15 20 25 30

Non-Backtracking
Backtracking

Optimal Backtracking

(c) b = 10.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 5 10 15 20 25 30

Non-Backtracking
Backtracking

Optimal Backtracking

(d) b = 15.

Fig. 5. Coverage run-time when k robots begin coverage from b bases. Each base
holds k

b robots. Each data point is an average of 100 trials.
.

Such empirical comparison is inherently incomplete, as the underlying assump-

tions and guarantees are different. For instance, MRFC [27] has been shown

to outperform the simple backtracking and non-backtracking algorithms pre-

sented above, in terms of coverage time. The authors observe empirically that

robots also tend to come back to the originating point in MRFC, which they

do not necessarily do in MSTC algorithms. However, MRFC achieves this at a

cost of assuming two or more robots can occupy the same physical cell at the

same time, and without guarantee of robustness. The ant-based coverage al-

gorithms presented in [23–25] can guarantee complete, robust, coverage. But

they do so at a cost of performance. We believe that a general framework,

synthesizing the different approaches and assumptions, is necessary in order

to systematically compare the different approaches to coverage.

35

6 Conclusion and Future work

We presented algorithms for multi-robot coverage, that are complete and ro-

bust in face of catastrophic robot failures. We examined the efficiency of these

algorithms in terms of coverage time, and have shown that the initial positions

of the robots have significant impact on the coverage time. In particular, while

all algorithms carry the potential for best-case coverage in time n/k (where n

is the number of cells, and k the number of robots), non-backtracking coverage

has a worst-case time essentially equal to that of a single robot. Unfortunately,

this is the common case where robots start right next to each other. In con-

trast, the backtracking algorithm is guaranteed to halve the coverage time

of a single robot. We have also introduced a novel polynomial-time optimal

backtracking coverage algorithm, capable of handling heterogeneous robots,

given an initial configuration and STC path. We have shown in systematic ex-

periments that its performance is a significant improvement over the simpler

backtracking and non-backtracking algorithms.

These results shed new light on multi-robot coverage problems, and show

that we must distinguish between redundancy and efficiency, as these are

application-dependent optimization criteria. For instance, vacuum cleaning

applications may want to reduce time, yet painting applications may need to

avoid having the robot re-visit its steps. This result is not intuitive; reduc-

tion in redundancy may cause an increase in coverage time, and thus reduce

performance. The deployment of multiple robots must take this into account,

and balance redundancy and efficiency as required.

Much remains for future work. In particular, we plan to tackle the question of

36

the efficiency of the spanning-tree underlying the planned paths, and examine

the MSTC algorithms in online settings. See [1, 12] for initial steps in these

directions.

Acknowledgments

This paper is based in part on a conference paper by the authors [11]. We

thank Moshe Lewenstein, Noa Agmon, Sven Koenig, Sonal Jain, and Xiaoming

Zheng for useful discussions. K. Ushi and Shira deserve special thanks. This

work was partially supported by Israel Science Foundation.

References

[1] N. Agmon, N. Hazon, and G. A. Kaminka. Constructing spanning trees for

efficient multi-robot coverage. In Proceedings of IEEE International Conference

on Robotics and Automation (ICRA-06), 2006.

[2] M. Batalin and G. Sukhatme. Spreading out: A local approach to multi-robot

coverage. In Proc. of the 6th Internat. Symposium on Distributed Autonomous

Robotic Systems, page 373382, 2002.

[3] D. W. Casbeer, D. B. Kingston, R. W. Beard, and T. W. McLain.

Cooperative forest fire surveillance using a team of small unmanned air vehicles.

International Journal of Systems Science, 37(6):351–360, May 2006. Special

Issue on Cooperative Control Approaches for Multiple Autonomous Vehicles.

[4] H. Choset. Coverage for robotics—a survey of recent results. Annals of Math

and Artificial Intelligence, 31:113–126, 2001.

37

[5] J. Colegrave and A. Branch. A case study of autonomous household vacuum

cleaner. In AIAA/NASA CIRFFSS, 1994.

[6] N. R. Correl. Collaborative exploration and coverage. Master’s thesis, Collective

Robotics Group, California Institute of Technology and Automatic Control

Laboratory, Swiss Federal Institute of Technology, Zurich, 2003.

[7] N. Correll, K. Easton, A. Martinoli, and J. Burdick. Distributed exploration

and coverage. http://www.cnse.caltech.edu/Research/reports/correll-full.html.

[8] Y. Gabriely and E. Rimon. Spanning-tree based coverage of continuous areas

by a mobile robot. Annals of Math and Artificial Intelligence, 31:77–98, 2001.

[9] D. W. Gage. Command control for many-robot systems. In The nineteenth

annual AUVS Technical Symposium (AUVS-92), 1992.

[10] A. Girard, A. Howell, and J. Hedrick. Border patrol and surveillance missions

using multiple unmanned air vehicles. In IEEE Conference on Decision and

Control, volume 1, pages 620–625, 2004.

[11] N. Hazon and G. A. Kaminka. Redundancy, efficiency, and robustness in multi-

robot coverage. In Proceedings of IEEE International Conference on Robotics

and Automation (ICRA-05), 2005.

[12] N. Hazon, F. Mieli, and G. A. Kaminka. Towards robust on-line multi-robot

coverage. In Proceedings of IEEE International Conference on Robotics and

Automation (ICRA-06), 2006.

[13] C. S. Kong, A. P. New, and I. Rekleitis. Distributed coverage with multi-

robot system. In Proc. of the IEEE International Conference on Robotics and

Automation, pages 2423 – 2429, Orlando, Florida, May 2006.

[14] D. Kurabayashi, J. Ota, T. Arai, and E. Yoshida. Cooperative sweeping by

multiple mobile robots. In Proceedings of IEEE International Conference on

Robotics and Automation (ICRA-96), 1996.

38

[15] J. Nicoud and M. Habib. The pemex autonomous demining robot: Perception

and navigation strategies. In Proc. of IEEE/RSJ Int. Conf. on Intelligent Robot

Systems, pages 1:419–424, 1995.

[16] E. Osherovich, V. Yanovski, W. I. A, and A. M. Bruckstein. Robust and

efficient covering of unknown continuous domains with simple, ant-like a(ge)nts.

Technical report, Technion, Israel, 2007.

[17] I. Rekleitis, G. Dudek, and E. Milios. Multi-robot exploration of an unknown

environment, efficiently reducing the odometry error. In Proceedings of the

International Joint Conference on Artificial Intelligence (IJCAI-97), volume 2,

pages 1340–1345, Nagoya, Japan, August 1997. Morgan Kaufmann Publishers,

Inc.

[18] I. Rekleitis, V. Lee-Shue, A. P. New, and H. Choset. Limited communication,

multi-robot team based coverage. In Proceedings of IEEE International

Conference on Robotics and Automation (ICRA-04), pages 3462–3468, New

Orleasn, LA, April 2004.

[19] S. V. Spires and S. Y. Goldsmith. Exhaustive geographic search with mobile

robots along space-filling curves. In Proceedings of the First International

Workshop on Collective Robotics, pages 1–12. Springer-Verlag, 1998.

[20] L. D. Stone. Theory of Optimal Search. Military Applications Society, 2nd

edition, 2004.

[21] J. Svennebring and S. Koenig. Building terrain-covering ant robots: A feasibility

study. Autonomous Robots, 16(3):313–332, 2004.

[22] R. E. Tarjan. Data structures and network algorithms. Society for Industrial

and Applied Mathematics, 1983.

[23] I. Wagner, M. Lindenbaum, and A. Bruckstein. Efficiently searching a graph

by a smell-oriented vertex process. Annals of Math and Artificial Intelligence,

39

24:211–223, 1998.

[24] I. Wagner, M. Lindenbaum, and A. Bruckstein. Distributed covering by ant-

robots using evaporating traces. IEEE Trans. Robotics Autom., 15(5):918–933,

1999.

[25] I. Wagner, M. Lindenbaum, and A. Bruckstein. Mac vs. pc determinism and

randomness as complementary approaches to robotic exploration of continuous

unknown domains. International Journal of Robotics Research, 19(1):12–31,

2000.

[26] A. R. Washburn. Search and Detection. Military Applications Society, 4th

edition, 2002.

[27] X. Zheng, S. Jain, S. Koenig, and D. Kempe. Multi-robot forest coverage. In

Proceedings of the IEEE International Conference on Intelligent Robots and

Systems (IROS-05), 2005.

40

