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Abstract
Visual interactions play an instrumental role in collective-motion-related decision-making. However, our understanding of the various 
tentative mechanisms that can serve the visual-based decision-making is limited. We investigated the role that different attributes of the 
visual stimuli play in the collective-motion-related motor response of locust nymphs. We monitored and analyzed the behavioral 
responses of individual locusts tethered in a natural-like walking posture over an airflow-suspended trackball to carefully selected 
stimuli comprising various black rectangular shapes. The experimental findings together with a prediction model relating the level of 
behavioral response to the visual stimuli attributes indicate a major role of the number of objects in the visual field, and a further 
important effect of the object’s vertical moving edges. While the object’s horizontal edges can be utilized in the estimation of 
conspecifics’ heading, the overall area or visual angle subtended by the stimuli do not seem to play any role in inducing the response. 
Our results offer important novel insights regarding the fundamental visual-based mechanisms underlying animal collective motion 
and can be useful also in swarm robotics.

Significance Statement

Visual interactions are crucial in collective-motion, yet the mechanisms underlying visual-based collective-motion-related decision- 
making are not well understood. This study investigated the behavioral response of marching desert locust nymphs to different at
tributes of swarming-related visual stimuli. We demonstrate that the number of objects is a dominant factor in locust’s visual-based 
collective-motion-related decision-making, along with a further important effect of the size of moving-vertical edges. Moreover, the 
total area occluded by the visual stimuli does not significantly affect the response. The experimental results are further supported by 
a prediction model relating the magnitude of the behavioral response to the visual stimuli attributes. These insights are valuable for 
understanding animal collective motion and designing swarming robots.
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Introduction
The extraction and processing of information from the environ
ment is crucial for ecological interactions in all living organisms. 
However, the wealth of incoming sensory input, mostly compris
ing irrelevant data, constitutes a burden on the animal’s nervous 
system and requires sophisticated strategies to enable behavioral
ly appropriate decision-making within relevant time constraints 
(1, 2). This challenge is brought to an extreme in the case of 
collective-motion: the highly coordinated mass-movement dem
onstrated by many animals, including bird flocks (3), fish schools 
(4), mammalian herds (5), and insect swarms (6). In all these ex
amples, the generation and maintenance of synchronized motion 
is dependent on local interactions among neighboring individuals 
(7, 8). These interactions are, in many if not in most cases, 
visual (9, 10). The visual-based collective motion-related 

decision-making requires each agent to obtain detailed informa
tion about its neighboring conspecifics, such as estimating their 
relative distance, heading, and velocity (11, 12). Extracting such 
knowledge, however, may be hindered by the complexity of the 
social environment (e.g. by visual occlusions; (13, 14)). Our under
standing of the fundamental mechanisms of visual information 
extraction and processing in such settings is poor, and is currently 
an area of active research (10, 15–17).

Given the limited neural resources available to the organism 
(18, 19), an important aspect of the various putative mechanisms 
that might serve visual-based decision-making is their related lev
el of computational demands. In larval zebrafish, for example, 
retina-wide visual projections have been shown to be instrumen
tal in collective motion, with the difference between the total oc
cupancy experienced by each eye affecting the individual larva’s 
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decision regarding turning (10). Theoretical work on flocking star
lings has suggested that a similar mechanism can exchange long- 
range information, facilitating global interactions that maintain 
the density and coherence of the flock (20). Such a mechanism 
does not require identification or even extraction of the individual 
objects among the visual field. A somewhat related yet different 
common strategy for visual-based decision-making, which is con
sidered “cheap” in computational demands, is based on optic-flow 
(21). The deformation of the image subtending the retina (the op
tic flow field) provides a rich source of spatial information (22). The 
apparent motion of objects and surfaces on the horizontal plane 
(translational optic flow), caused by their real motion or by the 
agent’s self-motion, can provide information regarding their 
relative speed and relative distance from the agent. In many or
ganisms, these cues are used for navigating the physical environ
ment (23–26). In optic-flow-based decision-making, there is a very 
specific role for visually distinguished edges, supplying the behav
iorally relevant information that is crucial in many decision- 
making scenarios (27–31).

An alternative, more complex or computationally demanding, 
approach involves object recognition, i.e. identifying the sur
rounding objects (e.g. conspecifics) and their specific attributes 
(32–34). For example, unlike their larvae, sexually mature zebra
fish rely on the unique spatial attributes of their conspecific’s mo
tion for visual recognition (17).

Visual-based collective motion-related decision-making is also a 
key aspect in the emerging field of swarm robotics. Swarm robotics 
is dedicated to the development of collectively operating robots, 
each restricted to local perception and action but collectively dis
playing “swarm intelligence” in order to successfully tackle a wide 
range of tasks (35). In order to be as robust and flexible as their nat
ural counterparts, collaboration between the individual robotic 
agents requires a decentralized individual decision-making system 
that will maintain synchrony and coordination (36). The visual sys
tem (i.e. computer vision) has a central role in coping with these de
mands (37–40), and the question of the required complexity of the 
visual sensors and related computer hardware on each individual 
robot is critical (also taking into account size, energy, and price con
straints). Bio-inspired and visual-based collective-motion research 
is thus essential to advance the field of swarm robotics.

The desert locust, Schistocerca gregaria (Acrididae), is a quintes
sential example of a swarming organism. Its marching nymphs, 
forming huge devastating bands, depend on visual perception 
for their collective-motion-related decision-making within the 
complex and noisy physical, and mostly social environment (9, 
41). Our previous research has shown that locust nymphs demon
strate decision-making-related responses when presented with 
visual stimuli comprising moving objects (computer screens 
showing random dot kinematograms (RDKs)—moving black discs 
on a white backgrounds). We established the existence of several 
decision rules utilized by the locusts, including a stimulus 
direction-dependent response, filtering by way of a speed thresh
old, a coherence threshold for identifying the dominant direction 
of the crowd, and more (41). Major questions, however, have re
mained unanswered. These include, for example, the question 
of whether locusts are sensitive to the overall area or visual angle 
subtended by moving objects in their visual field; or is the spatial 
organization of these objects the major factor affecting their re
sponse? What is the relative importance of the number of objects 
vs. distinct attributes of the individual objects? And more.

Here we investigated the involvement of mechanisms 
such as the aforementioned in visual-based swarming-related 
decision-making in the desert locust. Using a well-established 

experimental set-up (41, 42), we presented carefully controlled 
visual stimuli to individual locusts, monitored their behavioral re
sponses and analyzed the effects of distinct characteristics of the 
visual stimuli. The specific features tested included the number of 
discrete objects, the (moving) vertical-edges, and the total area of 
the stimuli. From the perspective of the animal, these can re
present the number of neighboring conspecifics, the height of 
the observed neighbors, and the total area occupied by them (pro
jected onto the eye) (Fig. 1A).

To gain insights into the locust brain’s inner workings and 
underlying computation, we further investigated the obtained be
havioral data by means of a theoretical (prediction) model repre
senting the nymph decision-making process.

Our results offer important novel insights regarding the fun
damental visual-based mechanisms underlying information 
extraction and processing in the complex and cluttered social 
environment. Specifically, our findings indicate certain distinct 
attributes of the visual stimuli that are instrumental for collect
ive motion-related decision-making in locusts.

Results
The experimental setup and utilized visual stimuli (Fig. 1B) were 
previously demonstrated to induce collective-motion-related re
sponses from desert locusts (41, 42). In short, locusts were tethered 
in a natural walking posture above an airflow-suspended trackball 
between two parallelly placed LCD screens, positioned 15 cm from 
the locust on either side (circa. centered parallel to each eye). 
Locusts were presented with RDKs comprising randomly positioned 
black shapes moving over a white background. The dimensions of 
the presented shapes were initially set in pixels using computer 
software. However, in order to allow discussion in the context of vis
ual perception terminology, they are described and referred to 
henceforth in millimeters (mm) or angles (subtended visual angle). 
For example, a 16 × 16-pixel lattice square equates to 4.4 × 4.4 mm2 

on screen (see Methods for details), corresponding to a subtended 
(horizontal) visual angle of 1.68°. All objects moved on both screens 
in parallel at 5 cm/second in a direction opposite (180°) to the teth
ered locust’s heading (i.e. backward). As noted, each object was ran
domly positioned on the screen and repositioned randomly on the 
same screen when arriving at the edge of the screen. For further de
tails on the rationale behind these visual parameters, see (41).

The presented stimuli comprised different combinations of the 
following specific attributes (Fig. 1A; and see details of the different 
stimuli in Table 1): (a) N denotes the number of moving objects pre
sented; (b) S denotes the total area (mm²) covered by the objects in 
the entire visual field; and (c) V denotes the total moving vertical 
edges (mm) in the entire visual field (vertical edge—as the stimulus 
motion was always horizontal). Given the differing reports on the 
precise characteristics of locust visual acuity (43, 44), we conducted 
a series of preliminary experiments that identified the minimal 
stimulus size required to elicit a behavioral response from the lo
cust (Fig. S1). All the parameters of the different stimuli used are de
scribed in Table 1 and illustrated in the Supplementary Video S1.

The tethered locusts’ behavioral responses were characterized 
utilizing two major parameters: Motion Fraction—the fraction of 
time spent walking during the experiment, and Pause Duration— 
the average duration of a pausing bout (41, 42).

A behavioral visual-based swarming-related 
threshold
Previously reported behavioral experiments have suggested a 
swarming-related threshold—a certain number of marching 
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conspecifics that is required to facilitate the emergence and build
up of synchronized marching (9, 45, 46). We first wanted to re
affirm these observations, and determine this behavioral 
threshold in our experimental setup, in order to enable further in
vestigation of the factors involved in the swarming-related 
visual-based decision-making. Four different stimuli were used, 
comprising 20, 10, 5, or 1 similar 4.4 × 4.4 mm2 per screen (stimuli 
A–D in Table 1).

The results presented in Figure 2 suggest an overall number of 
stimuli-dependent reduction in the motion fraction, accompan
ied by an increase in the pause duration. A statistically 
significant change in the behavioral response (both tested pa
rameters) was observed upon reducing the number of stimuli 
on each screen to five or less (Fig. 2, N = 14–15, Kruskal–Wallis 
test, P < 0.001, Dunn’s multiple comparisons test, P < 0.05 for 
both parameters). Confirming previous reports (45) these find
ings suggest a behavioral threshold of between 5 and 10 moving 
objects.

Total size of moving-edges affects 
swarming-related behavior
While the previous experiment confirmed the existence of a 
swarming-related behavioral threshold, the utilized stimuli dif
fered in all the possible-related attributes: N denotes the number 
of objects, S denotes the total visual angle subtended, and V de
notes the total length of vertical edges (Table 1). The following ex
periment was therefore aimed at determining the relative role of 
the total visual angle vs. the length of moving-edges in the 
swarming-related decision-making (S vs. V ). Three different vis
ual stimuli were used (stimuli E–G in Table 1), all comprising the 
same number of rectangular objects—4, with the same total 
area on each screen (S = 190–193 mm²), but with different aspect 
ratios and thus different edges length. The behavioral responses 
to these three types of stimuli were also compared with the previ
ously observed responses towards stimulus B in Table 1 (10, 4.4 ×  
4.4 mm from the previous experiment) since its total area was also 
193 mm².

As can be seen in Figure 3 (N = 14–17, Kruskal–Wallis test, 
P < 0.01, Dunn’s multiple comparisons test, P < 0.05), reducing the 
number of objects on each screen from 10 to 4, with a concomitant 
reduction in total length of moving-edges, significantly reduced the 
walking fraction (stimuli II vs. I in Figure 3). However, retaining the 
length of moving-edges by using a rectangle with longer vertical lat
tice, partially recovered the walking fraction (stimuli III vs. II in 
Figure 3). This occurred despite the fact that the number of objects 
used was below the previously noted behavioral threshold. 
Increasing the horizontal lattices had no effect (stimulus IV vs. II 
in Figure 3). A similar trend (though not statistically significant) 
was also observed when comparing the pause duration data (i.e. a 
number of object-dependent changes that is reverted upon increas
ing the total length of moving-edges).

These findings clearly demonstrate the role of the total length 
of moving-edges in the locust swarming-related decision-making 
and suggest that the total stimulus area has little to no effect. 
They do not, however, reveal whether the moving edges are the 
dominant factor and sufficient in determining the response, or 

Fig. 1. A) The specific features of the visual stimulus tested. (a) Modifying the number of moving objects seen. (b) Modifying the total area or visual angle 
subtended by the entire visual stimulus. (c) Modifying the moving-edges (vertical edge) within the entire visual stimulus. B) Experimental setup. Each 
single locust was tethered in a natural-like walking posture over an airflow trackball between two LCD screens placed on both sides of the locust. Visual 
stimuli consisted of RDKs comprising randomly positioned black shapes over a white background, moving in a direction 180° to the tethered locust’s 
heading. Image modified from (41).

Table 1. Properties of the different visual stimuli used in the 
experiments.

Stimulus N, 
number 

of 
objects

Edges of 
one object 

in mm 
(vertical, 

horizontal)

Visual 
angles 

subtended 
by one 
object 

(vertical, 
horizontal)

E, Total 
vertical 
edges 
(mm)

S, 
Total 
area 

(mm²)

A 20 (4.4, 4.4) (1.7°,1.7°) 176 387
B 10 (4.4, 4.4) (1.7°,1.7°) 88 193
C 5 (4.4, 4.4) (1.7°,1.7°) 44 97
D 1 (4.4, 4.4) (1.7°,1.7°) 8.8 19
E 4 (6.9, 6.9) (2.6°,2.6°) 36 190
F 4 (11, 4.4) (4.2°,1.7°) 88 193
G 4 (4.4, 11) (1.7°,4.2°) 35 193
H 1 (176,4.4) (60°,1.7°) 352 774
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whether it is the interplay between traits that is important. This 
was tested in the following experiment.

Swarming-related decision-making is determined 
by an interplay between traits
Assuming that the moving-edge pixels are the only behaviorally 
relevant swarming-related visual cue, any number of objects 
with a total number of moving-edge pixels that is higher than 
the behavioral threshold should induce a prominent response. 
We tested this assumption in an “extreme” scenario, presenting 
a stimulus composed of one long vertical bar, with 176 × 4.4 mm 
lattices (stimulus H in Table 1), and compared the behavioral re
sponse it generated to that demonstrated towards a stimulus 
comprising 20, 4.4 × 4.4 mm2, randomly distributed across the 
screen (stimulus A in Table 1), which is an above-threshold stimu
lus that was shown to induce an increased walking fraction and 

decreased pause duration. The single long bar comprised a total 
length of 352 mm of moving-edges compared to only 176 mm in 
the multiple squares stimulus.

As presented in Figure 4, despite this extremely high length of 
moving-edges, the single-bar stimulus induced responses charac
terized by a significantly lower walking fraction and a significantly 
higher pause duration compared to the 20 square stimulus (Fig. 4, 
N = 13–15, Mann–Whitney test, P < 0.05 for both parameters). The 
results of this final behavioral experiment indicate that an inter
play exists between the visual attributes tested, in particular be
tween the number of objects and the moving-edge pixels.

A model predicting the level of behavioral 
response to the visual stimulus attributes
We attempt to develop a predictive model relating features of the 
visual stimuli to the swarming response. The controlled visual 

Fig. 2. A behavioral, visual-based swarming-related threshold. Walking fraction A) and average pause duration B) in response to stimuli with different 
numbers of objects (4.4 × 4.4 mm, 1.68°×1.68° squares). Each point represents data from a single locust (N = 14–15) Gray lines denote the median. Boxes 
show the interquartile range (25th to 75th percentiles). Whiskers include points up to 1.5 times the interquartile range. Significant differences are present 
between boxes with different letters. Gray dashed line indicates location of behavioral threshold.

Fig. 3. The behavioral response to objects with different length of moving edges. Walking fraction A) and average pause duration B) in response to the 
different stimuli. The quantity and spatial properties of the different stimuli are illustrated at the bottom of the Figure. Each point represents data from a 
single locust (N = 14–17) Gray lines denote the median. Boxes show the interquartile range (25th to 75th percentiles). Whiskers include points up to 1.5 
times the interquartile range. A) Significant differences are present between boxes with different letters. B) No significant difference between the 
different stimuli.
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stimulus’ features comprised the number of objects presented 
(N ), the size of the vertical edge (V ) (i.e. the observed object’s 
height), and the horizontal edge (H ) (i.e. its horizontal width 
projection).

First, for each neighbor, the model relies on an assumption that 
the response of the locust is heavily dependent on the distance to 
the observed neighbor, and the neighbor’s heading relative to the 
locust. These two measurements are utilized in most common 
collective motion algorithmic models (6, 14). The subtended an
gles of the vertical edge and the horizontal edge of an object on 
the locust’s compound eye serve, under some assumptions, as 
proxies to these measurements (Fig. 5).

Distance (range) to neighbor
As pointed out in (14), the subtended angle of the horizontal edge 
can serve as a proxy for the distance, but is highly noisy, since it 
varies greatly depending on the orientation of the neighbor with 
respect to the observer. However, the vertical edge is far less noisy 
for neighbors at eye’s level (on the ground). Figure 5 shows an 
idealized angle subtended on the vertical edge V. The distance R 
is the length of the line segment cutting the angle in half (α), 
and forming a 90° angle with V. Under the assumption that the lo
cust knows—even implicitly—the typical size of its conspecifics, 
and practically their expected vertical height V, it could compute 
R in units of its own body-measurements (Eq. 1). Practically, this 
means the angle α may be a key component in the locust’s 
decision-making.

R =
V/2

tan(α)
⇒ α = arctan

V
2R

􏼒 􏼓

(1) 

Relative heading of neighbor
Once the distance is known to the locust, the relative heading of 
the neighbor can be estimated fairly reliably as well. We examine 
the horizontal right triangle (parallel to the ground plane), formed 
by the angle β subtended on half of the horizontal edge H, and the 
edge of length R, which is assumed to be perpendicular to the hori
zontal edge H. In this triangle, we are interested in the angle Ψ (Eq. 

2), since it can be used, together with the neighbor’s bearing angle, 
to compute the relative heading of the neighbor.

Ψ = arctan
2R
H

􏼒 􏼓

. (2) 

The predictive model we present ties these components together 
(Eq. 3). We assume that the locust evaluates each visually per
ceived object separately using the above geometric reasoning. It 
then responds to the aggregated evaluations as described below. 
The relationship between the two visual angle components (Eq. 
1, 2) is nonlinear, and their hypothetical use in the locust un
doubtedly involves additional factors. Nevertheless, we chose a 
simplified-rudimentary model, based on these basic components 
only. Thus, the values for the two angles are simply multiplied to 
account for nonlinearity, and the distance R (which somewhat 
varies as the object moves in a parallel trajectory to the focal lo
cust) is not included. As the locust is visually tracking N objects, 
we hypothesize that its level of response will follow a logarithmic 
curve, based on Weber–Fechner Law (47). Putting all these factors 
together (following Eqs. 1 and 2), yields Eq. 3.

F(V, H, N) = log N arctan
V
2

􏼒 􏼓

arctan
2
H

􏼒 􏼓􏼔 􏼕

, (3) 

where F being the focal locust’s predicted response level. As noted, 
the model is incomplete; we neither avoided conjecturing on the 
role of additional factors that influence the locust decision- 
making, nor does the model include all behavioral measures 
used in the experiments (i.e. walking faction, pause duration). 
As shown below, however, it further validates our experimental 
observations regarding the role and significance of distinct prop
erties of the visual stimuli, as it is successful in linking the ob
served behavior to the different stimuli presented.

The model prediction is correlated with the 
experimental results
Following (48), we plot the model predictions (horizontal axis, 
marked F ), against the observed experimental response, as mea
sured by the mean walking fraction in each experimental setting, 
on the vertical axis (Fig. 6). The bars mark the standard error 

Fig. 4. Swarming-related behavioral response is determined by an interplay between the number of objects and the length of moving-edges. Walking 
fraction A) and average pause duration B) in response to the different stimuli. Each locust was presented with either: I—twenty 4.4 × 4.4 mm2, randomly 
dispersed over each screen (the arrangement of the squares in the figure is for demonstrating their number only), or II—a long bar. Each point represents 
data from a single locust (N = 13–15). Gray lines denote the median. Boxes show the interquartile range (25th to 75th percentiles). Whiskers include points 
up to 1.5 times the interquartile range. Significant differences are present between boxes with different letters.
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around the arithmetic mean (commonly called the average) of the 
observed data (see Supplementary Material for a discussion of 
why the geometric mean may also be appropriate, and Fig. S2
for the prediction model using the geometric mean).

The linear regression shown in the figure allows assessment of 
the model’s prediction compared with the observed mean walking 
fraction. Its relatively high R2 score indicates a good fit: i.e. the 
model is a good predictor of the response to the controlled visual 
stimuli. Ideally, if it had accounted for all the variance among in
dividual locusts and the different trials, all dots would fall exactly 
on the line. We show the residual plot in Fig. S3. Also, as the model 
is rudimentary, it does not directly predict absolute walking frac
tion values, thus its intercept and slope angle are not 0° and 45°, 
respectively.

Discussion
In order to successfully negotiate their surroundings and move in 
the environment, organisms make repeated sensory-information- 

based decisions. These are highly dependent on both the intricacy 

of the environment, and the complexity of the movement-related 

behavioral task (49, 50). Collective motion presents an exception

ally demanding task within a very complex environment: 

Collective-motion-related decision-making requires the process

ing of ample information regarding the physical and social sur

roundings of the organism (41). Each organism repeatedly takes 

decisions to ensure that its route is collision free, while also main

taining the ordered motion of the swarm within the highly clut

tered and noisy surroundings.

Fig. 5. Utilizing visual stimuli and an estimated notion of the size of a locust in order to infer distance and direction of neighboring locusts in the swarm. 
The focal locust (center) can deduce the distance (R) to a neighbor in the swarm based on the expected vertical edge (V ) and the subtended angle of half 
the vertical edge (α). The distance from the focal locust (R) together with the subtended horizontal angle (β) and the expected horizontal edge (H ) can serve 
to compute the angle Ψ, which plays a role in estimating the relative heading of conspecifics in the swarm.

Fig. 6. Model predictions and correlation with the locusts’ behavioral response. The predicted response (Eq. 3) is measured on the horizontal axis. Dots 
depict the associated mean walking fraction observed for the experimental groups (stimuli A–H in Table 1). The solid line shows the linear regression (R² 
=0.772, Eq: WF Response = 0.121F + 0.319) . Error bars denote the standard error of the mean.
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In the case of visual-based collective motion, decision-making 
is particularly challenging due to constraints on the visual field, 
the need to filter nonrelevant information, and the computational 
burden of extracting of relative speed and relative heading of con
specifics. These are just as crucial for collectively moving living or
ganisms as they are for swarming robots (14–16, 37, 51–53). 
Several theoretical mathematically formulated biomimetic ap
proaches have been shown to cope successfully with these diffi
culties, such as optic-flow-based navigation (15) and visual 
projection (20). However, the question of the mechanisms used 
in nature, by moving animals (birds, fish, insects), remains largely 
open.

Here we investigated this question in desert locust nymphs. 
Focusing on the relative roles of different attributes of the visual 
stimuli in generating swarming-related behavioral responses, 
we provide insights into the visual-based collective-motion- 
related decision making. We directly tested the possibility of the 
locusts relying only on basic changes over time in their visual field 
(e.g. optic flow), compared to the more complex alternative: utiliz
ing the recognition of the number of moving objects in the visual 
field. Previous arena swarming experiments have already sug
gested that the walking kinematics of locusts is strongly depend
ent on the number of surrounding moving objects, with a clear 
threshold (9, 45, 54). The distinct behavioral responses in such ex
periments, however, could depend on the different attributes of 
the visual stimuli that change concomitantly with the number 
of objects, including the overall area subtended in the individual’s 
eye and the total length of moving-edges.

To the best of our knowledge, this study is the first to directly 
demonstrate, at the individual animal level, the relative roles of 
different attributes of the visual stimuli in generating the 
swarming-related behavioral response. Our findings demonstrate 
that out of the three possible features tested, the number of ob
jects (N ) seems to play the most central role in the nymph’s 
decision-making regarding marching. Reducing the number of ob
jects to below the behavioral threshold significantly reduces walk
ing fraction and increases pause duration, even when the total 
area subtended on the locust’s eye (S) remains constant. The mov
ing vertical edges (V ), although clearly affecting the locust behav
ioral response, were not sufficient to maintain the level of 
response when the number of objects was very low.

The quantity of visual elements can be perceived by changes in 
various nonnumerical continuous physical variables. Different 
approaches have suggested continuous variables that may con
tribute to the evaluation of “numerousness’ (55, 56). In this 
work, we did not address all such variables, but rather focused 
on those previously shown to be involved in visual-based 
collective-motion-related decision-making (10, 17) and insect 
navigation (57). The aforementioned approaches for the evalu
ation of the perception of numerousness will serve as a founda
tion for our future investigation into the role of this aspect of 
the locust perception in collective motion.

The presented (skeletal) prediction model facilitates predic
tions regarding the level of the observed behavioral responses 
(as measured by the walking fraction) based on the number of ob
jects, and the visual angles subtended by the vertical and horizon
tal edges of the objects. It therefore provides indication of their 
role in locust decision-making. Interestingly, the horizontal edge 
pixels, in our experiments did not seem to directly affect the lo
cust’s response, are used by the model to contribute to the overall 
accuracy of the prediction (i.e. ignoring the perceived width leads 
to reduced fit; Fig. S4). The components of the model are intuitive
ly appealing. The two angles stem directly from the geometry of 

the observed neighbor with respect to the observing animal, and 
the logarithmic relation to the number of observed neighbors 
follows a familiar perceptual law (47). However, the relationship 
between the geometric components is abstractly modeled (multi
plication). More investigations are needed to flesh out the details 
of this relationship.

We also note that for one of the experimental groups we used a 
stimulus comprising a single object that is 176 mm in height, ap
proximately six times the height of the locust. Such objects may 
elicit a motion response that is not social-related (58, 59). When 
the data for this group are removed, the model fit as measured 
by R2 improves from 0.772 to 0.907 (see Fig. S5). This is an encour
aging result, yet it also compounds further studies, since it implies 
that there is a need to further take into account interactions be
tween social (in the gregarious, swarming sense) and other mech
anisms in the locust brain that together translate visual stimuli to 
action.

Optic flow has previously been shown to be instrumental in 
various motion-related behaviors in insects, including flight con
trol and navigation (22, 57). Our findings, however, are inconsist
ent with reliance on the optical flow field by itself as the 
dominant factor in shaping collective-motion-related decision- 
making. Instead, we believe that the swarming-related behavioral 
response is the result of an interplay between several salient prop
erties of the visual stimuli, including the number of objects and 
the moving-edges (horizontal and vertical). These may be inferred 
or generated (by further processing) from the optical flow field. 
Our data are consistent with distinct roles of the moving-edges 
in deciphering the distance to and direction of neighboring con
specifics (14), together with a more general effect of the number 
of conspecifics in the visual field on the magnitude of the swarm
ing response (i.e. affecting the collective-motion-state of the in
sect (60)). Accumulating evidence for visual object recognition 
abilities (61–66), and numerical abilities ((61, 67–70) and see (71) 
for a review) in various invertebrates support such a conjecture.

Our findings serve as a basis for understanding the inner 
workings of the individual locust when performing collective 
motion. By understanding the importance of the different as
pects of the visual input, a more accurate mechanistic model 
of collective motion may be reached. Such a model can be valu
able in the field of collective robotics. Further work is required in 
order to elucidate how collectively moving organisms define, 
identify (and possibly count) agents or conspecifics, including 
elucidating the neurophysiological mechanisms underlying all 
these abilities.

Methods
Animals
All experiments were carried out using Vth-instar larvae 
of S. gregaria (Forskål), taken from our high-density, gregarious- 
phase locust laboratory-colony at the School of Zoology, Tel 
Aviv University. The locusts were reared for many consecutive 
generations under crowded conditions with 100 to 160 individu
als in 60-L aluminum cages and under a controlled temperature 
of 30 °C, 35 to 60% humidity, and a 12-h dark/12-h light cycle. The 
locusts were fed daily with wheat seedlings and dry oats.

Experimental setup
Experiments were conducted in a temperature-controlled (28 °C) 
and LED illuminated chamber. Individual locusts were tethered 
with a fixed heading using a 1 cm clear vinyl tube attached to their 
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pronotum, and maintained in a natural-like walking posture 
above an airflow-suspended Styrofoam trackball decorated with 
an irregular black over white pattern. Visual stimuli were pre
sented on two parallel LCD monitors (LG, 24gn600, South Korea, 
24″, 144 Hz refresh rate and a resolution of 1,920 × 1,080 pixels; 
Pixel size 0.2745 × 0.2745) positioned 150 mm away from the lo
cust and perpendicular to its short axis, with the animal’s eyes 
aligned with the center of both screens in azimuth. The locust 
was positioned 65 mm higher than the bottom of the screens. 
Each screen subtended a vertical angle of 94.4° and a horizontal 
angle of 122° in the locust’s field of view. The tethered locust’s be
havior was recorded using a Sony FDR-AXP35 digital camera at a 
25-fps rate.

Visual stimulation
Visual stimuli were designed using Python version 3.9.2 (Python 
Software Foundation) with the PsychoPy library version 2022.2.4 
(72). The basic stimulus with different properties was imple
mented in an RDK setting, using the PsychoPy.Visual.dotstim 
protocol: i.e. a moving object appears at random on the screen 
and when reaching the edge of the screen is replaced by a new 
one (appearing again at a random place on the screen). The stim
uli comprised black rectangles (psychoPy.visual.rect) on a white 
screen background. In accordance with (41), the stimuli’s motion 
was 100% coherent—i.e. all objects moved in the same direction, 
180° to the tethered locust’s heading (i.e. backwards) and with a 
constant speed of 5 cm/s. Each experiment comprised an initial 
2-min adjustment period, during which both screens were first to
tally black for 60 s and then totally white for 60 s. This was fol
lowed by 40 s of stimuli presentation, after which a new locust 
was tethered to the trackball, etc.

We comparatively examined the effects of three different fea
tures of the visual stimulus (visual parameters) on swarming- 
related decision-making (Fig. 1): 

(a) N denotes the number of objects presented on each screen.
(b) S denotes the total area occupied by stimuli (i.e. black col

ored) on each screen.
(c) V denotes the total length of moving-edges—the overall 

length of pixels that change from black to white, or vice ver
sa, from frame to frame during movement of all stimuli on 
each screen. Since the motion direction in our experimental 
scheme was always on the horizontal plane (backwards), V 
comprises the vertical lattices of the rectangular shapes 
utilized.

For example, the specific visual parameters for an RDK com
posed of five squares, each 4.4 mm by 4.4 mm in size, will be: (a) 
N, number of objects 5; (b) S, total area—97 mm²; and (c) V, 
44 mm total length of vertical edges ((4.4*2) *5).

We conducted three different behavioral experiments, utilizing 
different combinations of the above visual parameters to investi
gate the tethered locusts’ behavioral responses and the relative 
importance of the different parameters, as detailed in Table 1
and in the Results section. An example of the visual stimulation 
is available in the Supplementary Material, video.

Behavioral analysis
The tethered locusts’ behavioral responses to the visual stimuli 
were measured utilizing Motion Fraction—the fraction of time 
spent walking during the experiment, and Pause Duration—the 
average duration of a pausing bout. The recorded experimental 

videos were analyzed using FicTrac (73). The trackball rotation 
during each frame was captured and the behavioral state of the 
tethered locust (motion or pause) was determined using a prede
termined threshold (41) which was re-validated here. Because lo
cust motion is intermittent (pause and go; (9, 74)), walking and 
pausing bouts were identified. Ten or more consecutive motion 
frames were considered a walking bout; and 20 or more consecu
tive pause frames were considered a pausing bout (similar to the 
thresholds used in (9, 41, 42)).

Data analysis
All the data were plotted using the Matplotlib Python package and 
statistical tests were performed using GraphPad Prism 10 
(GraphPad Software, San Diego, CA, USA). P-values of 0.05 were 
deemed statistically significant.
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