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Abstract—The extraction of features is an essential step in the
process of mining software repositories. An important feature
that has been actively studied in the field of mining software
repositories is bad code smells. Bad code smells are patterns in
the source code that indicate an underlying issue in the design and
implementation of the software. Several tools have been proposed
to extract code smells. However, currently, there are no tools
that extract a significant number of code smells from software
written in C++. Therefore, we propose CLEAN++ (Code smeLls
ExtrActioN for C++) [1]. It is an extension of a robust static
code analysis tool that implements 35 code smells. To evaluate
CLEAN++, we ran it over 44 open-source projects and wrote
test cases to validate each code smell. Also, we converted the test
cases to Java and used two Java tools to validate the effectiveness
of our tool. In the end, we confirmed that the CLEAN++ is
successful at detecting code smells.
The tool is available at https://github.com/Tomma94/CLEAN-Plus-Plus.

I. INTRODUCTION

The process of extracting and analyzing data from software
repositories is an important task to uncover relevant and
actionable information about software systems. An important
feature that has been actively studied in the field of mining
software repositories is bad code smells [2]–[7]. Bad code
smells, also known as design defects [8], are patterns in the
code that indicate an underlying issue in the design and imple-
mentation of a software system. Besides being great indicators
of code quality and guidelines for refactoring practices, they
are also important features for the task of defect prediction [9],
[10], which predicts how likely a specific software component
(e.g., class or method) is to be defective.

Bad code smells are detected using rule-based tools where
specific software metrics are evaluated against thresholds to
verify whether code smells exist in those software components.
Currently, there are several tools to detect bad code smells.
However, most of the tools are either written to detect code
smells in Java, such as DesigniteJava [11] and Organic [12], or,
if written for C++, they are either old tools that are no longer
available, or they are tools that detect a very small number of
code smells.

The contribution of this paper is by proposing the Code
smeLls ExtActioaN tool for C++ (CLEAN++ [1]), a novel
code smell extraction tool written for software systems in
C++ that extracts 35 code smells. The extracted code smells
are based on the set of conceptual smells initially defined by
Fowler, M. et. al [13] and Brown, W. [14], and later derived
into rules [15], [16]. CLEAN++ implements the same rules
as defined in both DesigniteJava [11] and Organic [12], two

well-known code smells extractors for Java that have been
used in the literature [9], [10], [17], [18]. CLEAN++ extends
OCLint, a rule-based static code analysis tool that uses an
abstract syntax tree (AST) visitor provided by the Clang API
to reliably visit each node in the AST and collect the metrics
necessary to detect the code smells.

To examine the validity of CLEAN++, we created test
cases for each bad code smell. We ran our tool on the test
cases and verified that the relevant code smells were retrieved.
Moreover, we converted those test cases to Java using a C++-
to-Java converter [19]. We executed CLEAN++ and both
DesigniteJava and Organic on the test cases and compared
the similarities between the detected code smells. Beyond
retrieving the correct code smells using the test cases, we ran
CLEAN++ on a set of 44 C++ Github projects and analyzed
the detected code smells to validate the tool on real-world
open source projects.

II. CODE SMELLS

Bad code smells are patterns in the source code that entail
underlying problems in the design and implementation of the
source code. These problems are not directly linked to a defect
in the software but are bad practices that increase the code’s
technical debt and complexity, and most likely lead to the
introduction of defects. For instance, a piece of code that is
duplicated across related classes does not indicate that those
classes have defects, but increases the software’s complexity
and hinders the code’s maintainability and development, thus
increasing the probability of defects.

The most familiar smells in the literature were proposed
by Fowler, M. et al. [13] and Brown, W. [14]. They published
conceptual definitions of code smells as patterns of bad-quality
software development that can be fixed through the application
of refactoring techniques. However, they only described the
conceptual idea of bad code smells and did not propose a
means to detect them. Therefore, posterior studies proposed
formal methods of detection based on the smells’ description
[16], [20]–[22]. These studies use code metrics extracted from
the source code (e.g., number of lines of code) and build con-
ditional rules using sets of thresholds that assert if a specific
code smell is present in a particular software component (such
as a class or a method). The commonly used thresholds are
either predefined constants derived from experience [21], or
are values based on the statistical distribution of the compared
metrics in the project [16], [20].
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An example of a code smell is the God Class. This smell
occurs when a class is too large and concentrates many
responsibilities on itself [14]; in a class diagram, it can be
visualized as a single complex controller class surrounded by
simple data classes. One simple rule to detect if a class is the
God Class [12] is to evaluate whether the number of lines of
code in the class (COLC) is higher than 500 and if its tight
class cohesion (TCC), which measures the cohesion between
the public methods of a class, exceeds the average TCC of all
classes in the project.

In addition to these code smells, Suryanarayana et al. gen-
eralized existing code smells from the literature and proposed
a catalog of design smells that detect violations on the four
object-oriented programming design principles [23]:

• Abstraction focuses on the simplification of entities.
• Encapsulation focuses on the separation of concerns and

information hiding.
• Modularization focuses on the creation of cohesive and

loosely coupled.
• Hierarchy focuses on the creation of a hierarchical

organization of abstractions.
In our tool, we implemented 35 code smells from these

different sources, targeting software in C++. We include a
list of the implemented code smells, including each smell’s
description and its respective rule together with the source
code.

III. RELATED TOOLS

A number of tools have been proposed to detect code smells
in C++ programs [24]. However, most of them are either old
tools that are not available anymore and some of them only
implement a small number of code smells (< 5). For instance,
Arcan is a tool that detects code smells for C++ projects that
implements five code smells [25]. To our knowledge, there
is no tool specifically designed to detect many types of code
smells in C++ programs.

On the other hand, several other tools were designed to
detect code smells in Java programs [24]. From the same
authors that proposed the catalog of design smells based on the
principles of object-oriented programming, Suryanarayana et
al. published a code quality assessment tool called Designite-
Java. It extracts 18 design code smells and 10 implementation
smells [11]. Moreover, another tool is called Organic; it is an
Eclipsed plugin that collects 11 code smells from Java projects
based on [12]. They implement the rules published by Bavota,
G. et al. [15].

In our tool, we implemented 35 code smells derived from
the rules used both in DesigniteJava and the Organic tools for
software written in C++.

IV. TOOL DESCRIPTION

To implement CLEAN++, we extended a software analysis
tool called OCLint [26], which applies static analysis to collect
metrics from C++ code, to be able to extract a combination of
35 design smells. In this section, we start by describing what

OCLint is and how does it work, and then we describe how
we extended OCLint to implement CLEAN++.

A. OCLint background

OCLint is a tool that helps to improve the quality of
C++ code by looking for potential problems. This static
code analysis tool uses the source code’s AST by interacting
with the Clang API to detect defects that are not visible to
compilers. OCLint looks for possible bugs, unused code, com-
plicated code, code smells, and other static analysis metrics;
although, it only provides a small number of code smells,
which CLEAN++ solves. An advantage of this tool is that it is
open-source, allowing the community to expand its capabilities
by adding custom rules.

Clang is part of the LLVM project that is used to parse C-
based languages source code and generate AST representation
of the code [27]. The Clang’s AST nodes are represented by
large hierarchy classes for different types of nodes, For exam-
ple, a node representing a C++ method in the source code is an
object of clang::CXXMethodDecl class. This class is a derived
class of the base class clang::Decl that represents a declaration
in general. Another example is a node that represents an if
statement. This node is an object of clang::IfStmt derived from
the base class clang::Stmt.

OCLint is an extendable rule-based tool. Each rule is
implemented as a subclass of RuleBase, and from here, there
are two main categories of rule creation. There are rules
created from reading the source code line by line, and there
are rules that recognize patterns in the AST. CLEAN++
implements smells that are based on the rules category of the
latter. Therefore, to recognize patterns in the AST, OCLint uses
the AbstractASTVisitorRule class, which implements a visitor
design pattern mechanism [28] to interact with the Clang’s
AST nodes node. In this pattern, the entire AST is traversed
recursively from the tree’s root, and each node is visited in
depth-first pre-order traversal.

The rules analyze each AST representation of the source
code and find nodes that match the predefined patterns. All the
rule violations are collected and eventually sent to the reporter,
which displays them along with the name of the affected code
file.

B. CLEAN++

CLEAN++ is designed to detect bad code smells in C++
projects. Our choice of OCLint for this purpose is due to its
stability as a static analysis tool and due to its extendability
feature to define custom rules. We added a set of new rules de-
signed to detect 35 code smells: (1) nine design smells and (2)
six implementation smells, based on the rules implemented in
DesigniteJava [11], [23]; and (3) 12 class-level smells, (4) and
eight method-level smells based on the rules implemented in
Organic [12], [15]. Since these code smells are detected based
on rules set on extracted metrics, for each class and method
we parsed the AST to measure the metrics required for each
particular smell and then assessed its relevancy against specific
thresholds.



Since OCLint extends the Clang visitor pattern over its API,
using the visitor pattern, we were able to recursively visit only
the AST nodes belonging to specific Clang classes that we
wish to measure. For example, the rule that searches for the
Large Class smell visits all the class nodes in the project. For
each of them, it counts the number of lines of code in the
class (CLOC), and if it exceeds some threshold, this class is
reported as having a Large Class code smell.

To run CLEAN++ on a project, the project has to contain
a compilation database defined in a compile-command.json
file. OCLint requires the compilation database to obtain in-
formation about the source files, compilation options, and
preprocessor defines, which are required to build a code base.
Thus, it allows OCLint to provide accurate and consistent
results, even when analyzing complex and large codebases.

Given the compilation database for the target project,
to run CLEAN++, the user needs to execute the oclint-
json-compilation-database script. It is created after installing
CLEAN++ and it is located inside the build folder in oclint-
repo. When executing it, the flags -p <project-path> and
– -rule=<rule-name> should be included. The <project-
path> specifies the project directory path where the compile-
command.json can be found. The rule-name specifies the name
of the smell to be extracted. When executing CLEAN++ it can
be run either by extracting a single code smell or chaining the
-rule flag to extract a combination of more than one smell. To
extract all the code smells available in CLEAN++ we provide
a utility script in our tool’s repository.

After its execution, the output of CLEAN++ follows
OCLint’s report format, and it is redirected to the standard
output. The report describes which smells were detected in
each file of the project and their location; in addition, it
summarizes the total number of files that were analyzed, the
number of those files where smells were detected, and the total
number of detected code smells.

V. EVALUATION

In this section, we evaluate CLEAN++. We start by de-
scribing how we setup the experiments, and then we present
and describe the results.

A. Experimental Setup

To evaluate CLEAN++, our goal is to measure how re-
liable the tool is in detecting the implemented code smells.
Therefore, we wrote test cases to cover each implemented
code smell. Each test case is a project that includes both files
with the code smell under test and files without it. We ran
CLEAN++ over each test case and verified that the tested
code smell was only detected in the relevant files. For example,
considering that we are testing the detection of the Missing
Default code smell. This code smell occurs when there is a
method that uses a switch statement without a default code
block. Therefore, if the test case for this code smell contains
two files – the first with a switch case statement without default
and the second with a statement that includes it – the test

measures whether the Missing Default code smell is detected
in the first file and not in the second.

To validate the results from both the reports of CLEAN++
execution’s on the test cases, we compared CLEAN++’s re-
ports with the results of the combination of both DesigniteJava
and Organic tools on the same tests. Since DesigniteJava and
Organic are code smell extraction tools for projects written
in Java, we applied a C++ to Java converter tool [19] to
create equivalent Java versions of the test cases. After creating
equivalent tests in Java, we executed both DesigniteJava [11]
and Organic [12] and collected the reports of the detected
smells for each file.

Moreover, we extended the evaluation of CLEAN++ to
include code smell detection on real open-source projects
written in C++. We randomly selected 44 projects available in
Github (Table I); we compiled them, generated the compilation
database, and ran CLEAN++ on the projects to generate the
smell detection reports.

Project Name Total Abstraction Encapsulation Modularization Hierarchy
openal-soft 1,245 770 444 31 0

PEGTL 1,197 1,150 46 1 0
gperftools 1,081 646 354 73 8
flatbuffers 552 467 46 39 0

duckdb 538 350 168 20 0
C-Plus-Plus 466 309 129 28 0

re2 336 245 76 15 0
FTXUI 293 225 44 23 1
coost 287 179 82 25 1
json 277 214 62 1 0

sentencepiece 256 205 45 6 0
pugixml 256 178 64 14 0

rpi-rgb-led-matrix 234 211 14 5 4
mergerfs 199 152 44 3 0

UDPspeeder 192 109 77 6 0
enkiTS 181 107 74 0 0
libco 180 109 68 3 0
libfm 179 121 46 11 1
xlearn 173 168 2 0 3

WebServer 160 146 8 6 0
design-patterns-cpp 150 128 1 0 21

zopfli 114 62 48 4 0
git-crypt 101 82 18 1 0

yoga 97 65 29 3 0
ChaiScript 92 68 24 0 0
BlingFire 56 46 9 1 0

backward-cpp 51 51 0 0 0
spdlog 50 37 7 4 2
Dobby 47 31 14 2 0
muduo 39 35 4 0 0

kfr 38 20 18 0 0
rpclib 35 31 4 0 0
handy 34 21 12 1 0

OpenCC 29 20 8 1 0
LeetCode 29 29 0 0 0

matrix 27 25 1 1 0
magic 26 26 0 0 0

PacVim 22 18 2 2 0
marl 20 12 8 0 0

hardware-effects 14 10 4 0 0
hnswlib 7 7 0 0 0
SEAL 7 7 0 0 0
2048 5 5 0 0 0

cxxopts 3 3 0 0 0

TABLE I: Number of code smells detected in each project and
the number of smells divided per category.

B. Results

We executed CLEAN++ over two variants of a set of 35
test cases in C++ and executed the bad code smells detection
tools for Java on the same equivalent test cases in Java. Then,
we collected all the detected smells for each inspected file and
compared the occurrence of code smells between the Java and
C++ versions. Figure 1 shows the difference between the total
number of detected code smells over each test case for the
C++ version compared to the Java version. We observe that
the number of code smells is mostly equivalent among the
C++ and Java versions of the same test cases, except for a few
specific scenarios where the Java tools detect a larger number



Fig. 1: Total number of code smells detected for each test case between the C++ and the Java converted variant of the test.

of smells. Moreover, Table II lists the cosine similarities from
the detected smells between the tools (C++ or Java) from each
specific test case. We observe that most test cases have a very
high similarity, with an average of 0.895. It shows that both
tools report closely the same smells in most of the test cases.

#Test
Cosine

Similarity
#Test

Cosine
Similarity

#Test
Cosine

Similarity
#Test

Cosine
Similarity

1 0.786 10 0.972 19 0.476 28 1.000
2 0.801 11 0.935 20 0.965 29 1.000
3 0.822 12 0.683 21 0.832 30 0.976
4 1.000 13 0.673 22 1.000 31 0.811
5 0.798 14 1.000 23 0.967 32 1.000
6 1.000 15 1.000 24 0.949 33 1.000
7 0.872 16 0.883 25 0.985 34 0.946
8 1.000 17 0.978 26 0.796 35 0.854
9 0.954 18 1.000 27 0.6 Avg 0.895

TABLE II: Cosine similarity between the C++ and Java
versions of each test case.

In general, we observed an equivalent detection of code
smells between CLEAN++ and the tools for Java code.
However, we found some mismatches in some of the test cases,
which should not be expected as the rules and implementations
between the tools are the same. Therefore, we investigated
possible issues in the experimental setup and identified the
following:

• The converter used to create an equivalent Java version
from the C++ tests and open-source projects may cause
physical changes in the code that, despite matching the
equivalence between languages, it may affect the mea-
sured metrics in a project. For example, when converting
a class from a C++ file to a class in Java, depending on
how the converter is implemented and also from specific
rules in the language, the number of lines of code in the
class (CLOC) may be different; to which we verified in
some instances of the converted files. This, in turn, may
influence some of the bad code smells, such as the God
Class smell that is detected when the number of lines of
code in the class exceeds 500.

• Due to differences between specific rules in C++ and
Java, such as multiple inheritance, and differences be-
tween virtual methods in C++ and abstract methods in
Java, there are assumptions defined in the smell detection
task that may lead to inconsistencies in the detected rules,
which may justify differences in the detected smells, but

are not inherently wrong since they follow the principles
of the smell under the definitions of the programming
language.

Moreover, we ran CLEAN++ over 44 open-source projects.
The results show that CLEAN++ succeeds in detecting code
smells from different files of real projects. Table I shows the
total number of code smells detected by CLEAN++ for every
tested project and the number of smells over each category of
the object-oriented design principles.

VI. THREATS TO VALIDITY

In this section, we identify limitations that may threaten the
validity of CLEAN++.

• For projects with large dimensions that contain multiple
code smells, CLEAN++ may have performance issues
and require significant time to produce a report.

• The tool was created for object-oriented code and will
not work with imperative code. Consequently, it will not
work if the C++ project does not contain at least one
class.

• CLEAN++ does not include the external dependencies
within the analysis, only the project files.

• As a requirement for a consistent analysis, the target
project needs to include a compilation database.

• CLEAN++ is not robust against compilation errors. If the
target project fails its execution, the tool will not conclude
the smell detection.

VII. SUMMARY

We proposed a new tool called CLEAN++ to extract a
significant number of code smells for programs written in
C++. CLEAN++ detects 35 code smells based on the same
rules implemented in two code smell detection tools from
programs in Java. This tool is an extension of OCLint, a
static code analyzer that uses the Clang API to traverse
the program abstract syntax tree and reason whether a code
smell is detected. We examined our tool by creating test
cases for each implemented smell and converting them to
Java to compare with the existing Java tools. We observed
mostly similar detection between the tools. In addition, we
ran CLEAN++ on 44 real open-source projects, to verify that
our tool could extract code smells from real projects.
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