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Mirroring: A General Approach For Plan And Goal Recognition

Abstract

Plan recognition is the task of inferring the plan of an agent, based on an incom-
plete sequence of its observed actions. The problem may be further sub catego-
rized into offline and online plan recognition. In offline versions of the problem,
the entire sequence is given to the recognizer at once. In contrast, in online recog-
nition the observations are provided incrementally. The traditional approach to
plan recognition has been to compare observations against a dedicated plan li-

brary representing all known plans to achieve known goals in a manner that facili-
tates efficient inference. This approach fails when encountering unknown plans or
when dealing with continuous domains where the potential plan possibilities may
be infinite. A recent approach to plan recognition uses a planner to dynamically
generate plans for given goals, thus eliminates the need for the a traditional plan li-
brary. While an inspiring approach it poses many problems for online recognition
in continuous environments.

A key problem in previous formulations of plan recognition over continuous

domains is the early commitment to specific discretizations of the environment
and the observed agent’s actions, often leading to a reduction in recognition accu-
racy. To address this we introduce Mirroring. Inspired by mirroring processes hy-
pothesized to take place in human brains, Mirroring is a formalization of recogni-
tion problems which admits continuous environments, as well as discrete domains.
We further develop Mirroring as a complete online goal recognition approach that
uses a black-box planner to generate recognition hypotheses, avoiding the preva-
lent assumption in current approaches, which rely on a dedicated plan library.
Due to the suitability over continuous domains we can now apply continuous-
world motion planners in plan recognition.

We proceed to provide formal arguments for the usefulness of Mirroring, and
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empirically evaluate Mirroring over a thousand recognition problems in three con-
tinuous domains and six classical planning domains. We also proceed to contrast
machine and human recognition in two challenging domains, revealing insights as
to human capabilities; and finally we compare Mirroring to library-based meth-
ods.

As Mirroring requires multiple calls to a planner within the recognition pro-
cess it can be inefficient for online recognition. Recognizing goals with minimal
domain knowledge as an agent executes its plan requires efficient algorithms to
sift through a large space of hypotheses. We therefore identify two independent
decision points within the Mirroring algorithm where heuristics may be used to
improve online run-time. We specify such heuristics for continuous domains,
prove guarantees on their use, and empirically evaluate both the performance and
efficiency of our algorithm over hundreds of experiments in both a 3D naviga-
tional environment and a cooperative robotic team task. We additionally test the
durability of our approach by experimenting over scenarios with varying recogni-
tion difficulty, with both evenly spread and clustered goals.

As a final optimization method we further develop an online approach to rec-
ognize goals in both continuous and discrete domains using a combination of
Mirroring and a generalized notion of landmarks adapted from the planning lit-
erature. Extensive experiments demonstrate the approach is more efficient and
substantially more accurate than state-of-the-art.
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Mirroring: A General Approach For Plan And Goal Recognition

1 Introduction

The Road goes ever on and on

Down from the door where it began.

Now far ahead the Road has gone,

And I must follow, if I can,

Pursuing it with eager feet,

Until it joins some larger way

Where many paths and errands meet.

And whither then? I cannot say

J.R.R. Tolkien, The Fellowship of the Ring

As the human population and life expectancy increases so does the need for
integrating robots and virtual agents closely into everyday human life. These
agents may provide care and attention where otherwise manpower is lacking. To
create better agents that interact seamlessly with humans we need to draw lessons
from what we know of human social cognition. Designing an agent inspired by
these processes will provide an agent that is more predictable, less threatening and
overall welcome to its human benefactor.

One important aspect of human social cognition is the innate ability to perform
quick and efficient intention recognition. This ability enables humans to reason
about the hidden goals of other agents around them through observations of their
actions. In humans this ability is hypothesized to come from the existence of a
mirror neuron system [85, 84]. Mirror neurons have first been discovered in the
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early 90’s. These neurons were seen to fire both when a monkey manipulated an
object and also when it saw another animal manipulate an object. Recent neuro-
imaging data indicates that the adult human brain is also endowed with a mirror

neuron system for matching the observation and execution of actions within the
adult human brain. This system is hypothesized to give humans the ability to infer
the intentions leading to an observed action using their own internal mechanism.
It is also attributed to other high level cognitive functions such as imitation, ac-
tion understanding, intention and language evolution. Consequently, the human
mirror neuron system may be viewed as a part of the brains’ very own plan/goal
recognition module and can be used to recognize the actions and goals of other
agents from a series of observations of the other agents’ actions.

It is therefore no wonder that plan, activity, and intent recognition (PAIR) [99,
91, 18, 40] is a fundamental research area in artificial intelligence, tackling the
problem of inferring the hidden mental attitudes of an observed agent. Given
a partial sequence of observations of an agent, PAIR algorithms infer one or
more of the following: a complete sequence of the agent’s actions and their ef-
fects, future actions, a classification of the observed activity, and the intended
goal(s) [10, 9, 52, 39, 12, 11, 49, 63]. The problems have many applications
in continuous environments, e.g., for recognizing intended gestures and sketches
whether in air or on paper [86, 92], anticipating user commands [10], suspicious
behavior recognition [45] or for recognizing intended navigational goals [113].

Also, as autonomous agents and robots are being incorporated more and more
into everyday lives there is a rising need to address the behavior of these agents in
team scenarios. These could be heterogeneous teams, constructed of both humans
and agents, working together in some joined task such as a search and rescue
scenarios [20]. Or these could be homogeneous teams working in unison as in
assembly scenarios [50] and object handovers [96]. Another example is a soccer
game scenario where the agents may want to cooperate when on the same team
but may be on opposing teams as well [59]. In all of these cases there is a need
for cooperation without explicit interaction. In order to do so in an efficient way
the agent has to perform some kind of plan recognition to try and infer another
agents’ intention.

In these complex recognition problems the set of observations is not necessar-
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ily complete or sequential; observations can be missing in the beginning, middle
or end of the process. The manner in which observations are obtained also plays
a significant role. The recognition problem may be divided into two variants. In
offline recognition the entire sequence of observations is provided to the agent be-
fore the recognition process begins. In contrast, in online recognition the sequence
of observations is revealed incrementally instead of being known in advance, with
the object of identifying the goal or plan as early in the recognition process as
possible.

The prevalent approach to goal recognition relies on a dedicated plan recogni-

tion library, which represents all known ways to achieve known goals [99]. As the
problem of plan recognition is NP complete, recognition methods vary widely in
the expressiveness of the representation and efficiency of the inference algorithms
used. While powerful when the plans are known, this does not work when the
observations come from an unknown plan to achieve a known goal. An additional
difficulty is raised when adding goals to the set of recognizable goals, as plans for
them need to be inserted into the library in order to be recognized. Moreover, and
perhaps more importantly, the use of a dedicated plan recognition library is not
compatible with underlying principles of integrated agents: an agent that plans
and acts in an environment will need a separate plan recognition library for recog-
nizing other agents’ actions, despite having implicit knowledge about what plans
in the environment look like.

In addition, current approaches to plan recognition have focused on discrete
descriptions of the agent’s interactions with its environment. Continuous domains
were traditionally addressed by a separate discretization component, translating
angles, positions, motions—sometimes entire trajectories—into discrete symbols.
Unfortunately, early commitment to a fixed discretization leads to inherent infor-
mation loss. We show that once discretization is fixed, there are always cases
where the information loss will degrade performance.

Inspired by mirroring processes in primates, we have developed Mirroring for
plan recognition. It has been hypothesized that the human ability to perform quick
and efficient plan recognition comes from the newly discovered mirror neuron

system for matching the observation and execution of actions within the adult
human brain [85]. The mirror neuron system gives humans the ability to infer the
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intentions leading to an observed action using their own internal mechanism. It
may therefore be viewed as a part of the brains’ own plan recognition module and
can be used to recognize the actions and goals of one or more agents from a series
of observations of the other agents’ actions.

Mirroring is a plan recognition technique which relies on a model of planning
that extends classical planning to model domains with continuous and/or discrete
variables in an efficient online manner. By utilizing a planner as a black box, to
dynamically generate plans that are matched against the observations, eliminating
or ranking recognition hypotheses throughout the process, Mirroring eliminates
the need for storing plans in advance through the traditional plan library. It is
designed to efficiently handle incremental, continuous observations and tightly
integrates planning and recognition: Whatever plan can be planned, can also be
recognized.

Other notable exceptions that also focus on library-free recognition include
[80, 81, 57, 94]. However, these inspiring approaches target discrete domains
only, and are inefficient for online recognition, where observations are incremen-
tally revealed. They would have additional difficulty in operating in continuous
domains which have infinitely parameterized actions (observations).

1.1 Mirroring Components

To carry out this recognition process, in particular re-using an off-the-shelf plan-
ner in service of recognition, several components are needed. These are shown in
Figure 1.1, and described below in detail.

Figure 1.1 shows the input of the recognition process. The first is of the ob-
servations of the agent whose possible goal the system is attempting to recognize,
and the second is the set of possible goals (normally given once, but can dy-
namically change). The nature of these observations may differ between varying
recognition problems and we may assume, without loss of generality, that these
observations include the initial position of the agent as it may easily be obtained
from them. When attempting to recognize a destination, the observations may rep-
resent locations in space, when attempting to recognize shapes drawn on paper,
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Figure 1.1: Components needed for planner based recognition.

the observations may represent possible sketches already drawn; we will delve
deeper into both of these examples in the Chapter 5.

Translate Input The goal and observations are fed as input into the Translate

Input component, whose task is to prepare the input to be sent to the Planner.
This is a key step within any recognition approach whereby a planner is being
used. Since planners are not designed to accept observational history as input,
part of the work of the recognizer, before utilizing the planner, is to incorporate
the history of the observations in a coherent manner as part of the planners’ input.

With each new observation the Translate Input component iterates over all
possible goals, folding the known observations into the input fed to the planner by
updating either the Initial Position or the Goal. As there is no standard language
for planning, different planners will require slightly different input preparation.
Because the planners used are off-the-shelf planners, incorporating information
from the observations as input to the planners is not a trivial task. Mirroring

achieves this by utilizing the planner to only calculate part of the plan, exclud-
ing the part already achieved as seen in the observations. In contrast, Ramı́rez
and Geffner [81] achieved this by transforming the domain theory to incorporate
observations as new fluents that must take place as additional preconditions.
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Planner After the observations have been translated, they are sent to the Planner

as either part of the initial position or the goal. The output of the planner is
a complete plan to achieve the goal starting at the initial position given. If the
planner is unable to generate a plan it issues an error which indicates that the plan
is not achievable given the input, and the corresponding goal will eventually be
ranked at the bottom.

Thus taken together, the Translate Input and the Planner components work
essentially as a generate-and-test process. The Translate Input component sets up
possible hypotheses, and the Planner tests them, returning a plan to indicate that
the hypothesis passed, or error (no plan) to indicate that the hypothesis should be
discarded. This process may be called once for each goal , repeatedly for each
goal ([94]) or just once ([108],[81]) depending on the implementation.

The end result of this process is a set (thus, unordered) of hypotheses that
match the observations thus far, generated without relying on a stored set of ex-
amples, or plans. This set may be analyzed in various ways, in order of likeli-
hood [81] or relevance [100].

Ranking Recognition Hypotheses There could be potentially endless ways to
rank the possibly hypotheses generated by the planner. One way of determining
a ranking order over the set of recognition hypotheses is to rank them based on
errors when compared to the ideal plans for reaching each goal from the initial
position. In fact the Mirroring Ranking component compares each plan with the
ideal plan. The goal which displayed the smallest difference between these two
plans will be ranked highest. We will elaborate more on this ranking procedure
during in Chapter 3.

We have extensively evaluated this approach over hundreds of experiments
utilizing several different planners, both off-the-shelf and domain specific. We
examined different instances of each individual component and measured recogni-
tion success in terms of several impacting factors. We experimented with multiple
domains, both continuous and discrete and have further contrasted the recogni-
tion results with those achievable with library-based methods. Finally we com-
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pared the performance of Mirroring to human subject recognition while drawing
lessons with respect to human recognition capabilities and the information needed
in order to replicate them.

1.2 Thesis Overview

This dissertation comprises 11 chapters, organized into three main parts (see Fig-
ure 1.2). This chapter constitutes the introduction to this dissertation. The next
chapter surveys the related work. Chapters 3– 5 constitute Part 1 of the disserta-
tion, which deals with a thorough description and implementation of the baseline
Mirroring algorithms for online and offline recognition. Chapters 6– 7 constitute
Part 2 of the dissertation and address the cognitive inspiration for this work by
comparing the performance of Mirroring to that of human recognition. Chapters
8– 10 constitute Part 3 of the dissertation and deal with adapting Mirroring to
apply to efficient online recognition. And finally, in Chapter 11, we provide our
conclusions and discuss future work.
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Figure 1.2: Dissertation Structure.
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1.3 Publications

Results that appear in this dissertation have been published in the proceedings of
the following refereed journals, conferences, books and workshops:

• Kaminka, Gal A., Vered, M. and Agmon N. “Plan Recognition in Continu-
ous Domains.” To be published in Proceedings of the 32nd AAAI Conference

on Artificial Intelligence (AAAI-18), 2018.

• Vered, M., and Kaminka, Gal A. ”Heuristic Online Goal Recognition in
Continuous Domains.” To be published in Proceedings of the 26th Interna-

tional Joint Conference on Artificial Intelligence (IJCAI-17), 2017 [107].

• Vered, M., and Kaminka, Gal A. ”Online Goal Recognition Combining
Landmarks and Planning.” Goal Reasoning workshop IJCAI-17. 2017.

• Vered, M., Kaminka, Gal A. and Biham S. ”Online Goal Recognition
through Mirroring: Humans and Agents.” In Proceedings of the Annual

Conference on Advances in Cognitive Systems (ACS-16), 2016 [108].

• Vered, M., and Kaminka, Gal A. ”Towards Sketch Recognition By Mir-
roring : Extended Abstract.” In Proceedings of the 14th International Joint

Conference on Autonomous Agents and Multi-Agent Systems (AAMAS-15),
2015 [106].
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2 Background and Related Work

”Don’t become a mere recorder of facts, but try to pene-

trate the mystery of their origin.”

Ivan Pavlov

The problem of goal recognition; recognizing a goal or intention without
complete knowledge, has many applications for everyday real life scenarios,
including human-robot and human-computer interaction [110], command pre-
diction [52, 10, 11], smart environments [112], intelligent learning environ-
ments [15, 3, 103], monitoring user needs [74, 111], recognizing navigation
goals [55, 113], recognizing intended gestures and sketches [86, 92] and many
more.

The majority of prevalent approaches rely on a dedicated plan library as the
basis for the recognition process. The plan library efficiently represents all known
plans to achieve known goals. In this manner the observations are matched against
existing plans to determine the most likely plan candidate (see Sukthankar et al.
for an extensive survey of recent work [99]). Methods vary in the representation
and inference algorithms used: action decomposition graphs [48, 6], Bayesian
networks [21, 1], hidden Markov model variants [16, 10], conditional random
fields [55, 104, 54, 40], grammar-based approaches [78, 35, 33, 62, 63], case-
based plan recognition [105] and many more. A common theme is that they ad-
dress continuous domains only through fixed, a priori discretization. We will show
in Chapter 3 that this approach may lead to inferior recognition success.

The use of a library, while often efficient, limits recognition capabilities to
recognizing goals for which plans are known a-priori and encoded in the plan
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library. Additionally, the requirement to store recognition knowledge separately
from plan execution knowledge wastes space. If the observations are of an un-
known plan, even leading to a known goal, traditional pure library-based methods
fail. And when wishing to add to the set of recognizable goals, we would also
have to insert plans for recognizing the new goals into the library (e.g., manually
or by learning), in order for the new goals to be recognized. Many such methods
include a variety of probabilistic inference techniques [16, 104, 7, 54]. Cox et al.
[25], present a library-base technique that attempts to handle novel plans. They
perform plan retrieval based on similarities among concrete planning situations.
However, the method uses a representation that is inappropriate for continuous
environments where actions and ensuing states are not discrete.

Nonetheless, by an inefficient re-running of the offline algorithm, most of
these methods can be used for both online recognition, where the observations are
incrementally revealed and offline recognition, whereby the observations while
incomplete by themselves are given a-priori to the recognition process.

Some methods attempt to modify the plan library itself by unifying the plan-
recognition and plan-execution libraries: Agent tracking [100, 51] uses an agent’s
own BDI plan to recognize a BDI plan being executed by another. Similarly,
Sadeghipour et al. [87, 88] represent (and store) shape drawing plans, that can be
used both for recognition and execution by the agent. Most recently, Geib et al.
[34] advocated the use of combinatoric categorical grammars as a representation
for both generating and recognizing plans.

Various other approaches to plan recognition have also been taken. Instead
of a plan library these approaches utilize a domain theory in the recognition pro-
cess. Plan recognition based on domain-theories removes the reliance on a plan-
library, assuming that any valid sequence of actions is a possible plan and using
the domain description in the recognition process. Some domain-theory meth-
ods address online recognition. Early seminal work by Hong [39] uses a goal

graph representation for online goal recognition, constructed from a domain the-
ory and incoming observations; recognized goals are not probabilistically ranked.
In contrast, Baker et al. [8] use a bayesian framework to calculate goal likelihoods
by marginalizing over possible actions and generating state transitions using only
limited replanning. Martin et al. [56] take an extreme approach, using signifi-
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cant offline computation to eliminate all online planner calls by pre-computing
cost estimates. Keren et al. [49] investigates changing the domain to facilitate
the goal-recognition process. All of these approaches work with discrete domain
theories, and do not directly translate to continuous domains.

Mirroring is most closely related to plan recognition by planning (PRP)
[81, 80]. A plan recognition approach which avoids storing a plan-library, but
instead uses domain theories with planners to dynamically generate hypotheses
for plan recognition on the fly. Here, an unmodified planner is used as a black
box to generate recognition hypotheses that match the observations. A heuris-
tic comparison between the generated plans and an optimal plan that ignores the
observations is used to probabilistically rank the hypotheses.

The Ramirez and Geffner formulation[80] relied on modified planners and
could not probabilistically rank the hypotheses. The extended formulation [81]
uses off-the-shelf (OTS) classical planners to probabilistically rank goals. How-
ever this formulation is inherently limited to discrete domains, as it requires com-
puting a optimal plan that necessarily deviates from the observations. This re-
quirement is meaningless in continuous domains, as any small ε deviation from
an optimal plan that matches the observations would fulfill this requirement, at the
expense of the ranking procedure used in this PRP formulation.

The use of PRP in continuous domains, and in an online fashion also raises
new challenges. The original formulation [81], relies on synthesizing two optimal
plans for every goal: (i) a plan to reach a goal in a manner compatible with the
observations ; and (ii) a plan to reach a goal while (at least partially) deviating
from the observations. The likelihood is then computed for each goal from the
difference in costs of optimal solutions to the two plans. Overall, 2|G| planning
problems are solved, two for each goal. In online recognition the set of obser-
vations is incrementally revealed. Thus two new planning problems are solved
with every new observation, for a total of 2|G||O| calls to the planner instead of
2|G|. In addition, using an off-the-shelf continuous-space planner to generate a
plan that may partially go through previous observations, but must not go through
all of them, is currently impossible given the state of the art.

Sohrabi et al. have further improved this approach to better address unreliable
observations and recognize plans as well as goals [95] and Masters et al. have

Chapter 2 Mor Vered 12



Mirroring: A General Approach For Plan And Goal Recognition

improved the efficiency of the existing approach by reducing overall plan com-
putation within the context of path planning [57]. However these approaches are
targeted towards offline goal recognition and are inefficient in online recognition,
where observations are incrementally revealed. Moreover, their formulation is for
discrete worlds, while we focus on continuous worlds.

Other investigations have begun to address the inefficiencies of online PRP
recognition. Periera et al. have taken a more efficient offline approach [71, 73]
which avoids planning altogether, instead generating planning landmarks from the
domain theory prior to recognition. Such landmarks are actions (or state proper-
ties) that must be included in plans that achieve specific goals [38], and thus pro-
vide strong evidence for recognizing these goals. Indeed we use them in Chapter 9
where our results show that offline-computed information can be beneficial, but
the question of the expense of the offline computation versus online use remains
open.. We note that all of these methods work offline and in discrete domains.

Martin et al. also refrain from using a planner in the PRP. Instead, for each goal
they compute cost estimates using a plan graph [56]. This approach is comple-
mentary to ours. Ramirez and Geffner [82] precompute a policy for recognition,
thus trade significant offline computation for faster online responses. We avoid
this tradeoff, focusing instead on online run-time improvements.

Inspired by these investigations, Mirroring uses a planner (as a black box) to
generate plan and goal hypotheses on-the-fly [108, 107]. Unlike previous work
Mirroring is uniquely addressed towards online recognition in both continuous
and discrete domains while including heuristics that aim to improve efficiency.
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Part I

Introducing Mirroring
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3 Plan Recognition in Continuous
and Discrete Domains

“Life can show up no other way than that way in which

you perceive it.”

Neale Donald Walsch

To date, PAIR approaches have focused on discrete descriptions of the agent’s
interactions with its environment, via plan libraries. Continuous domains were
traditionally addressed by a separate discretization component, translating angles,
positions, motions—sometimes entire trajectories—into discrete symbols. This
facilitates the use of powerful algorithms that use a variety of recognition algo-
rithms that utilize plan libraries: hierarchical graphs [48, 6], deterministic and
probabilistic grammars [78, 33, 87, 62, 34, 7, 35], and other probabilistic mod-
els [21, 16, 77, 82].

Unfortunately, early commitment to a fixed discretization within the plan li-
brary leads to inherent information loss. Indeed, we will later empirically show
that once discretization is fixed, there are always cases where the information loss
will degrade performance. This has also been shown in related tasks (such as path
planning) where there too the loss of information inherent in discretization can be
detrimental [64].

One approach to avoid such early commitment is to apply PAIR methods based
on domain theories, rather than plan libraries. Domain theories describe states in
the world and actions that transition between states and can be used more gener-
ally and flexibly, to identify goals and plans that are not specified. Such methods
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dynamically generate recognition hypotheses as needed, thus in principle avoid
the early commitment made in plan libraries. In particular, Plan Recognition as

Planning (PRP) [81, 106, 108, 95, 107, 57], uses off-the-shelf (OTS) planners for
recognition. Thus potentially, using a motion planner such as RRT* [65] in PRP
could lead to successful, straightforward recognition in continuous spaces. How-
ever, current PRP methods are limited to discrete classical-planning domains, and
cannot use OTS motion planners.

3.1 The Discretization Problem

Figure 3.1: Discretized goal recogni-
tion.

One of the common ways of translating a
motion navigation problem in a continu-
ous domain to fit a discrete model is by
discretizing the environment into a regu-
lar grid. This is done by overlaying the
grid on top of the existing environment and
thereby generating a grid world formed of
cells. A graph can then be generated by
placing vertices either in the corners or
centers of each grid but only in those lo-
cations within the cell. Any location within these cells will be translated to one
of these vertices and any path from one cell to another will have to pass along
them. Nash et al. [64] have shown that the shortest grid paths can be substantially
longer than the true shortest path possible in square grids and have shown that this
expands to triangular and hexagonal grids as well. We would like to demonstrate
how this could lead to an impossibility of goal recognition.

Here’s an intuitive example. Figure 3.1 shows an instance of a 2D recog-
nition problem in a continuous environment that underwent the aforementioned
discretization process of dividing the world into a grid. In this instance we used
a square grid, which is the most common and simplest type of grid to implement.
The initial agent position is represented by the letter I while letters A and B rep-
resent positions of possible goal hypotheses. The actual trajectory of the agent is
represented by a dark, straight line from the initial position in the top-left corner,
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to goal B, while the corresponding observed grid trajectory is highlighted by gray
grid blocks. Thus observations are of grid cells of size ε × ε , rather than of the
actual trajectory.

As can easily be seen the actual trajectory of the agent displays behavior that
clearly favors goal B (under the assumption of a rational agent pursuing the short-
est path between two points) and could potentially lead to early recognition. How-
ever the discretized observation sequence of grid cells, highlighted in gray, does
not convey this information; with this representation the goal can be recognized
only when the agent moves into a grid cell containing either A or B up to which
point the probability for either of the goals would be equal. In this instance the
existing discrete grid model representation falls short within the problem of goal
recognition.

In a continuous environment the initial state of an agent I ∈ S where S ⊆ Rn

necessarily includes not only positions but headings and angles in each position.
In this way the tendency of the trajectory could be observed as early as after the
first action and taken into account in the goal ranking analysis. However, even
if the angle and/or heading of the agent was also discretized there would still be
some discretization factor ε under which this representation would fail.

Therefore, we would argue that this can hold for any discretization factor
(specifically in our example; grid size). If the recognizer could set ε ad-hoc, it
could potentially recognize the goal earlier. Note that this is true for any given
ε-grid (Thm. 1), and clearly analogous examples can be created for non-grid a
priori discretizations.

To show this we first provide several necessary definitions. We define the rec-
ognizer as a mathematical mapping of observations to goal distributions, and we
define the term distinguishable between goals. Two goals will be distinguishable
over a certain observation sequence (which excludes the goal state itself) if the
probability to achieve each goal is different, ultimately allowing for different goal
rankings. More formally :

Definition 1. We define a C-Optimal plan Po : I → G, as a plan from an initial

state I to goal state G that is optimal with respect to value under criterion C,

C(Po).
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Definition 2. We define a recognizer as a function that maps an observation se-

quence, O⊆ Po, to a probability distribution over the goal set G, recognizer : O→
Pr[G].

Definition 3. A C-Optimal recognizer is a recognizer that maps O⊆ Po to a prob-

ability distribution P[G] such that

if C(Pi : I → gi) < C(Pj : I → g j), (gi,g j) ∈ G ,without loss of generality and Pi

and Pj agree with O

then the recognizer will output probabilities such that Pr(gi)< Pr(g j).

A C-Optimal recognizer will necessarily prefer more direct plans with lower
costs to achieve possible goals, a phenomenon also found in human judgment of
observations [13].

Definition 4. In recognition problem R, two goals (A,B) ∈ G are distinguishable
if for an existing observation sequence O⊂ P\G, Pr(A|O) 6= Pr(B|O). Similarly,

(A,B) ∈ G are indistinguishable if for every observation sequence O ⊂ P \G,

Pr(A|O) = Pr(B|O).

Figure 3.2: Discretization limitation
example.

Note that the definition of distinguish-

able purposefully excludes the final goal
state from the observation sequence O ⊂
P \G. In a problem of goal recognition
it would be trivial to attempt to identify a
goal from an observation sequence that in-
cludes the final goal state. We therefore
investigate the problem of goal recogni-
tion where the final state is yet to be seen
and there is merit in early recognition. We
can now proceed to prove the power of the
continuous representation over the discrete
representation.

Theorem 1. For every grid cell size ε there exists a goal recognition problem R

such that goals in R are indistinguishable in the discrete domain, yet distinguish-

able in the continuous domain.
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In order to prove the Theorem let us first look at Figure 3.2 and prove two
supplementary lemmas.

Lemma 2. There exists a goal recognition problem R such that in its discrete

representation the goals in R are indistinguishable for every observation sequence

O⊂ P\G.

Proof. Consider Figure 3.2. For any fixed ε , there exists a goal recognition prob-
lem R where there are two possible goals—equally likely—in locations A and B

and the initial position is I.

For each C-Optimal observation sequence Oc ⊂ P\G in the continuous world,
we can construct a corresponding C-Optimal observation sequence Od ⊂ P \G

under discrete representation. These sequences are a subset of a C-Optimal plan
and therefore will take the optimal, direct path to achieving each goal. Necessarily
under discrete representation all of these sequences will prove identical and have
to pass through cells C1 and C2,⇒ Od ⊆ {C1,C2,C3}.

As the recognizer is defined to be a consistent function, given the same input,
Od , we will receive the same distribution over all of the goals for each possible
observation sequence , recognizer(Od) = Pr[G].

Hence, for every separate C-Optimal observation sequence under continu-
ous representation, from I to each g ∈ G, Oc ⊂ P \G, the discrete representa-
tion will give us the same rankings over the goals, Pr[G]. Within this proba-
bility distribution Pr[G] we have two possibilities; either Pr(A|O) 6= Pr(B|O) or
Pr(A|O) = Pr(B|O).

If Pr(A|O) = Pr(B|O) the lemma holds and A and B indistinguishable for
every Od ⊂ P\G

Let us assume for contradiction that Pr(A|O) 6= Pr(B|O). This means that for
every possible observation sequences, the C-Optimal recognizer will always pre-
fer the same goal over the other implicitly stating that C(P : I→A)<C(P : I→B),
without loss of generality. This cannot be true because the observation sequences
are C-Optimal with regards to each different goal. Therefore the probabilities
must be equal Pr(gi) = Pr(g j) making the goals A and B indistinguishable for
every Od ⊂ P\G.
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In consequence there exists an R in the discrete domain, such that ∀O⊂ P\G

the goals in G are indistinguishable .

Lemma 3. In the continuous domain, the goals in R are distinguishable.

Proof. Consider again the example in Figure 3.2. In the continuous domain there
are two observation sequences Oc ⊂ P \G that are subsets of C-Optimal plans,
one to goal A and the other to goal B.

We need to show that there exists a C-Optimal recognizer for which
Pr(A|O1) 6= Pr(B|O2) for each coordinate along these observation sequences ex-
cluding I. Consider the function l2 which represents the Minkowski distance met-
ric corresponding to the Euclidean Distance function [60]. For each coordinate
along Oc the function measures the geometric distance to the goal. The closer the
goal the higher it will be ranked.

Each observation sequence Oc ⊂ P \G that excludes I is part of a C-Optimal
plan to either A or B. Therefore it takes the most direct route leading to the goal
and will necessarily be geometrically closer to one of the goals. As the function
l2 measures geometric distances from each possible observation sequence to the
goals, it will rank one goal over the other. By using l2, Pr(A|O1) 6= Pr(B|O2) and
A and B are distinguishable in the continuous domain.

Lemma 2 has shown that there exists a goal recognition problem R such that
in its discrete representation the goals in R are indistinguishable for every observa-
tion sequence O ⊂ P\G. Lemma 3 has shown that in that same goal recognition
problem the goals are distinguishable in the continuous domain. Therefore for
grid cell size ε there exists a goal recognition problem R such that the goals in R

are indistinguishable in the discrete domain, yet distinguishable in the continuous
domain and Theorem 1 follows straight forward from the lemmas.

Recognition (PAIR) approaches which rely on a domain-theory, rather than
a plan library offer an opportunity to avoid the early discretization commitment,
as they generate recognition hypotheses dynamically, ad-hoc. Most of these ap-
proaches work with discrete domain theories and therefore cannot be directly
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translated to continuous domains [39, 56, 70]. However, PRP based approaches
which use domain theories with planners to dynamically generate hypotheses for
plan recognition may pose a solution potential [80, 81]. The [81] formulation uses
off-the-shelf (OTS) classical planners to probabilistically rank goals. However
this formulation is inherently limited to discrete domains, as it requires computing
an optimal plan that necessarily deviates from the observations. This requirement
is meaningless in continuous domains, as any small ε deviation from an optimal
plan that matches the observations would fulfill this requirement, at the expense
of the ranking procedure used in this PRP formulation.

Mirroring relies on a model of planning that extends classical planning to
model domains with continuous and/or discrete variables. This is done in order to
admit a broad class of motion planners, e.g., from the OMPL library [98]. As a
result, the model does not offer facilities for explicitly representing more advanced
planning models and languages, e.g., supporting conditional effects, inequality
tests in preconditions of actions, sensing actions, etc. In contrast, some modern
task planners utilizing PDDL 2.1 and above [32] admit such advanced features,
while also allow planning in mixed continuous-discrete domains. Investigations of
planning models allowing mixed domains are on-going (see, e.g., [36, 53, 23, 30,
90, 41]. Of these, our model is closest to the latter, and it also borrows some of the
constraints of Transitional Normal Form for planning [75]. We leave recognition
in mixed domains, and non-classical planning extensions to future work.

3.2 Domains

We define domains which are collections of states. Discrete actions transition be-
tween and through the states. The sequence of such transitions being measurable
by a cost metric. We then define plans in these domains, where such plans are se-
quences of actions that take the plan-executing agent from a (partially-) specified
initial state to a (partially-) specified goal state.

Domains: States, Actions, and Transitions. In the rich tradition of factored
representations in planning, a domain W is defined as a tuple 〈F,V,A,cost〉, where
F is a finite set of fluents (described below), V is a set of sets {Vf | f ∈ F} (each
set Vf holds the range of values potentially associated with f ), and A is a discrete,
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possibly infinite set of actions, which encode feasible transitions between states,
(i.e., transform values of fluents). cost is a metric, allowing such transformations
to be measured.

We allow describing states via numeric-valued fluents, somewhat similarly
to [41]. Actions in A may transition from one state to another via paths through
the state space, rather than through discrete state as in classical planning. This is
because in continuous state spaces, a transition from a state (point) a to a state b

may go through countless other states in between.

FLUENTS AND STATES. A fluent f (e0, ...,en) ∈ F is an expression where f is
the fluent name, n ∈ N (inc. 0) the fluent arity, and ei are constant entities in a
known set. For brevity, we often refer to the fluent by its name. A fluent literal

(for brevity: a literal)is a pairing of a fluent and a specific value v ∈Vf , the fluent

range. We denote a literal as f = v. For our purpose here, fluents in F may have
a boolean value, or they may have numeric values (e.g., in R).

Fluents in F are used as the basis for describing states. A set of fluent literals
is inconsistent if it contains at least two literals f = v1, f = v2, where v1 6= v2.
Otherwise, the set is consistent. A state s induced from F is a maximal consistent

set of fluents literals. Put differently, a state s is a set of fluents from F , each
paired with a value from its associated Vf , such that: |s|= |F |, and s is consistent.
A non-maximal consistent set of fluent literals is a partial state, and may be used
to formally collect all states of which it is a subset.

For example, the pose (position and orientation) of a robot r on a 2D floor may
be described by the fluent set

F , {x(r),y(r),θ(r)}

where r is a constant symbol for the robot. A set of fluent literals s = {x(r) =
50.34,y(r) = 24.0,θ(r) = 90◦} is a state: it is consistent, and assigns a value
to all fluents in F . However, the set s1 := s∪ {y(r) = 32.45} is not consistent
(two different values for y(r)), and the set s2 := s\{θ(r) = 90◦} is a partial state
(describes all states where the robot is in location (50.34,24.0), regardless of θ ’s
value). The set of all possible literals of f ∈ F is L f := { f}×Vf . The complete
set of states in W is: SW :=×f∈F L f .
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ACTIONS. An action a ∈ A transforms fluent literals, changing their values. We
define PREa, the preconditions of a, as a set of fluent literals. a is applicable in
a state s when PREa ⊆ s. The results of applying an applicable action a in s, are
specified by a function δ (s,a).

In discrete domains, the function δ (s,a) yields a single new state snew. To
generate this new state, classical planners typically rely on two additional sets of
fluent literals associated with every action a: ADDa, a set of literals to be added to
s, and DELa, a set of literals to be deleted. Then δ (s,a) := (s\DELa)∪ADDa.

However, motion planning in continuous domains raises two challenges to
this. Imagine a navigation motion planner in 2D/3D which outputs a path (i.e.,
a plan) from an initial position I to a goal position g. Often, motion planners
represent such plans by an ordered finite sequence of waypoints (I,s1, . . . ,sk,g).
Each transition from one waypoint to the next, itself defining a path between the
waypoints, is assumed to be managed by the robot, and would be considered an
atomic MOVETO action (we ignore smoothing and other constraints for simplic-
ity). Waypoints discretize the domain by sampling, but the sampling decision is
made ad-hoc, e.g., the number of waypoints can vary even given the same pair
I,g. This reality of how motion plans are represented—even for this simplified
case—raises two challenges to modeling this process in a manner compatible with
classical planning formulations.

First, motion actions almost invariably go through other states of the domain

as they are applied. A robot moving from waypoint A to waypoint B, regardless of
how close they are, necessarily moves through infinite points that lie in between.
Thus the effects of an action taken in a continuous domain is not just the ending
state, but an |F |-dimensional path defined by the ordered (potentially infinite)
sequence of states.

Second, as motion planners delay their discretization, they do not accept a

finite set of actions A. The position and number of waypoints varies depending
on factors such as a required minimal refinement, constraints on the moving body,
time available, the sampling algorithm of the planner, etc. (see the OMPL web-
site for a large sample of different planners which explore such decisions). This
means that we cannot model them as accepting a finite set A, which commits to a
fixed discretization. Instead, we model them as choosing actions from an infinite,
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discrete set of actions A. In reality, of course, they do so implicitly, by generating
the discretization which implies choosing the actions, e.g., transitioning between
waypoints.

To model actions and plans in continuous domains, we first extend the defi-
nition of actions a ∈ A to allow effects as paths, rather than just points. We use
the following notation. A path p is a (possible infinite) ordered sequence of states
(p0, . . . , pm), m ∈ I ⊂ N+, the set of indexes. I is obtained by a monotonically
increasing mapping fa : [0,1] 7→ N+, representing the relative position of the in-
termediate pi along the path from p0 to pm. By definition, p0 is in relative position
0 ( fa(0) := 0) and similarly fa(1) = m. Otherwise, and 0 < fa(0 < i < 1) < m.
Thus pi is the i’th state in p, given the indexes I, generated by the mapping fa.
We notate pi ≤ p j when i≤ j, i.e., pi is earlier in the sequence defining p. BEG(p)

is p0, and END(p) is the final state pm. The concatenation of two paths p,q is
denoted by the operator ⊕, such that r := p⊕ q is a path with BEG(r) = BEG(p),
END(r) = END(q). If END(p) 6= BEG(q) then r is called partial.

Using this notation, we now redefine δ (s,a) as returning a path p, with
BEG(p) = s, END(p) = snew. The index-generating mapping is not necessarily
given to the planner. We require that it exists, but it is possible for the planner
to determine it ad-hoc. This allows generating the intermediate states (between s

and snew) in any desired granularity.

Given a specific set of indexes I (i.e., a specific granularity), we generate
δ (s,a) :=

⊕
i∈I((si−1 \ DELa(si)) ∪ ADDa(si)) where DELa(si) and ADDa(si) are

sets of fluent literals as described above, representing the intermediate delete
and add effects (respectively) between state si−1 into state si. Note that the
discrete representation is a special case. Setting I = {0,1}, yields δ (s,a) =

(s0 \DELa(snew))∪ADDa(snew).

Plans are sequences of actions. Specifically, a plan π from initial state s0

to goal state sg is a finite sequence of actions (a1, . . . ,ak), such that: (i) a1 is
applicable in s0, (ii) each action ai,0 < i ≤ k is applicable in si−1

new, the final state
of its predecessor in the sequence, and (iii) the resulting path

pπ := δ (END(δ (END(. . .δ (END(δ (s0,a1)),a2) . . .),ak−1),ak))
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, has END(pπ) = sg. The path pπ is called the execution trace of π , denoted
TRACE(π). The metric cost(p) associates a non-negative cost to a path p, de-
fined such that for any two paths p,q, cost(p)+ cost(q) = cost(p⊕ q), even if
p⊕q is partial. We define cost(π) = cost(TRACE(π)).

3.3 Plan-Recognition Problems

We now define a general recognition problem without reference to a particular ob-
jective, nor a solution method (e.g., calling a planner or using a plan library). For
brevity, in this and future elaborations, we informally refer to a state (or partial

state) s∈W , when we mean s∈ S (or s⊂ S, resp.) where S is the set of all possible
states induced by F in W = 〈F,A,cost〉. Similarly, we informally refer to actions

or plans in W (and may write a ∈W , π ∈W ).

Definition 5 (Recognition Problem). A recognition problem is a tuple R :=
〈W,O, I,G〉 where W is a domain theory as defined above, O a sequence of obser-

vations, I ∈W an initial state, G a set of goals in W. Observations and goals are

defined below.

Each goal g ∈ G is a (possibly partial) state sg, associated with a prior proba-
bility P(g). This definition of a goal essentially defines it as a disjunction of states.
sg defines either a single state (if sg is not a partial state), or a set of induced states
Sg ⊂ S in W , all of which have the exact same fluent literals as in sg, and are in-
terpreted as a disjunction: an action resulting in any one of them is considered to
have achieved the goal g.

We denote O, the sequence of observations as [o0, . . . ,on], where n ∈ N, and
o0 := I. Every oi is a state. Thus observations are of effects, not actions. When n

is known, R is called an offline problem, otherwise R is an online problem.

A recognition problem may be used as the basis for different tasks. We define
the plan recognition task for offline problems:

Definition 6 (Plan Recognition). Let R be an offline recognition problem. The

plan recognition task is to determine πR,

πR = argmax
π∈W

P(π|O)
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i.e., πR is the plan hypothesis π with maximal probability, given the observation
sequence. Lacking any dependence between the observations and plans in W , de-
ciding on πR ignores O. The dependence between observations and plans is made
explicit by the notion of matching (partial) observations to plans, in particular also
taking their goals into account.

Definition 7 (Matching Observations to a Plan). Let π be a plan, σ =TRACE(π).
Let O be an observation sequence defined in the recognition problem R. We define

the path p =
⊕

o∈O o, i.e., the (partial) path created by concatenating all obser-

vations, in order.

The matching of O to π is a mapping mO
π : [0,1] 7→ p× σ , such that: (i)

mO
π (0) := (BEG(p),BEG(σ)) (ii) mO

π (1) := (END(p),σΩ)), where σΩ ≤ END(σ),

i.e., may not be the last state in σ (iii) ∀r ∈ (0,1),∃i, j s.t. mO
π (r) = (pi,σ j) and

j < Ω. (iv) Let mO
π (r) = (pi,σ j),mO

π (l) = (ph,σk), where r, l ∈ (0,1). If i < h then

j < k, and r ≤ l. (v) Let mO
π (r) = (pi,σ j),mO

π (l) = (ph,σk), where r, l ∈ (0,1). If

j < k then i < h, and r ≤ l.

This defines a matching such that the first state in the first observation is
matched to the beginning of the plan π , and the end of the final observation to
an arbitrary final state σΩ. This agrees with our notion that observations are typi-
cally partial, at least in that they often do not include π’s final goal state. The last
two conditions dictate a dual-sided monotonicity of the matching.

In general, potentially infinite matchings exist. The key is to determine a
plan π whose matching with the observations maximizes P(π|O). To do this, we
consider the goal of the plan. Let πg denote a plan π ∈W with the goal g ∈ G.
Under the assumption that the observed agent is pursuing a single goal g∈G (thus
P(πq 6=g|g) = 0), we use Bayes rules to compute

P(π|O) = βP(O|π)P(π)

= βP(O|π)P(π|g)P(g)

P(g) is given in R. β is a normalizer depending on P(O) only. Maximizing this
expression therefore entails maximizing P(O|π) while also maximizing P(π|g).
We utilize two principles in this process.
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The first principle is the principle of rationality. Following [80] and others,
assuming it is pursuing a goal g, the observed agent is assumed to prefer cheaper
plans πg. Thus the closer a plan π is to an optimal plan π̂g for a goal g, the more we
should increase P(π|g) [80, Theorem 7]. Rather than matching the actual plans to
test for equality, we use their costs:

∀g ∈ G,P(π|g) :=
cost(π̂g)

cost(π)

As cost(π̂g) is minimal (π̂g is optimal), P(π|g) is well defined probability func-
tion, equal to 1 only when the observed plan is optimal, otherwise between 0 and
1.

The second principle is used to maximize P(O|π). This is the heart of the
matching between observations and a plan. We want to determine an optimal
matching, as one that minimizes some matching error metric. Intuitively, if O

completely overlaps with π then the matching error should be minimized, and
P(O|π) maximized.

To do this, we define a state-distance metric E over the matching m (Defini-
tion 7). For any r ∈ [0,1], we have m(r) = (pi,σ j). Then: E(m(r)) := E(pi,σ j).
We use the Euclidean distance (norm). Intuitively, E measures the error in any
single point in the matching. We then use it over the entire matching to determine
the matching error between the observations and the plan π .

Definition 8 (Matching Error and Best Matching). Given a plan π , an observation

sequence O, and a matching mO
π between them (Definition 7), the matching error

is given by

error(mO
π ) =

∫
r∈[0,1]

E(mO
π (r))

The best matching m̂O
π is given by

m̂O
π = argmin

mO
π

error(mO
π )

The matching error of the best matching for O,π is therefore error(m̂O
π ) We

then estimate P(O|π) := 1 if error(m̂O
π ) = 0. Otherwise, P(O|π) := 1

1+error(m̂O
π )

.
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3.4 Defining Continuous Environments

In order to define the goal recognition problem R we define P, a general solver
for the continuous space which will solve the plan recognition problem for every
TG = 〈PG,GG,OG〉. Whereby PG is the (discrete) planning domain , which is
composed of the triplet 〈F, I,A〉 (fluents, initial state and actions, respectively),
GG are possible goals, and OG is a discrete observation sequence (as defined in
[81] by Ramirez and Geffner). Indeed, we show :

Lemma 4. TG = 〈PG,GG,OG〉 ⊆ R = 〈W,O, I,G〉, i.e., a solver for R will solve

the problem TG.

Proof. We prove the lemma by showing that TG is a special case of R, i.e., every
problem in TG can be represented as a problem in R. According to [81] PG =

〈F, IG,AG〉 where F is a set of fluents, IG ⊆ F and AG is a set of actions. In our
definition W = 〈F,A,cost〉, thus R = 〈〈F,A,cost〉,O, I,G〉. F ⊆ Rn represents all
possible states of the agent, which is equivalent in both definitions, thus it follows
directly that I ≡ I, G ≡ GG, OG ( O. AG and A represent the possible sets of
actions, where each ag ∈ AG, transferring from state si to s j, corresponds to a ∈ A,
where the outcome of a includes a (possibly infinite) sequence of states, which in
the discrete case (as in Ag) includes only one state - {s j}.

It seems the inverse direction may be true as well, through a process of dis-
cretization. The general argument is that every continuous domain may be dis-
cretized, and the discrete formulations of PRP may be applied in it. This is incor-
rect. Inherently, there will be cases where a direct formulation of continuous PRP
will be better.

We have now extended a classical planning model to continuous domains.
Next we will define plan recognition problems using this model and present the
Mirroring solution method.

Chapter 3 Mor Vered 28



Mirroring: A General Approach For Plan And Goal Recognition

4 Mirroring : Recognizing Plans by
Planning

”It’s not what you look at that matters, it’s what you see.”

Henry David Thoreau

As previously mentioned existing PRP methods prove inefficient for online
goal recognition in which they rely on synthesizing two optimal plans for every
goal g∈G: (i) a plan to reach goal g in a manner compatible with the observations
O; and (ii) a plan to reach goal g while (at least partially) deviating from O, i.e.
complying with O. The likelihood Pr(g|O) is then computed for each g ∈G from
∆(g,O), the difference in costs of optimal solutions to the two plans. Overall, 2|G|
planning problems are solved, two for each goal. In online recognition the set O is
incrementally revealed, and O changes with it. Thus two new planning problems
are solved with every new observation, for a total of 2|G||O| calls to the planner
instead of 2|G|.

In this chapter we present a naive approach to goal recognition by planning
which utilizes the planner a minimal amount of time, then we delve into a descrip-
tion of a general Offline PRP algorithm and conclude with a general algorithm for
online recognition in continuous domains that solves the plan-recognition prob-
lem with a new baseline of |G|(|O|+1) planner calls. This algorithm relies on the
formulation described in the previous chapter and hence does not need to use O.
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4.1 Mirroring as a General Plan Recognition Approach

Determining a plan π that maximizes the estimates defined above can be expen-
sive. In particular, the second principle seems to require an expensive search for
hypotheses that minimize matching errors, e.g., by multiple calls to a planner to
generate candidates.

Mirroring offers a shortcut to generating hypotheses which are guaranteed
to minimize matching errors. Instead of generating hypothesized plans and then
testing them for their matching error, we synthesize a plan hypothesis πO

g for each
g ∈ G, such that πO

g passes through the observations and continues to g. The
concatenation of all observations forms a skeleton path, which can be used as a
constraint on generating an optimal plan passing through it. The final segment
of this path will be from the last point of the last observation, to the goal g, thus
creating a full plan from I to g. As the resulting plan is generated to match the
observations perfectly, it will have a matching error of 0, and therefore a maximal
P(O|πO

g ) = 1. Note that this is true of all plans πO
g .

The generation of optimal plans π̂g for all g is straightforward in most OTS
discrete-domain planners, and indeed used in [81]. In continuous domains, this
is done by using OTS motion planners that allow inputting way-points and other
path constraints that must be respected in the output, e.g., [61].

Thus now we have a set of solution candidates: a set of |G| plans, each πO
g ,g∈

G maximizing P(O|π). All that remains is to compute the optimal plans π̂g—
in service of the principle of rationality—so that their costs can be compared as
described before. This requires a single call to a planner, on the planning problem
defined by I and g, which are given in R. Plans maximizing P(π|g) will be selected
as πR.

One caveat with this shortcut method is that while it handles missing obser-
vations (i.e., gaps in the observations, including from the last observation to the
goal), it may be susceptible to noisy observations, which should have been ig-
nored. We do not address this here; see Sohrabi et al. [95] for a potential treatment
in discrete domains; the continuous domain case is open.
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4.2 Offline Mirroring

As previously mentioned, in offline plan recognition the set of observations, O,
while it may be incomplete in itself, is revealed ahead of time rather than be-
ing revealed incrementally. Algorithm 1 is an offline algorithm for a continuous-
domain goal recognizer that works by planning, sans a plan library according to
the guidelines of PRP. The algorithm follows the process described above.

Initially we calculate the path p =
⊕

o∈O o, i.e., the (partial) path created by
concatenating all observations, in order (line 3; we use

⊕
to denote the concate-

nation of all observations o ∈ O, analogously to Σ and +, respectively). As was
shown in [57], the prefix plan need only be calculated once as it will necessarily
be identical for all of the goals.

Then, for all goals g ∈G ( keeping in mind that each goal g ∈G is a (possibly
partial) state sg ), the algorithm computes the corresponding optimal plan π̂g, from
initial state I ∈W to goal g, by calling on the planner (line 5). In line 6 the planner
is called a second time, to create the plan suffix πg, which is a path from the last
seen observation on, where |O|= n, to goal g. Then the candidate plan hypothesis,
πo

g is composed in line 7 and in line 8 is measured against π̂g using the scoring
procedure described above. Greater score means closer matching of πo

g to π̂g, and
thus by implication, a better hypothesized matching between the observations and
the associated goal g. As differences between them grow, the ratio of the costs
decreases, resulting in a lower score. Finally, these rankings are transformed into
probabilities P(G|O) via the normalizing factor η = 1/∑g∈G scorei (lines 9–10)
and the goal with the highest probability is chosen as the leading goal candidate
hypothesis (line 11).

4.3 Online Mirroring

Algorithm 2 is an online algorithm for a continuous-domain goal recognizer that
works by planning, sans a plan library. In online goal recognition we assume that
the set of observations O is incrementally revealed and the task is to converge to
the correct goal hypothesis as early on in the recognition process as possible.
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Algorithm 1 OFFLINE RECOGNIZER (R := 〈W,O, I,G〉, planner)

1: p← /0
2: for all o ∈ O do
3: p =

⊕
o∈O o B the (partial) path created by concatenating all obs

4: for all g ∈ G do
5: π̂g← planner(I,g) B generate optimal plan from initial state to goal g
6: πg← planner(on,g) B generate suffix plan from last obs. to goal g
7: πO

g ← p
⊕

πg B compose the candidate plan hypothesis for goal g

8: for all g ∈ G do
9: P(g|O) = η · cost(π̂g)

cost(πO
g )

B calculate probability for goal g

10: πR← argmaxg∈G P(g|O) B the plan that maximizes
P(g|O) will be selected as the leading plan hypothesis and the corresponding
goal g as the leading goal candidate

A naive approach would be to re-run the offline algorithm for each new ob-
servation and for every goal. This will results in an inefficient 2|O||G| number
of calls to the planner, 2|G| calls for each incoming observation; one call for cal-
culating the optimal plan π̂g (Algorithm 1 line 5) and another for calculating the
plan suffix πg (Algorithm 1 line 6). From here on we will relate to this approach
as Naive.

However, as the optimal plan, π̂g, does not depend on O, it may be generated
only once for every goal, while the candidate plan hypothesis, πO

g , needs to be re-
synthesized each time from its component parts. As O is incrementally revealed p

needs to be updated to incorporate the latest observation and πg must be recalcu-
lated by the planner, from the last seen observation point to each g. We therefore
come up with a new baseline approach, which we will later refer to as Baseline.

In the new Baseline Online Mirroring algorithm, Algorithm 2, the generation
of the optimal plans, π̂g for all g ∈ G, is done only once (lines 2–3), as it was
moved out of the main loop. This immediate alteration is highly effective and will
result in a reduction of the overall number of calls to the planner by half, from a
previous baseline of 2|O||G| to (|O|+ 1)|G| calls. The composition and scoring
of πO

g (lines 8–9) are as before. The generation of the observations path, p, is now
done incrementally (line 6), and the generation of the suffix plan, πg is carried
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out from the ending point of the most recent observation, o (line 7). Note that
the evaluation of each g in lines (10–12) needs to be incrementally done for each
observation in order for the algorithm to provide online results.

Algorithm 2 BASELINE ONLINE MIRRORING (R := 〈W,O, I,G〉, planner)

1: for all g ∈ G do
2: p← /0
3: π̂g← planner(I,g) B generate optimal plan from I to goal g

4: while New o ∈ O is available do
5: for all g ∈ G do
6: p =

⊕
o∈O o B the (partial) path created by concatenating all obs

7: πg← planner(o,g) B generate suffix plan from last obs. to goal g

8: πO
g ← p

⊕
πg B compose candidate plan hypothesis for goal g

9:

10: P(g|O) =
cost(π̂g)

cost(πO
g )

B calculate probability for goal g

11: for all g ∈ G do
12: P(g|O)← η ·P(g|O)

13: πR← argmaxg∈G P(g|O) B the plan that maximizes
P(g|O) will be selected as the leading plan hypothesis and the corresponding
goal g as the leading goal candidate

This online algorithm establishes the baseline of (1+ |O|)|G| calls to the plan-
ner [108].
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5 Experiments

”All life is an experiment. The more experiments you

make the better.”

Ralph Waldo Emerson

We empirically evaluated the performance of the Mirroring algorithm de-
scribed above in several continuous and discrete domains. Indeed, we measure
its performance in over a thousand recognition problems, spread over three con-
tinuous domains, and six discrete domains. We additionally contrasted the perfor-
mance of the Mirroring algorithm as a PRP method in comparison with a widely
accepted library-based approach.To further evaluate the factors impacting recog-
nition success we evaluated recognition success while experimenting with both
unmodified OTS planners and an especially built shape planner, in some cases
also comparing different planner performance on the same problem. We addition-
ally, evaluated the sensitivity of the recognition approach, by contrasting results
over recognition problems with varying levels of difficulty. Finally, we measured
the performance of the algorithm as a continuous goal recognizer, contrasting the
results with a discrete goal recognizer and comparing against previous work.

5.1 Experimental Domains

We would like to begin with a general overview of the different experimental
domains used repeatedly within this dissertation.
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5.1.1 Six Discrete Benchmark Domains

In order to demonstrate the generality of Mirroring as a PRP approach and to show
that it does not fail when comparing to existing PRP approaches we re-ran the en-

tire set of benchmark plan-recognition problems used in [81] and then in [95, 70].
All in all, there are 450 problems in six classical planning domains: KITCHEN,
BLOCKS WORLD, LOGISTICS, INTRUSION DETECTION, IPC-EASY, and CAM-
PUS. We used the default HSP: Heuristic Search Planner [14] as the black-box
planner used within the PRP process.

5.1.2 Navigation Goal Recognition

A very useful domain in order to evaluate plan recognition is the domain of nav-
igational goal recognition. Here, the target is to recognize navigational goals as
soon as possible while the observations, i.e. observed agents’ positions, are incre-
mentally revealed. As this is a very popular and highly researched domain there
are several possibilities of existing OTS motion planners to use. We also use it to
fully demonstrate the effects of the discretization process describes in Chapter 3.

Open Motion Planning Library A very useful benchmark 3D environment is
the Open Motion Planning Library (OMPL [98]). We implemented online Mir-

roring algorithms to recognize the goals of navigation in 3D worlds.

As the black box planner used in the Mirroring process we used TRRT
(Transition-based Rapidly-exploring Random Trees), an off-the-shelf planner that
guarantees asymptotic near-optimality by relying on the notion of minimal work
path preferring shorter solutions [42]. Therefore when we hereafter relate to the
cost measure of the plan we simply mean the length of the path. This planner
is available as part of the Open Motion Planning Library along with the OMPL
cubicles environment and default robot. Each call to the planner was given a time
limit of 1 sec.

To generate goal recognition problems, we experimented with two challenging
scenarios.
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• For the first scenario we arbitrarily selected 11 points spread out relatively
evenly over the cubicles environment (Figure 5.1(a)). The yellow polygon
representing the robot and the green polygons representing obstacles in the
environment. We generated observed paths from each point to all others,
for a total of 110× 2 = 220 goal recognition problems. The observations
were obtained by running the RRT* planner on each pair of points, with a
time limit of 5 minutes per run. RRT* was chosen because it is an asymp-
totically optimal version of RRT and will converge to the optimal path as a
function of time [47]. Five minutes was a substantial amount of time that
enabled us to obtain paths that appear near-optimal. We used the OMPL
interpolate method to generate between 20 and 76 observed points for each
path problem. This method inserts a number of states in a path so that the
path is made up of exactly n states that are inserted uniformly (more states
on longer segments). Changes were performed only if a path had less than
the specified 20 states.

• In order to evaluate the sensitivity of the Mirroring recognition approach
we additionally created another recognition scenario within the same envi-
ronment. We therefore added 9 goal points to the recognition problems in
the navigation domain (i.e., 19 potential goals in each recognition problem
Figure 5.1(b)), for a total of 380 recognition problems. These extra points
were specifically added in close proximity to some of the preexisting points,
such that navigating towards any one of them appears (to human eyes) to be
just as possible as any other.

Robot Operating System To show the applicability of the Mirroring approach
to robotic applications, we implemented Mirroring in a cooperative robotic team
task. We used ROS [79] to utilize the recognition algorithm to recognize the
goals of navigation in 3D worlds using the ROS MoveBase default planner. An
alternative interface—to discrete planners—is described in [19]. We used the ROS
standard Gazebo simulator to simulate an environment of a soccer field, free of
any obstacles, with two robots operating as team members (Figure 5.2).

The observed robot was given an initial goal to travel to, proceeding to execute
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(a) Original Scenario (b) Clustered Scenario

Figure 5.1: Visualization of original and clustered goals environment.

the plan in a straightforward manner, and the observing robot had to strategically
place itself in a pre-chosen position to assist the other robot team member. If the
observed robot navigated to goal 4 the strategic place to assist it on the offense
would be to navigate to goal 3 and vice versa. Likewise also with goals 1 and 2.

The observed robot always started at the same initial point in the middle of
the field, while we experimented with 3 different starting points for the observing
robot; two points behind the observed robots position and on parallel sides (Figure
5.2, init points 1 and 2) and one point past the observed robot in the middle of the
field (init point 3). We ran 10–20 runs from each initial position to each of the
goals for a total of 193 problems.

Figure 5.2: Robotic soccer experiment setup (via RVIZ)
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Figure 5.3: Regular polygons tested in the shape recognition experi-
ment.

5.1.3 Shape Sketch Recognition

As a final set of experiments and in order to evaluate Mirroring and contrast its
performance with that of human recognition we designed an especially built shape
planner to recognize geometric shapes as they were being drawn. Here the task
is to recognize 2D hand-drawn regular polygons, as early as possible, as they are
revealed one edge at a time.

The shape-drawing planner takes as input a partial drawing (represented as a
sequence of angles and edges), and a goal shape type (equilateral triangle,square,
etc.) and attempts to complete the drawing to the goal shape or report failure if it
cannot be done. To complete the drawing, the planner looks at the angles between
edges that are already drawn (if any), and adds edges that complete the regular
polygon whose angles best match the angles observed.

The recognition data for the experiment is a data-base of scanned hand-drawn
regular polygons. We asked three people (2 females and 1 male, ages 26-29) to
create a data base of 18 hand drawn regular polygons : 3 triangles, 3 squares,
3 pentagons, 3 hexagons, 3 septagons and 3 octagons. The participants were
instructed to draw the shapes as accurately as they could without the use of any
external aids, making them as regular as possible (i.e., equilateral, equiangular) as
seen in Figure 5.3. Shapes were drawn in various scales, rotations, and translations
with respect to the center of the page. Naturally, hand drawings, even under these
ideal conditions, reflect quite a bit of inaccuracy (see Figure 5.4, top).

We wanted to use the recognizer on the same images as humans, allowing
observations of one edge at a time. We therefore scanned each image and man-
ually separated the edges into different, consecutive, images so when presenting
them sequentially it would appear that they were constructed edge by edge: In the
first image only the first edge would appear, in the second image the first and the
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second edges would appear and so on.

To obtain the line information from each image we used OpenCV to imple-
ment a Hough Transform [27], a feature extraction technique commonly used in
computer vision. The performance of the technique on two example drawings is
shown at the bottom of Figure 5.4.

Figure 5.4: Drawn shapes (above) and their Hough transforms (below).

For each detected edge we were able to extract the following information: the
initial and final x,y coordinates, the ρ parameter, which is the algebraic distance
between the line and the origin, and Θ, the angle of the vector orthogonal to the
line and pointing toward the half upper plane. From this it was easy to find the
slope and intercept of each line along with the initial and end point coordinates.

Because of noise in perception (e.g., scanning noise) and drawing inaccuracy,
the Hough transform often generates several candidate lines for each edge (can be
seen in Figure 5.4). To find the common lines we used open-source hierarchical
clustering software [26]. We defined each node to have equal weight and used Eu-
clidean distance to measure the distances between each node and gave a threshold
of 100 to check for affinity between nodes. Following this we had the number of
lines recognized and the slope and intercept of each line.

5.2 Evaluation Criteria

Let us examine the recognizer output on a specific problem. Figure 5.5 is an
instance of the recognition result on a given problem. The X-axis marks the incre-
mentally revealed observations. The Y axis measures the rank of the correct goal
hypothesis among all the goals ranked by the recognizer, thus lower is better (rank
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1 indicates that the correct goal was ranked as the top hypothesis). Naturally, this
rank is only known post-hoc, as the recognizer does not have access to the ground
truth during the actual run.

Figure 5.5: Recognition result example. The Y axis denotes the goal
ranking and X axis denotes the incoming observations.

Let us look at Figure 5.5. After the 9th observation, the correct goal was
ranked 3 (out of 10) by the recognizer. As more observations come in the recog-
nition problem becomes easier and finally converges to ranking the correct goal at
the top, i.e. rank 1, after the 44th observation. Such graphs can be drawn for any
online recognition problem to compare the performance of different recognizers.

When measuring recognition results we want to evaluate both the recognition
performance as well as the efficiency of each online approach.

Recognition Performance Measures We used two separate measures to esti-
mate recognition performance :

• The time in which the recognizer converged to the correct hypothesis (in-
cluding 0 if it failed). We will further refer to this measure as Convergence.
This is measured by counting the number of observations from the end,
hence higher values indicate earlier convergence and are therefore better.
We normalize using the length of the observation sequence.

• The number of times the correct hypothesis was ranked at the top (i.e., rank
1), which indicate general accuracy. We will further refer to this measure
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as Ranked First. The more frequently the recognizer ranked the correct hy-
pothesis first, the more reliable it is. Again higher values indicate more
correct hypotheses during the recognition process. We again normalize us-
ing the length of the observation sequence.

For example in Figure 5.5, the recognizer converged to the correct result at
observation number 44 out of 54. When normalizing for the observation sequence
length, we measure the normalized convergence of the TRRT recognizer at 18.5%.
The earlier the convergence, the better. With regards to the amount of times the
planner ranked the correct goal as the top hypothesis, the recognizer ranked the
correct goal at the top 29 times. Again when normalizing according to observation
sequence length we learn that 53.7% of the observations were correct meaning that
the recognizer was correct more than half of the time.

Efficiency Measures In order to evaluate the overall efficiency of each approach
we used several different measures, each relevant to specific experiments:

• The number of times the planner was called within the recognition pro-
cess. The lower the value the more efficient the process. This measure is
only relevant for PRP based approaches which utilize a planner within the
recognition process. Recognizers that do not utilize a planner will have no
planner calls at all.

• The overall time (in sec.) spent planning. Again lower values are better,
indicating less time spent utilizing the planner within PRP approaches.

• The overall run-time the simulated robot ran until reaching its target goal
( measured in sec. ). This would include time spent planning as well as
time spent executing and evaluating the plan. The lower the time the more
efficient the robot, hence lower values are better.

• The distance, length of the path, the simulated robot covered until reaching
its target. The smaller the distance, the more direct the path from start
position to goal, with less detours taken on the way. Again lower values are
better indicating a more efficient path to reach the goal and also, indirectly,
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earlier recognition success, as the robot did not need to re-plan or deviate
much from the original plan.

Though these parameters are closely linked, they are not wholly dependent.
While a reduction in overall number of calls to the planner will also necessarily
result in a reduction in planner run-time and overall run-time, the total amount
of time allowed for each planner run may vary according to the difficulty of the
planning problem and therefore create considerable differences.

5.3 Results

5.3.1 Mirroring vs. Library-Based Methods

For the first set of experiments we wanted to evaluate the performance of Mirror-

ing, as a PRP approach, with comparison to that of library-based planners. Mirror-
ing has the principled advantage over library-based methods in terms of storage,
and in being able to handle any arbitrary initial observed state. However, this may
also be a disadvantage, in principle: Mirroring does not utilize prior knowledge
even when it can be made available. To evaluate this aspect, we contrasted Mir-
roring with an especially built HMM (hidden Markov model) [29] using Matlab
and MathWorks [28] as HMMs are often used as a standard technique, e.g., [10].

Testing the HMM on plans unknown to it is a valid, but futile exercise, where
the superiority of Mirroring, and indeed any PRP based approach, would be ob-
vious. In order to evaluate HMMs vs Mirroring, when the plans are known to the
HMM, we used the OMPL navigation domain described previously (Section 5.1)
with 110 goal recognition problems. In order to do this, we first needed to dis-
cretize the navigation problem according to the guidelines presented in Section 3.

We created a robot-size cell grid in the 3D environment, each cell represented
by a state in a hidden Markov model. For each such recognition problem we
trained one HMM using the same paths generated by the Mirroring implementa-
tion. In particular, in order to increase the recognition success of the HMM, we
used 20 paths generated by the asymptotically-optimal planner RRT*. In other
words, we created a specialized HMM, trained on 20 examples of asymptotically-
optimal data, for each recognition problem. HMM training and recognition were
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carried out using the standard MATLAB HMM package [28]. Mirroring recogni-
tion was measured while utilizing the TRRT planner with a time limit constraint
of 10 seconds.

Figure 5.6 contrasts the recognition results of HMMS and Mirroring. We
can clearly see that even without any prior knowledge, Mirroring is on-par with
the HMM results. In terms of Convergence Mirroring achieved 27.5% while the
HMM achieved 26.3% recognition success. In terms of the Ranked First measure
Mirroring achieved 37.2% while the HMM reported at 37.4%. The error bars indi-
cating that the differences are not substantial. Obviously, as more prior knowledge
is available, this can change.

In order to more fully understand how much additional knowledge would im-
prove the performance of the HMM. We ran another experiment, this time giv-
ing the HMM 95 instances to learn from, instead of 20. As expected the HMM
Convergence results improved to 37.4% and the Ranked First results improved to
46.8% surpassing the Mirroring recognizer. However, it is to be taken into account
that these instances are not always available and also that any additional knowl-
edge must include time for learning. In the current instance the learning time of
the HMM of 95 samples took about 11 hours while for the previous 20 samples it
took only 5.5 hours. Our conclusion is that Mirroring should be preferred when
relatively less data is available, or when the number of possible plans is very large
(or infinite, as is in this specific domain).

Figure 5.6: Mirroring Vs. HMM Results
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5.3.2 Mirroring on Robots

we also implemented the Mirroring approach on simulated ROS-enabled robots
while measuring the efficiency of the algorithm as compared to two separate ap-
proaches, one containing full knowledge of the observed agents’ intentions and
the other containing no knowledge and no reasoning mechanism.

We used the ROS [79] domain described in Section 5.1 to utilize the recog-
nition algorithm to recognize the goals of navigation in 3D worlds. We simulated
an environment of a soccer field, with two robots operating as team members;
One robot (observed) was given an initial goal to travel to, and would head there
as soon as an experiment trial began and the second robot observed the motions
of the other robot positioning itself in one of several pre-selected locations, to
support its teammate. We experimented with 3 different starting points for the
observing robot, initpoints 1–3 (Figure 5.2) and ran 10–20 runs from each initial
position to each of the goals for a total of 193 problems.

We used the run-time and distance efficiency measures described in the previ-
ous Section and compared between three different approaches :

• The Mirroring online plan recognizer in its Baseline form, marked as MIRR.

• An online goal recognizer which is given full knowledge of the intended
goal to the observing robot, ahead of time, allowing the observing robot
to navigate directly towards it, marked as FK. This approach signifies the
state-of-the-art and should be the most efficient both in terms of run-time
and distance covered.

• An online goal recognizer which is given no (zero) knowledge of the in-
tended goal, thus forcing the observing robot to wait for its team member
to reach its desired goal, before it can navigate towards the complementary
location, marked as ZK. This approach will be efficient in distance, as the
agent takes no detours along the process but should be heavy in time - be-
cause the observing agent has to wait for the observed agent to finish its
run.
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FK MIRR ZK
Time (Sec.) Dist. Time (Sec.) Dist. Time (Sec.) Dist.

I1 G1 12.41 6.10 17.36 6.92 20.88 6.34
G2 10.10 4.60 18.65 6.83 24.26 4.57
G3 9.24 4.04 10.62 4.45 20.67 4.03
G4 5.72 1.97 13.40 4.10 20.40 1.98

I2 G1 10 4.59 15.89 5.30 25.45 4.57
G2 12.35 6.14 15.32 6.52 32.62 5.83
G3 5.80 1.97 14.10 3.44 17.67 1.84
G4 9.10 4.00 19.56 6.13 24.45 4.02

I3 G1 5.80 1.97 12.3 4.91 17.18 1.92
G2 5.80 1.97 17.10 6.26 26.03 6.11
G3 9.10 4.00 16.19 4.99 20.43 3.88
G4 10.00 4.59 17.35 5.47 21.49 4.38

Table 5.1: Mirroring vs. full and zero knowledge

The results are displayed in Table 5.1.

As seen in Table 5.1 with regards to performance time, the results show that
Mirroring substantially improves on the zero knowledge approach, while requir-
ing no precalculations; all needed plans are generated on-the-fly via the planner.
Understandably, Mirroring falls short of the full knowledge approach as it gener-
ates hypotheses on the fly following observations, which leads to some deviations
from the optimal, direct route. With regards to the distance of the path, both ZK

and FK outperform MIRR since they both take a direct route to each of the goals.

5.3.3 Mirroring vs. Existing PRP Approach

As mentioned in Section 5.1 we re-ran the entire set of benchmark plan-
recognition problems used in [81] and then in [95, 70] consisting of 450 problems
in six classical planning domains. Mirroring was used to rank the goal hypotheses
(cost of ideal plan vs cost of optimal plan that goes through the observations), and
compared to the ranking generated by the PRP formulation in [81] (cost of opti-
mal plan that deviates from observations vs cost of optimal plan that goes through
the observations).

Out of the 450 problems, there were only two where the results differed: In
two variants of the same problem (with a full set and a partial set of observations),
the original formulation ranked the true goal as the winner. Mirroring ranked it as
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a winner, along with two others. These are two variants of the same recognition
problem: One with 70% of the observations, and one with the full set of obser-
vations. For smaller sets of observations of these problems, VK and RG are in
agreement. In an additional 4 problems, the calls to the planner failed in generat-
ing the plan that goes through the observations. Since both formulations require
this plan, both methods failed.

When it comes to run-time results the differences in performance are greater.
Figure 5.7 compares the run-time results of both approaches over the successful
runs of the benchmark plan-recognition problems. The X-axis displays the differ-
ent percent of observations revealed for each run. The Y-axis indicates indicate
the average time it took each recognizer to converge to a result, in seconds. Lower
values are better indicating less run-time and more efficient performance.

Figure 5.7: Run-time Results

In general, run-times using Mirroring were significantly better than using the
previous PRP approach. Indeed this is consistent over all percentages of obser-
vations revealed apart from the initial 10 %. We hypothesize that this is because
when there are less observations, it is substantially easier to generate a plan devi-
ating (at least partially) from the observations and that is the reason that, in the
Ramirez and Geffner approach, calculating O was extremely fast.
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5.3.4 Continuous vs Discrete Plan Recognition

To demonstrate the shortcomings of the discretization process discussed in Chap-
ter 3 we devised a series of experiments evaluating the recognition success of
the Mirroring approach in both discrete and continuous environments, over two
separate domains.

Robot Operating System Experiment We used the ROS [79] domain de-
scribed in Section 5.1, this time to evaluate the impact of discretization. We
compared the recognition performance of the recognizer when using the contin-
uous planner, to that when the recognition is carried out on a discretized grid. In
particular, We divided the environment into robot-sized grid cells and converted
all consecutive points along the path to the middle of each of the corresponding
cells in the grid. In the same manner we also converted the goal locations.

We use two of the previously described recognition performance measures;
convergence and number of times the true goal was ranked first. Instead of re-
porting on percentages, Table 5.2 uses ratios (thus 90% is reported as 0.90). We
remind the reader that higher values indicate earlier convergence and are therefore
better.

Each column in Table 5.2 marked C reports on the results from using the
continuous-planner in recognition. Each column marked D reports the results
from the discretized recognition process. The rows, marked I, denote different
initial locations.

We see that for all problems the results are higher for the continuous recog-
nizer over the discrete instance. This arises from the fact that the discrete rec-
ognizer may lose information in the discretization process. It is safe to say that
with a reduction of the discretization factor these differences will decrease un-
til the performance will be equivalent. However finding just the right amount of
granularity could prove wasteful and domain specific. This illustrates further the
substantial need for specified recognizers fit to operate in continuous domains.

Shape Recognition Experiment We additionally evaluated the continuous,
Mirroring, plan recognizer on the shape sketch recognition domain introduced
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Goal 1 Goal 2 Goal 3 Goal 4
C D C D C D C D

I1 Conv 0.90 0.86 0.88 0.65 0.46 0.00 0.21 0.00
Rank 0.93 0.86 0.89 0.66 0.47 0.05 0.30 0.00

I2 Conv 0.87 0.82 0.94 0.74 0.32 0.00 0.60 0.15
Rank 0.90 0.83 0.96 0.75 0.51 0.03 0.79 0.57

I3 Conv 0.96 0.67 0.53 0.40 0.82 0.35 0.87 0.26
Rank 0.96 0.68 0.54 0.44 0.82 0.31 0.89 0.43

Table 5.2: ROS continuous vs. discrete results.

in [108] and described in Section 5.1. Here the task is to recognize 2D hand-
drawn regular polygons, as early as possible, as they are revealed one edge at
a time. We used the same human drawn, 18 shape data base the same domain-
dependent planner. These shapes were hand drawn in various scales and rotations
and naturally contained quite a bit of noise in terms of angle and edge sizes.

We contrast the performance of this continuous angle representation with a
discretization of the angle size into either a 1◦, 10◦, 20◦or 40◦angle. For example,
if the size of an observed angle was 78◦, in terms of 40◦discretization it would
be translated to an 80◦angle. The results are displayed in Table 5.3 using the
performance evaluation criteria of Convergence and Ranked First which were in-
troduced in the previous Section. Columns 1–5 measure the average convergence
percent over of all shapes over all discretization factors, with cont denoting the
continuous representation. Columns 6–10 measure the amount of time the recog-
nizer ranked the correct goal as first. As we are measuring convergence and the
correct ranking of the chosen goal, higher values indicate earlier convergence to
the correct result or more correct rankings, hence are better.

Over all criteria the continuous recognizer outperformed or performed just as
well as all of the discretized recognition processes. Indeed we can see that over all
criteria the results achieved in Cont and 1 are fairly similar, this can be understood
as 1◦being a sufficient amount of discretization granularity to recognize most of
the shapes. However, for the Pentagon and Triangle shapes Convergence and
Hexagon and Triangle shapes Ranked First measure, the results differ, indicating
that a 1◦angle discretization is insufficient.
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Average Convergence Percent Average Ranked First Percent
1 10 20 40 Cont 1 10 20 40 Cont

Octagon 0.67 0.42 0.50 0.13 0.67 0.75 0.42 0.50 0.13 0.75
Septagon 0.62 0.38 0.29 0.14 0.62 0.62 0.38 0.29 0.14 0.62
Hexagon 0.56 0.33 0.33 0.33 0.56 0.56 0.61 0.61 0.61 0.61
Pentagon 0.50 0.60 0.40 0.40 0.60 0.60 0.60 0.40 0.50 0.60
Square 0.75 0.75 0.50 0.25 0.75 0.75 0.75 0.50 0.25 0.75

Triangle 0.33 0.44 0.44 0.33 0.44 0.44 0.56 0.44 0.33 0.56

Table 5.3: Shapes continuous vs. discrete results

5.3.5 Effects of Planner Choice

One of the key factors that may impact recognition success within any PRP based
approach, and Mirroring in particular, is the choice of planner being used within
the recognition process. In order to measure the effect of this factor we empir-
ically evaluated the approach by comparing the recognition success of several
different planners in recognizing the navigation goals in a benchmark 3D environ-
ment, where the target is to recognize navigational goals as soon as possible while
the observations, i.e. observed agents’ positions, are incrementally revealed. We
used the aforementioned first scenario constructed with the Open Motion Plan-
ning Library (OMPL [98]) cubicles environment along with the default robot,
(Figure 5.1(a)). We tested over the previously described 220 goal recognition
problems and experimented with four off-the-shelf OMPL planners.

The planners differ in their optimality guarantees. Two from the RRT
(Rapidly-exploring Random Trees) family [65] offer some guarantees. RRT*
guarantees asymptotic optimality; it will utilize the full duration of time allot-
ted to it to generate incrementally improving solutions. TRRT only guarantees
asymptotic near- optimality by taking into consideration state costs to compute
low-cost paths complying with a predefined optimization objective according to
minimum path-length, thus preferring shorter solutions. The two other planners
used offer no optimality guarantees: RRTCONNECT, and KPIECE1 [97].

Table 5.4, columns 1–3, contrasts the results of the four planners, when used
in the Mirroring formulation. The first two columns measure recognition perfor-
mance. Each of the columns shows the mean recognition results over the same
set of recognition problems with higher values denoting improved results. We see
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that TRRT and RRT* are clearly and significantly better for online goal recog-
nition of paths generated by RRT* than RRTConnect and KPIECE. RRT* and
TRRT both tend to produce paths closer to optimal, RRT* being asymptotically
optimal and TRRT guaranteeing asymptotic near-optimality. Indeed we see that
they are nearly indistinguishable from each other in terms of recognition success
(though TRRT is a bit better).

However, the two top planners differ from each other very much in run-time
(Table 5.4, column 3). Every call to the planners was limited to one second of
run-time. But given that a planner is called with each new observation, for each
one of the goals, the mean total time can grow very quickly. As we can see RRT*
takes (by design) 100% of the time allotted, but others do not. Indeed, we see that
TRRT is the second quickest, and is beaten only slightly by RRTConnect.

10 Goals (220 Problems) 19 Goals (380 Problems)
Conv Rank Time Conv Rank Time

TRRT 25.82 35.02 28.10 16.11 22.95 36.56
RRT* 22.52 32.55 100.40 13.26 21.24 100.46

RRTCONNECT 8.21 21.20 22.11 3.45 13.42 21.33
KPIECE 9.69 21.59 34.11 4.74 13.56 49.86

Table 5.4: Recognition with various planners.

We conclude that the recognition results greatly improve with the optimality of
the planner utilized in the recognition process. This is due to the fact that we used
an optimally converging planner (RRT*) to generate the observations providing
tight dependence between the planner used to generate the observations and the
planner used in the recognition process. Moreover, in the 3D navigation domain,
TRRT seems to offer a remarkable choice for this task: It produces good results,
while being very fast.

5.3.6 Sensitivity to Recognition Difficulty

In online, continuous domains, the difficulty of the recognition problem could
possibly effect recognizer performance and efficiency. By varying levels of diffi-
culty we refer to problems that have more goals, and where the goals are clustered
closer together exacerbating the recognition task. We wanted to evaluate the sen-
sitivity of the results shown above to the hardness of the recognition problems.

Chapter 5 Mor Vered 50



Mirroring: A General Approach For Plan And Goal Recognition

We therefore added another 9 goal points to the recognition problems in the nav-
igation domain (e.g., a total of 19 potential goals in each recognition problem),
Figure 5.1(b). This gave us a total of 380 goal recognition problems. In order to
increase the difficulty of the recognition task these extra points were specifically
added in close proximity to some of the preexisting 10 points, such that navigat-
ing towards any one of them appears (to human eyes) to be just as possible as any
other.

Table 5.4, columns 4–6, compares the different planners performance (%) over
the now harder clustered goals problems. We can see that the relative performance
success ordering remains as it was for the original scenario. TRRT and RRT* once
again significantly outperform KPIECE and RRTCONNECT, in both convergence

and ranked first measures.

Figure 5.8: Clustered goals planner performance deterioration.

Figure 5.8 compares the deterioration (%) along each of the performance cri-
teria across the different planners over the 380 harder problems. A lower result
here is better, indicating less deterioration in performance. We see that for the
ranked-first measures all planners deteriorated equally with deterioration percents
ranking from 34.4%–37.18%. However, for the convergence measure TRRT dete-
riorated by only 37.59%, followed closely by RRT* with 41.13% while KPIECE
and RRTCONNECT deteriorated considerably with 51.12% and 57.97%.
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5.4 Summary

This part of the dissertation presents Mirroring as an approach to plan and goal
recognition that does not rely on a plan library, instead using a planner to generate
recognition hypotheses that are continually matched against incremental obser-
vations. Mirroring relies on a new, general formulation of plan recognition in
continuous domains which can also generalize to discrete domains. The key in-
sight is that by using motion planners in recognition, we avoid early commitment
to a granularity (discretization) level, and thus can choose the best discretization
for the recognition problem at hand. The use of Mirroring allows the use of OTS,
unmodified planners. It gives rise to a recognition procedure that uses two calls to
a planner for each goal while accounting for missing observations and efficiently
dealing with online recognition.

We evaluated the approach in a two challenging navigational goals domain
over hundreds of experiments and varying levels of problem complexity as well
as within the context of shape recognition, where by a planner is re-used by a
recognition process, allowing drawn-shape recognition by drawn-shape planning.

The approach was additionally compared to prior formulations in discrete do-
mains (which cannot address continuous domains), and has additionally been eval-
uated with four standard motion planners, and one robotics planner, —all with-
out modifying the planners in any way. The approach has a number of technical
advantages specific to recognition (such as fast on-line computation with no pre-
processing), but most importantly, is particularly suited to agents, where a com-
plete agent is expected to have a planner for its own goals, and this can be utilized
for recognition, without the need for a separate source of recognition knowledge.
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Part II

Cognitive Inspiration
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6 Mirroring in Humans and Agents

”There is nothing either good or bad, but thinking makes

it so.”

William Shakespeare (Hamlet)

Humans use sketches, drawn on paper, on a computer, or via hand gestures
in the air, as part of their communications with agents, robots, and other humans.
They may use them in computer graphics applications that require sketch-based
modeling [43], in innovative assistive robotic applications [109, 68, 87], or in
other sketch-based user interfaces in tablets and other ubiquitous computing de-
vices [66].

To understand how humans perform this recognition we draw from neuro-
science, psychology and cognitive science. There has been evidence that humans
ability to do online shape recognition comes from the newly discovered mirror

neuron system for matching the observation and execution of actions within the
adult human brain [85]. The mirror neuron system gives humans the ability to
infer the intentions leading to an observed action using their own internal mecha-
nism.

Mirror neurons have first been discovered to exist in macaque monkeys in
the early 90’s [69]. These neurons for manipulation were seen to fire both when
the monkey manipulated an object in a certain way and also when it saw another
animal manipulate an object in a similar fashion. Recent neuroimaging data in-
dicates that the adult human brain is also endowed with a mirror neuron system
where it is attributed to high level cognitive functions such as imitation, action
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understanding, intention attribution and language evolution. The human mirror
neuron system may be viewed as a part of the brains’ own plan recognition mod-
ule and can be used to recognize the actions and goals of one or more agents from
a series of observations of the other agents’ actions.

To recognize shapes in sketches, most existing work focuses on offline (post-
drawing) recognition methods, trained on large sets of examples which serve as
a plan library for the recognition method [4, 93, 92, 101]. Given the infinite
number of ways in which shapes can appear—rotated, scaled, translated—and
given inherent inaccuracies in the drawings, these methods do not allow on-line
recognition, and require a very large library (or expensive pre-processing) in order
to recognize even a small number of shapes that may have been translated, rotated
or scaled [2].

Inspired by mirroring processes hypothesized to take place in socially-
intelligent brains [69, 46] we present an online shape recognizer that identifies
multi-stroke geometric shapes without a plan library using online Mirroring. As
such, the recognizer uses a shape-drawing planner for drawn-shape recognition,
i.e., a form of plan recognition by planning. This method (1) allows recognition
of shapes that is immune to geometric translations, rotations, and scale; (2) allows
considerable reduction in storage space - eliminates the need for storing a library
of shapes to be matched against drawings (instead, only needs a set of possible
Goals and a planner that can instantiate them in any manner); and (3) allows fast
on-line recognition.

However, the key advantage rises from the point of view of the complete agent
that uses the recognition as part of its interactions: an agent that that must not only
recognize sketches, but also produce them, and therefore necessarily have a draw-
ing planner already will be able to use the Mirroring method to recognize sketches,
without relying on a separate shape recognition library. This is the motivation for
our work.

6.1 Related Work

Intelligent systems increasingly rely on sketching, hand-drawing and gestures as
input. In its essence sketching and gesturing are one of the fundamental ways
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for humans to interact and is therefore often an important part of any intelligent
system. The problem of sketch recognition may be also viewed as a very important
instance of plan recognition, since part of what makes a system intelligent is the
ability to foresee the needs and intentions of its users.

A particular aspect of drawn shapes is that they can be drawn in an infinite
number of ways within the drawing area. Furthermore, given that the shapes
are drawn by humans, both edges and vertices’s are drawn with quite a bit of
inaccuracy, in edge curvature (i.e., they are not straight lines), in the accuracy of
angles between edges, or even in the drawing of angles themselves (for instance,
whether two edges actually intersect in a vertex).

Thus shape recognition—whether offline or on-line—faces the following key
challenge: there exist essentially infinite numbers of possible sketches of each
goal shape. From the point of view of plan- or goal- recognition, this poses the
challenge of recognizing a small set of goals, given an infinitely-large plan library.
Naturally, the challenge is exacerbated in on-line shape recognition, as the agent
cannot easily tell whether it has seen all observations.

Most approaches to shape recognition use global geometric properties ex-
tracted from the drawings, and specialized to the recognition task. For instance,
Paulson and Hammond designed a system that works by computing specific tests
for all possible shapes, then sorts the matching hypotheses (matching shapes) in
order of best fit [67]. Ulgan et al. use a neural network, trained on the relation
between the internal angles of a shape and its classification [102]. All of these are
offline approaches: they carry out the recognition process only once the drawing
is completed.

Online methods in the same spirit (relying on specialized geometric features)
include [31, 44]. These implement methods that are invariant to scale and ro-
tation. They use global geometric properties extracted from input shapes ahead
of time and associated with certainty degrees using fuzzy logic. These methods
required substantial work ahead of time in selecting the best feature to identify
a given shape while the initial shape selection process takes into account specific
shape related properties. Another method for on-line recognition that also requires
considerable training, i.e., an extensive set of examples, is the use of HMMs for
sketch recognition [92].
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The advantage of the Mirroring approach over these methods is in the uti-
lization of an existing planner in order to perform the recognition process. Thus
eliminating the need for training ahead of time and for specific preparatory analy-
sis for each individual plan.

Mirroring relates to the model tracing approach [24] in the sense that the
system must possess a computational model capable of solving the problems given
to the student. The difference lies in the complexity of implementing a similar
mechanism that will be able to work in a continuous, unpredictable domain that
has to deal with missing knowledge, noise, and an infinite possibility of solutions.

We follow previous work [88, 87] in treating the problem of on-line recogni-
tion of shapes, as they are being drawn, as a problem of on-line goal recognition
by Mirroring. However, In [88, 87] Sadeghipour et al. explicitly represent (and
store) shape drawing plans, that can be used both for recognition and execution
by the agent. In contrast, we do not store plans, but instead use a planner to gen-
erate plans on the fly. Thus in these previous works different rotations of the same
shapes have to be stored as separate plans in the plan library, and the plan library
must account for all rotations.

A technique similar in spirit to that of Sadeghipour et al. is that of agent
tracking [100], which uses a virtual agent’s own BDI plan to recognize a BDI
plan being executed by another agent. And similarly, this approach stores plans,
rather than utilize a planner as we do.
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7 Experiments

”If you cannot fail, you cannot learn.”

Eric Ries

We wanted to evaluate Mirroring as a recognition technique inspired by mir-
roring processes hypothesized to take place in human brains. In order to do that
we had to contrast the performance of the Mirroring algorithm with human recog-
nition performance. We did this in the two vastly different, continuous domains
presented in Section 5.1; sketch recognition and navigational goal recognition.

7.1 Shape Recognition

In order to contrast the Mirroring algorithms’ recognition performance with that of
humans we again utilized the shape planner in order to recognize regular geomet-
ric shapes. Here the task is to recognize 2D hand-drawn regular polygons. We had
three people draw (by hand) equilateral triangles, squares, pentagons, hexagons,
septagons, and octagons, for a total of 18 drawings. Shapes were drawn in vari-
ous scales and rotations. Naturally, hand drawings, even under ideal conditions,
reflect quite a bit of inaccuracy. Each of the 18 drawings was revealed one edge
at a time, with the goal of correctly identifying the goal shape, i.e., there are 18
online recognition problems. Observations, of the edges were generated by using
machine vision to analyze the drawings.

The key to the experiment is to utilize the same hand-drawn inputs for both
human recognition as well as machine recognition. The performance of the rec-
ognizer (and humans) on this data can be potentially used to generate two types
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of insights. First, by noting failures and successes in specific cases, we can learn
about recognition capabilities and weaknesses. Second, by contrasting human and
machine recognition, we can make some deductions as to how humans do or do
not carry out the recognition process.

The player we utilized within the recognition process was a pre-developed
shape-drawing planner, which takes a partial drawing (as an initial state), and a
goal shape type, and attempts to complete the drawing to the goal shape (or report
failure if cannot be done, e.g., attempting to complete a 4-edge open polygon into
a triangle). To rank hypotheses ( see Chapter 4, Algorithm 2, line 10), we looked
at the ratio between the ideal internal angle size for the goal shape, and the mean
observed internal angle.

Since planners are not designed to accept observational history as input, part
of the work of the recognizer, before utilizing the planner, is to incorporate the
history of the observations into the planners input. In the current instance the
recognizer adjusts the current goals given the history of the observations.

We implicitly fold the observation history Oi into gx by creating a new goal, g′x,
that removes from gx edges already seen, and is comprised only of the remainder
of the polygon,i.e., the part expected to be completed if the observations O0 . . .Oi

are to be a part of gx.

For regular polygons, computing the polygon remainder involves calculating
the expected angles in vertices, and the expected size of each remaining edge.
Under ideal conditions, all edges already observed are equally-sized, and all ob-
served angles are identical. In reality, however, inaccuracies in the drawing of
shapes leads to edges that are not all the same size, and shapes that similarly are
not ideal. Because of this, the recognizer must make some assumptions in its pre-
diction of how the polygon will be completed (i.e., in what actual edge sizes and
internal angles will be utilized).

We chose an optimistic heuristic for this assumption. We ignore the length
of observed edge, and instead divide up the remaining angles equally among the
remaining vertices. As the angles are thus fixed, and the open ends of the polygon
are known, the edge sizes become fixed.

Thus, the planner accepts a goal shape, and returns a plan—a set of edges—
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that will complete the drawing of the goal shape, from the initial state (or it may
return a result that indicates no plan is possible). By iterating over all possible
goal shapes, one can systematically check all possible shapes (out of those still
not ruled out), for each new observation.

The last step in the Mirroring process is to rank the possible goals. We ranked
the goals based on errors, when compared to the ideal goal shapes. The idea is to
measures similarity according to the differences in edge relations and in overall
angles comprising the shapes. The shape with the minimal amount of difference
is ranked highest.

Incidentally, this use of error in angle, specifically, as the ranking criteria,
seems to also agree with studies of human estimates of intentionality and intended
action [13]. Such studies have shown a strong bias on part of humans to prefer
hypotheses that interpret motions as continuing in straight lines, i.e., without de-
viations from or corrections to, the heading of movements.

Human recognition data collection Using these images we then conducted a
human recognition experiment in order to collect data about human recognition
performance. 20 human subjects (14 men and 6 women ages 19–52, with a mean
age of 29) participated in the experiment. The shapes tested were the following
regular polygons : equilateral triangle, square, pentagon, hexagon, septagon, oc-
tagon, as displayed in Figure 5.3. The participants were instructed to observe each
edge and then to answer the following questions (after watching each edge), all
using software built for this purpose (Figure 7.1).

1. Which one shape do you think it is ? Only one option must be chosen.

2. Which other shapes could it be ? The participants were asked to rank, in
consecutive order, the remaining shapes they thought likely. This field may
be left empty.

3. Which shapes it definitely could not be ?

The participants were asked to take into consideration that the shapes may
appear in any size and rotation and that, as the shapes were drawn by humans, may
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Figure 7.1: Human subjects experiment Interface.

be drawn inaccurately. It was also explained to the participants that questions 2
and 3 were not necessarily complimentary in the sense that in question 2 one
might pick one other shape that you seem most likely and in question three you
may enter that all shapes were possible or only some of the remaining shapes.

This input, along with the initial and end point coordinates (the anchor points),
were fed to the recognizer. To be able to test the significance of each of the major
components we divide and contrast the Mirroring algorithm into two separate
instances :

• The Ranking Recognizer. This is the complete Mirroring recognizer de-
scribed above that proceeds to rank the recognition results as explained in
Chapter 3.

• The Non-Ranking Recognizer. The Mirroring recognizer that does not rank
hypotheses at all; i.e., no ordering on the results, all possible goals have an
equal chance of being chosen.

All the data (human subject results, ranking recognition results, non-ranking
recognition results) was initially examined separating each polygon goal (i.e., all
the data for triangles was separated from the data for squares). This is because
necessarily, the number of observations in the observation stream O differs be-
tween these. A triangle has a maximum of three observations; a septagon has
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seven. Throughout the experiment humans had immediate access to the goal li-
brary; they were shown the possible goals at all time, visually, so they did not
have to rely on memory. After each observation was revealed, human subjects
were asked to provide a ranking for the goals, and to rule out any goals which
they felt were no longer possible. We naturally examine the results for each ques-
tion separately.

Question 1. Which shape is it? Question 1 allows the recognizer (machine or
human) only a single guess as to the goal shape. Thus this is a conservative test of
accuracy, as the guess either matches or does not match the ground truth.

To illustrate the progression of a recognition process as observations accu-
mulate, Figure 7.2a shows the results for question 1, for septagons. The figure
contrasts the performance of the non-ranking recognizer, with that of the ranking
recognizer, with the mean performance of the human subjects. The horizontal axis
in Figure 7.2a counts the incrementally accumulating observations (edges). Thus
the marking “Obs 3” denotes three edges that are revealed to the recognizer. The
vertical axis measures success, as the ratio of correct guesses to the total number
of guesses: 0 means the recognizer in question never succeeded in guessing the
correct shape at the given point, 1 means it always did. In the case of non-ranking
recognition, which cannot choose a top hypothesis, the statistically expected suc-
cess rate for random selection is used (1/k for k choices).

The figure shows clear monotonically increasing success for both human
recognition as well as the non-ranking recognizer, with the human recognition
consistently better than the non-ranking recognizer. The monotonic behavior of
the graph reflects the fact that with each observed edge, less goal shapes are pos-
sible, and thus can be ruled out. The ranking recognizer performs inconsistently.
For two observed edges, it consistently ranks the ground truth hypothesis (the sep-
tagon) below the top, likely because the average angle errors in the drawings, and
thus never succeeds at this conservative test, with only two edges visible. How-
ever, with more edges becoming observable, it can (and does) perform better than
human recognition.

Figure 7.2b shows the results for question 1, over all shapes. To “normalize”
for the different number of observations, we examine the convergence rate by
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looking at the area-under-the-curve for each line, for any shape, and divided it by
the number of observations. Successful results, early on, result in high conver-
gence values.

(a) Convergence achieved for the septagon shape along all obser-
vations.

(b) Mean convergence achieved for each shape, by each recog-
nizer.

Figure 7.2: Question 1 results. Higher values are better.

Figure 7.2b also shows clearly that human and ranking recognition are supe-
rior to non-ranking recognition, in all shapes but triangles. On close examination
of triangles, it turns out after observing two edges, the ranking procedure was in
fact generating better rankings, but was consistently putting triangle (the correct
hypothesis) in the second rank. So its score there was 0 for two edges, while
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the non-ranking recognizer was expected statistically to be correct at least part
of the time, and thus scored better. In all other shapes, the ranking recognizer
performed on par with human recognition success, slightly below it (and for pen-
tagons, slightly above it).

To evaluate the relationship between the human results and the Mirroring rec-
ognizers’ we performed a z-test comparing the human results to both the rank-
ing recognizer results, Figure 7.3a and the non-ranking recognizer results, Fig-
ure 7.3b.

(a) Compared to ranking recognizer.

(b) Compared to non-ranking recognizer.

Figure 7.3: Z-Test values recognizers vs human recognition success.

When choosing a significance level of 5% we can see that the values agree
with the qualitative analysis of Figure 7.2b. For the first question we will reject
H0 for the triangle, hexagon and octagon shapes showing a significant difference
between the ranking recognizers’ results and the human results. However, for the
non-ranking recognizer we will reject H0 for all of the values.

Finally, we also evaluated the results in terms of the percent of the shape that
had to be disclosed to the user before a definite identification, shown in Figure 7.4.
Here, a lower value is better. The figure shows a clear superior performance of
the ranking recognizer over human recognition and over the non-ranking recog-
nizer, in all cases except hexagons, where the human and ranking techniques are
essentially equally successful.
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Figure 7.4: Percent of shape uncovered before identification. Lower per-
centage is better.

Question 2: How likely is the shape? We now relax the test of accuracy a
little. Rather than the conservative success/failure test of question 1, we now ask
the recognizers to provide a ranked ordering of the hypotheses, and mark the rank
of the correct hypothesis in their response. Thus putting the correct hypothesis
at the top of the list generates a score of 1, and putting it at the bottom of list
generates a score of 6 (i.e., here, a lower score is better).

While the ranking recognizer techniques always provide full rankings, the hu-
man subjects did not. Human subjects sometimes did not rank a shape, when they
deemed it unlikely (but not necessarily impossible—which is why the answers
to questions 2 and 3 are not complementary for humans). We thus differentiate
between two cases where the correct hypothesis did not appear in the human sub-
ject’s answer to question 2:

• The correct shape was not ranked, and explicitly stated in question 3 as a
shape that was not a possibility. This was marked as an error. We show
these errors separately in Figure 7.6 below.

• The correct shape was not ranked, but also not chosen in question 3. In this
case we assumed the human allowed for its possibility, but dismissed it as
unlikely (but not impossible). We then use the statistically expected rank
of the correct shape in the fully-ranked list, over all combinations where
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Figure 7.5: Question 2 mean ranking convergence.

it occupied non-ranked slots. For example, if the participant ranked three
other shapes as possible but not the correct shape, then the correct shape
would be given a rank of (4+5+6)/3.

For the non-ranking recognizer, we used the statistically expected rank, given
all possible orderings of the hypotheses. For example, if the recognizer ranked
two shapes as possible (with the correct shape as one of them), the new ranking
of the correct shape would be calculated as (1+2)/2. If the correct shape was not
ranked it was necessarily chosen as impossible and regarded as an error.

Figure 7.5 presents the average convergence of the ranking score of each shape
along all of the observations received. The vertical axis marks the convergence
(lower score here is better). The figure shows that human recognition stays fairly
consistent and is mostly superior to both ranking and non-ranking recognition
methods. For the Octagon shape humans perform less well than both recognizers
raising future questions relating to humans’ perception of larger shapes in general.
We can also see that the ranking recognition was ultimately better than the non-
ranking recognition.

From the Z-Test results displayed in Figures 7.3 we can see that with a signif-
icance level of 5% we don’t reject H0 for either the ranking and the non-ranking
algorithms establishing a clear connection between the results.

As mentioned before we excluded the errors from our result analysis and ad-
dressed them separately. Figure 7.6 shows the errors made by all three recogniz-
ers, i.e., correct hypotheses that have been actively disqualified by the recognizer.
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Figure 7.6: Average error ratio [0-1].

With the exception of septagons, only humans make such errors, as the results
demonstrate. This resulted from a great deal of noise in the septagon shapes,
expressed as a large difference in expected angle size. Furthermore, even in sep-
tagons, the machine shape recognizers make far less errors than humans.

Question 3: What shape couldn’t it be? In the final question, we examined a
separate factor that can be utilized to improve recognition. While questions 1 and
2 focused on positive recognition—the ability to correctly guess (hypothesize) at
the correct goal shape, question 3 addresses negative recognition—the ability to
rule out hypotheses from consideration. The two, as explained earlier, are not
complementary. For instance, one could rule out 4 of 6 hypotheses, and still
completely fail on questions 1 and 2 (ranking the correct hypothesis second).

We measure performance in this question as follows. We note how many of
the incorrect shapes (necessarily, 5) are ruled out in the response to question 3.
This is specified in ratio form, with the worst score being 0 = 0/5 when no shapes
are ruled out, and the best score being 1 = 5/5. Thus a higher score (1 is the
maximum) is better. And as before, with less observations this is better. Thus we
again utilize the convergence measure.

For example, Figure 7.7a shows the results for octagons. The horizontal axis
measures the number of observed edges. The vertical axis marks performance
score (high is better) as described above. Because ranking has no significance in
this particular question the calculation for the performance of both the ranking and
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non-ranking recognizer is identical. Therefore we utilize only one line (marked
arbitrarily as “Recognizer”) to denote their performance in the figure.

(a) Mean convergence of incorrect shapes for each observation in
the octagon shape.

(b) Mean convergence achieved in question 3 for each shape.

Figure 7.7: Question 3 results. Higher values are better.

There are several interesting observations based on this figure. First, the ma-
chine recognizers surpass human performance at one point (5 observed edges),
but otherwise offer inferior (if close) performance to human recognition. Thus
there is, apparently, the possibility that humans are not disqualifying hypotheses
in these stages, even when they are in fact no longer relevant. Second, humans
also make another kind of mistake, where they make an incorrect disqualification
of an hypothesis with the first observation. Necessarily, observing a single edge,
no shape hypothesis can be disqualified. Yet humans tend to jump to conclusions,
eliminating at least one hypothesis from being considered.
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Figure 7.7b presents the mean convergence for each shape in respect to Ques-
tion 3. Clearly, human disqualification is faster in all cases—but this result should
be taken with some caution, as we note that such early disqualification of hypothe-
ses results in the errors discussed above (in addressing question 2).

The Z-Test results displayed in Figures 7.3 again agree with the convergence
results. And we can see that with a significance level of 5% we reject H0 for
septagons, hexagons and octagons.

7.2 Navigation Goal Recognition

Here the recognition task is to identify the goal location of an object observed
moving in a 3D continuous world. The observations are made incrementally, as
a sequence of way-points reached by the object as it moves. To carry out the
experiments we again utilized the Open Motion Planning Library (OMPL; [98]),
in particular its cubicles 3D environment, the default robot, and the TRRT planner
that comes with OMPL (see Section 5.1). The cost measure used for the ranking
procedure (Algorithm 2, line 10) is simply the length of the path.

We selected six points spread out over the environment as the goal set, G. Four
of the points were chosen arbitrarily over the larger visible surface of the cubicles
environment, the same surface where the observed object starts; these points were
picked that they might be intuitive or easy goal positions for humans. Two addi-
tional points were specifically chosen to be harder, based on some pilot studies.
One point requires humans to think about the other side of the environment (a
point on the “other floor” of the environment, point F). The other point hangs in
mid-air in the opening between the two “floors” of the environments, point E. The
points are shown in Figure 7.8 and labeled in alphabetical order.

To generate recognition problems, we generated paths from a fixed starting
position to all six goal points. Two paths were generated for each goal, for a
total of 12 problems: one path generated by the asymptotically-optimal RRT*
algorithm implemented in OMPL [98], and another hand-modified to deviate from
this optimal path by taking a longer route. The motivation for generating such
paths is to examine recognition performance with observations of non-optimal
plans, which test the rationality assumption of Mirroring.
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Figure 7.8: Cubicles environment.

we tested 19 human subjects (8 women; ages 17–51, mean 27.5). Results for
this domain are shown in Figure 7.9; the X-axis denotes the 12 paths, organized
in pairs: 1–2 for goal point A, 3–4 for goal point B, etc. Here again, humans had
immediate access to the goal library; they were shown the possible goals at all
time, visually, so they did not have to rely on memory. After each observation
was revealed, human subjects were asked to provide a ranking for the goals, and
to rule out any goals which they felt were no longer possible. the participants were
instructed to assess each observation and then rank the leading goal hypothesis.

Optimality Assumption As discussed in Chapter 3, generating a candidate hy-
pothesized plan that matches the observations is only a necessary step in plan
recognition. Multiple such hypotheses exist and can be generated, and the key is
to determine a sufficient condition for selecting between them. In library-based
methods, a plan can be a solution if it can be found or inferred from in the library
of plans. But in planner-based methods, where candidates are generated from
scratch, dynamically, a different approach is needed.

Previous works [81] have proposed to assume that the observed plan is car-
ried out by a (bounded) rational agent, which means that the observed plan should
approximate the optimal plan for getting the initial state to the goal state. Recog-
nizers based on this assumption prefer hypothesized plans that better match the
optimal plan.

To evaluate this, we purposely generated two different observed paths to each
possible goal in the 3D navigation domain, as described above. One path was the
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(a) Convergence

(b) AUC

(c) RankedFirst

Figure 7.9: Recognition results in the 3D navigational domain.
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optimal. The other was modified from it by introducing a detour which made it
longer, though still smooth and executable by the moving object. By comparing
the performance of Mirroring and humans on each of these two paths we hope to
gain insight as to the importance of the rationality assumption in recognition.

Figure 7.10 presents the deterioration in both human and Mirroring recogni-
tion when observing an optimal and a non-optimal plan (path) to the same goal,
across the three criteria. The X-axis in each figure shows the goal. The bars mark
improvement or degradation: values that are larger than zero indicate an improve-
ment in performance when observing the non-optimal plan. Values smaller than
zero indicate degradation in recognition. Higher values are better: Larger positive
values indicate more improvement; smaller (closer to 0) negative values show less
degradation.

(a) Convergence (b) RankedFirst

Figure 7.10: Performance degradation between optimal and non opti-
mal paths.

The figure shows that overall, Mirroring deteriorates less, or improves more,
than humans. This happens across all goals except D, for the convergence mea-
sure (Figure 7.10(a)) and for all goals but one (A) for the ranked-first measure
(Figure 7.10(b)). The results are especially striking in the ranked first mea-
sure, where sometimes Mirroring results positively improve when observing non-
optimal plans, while humans results degrade.

From the perspective of building automated recognizers, these are promising
results, demonstrating the robustness of Mirroring. From a perspective of human
cognitive modeling, these results hint at a very strong reliance of humans on the
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rationality of the observed plan. As a result Mirroring, as presented here, is still
not a good enough model of human recognition capabilities. Coupled with the
results of the previous section we see that overall, Mirroring is more conservative,
risk-averse, while humans, by comparison, are risk-seeking, committing early and
assigning more weight to rationality.

7.3 Summary

We presented Mirroring within the context of shape recognition, where by a plan-
ner is re-used by a recognition process, allowing drawn-shape recognition by
drawn-shape planning. The approach has a number of technical advantages spe-
cific to recognition (such as no plan library and fast on-line computation with
no pre-processing), but most importantly, is particularly suited to agents, where
a complete agent is expected to have a planner for its own goals, and this can
be utilized for recognition, without the need for a separate source of recognition
knowledge.

We instantiated the shape recognition approach in the recognition of regular
polygons, and evaluated the performance of different ranking and non-ranking
variants of the recognizer against human subjects’ recognition of scanned hand-
drawn regular polygons. The evaluation utilized several different evaluation crite-
ria. Across the board, the ranking recognition proved superior to the non-ranking
recognition. In some cases, the ranking recognizer surpassed human recognition
results (e.g., it required less of the polygon to be observed before settling on the
correct response). However, in general the ranking recognizer performed on par,
or just below, human levels of recognition. Through one of the evaluation tests
(question 3) we show that humans make negative recognition mistakes, both in
disqualifying hypotheses too early, or in holding on to them even once it is proven
they are incorrect. However, it might be that the tendencies leading to these mis-
takes might also account for the better performance of humans.

As stated, the planner’s input is comprised of the anchor points (initial and
ending open ends of the polygon) and line parameters (slope and intercept). Be-
cause of this, translating shapes in 2D space, and rotating them, are completely
transparent to the recognizer. Indeed, the results presented here are based on
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shapes drawn by hands in various scales, rotations, and translated. Thus we ex-
pect the Mirroring approach to be particular scalable to realistic scenarios, where
these transformations are to be expected.

In future work, we hope to study the differences between human and machine
recognition, especially in the ability to disqualify hypotheses early on. We believe
that the biases that humans exhibit, when understood properly may be exploited
and may prove highly useful for agents working closely with humans.
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Part III

Mirroring Efficiently
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8 Heuristic Online Mirroring

”Simplicity is the soul of efficiency.”

Austen Freeman

In the following section we proceed to further develop Mirroring into a gen-
eral, heuristic algorithm for online recognition in both continuous and discrete
domains. Mirroring now solves the plan-recognition problem with a baseline of
at most |G|(|O|+ 1) planner calls and a new best of only |G| planner calls. We
achieve this by identifying two key decision points within the Mirroring process
where heuristics may be inserted in order to further reduce the number of calls
made to the planner and consequently the overall run-time.

The first decision point questions whether to generate and solve a new plan-
ning problem for each goal and for each observation. If not, we may choose
to remain with the previously calculated plans. The purpose of this heuristic is to
refrain from calling the planner when unnecessary, again reducing the overall run-
time of the recognition process. We will show that, in the best case, this heuristic
may reduces the number of overall calls to the planner from |G|(|O|+1) to only
|G|(1+1).

The second decision point questions whether to prune unlikely goal candidates
from the set of all possible goals. It aims to decrease overall run-time by reducing
the number of times the planner is called. It achieves this by pruning out goals that
seem unlikely or impossible thereby incrementally reducing |G| as observations
are added and making fewer calls to the planner for each observation.

We describe the improved Mirroring algorithm in detail, instantiate the two
heuristics for recognition of navigation goals in continuous 3D environments and
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additionally show a novel method of pruning out goals using a combination of
Mirroring and disjunctive landmarks. In order to evaluate the approach we have
contrasted Mirroring recognition performance and efficiency, with and without
the aforementioned heuristics, over hundreds of experiments in continuous and
discrete environments and several different challenging domains. We empirically
show that these heuristics give place to a considerable improvement in perfor-
mance.

8.1 Minimum Plan Generation

We would like to begin with presenting one possibility that immediately comes to
mind for improvement on the baseline Mirroring algorithm introduced in Chapter
3. We are referring to the possibility of re-using the optimal plans. As a reminder,
the optimal plans, π̂g, describe the ideal plan from the initial state to each of the
goals g ∈ G. We have previously used these plans as the standard against which
other generated plan hypotheses have been compared, enabling us to rank the
hypotheses and come up with a leading goal candidate, r.We are now referring
to re-using these previously calculated plans as the general plan hypotheses, πO

g ,
against which we will compare all incrementally revealed observations.

In this manner we are taking an extreme approach of no plan recalculation at
all. This will result in only |G| calls to the planner to calculate the initial |G| plans,
one for each corresponding goal. We first generate all of the optimal plans, π̂g,
and then match incoming observations against them. These plans are saved and
will remain unchanged even as more observations come in. Instead of comput-
ing πO

g for each g ∈ G, each new observation is assessed against the original π̂g.
Whichever goal, g is closest to the observation is picked as the top ranking goal.
Note that we use the term ”closest” to indicate that the cost towards achieving it
is smaller and not necessarily a geometric evaluation of distance.

In the best case, when the observations closely match the originally calculated
plans, this approach will work very efficiently. However, realistic conditions may
not favor the best case scenario. For example, the observations may contain a
certain amount of noise. Or, in cases where the observed agent is not perfectly
rational, its observed trajectory will deviate from the saved π̂g plans.
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Even worse, it could be that the observed agent is perfectly rational, there is
no noise in the observations, and yet the approach will fail. This is due to cases
where there are multiple perfectly-rational (optimal) plans, which differ from each
other but have the exact same optimal cost, see Figure 8.1. The figure illustrates
a scenario in which we have two optimal plans (illustrated as the red and green
lines) from position I to goal G due to a static obstacle in the environment, illus-
trated as the black rectangle. In such cases, it is possible that the planner used
by the recognizer will generate an optimal plan, π̂g (red line), which differs from
an equivalent—but different—optimal plan π̂ ′g, (green line), carried out by the
observed agent and the observations will not match.

Figure 8.1: Two optimal
plans.

As this approach does not make use of the infor-
mation available in each observation, while it may
prove highly effective it must cost much in perfor-
mance. In Chapter 10 we will empirically show that
for realistic conditions, consisting of the use of a
time constrained, asymptotically optimal planner to
generate the observations and a time constrained,
suboptimal planner in the recognition process, this
approach does not work well.

8.2 Heuristic Mirroring

We hereby present the Heuristic Mirroring algorithm, an efficient online goal
recognition algorithm for continuous domains which works according to the
guidelines of PRP and is inspired by mirroring processes hypothesized to take
place in the human brain. We identify two key decision points in the baseline
recognition process described above, that can be used to improve its efficiency.
These are :

• Recompute : Recompute plans only if necessary, i.e., if the new observation
may change the ranking (captured by a RECOMPUT E function); and

• Prune : Eliminate goals which are deemed impossible or extremely unlikely
(as they deviate too much from the ideal plan π̂g), (captured by the PRUNE
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function).

A good RECOMPUT E heuristic reduces calls to the planner by avoiding un-
necessary computation of πg for new observations. A good PRUNE heuristic
reduces calls to the planner by eliminating goals from being considered for future
observations and reducing |G|. By inserting domains specific heuristics into these
decision points we can reduce the number of calls made to the planner and con-
sequently overall recognition run-time. This section presents the general heuristic
algorithm. The next section will examine candidate heuristics for specific do-
mains.

Figure 8.2: Diagram describing Mirroring decision cycle.

Figure 8.2 represents the general decision cycle of Mirroring while emphasiz-
ing the aforementioned decision points. The incoming observation o ∈ O reaches
the first decision point, RECOMPUTE. Here we determine if we need to recom-
pute the suffix plan. If there is no recomputation necessary the process will then
skip all other steps and rank the possible goal hypotheses according to exist-
ing knowledge alone. Otherwise the process enters the second decision point,
PRUNE. Here we determine for each goal if it may be removed from the set of all
possible goals. If the goal is pruned we have no need to calculate further for that
goal. Only if both decision points have failed; i.e. we needed to recompute πg and
did not prune out any goals, we will utilize the planner in order to generate more
knowledge for the ranking procedure following which we will have the leading
goal candidate, r.

Algorithm 3 presents the general, heuristic, online Mirroring procedure. The
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Algorithm 3 HEURISTIC MIRRORING (R := 〈W,O, I,G〉, planner)

1: ∀g ∈ G : πO
g , p← /0 B generate initial plan hypotheses

2: G′← G B Save goal set in case of backtracking
3: r← /0 B top-ranked goal
4: for all g ∈ G do
5: π̂g← planner(I,g) B generate optimal plan from I to g
6: πg← π̂g B default value for plan suffix

7: while new o ∈ O available do
8: if RECOMPUT E(πO

g ,o,r) then B Accepts the set of all plan hypotheses
9: for all g ∈ G′ do

10: if PRUNE(πg,o,g) then
11: G′← G′−{g}
12: else
13: πg← planner(o,g)

14: else
15: for all g ∈ G′ do
16: πg← πg	prefix(o,πg) B Updating the suffix plan to exclude the

last observation
17: for all g ∈ G do
18: p← p⊕o B update obs. path to include last seen obs.
19: πO

g ← p⊕πg B compose candidate plan hypothesis for goal g
20:
21: P(g|O) =

cost(π̂g)

cost(πO
g )

B calculate probability for goal g

22: for all g ∈ G do
23: P(g|O)← η ·P(g|O)

24: r← argmaxg∈G P(g|O) B the plan that maximizes
P(g|O) will be selected as the leading plan hypothesis and the corresponding
goal r as the leading goal candidate
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general flow is the same as the baseline algorithm (Algorithm 2), with the follow-
ing changes. We need to maintain the current top goal hypothesis, denoted as r

(line 3). This will later be used to assess whether a new observation o ∈ O will
cause a change in its ranking as the top hypothesis (line 8).

We begin (lines 4–5) by computing the optimal plan π̂g only once for all possi-
ble goals, as was done in Algorithm 2. However we now also set the optimal plan
for each goal, π̂g, as the default plan suffix πg (line 6). This suffix guarantees that
valid (though not necessarily optimal) plan hypotheses, πO

g can be created from
πg, even in the extreme case where no computation of πg is ever done (as was
described in Section 8.1). By using the term valid plans we are referring to plans
that agree with the observations already seen (see chapter 3).

The main loop begins on line 7, iterating over observations as they are made
available. We then reach the first decision point addressing whether we need to
recompute the suffix plan, πg, or not. This assessment is carried out heuristically
by the heuristic function RECOMPUT E in line 8. The RECOMPUT E function
takes as input the formerly calculated set of all plan hypotheses (for all g ∈ G) ,
the latest observation o and the current leading goal, r. It matches the observation
to πr (the currently leading plan hypothesis, part of the set πO

g ) and heuristically
determines (see next section) whether the new observation o may cause a change
in the ranking of the top goal. If so, then the suffixes πg of all goals (lines 3–13)
will need to be recomputed (line 13) , unless pruned (line 11) . Otherwise (lines
14–16) the current suffix πg of all goals will be modified based on o, but without
calling the planner.

Recomputing the suffix plan, πg (line 13). Here a straightforward call to the
planner is made per the discussion in chapter 3, to generate an optimal trajectory
from the initial point, the last point in o (as o might contain more than a single
point), to the goal g.

Modifying πg (line 16). When no recomputation of the suffix plan is deemed
necessary the last seen observation, o, will be added to the prefix p. Addition-
ally the existing πg must be updated so that it continues p and leads towards g.
The baseline algorithm calls a planner to do this but the point of RECOMPUT E
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heuristic is to approximate the planner call so as to avoid its run-time cost. This is
done by removing (denoted by 	) any parts that are inconsistent with respect to
the observation from the beginning of the old suffix πg.

The previous πg begins where the former p (without o) ends. The new πg

should ideally begin with the last point of the new p (which is the new observation
o), and continue as much as possible with the former πg. Thus a prefix of the
old πg, denoted (pre f ix(o,πg), line 16) is made redundant by o and needs to be
removed. If o is a direct part of πg, then pre f ix(o,πg) will be the exact trajectory
from the beginning point of πg to o. However, in general we cannot expect o to
be directly part of πg. We thus define the ending point for the prefix to be õ, the
geometrically closest point to o on πg. If indeed no recomputation is carried out,
the hypotheses remain at their current ranking and we loop back to line 7 to await
a new observation.

An ideal scenario would be for Alg. 3 to never compute a new suffix πg, for any
goal. This would correspond directly to the Minimum Plan Generation approach
presented in Chapter 3, Section 8.1. In line 6 of Alg. 3 the initial suffixes πg are
set to the ideal plans, π̂g. If RECOMPUT E is always false, then no new planner
calls will be made and πg will be incrementally modified (Alg. 3, line 16) to
accommodate the observations.

Theorem 5. If RECOMPUT E(πO
g ,o,r) = f alse ∀o ∈ O⇒ there will be exactly

|G| calls to the planner.

Proof. In order to prove Theorem 5 we refer to Alg. 3. Initially a single call to the
planner will be made to calculate π̂g for every goal for a total of |G| planner calls
(line 5). As we can see for every observation o ∈ O the RECOMPUT E method
is called in line 8. If RECOMPUT E returns f alse the algorithm skips to line 14
in which the suffix plan, πg is calculated for every goal g ∈G′. This calculation is
done without calling the planner but by modifying πg as explained above. Follow-
ing this procedure the goals may now be ranked according to existing knowledge
alone (lines 17-24). Since the only planner call occurs in line 13 the algorithm
will never call the planner again hence generating exactly |G| planner calls.
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As Theorem 5 demonstrates this approach offers significant savings and in
the best case, when the observations closely match the originally calculated paths,
can produce good recognition results.

However, realistically, the observations may contain a certain amount of noise
or the observed agent may not be perfectly rational. Moreover, it could be that
the observed agent is perfectly rational and there is no noise in the observations
and yet the approach will fail. As in the case of the Minimum Plan Generation

approach (Chapter 3, Section 8.1) this is due to cases where there are multiple
perfectly-rational (optimal) plans, which differ from each other but have the ex-
act same optimal cost. In such cases, it is possible that the planner used by the
recognizer will generate an ideal plan π̂g which differs from an equivalent—but
different—ideal plan π ′Og carried out by the observed agent.

In such a case, the incrementally computed πO
g may grow to become much

more costly from π̂g; at any given observation point, because there is no re-
planning of πg carried out, πO

g will have a prefix p that matches one optimal plan,
and a suffix πg that jumps from the last point of p to the closet point to it on π̂g.

In line 10 we reach the second decision point : for every goal g ∈ G, a second
heuristic decision is made as to the maintained relevance of goal g given the lat-
est observation, and the projected plan suffix πg. This assessment is carried out
heuristically, by the heuristic function PRUNE. A goal g whose associated plan
hypothesis πO

g is deemed extremely unlikely, or even impossible, is removed from
the list of goals to consider (line 11).

Intuitively, when the newest observation o leads away from a goal g (see next
section), we may want to eliminate the goal from being considered further, by
permanently removing it from G. This is a risky decision, as a mistake will cause
the algorithm to become unsound (will not return the correct result, even given
all the observations). On the other hand, a series of correct decisions here can
incrementally reduce G down to a singleton (|G| = 1), which will mean that the
number of calls to the planner in the best case will approximate (|O|+1).

Otherwise, if both heuristics have failed, a recomputation of πg is carried out
by calling the planner, using not just the last observation, but all observations since
the last iteration through this inner block of code (lines 13–17). Finally, when the
algorithm reaches line 16, a valid suffix πg is available for all goals in G. For all
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of them, it then concatenates the latest observation to the prefix p (line 18), and
creates a new plan piOg by concatenating the prefix and suffix (line 19). This means
that a new probability may be calculated for each goal (line 21 ) and a (potentially
new) top-ranked play hypothesis πR may be selected (line 24).

Heuristic Mirroring Theoretical Bound. As previously described Algorithm 3
is an improved version of the Baseline Mirroring algorithm (Algorithm 2) intro-
duced in chapter 4. We contend that by varying the heuristic functions used, we
can specialize its behavior to be exactly the same as the baseline (Thm. 6), or
change its behavior in different ways.

Theorem 6. If RECOMPUT E => and PRUNE =⊥ then Algorithm 3 will gen-

erate exactly the same number of planner calls as Algorithm 2.

Proof. In order to prove Theorem 6 we refer to Algorithm 3. Initially a single call
to the planner will be made to calculate π̂g for every goal for a total of |G| planner
calls (line 5). Then, for every observation o ∈ O the RECOMPUT E method is
called in line 8. Assuming RECOMPUT E to be always true we will proceed to
line 9 in which we go over all of the possible goals g∈G′ and evaluate the PRUNE

function. Assuming that PRUNE is always false (line 10) we will always execute
line 13 in which a new call to the planner will be made to generate πg for all
goals and every observation (since no calls will be skipped and no goals would
be pruned). This is in accordance with the behavior of the Baseline Mirroring
algorithm (Algorithm 2) first reported in [108] in which |G|(|O|+ 1) planner
calls are made.

8.3 Heuristic Recognition of Navigation Goals

We instantiate two novel heuristics applicable to the navigation goal recognition
domain to be inserted in the previously described key decision points within the
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Mirroring algorithm. These are inspired by studies of human estimates of inten-
tionality and intended action [13]. Such studies have shown a strong bias on part
of humans to prefer hypotheses that interpret motions as continuing in straight
lines, i.e., without deviations from or corrections to, the heading of movements.
Therefore the heuristics are biased toward rational acting agents, at least as this is
expressed in 2D or 3D motion plans.

8.3.1 The Recomputation Heuristic

For every new observation we are called to recompute the suffix plan, πg for every
goal g ∈ G. This could result in an additional |G| calls to the planner for every
added observation. However we must take into account that for every new ob-
servation o we have necessarily calculated the plans for the previous observation,
o′. By saving these previously calculated plans we may now consider whether the
new observation is in agreement with previously calculated plans. If the observa-
tion matches, it means we may continue to rely on former calculated plans and do
not need to re-call the planner.

As previously discussed, we cannot realistically expect the observations to
perfectly match the predictions. In order to do this the heuristic needs to evaluate
to false when the new observation o does not alter the top ranked goal gr (saving
a redundant |G| calls to the planner), and evaluates to true otherwise. In order
to do this the heuristic needs to evaluates the distance between the newly seen
observation o and each of the candidate plan hypotheses πO

g (one for each goal
g ∈ G).

A suggestion for such a heuristic is to measure the distances between the new
observation o and all previously calculated plans πO

g . For example, in the domain
of 3D navigation this may be achieved by measuring straight lines from the new
observation point to the nearest point along each of the various plan hypotheses
πO

g using the Euclidean Distance formula. If the distance between the new obser-
vation and the plan associated with the currently highest ranked goal πr is smaller
than all of the other distances (to other goals) we can assume that the planner is
still heading on the same path and do not need to re-run the planner at all, keeping
the previous goal rankings.
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Formally, let r represent the highest ranked goal so far and πr be the calculated
(top-ranked) plan associated with it. We will proceed to calculate dr = dist(o,πr)

as the distance between the last incrementally revealed observation o and the plan
πr. If dr ≤ ming∈Gdist(o,πO

g ), meaning the leading goal candidate measures the
shortest distance to the new observation as opposed to all the other plan hypothe-
ses, then goal r remains the top-ranked hypothesis and we do not recompute the
plans πO

g , thus avoiding a redundant |G| calls to the planner.

In a best case scenario, where the observed agent generates observations that
are perfectly rational and in accordance with one of the hypothesized plans πO

g ,
the planner will only be utilized 2|G| times; once in the initial path generation (π̂g)
and once again for the first observation generating πO

g therefore generating only
2|G| calls to the planner in total. However, the heuristic allows for non-best cases,
where the paths πO

g have to be recomputed to account for noisy observations that
deviate from the predictions.

8.3.2 The Pruning Heuristic

Finally, we introduce a pruning heuristic for observing rational agents in con-
tinuous domains. While calling the planner is wasteful when unnecessary, it is
also wasteful to call the planner for goals that are highly improbable—or even
impossible—given the observations. Thus, another idea is to prune goals from
being considered at all, reducing |G| as observations come in. Here we again rely
on the rationality of the observed agent, inspired by studies of human estimates of
intentionality and intended action [13]. Such studies have shown a strong bias on
part of humans to prefer hypotheses that interpret motions as continuing in straight
lines, i.e., without deviations from, or corrections to, the heading of movements.
Once a rational agent is moving away or past a goal point g, it is considered an
unlikely target.

The PRUNE heuristic considers whether to exclude a goal g from further con-
sideration. In the navigation goal recognition domain, we take a geometric ap-
proach towards such pruning by examining the angle between the current esti-
mated heading of the observed agent, and the path leading towards g. This is done
as follows.
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We calculate αg, the angle created between the previous observation , the
newly received observation and the previously calculated plan for every g ∈ G.
αg is calculated using the cosine formula, cos(α) = (~u ·~v)/(||~u||||~v||), where ~u is
the vector created by the previous and new observation and ~v, the vector created
by the previously calculated plan and the new observation.

Figure 8.3: Illustration of
goal angles.

Figure 8.3 presents an illustration of the heuris-
tic approach in 2D. For each new observation, oi,
we measure the angle αi created by the new obser-
vation, the previous observation oi−1 and the pre-
vious plan hypotheses generated for each goal, πO

g .
In Figure 8.3 two such plans are illustrated as the
dashed lines between oi−1 and each of the two pos-
sible goals g1 and g2. If the newly calculated angle,
αi, is bigger than a given threshold we deduce that
the previous path is heading in the wrong direction
and rule out that goal entirely. By defining different sized threshold angles we can
relax or strengthen the pruning process as needed.
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9 Landmarks as a Pruning Mecha-
nism

”The highest type of efficiency is that which can utilize

existing material to the best advantage.”

Jawaharlal Nehru

In the following section we proceed to instantiate another manner of improv-
ing the efficiency of Mirroring for online recognition in both discrete and continu-
ous domains. We introduce a novel method of pruning out goals using a combina-
tion of Mirroring and disjunctive landmarks. As previously mentioned, in online
recognition, observations are provided incrementally and the objective is to recog-
nize the intended goal as soon as possible, without knowledge which observation
is the final one. This poses an even harder recognition problem, since the recogni-
tion algorithm must cope with a stream of observations while attempting to infer
the actual goal with minimal information. Furthermore, most existing approaches
assume all observations, even if noisy or incomplete, are received at once (offline)
at the end of their execution [73].

We now develop an efficient approach for online goal recognition as planning
that generalizes over both discrete (STRIPS style) and continuous (navigation)
domains. The approach achieves substantial runtime efficiency by reducing the
complexity of the problems sent to an underlying planning algorithm using on-
line Mirroring [108, 107] while minimizing the number of goal hypotheses to be
computed using landmarks computed once during run-time, and a landmark-based
heuristic [71, 73].
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To generalize over discrete and continuous domains we adapt the notion of
planning landmarks [38] to comprise its original planning semantics as well as
continuous spatial domains and develop a new and efficient algorithm to generate
spatial landmarks. Since the Mirroring approach can use any type of PDDL [58]
planning algorithm or path planner [98], we can leverage current and future ad-
vances in efficiency in such algorithms.

We introduce three key contributions: (a) a novel goal recognition approach
for both discrete and continuous domains; (b) an online approach to efficiently
recognize goals early in the observed agent’s plan execution; (c) a novel notion
of landmarks encompassing discrete and continuous domains and an algorithm
to generate such landmarks. We evaluate the resulting approach empirically over
hundreds of recognition problems in classical and motion planning domains. The
results show superior efficiency and generally superior recognition quality over
the state of the art.

We introduce an online goal recognition approach that combines online Mir-

roring [107] and recognition using landmarks [71, 73], which we extend to work
online and in continuous spaces. We further develop a procedure for extracting
continuous-space landmarks and proceed to combine the approaches into a single
recognition algorithm.

9.1 Online Goal Recognition Using Landmarks

In the planning literature, fact landmarks are facts that must be true at some point
in every valid plan to achieve a particular goal from an initial state [38]. In other
words, fact landmarks (or simply landmarks) are subsets of the domain W (previ-
ously defined in Chapter 3). Landmarks are often partially ordered based on the
sequence in which they must be achieved. Formally, a fact landmark is a formula
(either a conjunctive or disjunctive formula) over a set of facts that must be satis-
fied (or achieved) at some point along all valid plan executions. Figure 9.1 shows
an example of fact landmarks and their ordering for a Blocks-World example.
The root node represents the goal state, whereas leafs are facts of the initial state.
Connected boxes represent facts that must be true together, i.e., conjunctive facts.
For example, in order to achieve (on A B), the facts immediately preceding it,
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(and (holding A) (clear B)) must be true, and so on.

on A B

holding A clear B

clear A handempty ontable A

on B A handempty clear B

Landmarks

Figure 9.1: Blocks-World landmarks example.

Given their usefulness for planners and planning heuristics [83], research has
yielded multiple notions of landmarks [76], including that of disjunctive land-
marks. Briefly, disjunctive landmarks represent an exclusive disjunction over pos-
sible instances of variables associated to predicates in the state representation. For
example, consider that the agent in the Blocks-World domain can pick-up and hold
blocks with both arms. In the two-armed blocks world then, moving a block A in-
duces a disjunctive landmark (or (holding A LeftArm) (holding A

RightArm)). This disjunctive formula defines that the agent can hold the block
either with the LeftArm or RightArm: either one of these facts (but not both
simultaneously) must be achieved before moving block A to any position, consti-
tuting a disjunctive landmark.

Pereira et al. [71, 73] show that it is possible to carry out offline plan recog-
nition by reasoning heuristically about landmarks. The key idea is to maintain a
list of ordered landmarks associated with each goal, though partial overlaps are
allowed. The goal completion heuristic from Pereira et al. [73] matches the obser-
vations against this list. This heuristic marks a landmark as achieved when facts in
the observation match a landmark. The heuristic then uses the ratio of the number
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of landmarks achieved to the total number of landmarks associated with the goal,
inducing a ranking of the goals, used as a proxy for estimating P(g|O).

G

C

B

D

A

E

F

H

I

I

SP

Figure 9.2: Landmarks for Cubicles environment.

In principle, we can translate the same idea into recognition in continuous do-
mains. In such domains, landmarks can be defined as areas surrounding goals, as
illustrated in Figure 9.2. This Figure presents the previously introduced 3D OMPL
navigation environment (Chapter 5 Section 5.1) where black dots represent goals
and the surrounding rectangles represent the continuous landmark areas. In this
case, to achieve a goal, the observed motion must intersect (go through) the cor-
responding landmark area. Naturally, we would prefer such areas to be maximal,
but must maintain the restriction that landmarks cover only obstacle-free space,
and do not intersect completely with other landmarks.

The two characteristic operations between observations and landmarks in con-
tinuous environments are: testing whether a landmark has been observed, and dif-
ferentiating between what constitutes an active landmark, and, how to identify a
landmark that has recently been active but no longer fits the last observation (an
achieved landmark).

We assume Algorithm 4 runs continually to update P(gk|O), which can then
be queried as necessary. Algorithm 4 includes a continuous loop updating the
conditional goal probabilities using landmarks and the notions above for on-
line recognition as follows. We begin by pre-computing the landmarks for
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Algorithm 4 Online Goal Recognition With Landmarks.

Require: L← EXTRACTLANDMARKS(I,W,G) . Initial generation of
landmarks

Require: R = 〈W,O, I,G〉
1: function CONTONLINELANDMARKS(R,L)
2: achievedFL← /0 . Ordered set of fact landmarks
3: activeFl← /0 . Last achieved landmark
4: PruneG← /0 . Set of pruned goals
5: while new observation o ∈ O is available do
6: activeFL,achievedFL←ACHIEVELANDMARK(o,L,activeFL,achievedFL)

7: for all gk ∈ G do
8: if lk ∈ achievedFL then
9: PruneG← PruneG+gk

10: else
11: PruneG← PruneG−gk

12: for all gk ∈ G∩PruneG do
13: P(gk|O)← RANK(gk)

the problem and providing these (cached landmarks) to the algorithm using the
EXTRACTLANDMARKS(I,W,G) function from Algorithm 6.

Once the landmarks have been computed, the main procedure
CONTONLINELANDMARKS(R,L) continually updates the goal ranking in
an online manner with every new observation, o. In order to do so, we maintain
a number of data structures to keep track of the landmarks and pruned goals
in between updates from new observations (Lines 2-4). First, we maintain
achievedFL, the, initially empty, ordered set of fact landmarks that have already
been achieved. In both continuous and discrete domains these landmarks
represent positions in the state space that we have been in before but are there no
longer. In continuous domains the achieved landmarks are areas that the agent
has passed through but is no longer in. In discrete domains these are all of the
facts that were satisfied before, but are possibly no longer satisfied.

We also need to maintain the currently active landmark against which we will
compare every additional observation, activeFl. In continuous domains the ac-
tive landmark is the area in which the current observation is found. In discrete
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Algorithm 5 Achieve landmark in continuous domains.

1: function ACHIEVELANDMARK( o,L,activeFL,achievedFL)
2: if activeFL 6= /0∧o∩activeFL = /0 then
3: achievedFL← achievedFL∪activeFL . activeFL is passed, i.e., a

fact landmark
4: activeFL← /0
5: else if activeFL = /0 then
6: for all lm ∈ L do
7: if o∩ lm 6= /0 then
8: activeFL← lm . Found an active landmark
9: return activeFL,achievedFL

domains, it is the set of facts that is currently satisfied. Additionally, we need to
maintain PruneG, the group of goals that has been pruned out during the recog-
nition process. We maintain this group of pruned goals due to the fact that obser-
vations may contain a certain amount of noise that would require backtracking, in
which case we need to re-introduce a recently pruned goal back into the goal set,
G.

For every incrementally revealed observation, o, we check if this observation
has caused any landmarks to be activated or achieved via the ACHIEVELAND-
MARK (Algorithm 5) function in Line 6.

Because landmarks are necessary conditions to each goal, we can use the last
ordered landmark associated with a goal to be the threshold, which provides evi-
dence that an agent is pursuing a certain goal. Now that we can mark landmarks
as achieved, we use them to infer that a certain goal can be removed from further
consideration for recognition, as it has been passed. Thus, each goal gk has a cor-
responding landmark lk ∈ L as the area that contains (i.e., is necessary for) that
goal position in continuous domains and the set of facts that must be satisfied in
discrete domains. We then check these landmarks lk for each goal gk, and, if it
has been passed we prune gk out or reinstate it if necessary in Lines 9–11. Finally,
in Line 13, we iterate over all unpruned goals ranking them in decreasing order
according to percentage of achieved landmarks. Consequently, the goals with the
highest completion percentage will be ranked first and so on in consecutive order.

Analogously to the discrete case, we match observations to landmarks, by in-
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tersecting observations (points) with each landmark. However, unlike the discrete
case where, once an observation causes a landmark to be achieved, the next ob-
servation will no longer be equal to the landmark (i.e., the next step will go out
of the landmark), in the continuous case this may not be so. We may see several
consecutive observations, all in the same landmark area. Only once the observa-
tions no longer match the landmark we can mark it as achieved. Thus continuous
landmarks, in the form of areas in spaces, define an inclusive disjunction: multiple
observations within an area cause the landmark to be marked activated. We there-
fore define activeFL as the currently active landmark while achievedFL marks
the landmarks that have been active but are now achieved.

Algorithm 1 is a general algorithm that evaluates whether landmarks are
achieved in both discrete and continuous domains. Variable activeFL either holds
the recently active landmark, which means that the observations up till now were
within that landmark area, effectively making the goal corresponding to the land-
mark a leading goal hypothesis, or it could be /0. Line 2 determines if a new
incoming observation o has just caused an active landmark to become achieved.
If activeFL is not empty and o is not currently in the activeFL area, it means the
observations have just left the activeFL area and have therefore caused that land-
mark to be achieved. We can therefore add it to the achievedFL set (Line 3) and
re-initialize activeFL (Line 4). However, if activeFL is empty we check if this
new observation has caused any landmarks to be activated. In this case we check
whether the observation is part of a landmark area and insert it into activeFL

(Lines 5– 8).

9.2 Extracting Landmarks in Continuous Space

We can use any one of a number of landmark extraction algorithms to extract
landmarks in discrete environments. Here, we adapt the algorithm of Hoffman et
al. in [38] since it efficiently approximates landmark sets that are good enough
for the domains we use. This algorithm builds a graph in which nodes represent
landmarks and edges represent necessary prerequisites between landmarks, thus
representing the landmarks and their ordering. A node in this graph represents
a conjunction of facts that must be true simultaneously at some point during the
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execution of a plan, and the root node is a landmark representing the goal state
(Figure 9.1). Hoffman et al. [38] proves that the process of generating all land-
marks and deciding their ordering is PSPACE-complete, which is exactly the same
complexity as deciding plan existence [17].

Since the interpretation of landmarks we rely on for plan recognition is that of
bottlenecks in the state space, we try to partition a continuous space so that such
bottlenecks become identifiable areas in the continuous space. Specifically, to
extract landmarks in continuous environments we partition the area using the wall
corners as references, to eventually identify pathways between individual “rooms”
in the space. Though we define a landmark generation algorithm for continuous
path planning domains, the approach should work with any notion of numeric
landmarks, e.g., recent work on landmarks for hybrid domains [89].

Algorithm 6 extracts continuous landmarks using a domain configuration W

and the set of goals G, and maps each g ∈ G to a rectangular area that represents
a landmark position1. The landmark area for each goal starts as the outermost
bounding box in the environment in Line 4. The algorithm iteratively scales it
down by generating a horizontal or vertical line limit using the closest visible walls
in Line 6. We define visibility as there being no obstacles between the goal and
the wall in question and assume that walls correspond to axis-aligned rectangles,
though at greater computational cost we could use more sophisticated notions of
visibility for any polygonal obstacle through a visibility graph [22, Chapter 5]. If
a single landmark area contains more than one goal, we partition this area again
based on the midpoint between an arbitrary goal and the remaining ones to obtain
new non-overlapping areas for each goal in Line 13, discarding the original area.
This partition separates rectangles with multiple goals into a partition analogous
to a Voronoi diagram with rectangular areas [5].

Figure 9.2 illustrates such landmark partition: the black lines represent walls;
black dots represent goal candidates; and the different colored rectangles represent
landmark areas. We can see the leftmost wall limiting the width of the landmark
areas B and C of the two leftmost goals while the center wall limits their height.
The dashed area including goals G and I exemplify a partition using the midpoints

1 Note that we include additional parameters to match the algorithm for extracting landmarks for
discrete domains.
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Algorithm 6 Landmark Extraction for Continuous Domains.

1: function EXTRACTLANDMARKS(I,W,G)
2: landmarks← [] . Initialize an empty dictionary
3: for all g ∈ G do
4: rect← BOUNDINGBOX(g,W )
5: for all wall ∈W do
6: if VISIBLEFROMCENTROID(g,wall,W ) then
7: rect← UPDATEBOUNDINGBOX(rect,wall)
8: if rect 6∈ landmarks then landmarks[rect]← /0
9: landmarks[rect]← landmarks[rect]∪goal

10: for all (rect,goals) ∈ landmarks do
11: if |goals|> 1 then
12: for all g ∈ goals do
13: landmarks[MIDPOINTBOX(g,goals)]← g
14: REMOVE(landmarks[rect]) . Remove rect index from dictionary
15: return landmarks

between these two goals from a square that initially contained both goals. Now
that we can compute landmarks for both discrete and continuous domains, we
proceed to employ them to perform online goal recognition.

9.3 Mirroring with Landmarks

In general, PRP recognizers repeatedly call a planner during recognition, and this
is exacerbated in online recognition, as the goal recognizer previously described
calls the planner to compute a new plan suffix, πg with every observation, and
for every goal g ∈ G. By combining Mirroring and the evidence provided by
landmarks, we exploit both the flexibility of an online recognition approach that
utilizes a planner within the recognition process and the efficiency of reasoning
about landmarks. Specifically, we use the information conveyed by the landmarks
as a pruning mechanism with which we may rule out hypotheses, reducing |G|
and therefore the number of calls to the planner and overall run-time.

We extensively modify the Baseline Mirroring algorithm to use landmark in-
formation as a pruning mechanism in Algorithm 7. For simplicity of the algorithm
we assume agents do not backtrack and therefore eliminate the need to monitor
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Algorithm 7 Mirroring With Landmarks.

Require: R = 〈W,O, I,G〉
Require: L← EXTRACTLANDMARKS(I,W,G)

1: function ONLINEMIRRORINGWITHLANDMARKS(R,L)
2: achievedFL← /0
3: activeFL← /0
4: for all g ∈ G do π̂g← PLANNER(I,g)

5: while New o ∈ O is available do
6: p =

⊕
o∈O o . the (partial) path created by concatenating all obs

7: activeFL,achievedFL←ACHIEVELANDMARK(o,L,activeFL,achievedFL)
8: for all gk ∈ G do
9: if lk ∈ achievedFL then

10: G← G−gk
11: else
12: πgk ← PROJECT(PLANNER(o,gk))
13: πO

gk
← p

⊕
πg

14: P(gk|O) =
cost(π̂gk )

cost(πO
gk
)

. calculate probability for goal gk

15: for all gk ∈ G do
16: P(gk|O)← η ·P(gk|O)

the last achieved landmark and to maintain a separate set of pruned out goals ( as
was implemented in Algorithm 4). Like Algorithm 4, we assume a single cached
computation of domain specific landmarks for all monitored goals, and the ini-
tialization of the previously introduced achievedFL and activeFL in Lines 2– 3.
Additionally, as part of the Mirroring algorithm we now calculate the ideal plans,
π̂g (minimum cost) from the initial position to each possible goal with an addi-
tional |G| planner calls (Line 4).

For every newly available observation o ∈ O, we update the plan prefix p in
Line 6 and then proceed to ascertain whether this observation has caused any
landmarks to be achieved via the previously introduced ACHIEVELANDMARK

function. If the observation has caused a landmark to be achieved, achievedFL

will be updated and we may - use the existing fact landmarks to prune unlikely
goals in Line 10, in which case we only call the planner to compute plans for
those goals whose landmarks have been satisfied in the correct order and have not
been passed (Lines 12–14). Note that the plan suffix is a sequence of states, and
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so we generate a projection of a plan into a sequence of states in Line 12. In the
continuous case, this project is straightforward as the plan itself is a sequence of
positions in the environment, whereas in the discrete case, this involves executing
each action of the plan starting in state o and returning the resulting sequence of
states.

We use the same ranking procedure as Vered et al. [107], in which the
goals are ranked according to the ratio between the initially generated ideal

plan and the newly generated plan hypothesis, which is comprised of a con-
catenation of the plan prefix and plan suffix (Lines 13– 14). Finally, the al-
gorithm transforms these rankings into probabilities P(gk | O) via the normal-
izing factor η = 1/∑gk∈G rank(gk) and computes these rankings in Lines 15–
16. Mathematically, Algorithm 7 approximates P(g | O) for all g ∈ G using
landmarks to rank probabilities, so that, when computing candidate goal prob-
abilities in the Bayesian framework of Ramı́rez and Geffner [81], we compute
P(O | g) = cost(π̂g)/(cost(p)+ cost(πg)). Since P(gk | O) = η ∑gk∈G P(O | gk),
the pruning step updates P(gk) = 0 for all ruled-out goals thereby limiting the
number of times we need to call the planner.
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10 Experiments

“I pass with relief from the tossing sea of Cause and The-

ory to the firm ground of Result and Fact.”

Winston S. Churchill

We empirically evaluated the performance of mirroring along with the differ-
ent heuristics described above over hundreds of goal recognition problems in the
complex continuous 3D OMPL environment described in Chapter 5 Section 5.1.
We contrasted the performance of the suggested heuristics with the baseline online

mirroring algorithm to show the improvements both in terms of performance as
well as efficiency.We further evaluated the sensitivity of the recognition approach,
by contrasting results in easier and harder goal recognition problems.

We additionally examined the effect of the Landmarks described in Chapter 9
over hundreds of recognition problems in classical and motion planning domains
the literature [82] as well as a complex navigation domain. The results show
superior efficiency and generally superior recognition quality over the state of the
art.

10.1 Heuristic Instantiation

10.1.1 Effects of the Different Heuristic Approaches

In order to evaluate the different heuristic approaches we again utilized the 220
problems generated on the continuous 3D navigation domain of the Open Motion
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Planning Library (OMPL [98]) along with the default cubicles environments and
TRRT planner at a time constraint of at most 1 sec (Chapter 5, Section 5.1, Figure
5.1(a)). The cost measure of the plan referring to the length of the path. We ran
separate runs for each approach and then contrasted the results. The results are
displayed in Figures 10.2 and 10.1. In all of the graphs the X axis denotes the
different approaches;

1. Naive refers to the suggested online recognition approach of re-running the
PRP based offline recognition algorithm as-is, and calling the planner to re-
calculate each of the ideal plans (Algorithm 1, Chapter 4, Section 4.2). By
contrasting the improvements in run-time and number of calls to the planner
made by each of the separate approaches against this approach we can mea-
sure just how necessary and efficient the adjustments for only recognition
are.

2. Minimum refers to the method of no recomputation at all - Minimum Plan

Generation (Chapter 8, Section 8.1). In this instance the planner is only
utilized once in the beginning of the process for all of the goals. All in-
crementally received observations will be compared against these initially
calculated plans for a total of only 2|G| calls to the planner.

3. Baseline refers to the online recognition method of refraining from recom-
puting the ideal path to compare against with every incoming observation;
with the improved online recognition baseline of (O+ 1)|G| calls (Alg.2,
Chapter 4, Section 4.3).

4. Recompute measures the effect of the Recompute Heuristic which aims to
reduce overall number of calls to the planner by recomputing plans only
when necessary; i.e. refraining from calling the planner when the new
observation does not alter the top ranked goal (Alg.3, Chapter 8, Section
8.3.1).

5. Prune measures the effect of the Pruning Heuristic which aims to reduce
the overall number of goals by eliminating unlikely goal candidates (Alg.3,
Chapter 8, Section 8.3.2).
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6. And finally, Both, measures the effects of utilizing both the Pruning and
Recompute Heuristics simultaneously.

Efficiency In order to evaluate recognition efficiency we used the evaluation
criteria first presented in chapter 5, Section 5.2.

• The time in which the recognizer converged to the correct hypothesis (in-
cluding 0 if it failed). Measured by counting the number of observations
from the end, hence higher values indicate earlier convergence and are
therefore better.

• The number of times the correct hypothesis was ranked at the top (i.e., rank
1). Again higher values indicate more correct hypotheses during the recog-
nition process.

Figure 10.1(a) displays the average of the results of each approach as the mean
of total planner run-time where the Y axis denotes the time measured in seconds.
The Naive approach takes an average of 169.4 sec. for each problem. When only
calling the planner once in the recognition process the Minimum approach takes
an average of only 6.7 sec. When not recomputing the ideal plans, the Baseline

reduces the Naive time to an average of 105.02 sec. The Prune heuristic reduces
the average time further to only 79.49 sec. And the Recompute heuristic further
reduces the average time to only 49.98 sec. When utilizing both heuristics we
achieved a reduction to 39.72 sec. an improvement of a substantial 76.55% from
the Naive approach and 62.18% from the Baseline approach.

Figure 10.1(b) displays the average of the results in terms of number of calls
made by the recognizer to the planner. Here the y axis denotes the overall num-
ber of calls. The Naive approach had an average of 446.37 calls to the planner
while with no recomputation at all the Minimum approach had an average of an
extremely efficient 10 calls, i.e. the number of goals. Baseline substantially re-
duced the number of calls by almost half in comparison with the Naive approach,
generating an average of only 265.05 calls. The Recompute and Prune heuristics
had similar success with a reduction to 148.94 and 161.54 calls each. Finally,
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(a) Mean Run-Time (Sec.)

(b) Mean Number Of Calls To Planner

Figure 10.1: Efficiency comparison. Lower values are better.

while utilizing both heuristics the number of calls was reduced to an average of
only 90.68 calls, a reduction of 65.79% from the Baseline approach and of 79.69%
from the Naive approach.

In conclusion we see that employing the heuristics makes a big impact on
run-time and successfully reduces overall number of calls to the planner. While
the Recompute heuristic outperformed the Prune heuristic, both in run-time and
overall number of calls, utilizing both heuristics can reduce both run-time and
number of calls made to the planner by over 75% from the naive approach. The
most efficient method proved to be the Minimum Plan Generation approach, only
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calculating |G| plans. We will later show that this improvement in efficiency costs
considerably in performance. Given these results, in the next figures we omit the
original Naive method and focus only on the heuristics with comparison to the
Baseline approach.

Performance In order to evaluate recognition performance we used the evalua-
tion criteria first presented in chapter 5.

• Convergence. The time in which the recognizer converged to the correct hy-
pothesis (including 0 if it failed). This is measured by counting the number
of observations from the end, hence higher values are better.

• Ranked First. The number of times the correct hypothesis was ranked at
the top (i.e., rank 1). Again higher values indicate more correct hypotheses
during the recognition process.

Figure 10.2(a) measures the average convergence to the correct result percent,
higher is better. With no reuse of the planner at all, for the Minimum approach
we only get a 6.77% convergence. As this approach does not make use of the
incrementally revealed observations within the recognition process, any deviation
from the initially calculated path, ig, will have considerable impact on recognition
results. These results also reflect the fact the the planner used to generate these
initial plans is in itself, sub-optimal.

By converting to the Baseline algorithm, we were able to more than double the
convergence percent to 21.82%. Each incremental observation was now taken into
account during the reuse of the planner and therefore had greater weight on the
ranking of the goals. Applying both the Prune and Recompute heuristics further
improve the overall convergence. By eliminating goals the ranking process now
proved to be easier, as there were less goals to compare to. Furthermore, the early
elimination of goals in the pruning process was able to also eliminate the further
noise these goals might introduce to the ranking process, when their paths deviated
from the optimal. The Recompute heuristic increases it to 25.44% and the Prune

to 42.16%, an improvement of 20.4% from the Baseline approach. Furthermore,
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(a) Mean Convergence Percent

(b) Mean Ranked First Percent

Figure 10.2: Performance comparison. Higher values are better.

we see that when utilizing both heuristics the high convergence level obtained by
the Prune heuristic is maintained.

Figure 10.2(b) measures the percent of times the correct goal was ranked first
out of overall observations. Here too a higher value is better and will reflect on
overall reliability of the ranking procedure. The results mostly agree with the
convergence results. With no planner reuse at all, Minimum, performs poorly with
a low 9.54%. Utilizing the Baseline approach, which refrains recomputing the
ideal plan, more than doubles the success here as well, to 20.24%. The Recompute

heuristic achieves 33.91% and the Prune heuristic increases the results to 40.5%,
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an improvement of 20.3% from the Baseline approach. Again, when applying
both heuristics the success level of the Prune method is obtained.

As seen employing the heuristics has made a big impact on overall perfor-
mance successfully increasing convergence and overall correct rankings. The
Prune heuristic clearly outperformed the Recompute heuristic in both measures
however a combination of both heuristics maintains the high success rate leading
to an improvement of over 20% in both measures.

10.1.2 Sensitivity to Recognition Difficulty

We now attempt to show that the proposed heuristics improve performance and ef-
ficiency even when facing more difficult recognition problems. By varying levels
of difficulty we refer to problems that have more goals, and where the goals are
clustered closer together exacerbating the recognition task. We used the harder

3D navigation goal recognition scenario described in Chapter 5 Section 5.1 and
presented in Figure 5.1(b). In this problem another 9 goal points were added to
the recognition problems in the navigation domain for a total of 19 potential goals
in each recognition problem and 380 recognition problems.

19 goals
Efficiency Performance

Run-Time PlannerCalls Conv. Rank.
Baseline 194.65 516.57 16.37 19.54

Recompute 126.75 397.85 18.7 22.76
Prune 160.29 386.53 23.18 24.03
Both 97.63 287.36 20.98 25.82

Table 10.1: Comparison of all approaches across clustered goal scenario.

Table 10.1, columns 1–2, examines the efficiency of the different online recog-
nition approaches over the harder clustered goals problems. We omitted the Naive

heuristic in these instances as the behavior of this heuristic is very straightforward.
The results are consistent with the results from the original scenario. The Baseline

approach is the least efficient, having a higher run-time and larger number of calls
to the planner, than the rest. The most efficient approach is still the approach of
utilizing both the Prune heuristic and the Recompute heuristic together. In run-
time the Recompute heuristic is still more efficient than the Prune however for the
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measure of number of calls made to the planner we see that, for more clustered
goals scenarios, the Prune heuristic slightly outperforms the Recompute heuristic.

Table 10.1, columns 3–4, examines the performance of the different online
recognition approaches over the harder clustered goals problems. For the harder
problems the best performance achieved, in terms of convergence, was by the
Prune heuristic with a convergence of 23.18% from the end. In terms of the
amount of times the correct goal was ranked first the Both approach, combining
both Prune and Recompute heuristics, only slightly outperformed the Prune ap-
proach. The worst performance was achieved by the Baseline approach, in terms
of both criteria measured; convergence and ranked first, in congruence with the
performance results of the scattered goal scenario.

Deterioration
Efficiency Performance

Run-Time PlannerCalls Conv. Rank.
Baseline 85.35% 94.90% 24.98% 3.46%

Recompute 153.58% 167.11% 26.49% 32.88%
Prune 114.01% 155.20% 45.02% 40.67%
Both 167.58% 216.90% 50.53% 35.79%

Table 10.2: Deterioration of performance and efficiency between scat-
tered and clustered goal scenarios.

Table 10.2 measures the deterioration in efficiency and performance with com-
parison to the scattered goal scenario. The deterioration is measured in terms of
deterioration percent, hence a 100% deterioration in run-time means the plan-
ner took twice as long on average, on the harder problems. Therefore lower
values are better. In terms of efficiency, we can clearly see that the least dete-
rioration, both in run-time and number of calls to the planner, occurred for the
Baseline approach proving this approach to be very reliable with a deterioration
of 85.35% and 94.90% respectively. The biggest run-time deterioration occurred
for the combination of both heuristics with a deterioration of 167.58%. This was
mostly caused by the substantial deterioration of the Recompute approach which
deteriorated by 153.58%. The Prune heuristic deteriorated considerably less in
terms of run-time with only 114% deterioration.

In terms of number of calls made to the planner, again, the worst deterioration
occurred for the approach that combined the two heuristics, Both, with a deteriora-
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tion of 216.9% while the deterioration for each of the heuristics by themselves was
considerably less; 155.2% for the Prune heuristic and 153.6% for the Recompute

heuristic.

In terms of performance deterioration we again see that the most resilient ap-
proach in terms of performance, as well as efficiency, proved to be the Baseline

both in terms of Convergence and Ranked first with a deterioration of 25.98% in
convergence and only 3.46% in ranked first. The biggest deterioration in conver-
gence occurred for the Both approach, as was in the efficiency results. However,
in terms of ranked first the biggest deterioration occurred for the Prune heuristic.
This was, in part, due to the fact that clustered goals make the pruning process
considerably less efficient as the goals are too close to be pruned.

10.2 Combining Landmarks and Mirroring

As a final set of experiments we empirically evaluated the suggested online goal
recognition approach which combines mirroring with information gained by us-
ing disjunctive landmarks, on both discrete and continuous environments over
hundreds of goal recognition problems while measuring both efficiency and per-
formance.

As the continuous environment we again used the Open Motion Planning Li-
brary (OMPL [98]) domain of 3D navigation, along with default cubicles envi-
ronment and TRRT planner, where the target is to recognize navigational goals
as soon as possible while the observations, i.e., observed agents’ positions, are
incrementally revealed. We used the easy scenario with 11 points spread through
the cubicles environments and two observed paths from each point to all others,
for a total of 110×2 goal recognition problems (Chapter 5, Section 5.1, Figure
5.1(a)).

For the discrete environments, we used the openly available datasets [72]
based on the ones developed by Ramı́rez and Geffner [80, 81].These datasets com-
prise 15 domain models with thousands of non-trivial and large goal recognition
problems with optimal and sub-optimal plans. We evaluated the approaches using
optimal and sub-optimal plans. Each goal recognition problem contains a domain
description, initial state, set of candidate goals, a hidden goal, and an observation
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sequence representing a plan that achieves the hidden goal. As the discrete plan-
ner, we used the JavaFF1, an implementation of Fast-Forward [37] in Java. We
ran the experiments for discrete environments with an 8GB memory limit on the
JavaVM and a 2-minute time limit.

Continuous Domains
MIRRORING MIRRORING WITH LANDMARKS ONLINE RECOGNITION WITH LANDMARKS

Domain
(# problems) |G| |O| |L| Time PC TPR FPR RF CV Time PC TPR FPR RF CV Time PC TPR FPR RF CV

Cubicles
(220) 11.0 26.5 11.0 104.70 265.0 100% 100% 20.2% 21.8% 85.90 184.8 78.2% 61.1% 24.3% 26.2% 0.020 0 78.3% 60.9% 21.7% 15%

Discrete Domains
MIRRORING MIRRORING WITH LANDMARKS ONLINE RECOGNITION WITH LANDMARKS

Domain
(# problems) |G| |O| |L| Time PC TPR FPR RF CV Time PC TPR FPR RF CV Time PC TPR FPR RF CV

Campus
(15) 2.0 5.4 8.6 0.441 12.8 60.0% 21.3% 57.3% 41.3% 0.212 7.7 96.4% 1.7% 96.4% 96.4% 0.065 0 92.8% 3.5% 92.8% 92.8%

IPC-Grid
(61) 8.3 21.8 10.2 10.36 209.1 87.2% 19.4% 36.6% 35.6% 3.29 71.2 55.6% 10.5% 45.8% 41.5% 0.335 0 59.4% 21.8% 32.6% 31.1%

Ferry
(28) 7.5 24.2 28.5 55.24 179.5 83.1% 10.2% 59.2% 57.2% 7.98 35.4 83.3% 3.1% 82.4% 82.1% 0.101 0 82.4% 5.4% 72.5% 71.9%

Intrusion
(45) 16.6 13.1 16.0 2.02 235.5 100% 7.2% 55.3% 55.3% 0.257 34.7 75.5% 3.6% 67.1% 67.1% 0.127 0 87.6% 3.9% 57.1% 55.1%

Kitchen
(15) 3.0 7.4 5.0 0.141 25.4 70.1% 18.4% 44.6% 36.1% 0.07 20.0 77.6% 17.9% 62.6% 58.3% 0.04 0 100% 50% 23.9% 23.9%

Logistics
(61) 10.4 24.4 16.1 53.82 199.3 95.4% 14.7% 26.9% 25.8% 14.39 49.6 61.7% 6.7% 49.1% 48.4% 0.594 0 56.1% 9.5% 40.5% 40.5%

Rovers
(28) 6.0 24.9 19.8 Timeout - - - - - 58.87 31.1 76.8% 4.8% 76.2% 75.1% 0.867 0 72.1% 8.5% 62.1% 62.1%

Satellite
(28) 6.4 16.9 10.1 93.89 177.2 100% 33.8% 36.1% 36.1% 5.18 30.6 81.8% 9.4% 72.8% 71.9% 1.09 0 78.2% 9.3% 64.4% 64.1%

Table 10.3: Experimental results for both continuous and discrete do-
mains.

We evaluated the combined approach (MIRRORING WITH LANDMARKS) both
in terms of improvement in efficiency and in terms of overall performance show-
ing that the improvement in efficiency did not come at the expense of performance
but rather improved it. We then contrasted the performance with the Baseline (On-
line MIRRORING) algorithm and the newly presented online recognition approach
utilizing only the landmarks for ranking and pruning out goals (ONLINE RECOG-
NITION WITH LANDMARKS).

Efficiency Measures We used two separate measures to evaluate the overall ef-

ficiency of the proposed approach: the number of planner calls (PC) within the
recognition process; and the overall time (Time, in sec.) spent planning. Both
these parameters measure the overhead of using the planner in the mirroring ap-
proach and while they are closely linked, they are not wholly dependent. While a

1 https://github.com/Optimised/JavaFF

Chapter 10 Mor Vered 108



Mirroring: A General Approach For Plan And Goal Recognition

reduction in overall number of calls to the planner necessarily results in a reduc-
tion in planner run-time, the total amount of time allowed for each planner run
may vary according to the difficulty of the planning problem and therefore create
considerable differences. Naturally, lower values are better.

Performance Measures We used several complementary measures for a thor-
ough evaluation of recognition performance. True positive rate (TPR) measures
the number of times an approach recognized the correct goal as a possible hypoth-
esis, i.e. didn’t prune it out due to landmarks although didn’t necessarily rank it as
the chosen hypothesis. We measure mean average percent TPR over all recogni-
tion steps. Higher TPR values are better, indicating a measure of the reliability of
the system. This value corresponds to 1-FNR (False negative rate). False positive

rate (FPR) refers to how many goals were not pruned out due to landmarks. We
measure FPR in percent out of overall goal number. Lower FPR values are better
indicating more pruning and therefore a more efficient algorithm. Ranked first

(RF) is the number of times the correct hypothesis was not only recognized as a
possible hypothesis but also ranked first. Convergence (CV) to the correct answer
indicates the time step in which the recognizer converged to the correct hypothesis
from the end of the observation sequence (or 0 if it failed). Higher values indicate
earlier convergence and are therefore better.

Discrete Domains
ONLINE RECOGNITION WITH LANDMARKS

Domain
(# problems) |G| |O| |L| Time TPR FPR RF CV

Blocks-World
(92) 20.2 20.3 21.0 0.251 39.4% 3.9% 38.1% 37.2%

Depots
(28) 8.8 27.4 33.2 0.812 49.5% 9.5% 32.1% 30.6%

Driver-Log
(28) 7.1 21.7 10.7 0.574 51.8% 8.8% 43.7% 40.1%

DWR
(28) 7.2 51.8 45.0 0.708 45.1% 7.9% 43.1% 33.5%

Miconic
(28) 6.0 35.5 25.5 0.711 82.5% 9.7% 62.6% 61.2%

Sokoban
(28) 7.1 27.7 9.8 0.772 58.1% 14.1% 36.0% 29.5%

Zeno-Travel
(28) 6.8 21.1 8.5 1.23 70.8% 6.4% 61.3% 59.7%

Table 10.4: Experimental results for discrete domains (large and non-
trivial planning problems).
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Results Table 10.3 shows the experimental results for both continuous and dis-
crete domains across all criteria. For the continuous domain, the combined MIR-
RORING WITH LANDMARKS approach achieved the best performance with an
improvement both in convergence and the amount of times the recognizer ranked
the correct goal hypothesis first. It proved just as reliable as ONLINE RECOGNI-
TION WITH LANDMARKS in terms of TFR and FPR, however not as reliable as
MIRRORING, which does not prune out goals at all, incurring no risk of overlook-
ing the correct goal.

We see that the combined approach of MIRRORING WITH LANDMARKS

achieves the overall best results in terms of convergence and ranked first in the
discrete domains. However, unlike in the continuous domain, using the ONLINE

RECOGNITION WITH LANDMARKS technique also provided good results, some-
times even better than the MIRRORING approach (Campus, Ferry domain, Logis-
tics, Satellite). In the Rovers domain problem we see an instance where MIRROR-
ING was unable to find a solution within the given time limit, however when utiliz-
ing landmarks, the MIRRORING WITH LANDMARKS approach was able to finish
and provide better results than ONLINE RECOGNITION WITH LANDMARKS. This
is due to the complex nature of the dataset and highlights the advantages of using
landmarks as a pruning mechanism.

However, there were several instances where the dataset was so complex that
both the MIRRORING and MIRRORING WITH LANDMARKS approaches failed.
Due to the repeated calls to the planner these approaches timed-out without re-
sults. These problems were considerably more complex with a larger number of
objects and instantiated actions. The results are summarized in Table 10.4, where
we see the strength of the ONLINE RECOGNITION WITH LANDMARKS approach,
which does not employ a planner and therefore evades the considerable overhead
calculations.

The improvement of run time over the baseline MIRRORING approach is pre-
sented in Figure 10.3(a). For the continuous domain, MIRRORING WITH LAND-
MARKS, incorporating landmarks, reduces the run time to 80% while ONLINE

RECOGNITION WITH LANDMARKS was by far the most efficient with a reduc-
tion to only 0.019% of the original MIRRORING runtime. For the discrete do-
main as well we see that ONLINE RECOGNITION WITH LANDMARKS more than
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Figure 10.3: Efficiency comparison.

doubles the reduction in run-time vs. the ONLINE RECOGNITION WITH LAND-
MARKS, which in itself reduces the run-time considerably to between 17%–46%.
Figure 10.3(b) shows a comparison regarding the amount of times the planner was
called within the recognition process for both continuous and discrete domains.

10.3 Summary

We presented a heuristic approach to Mirroring to improve the overall efficiency of
the algorithm. We identified key decision points which effect both overall run-time
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and the number of calls made to the planner and introduced a generic online goal
recognition algorithm along with two heuristics to improve planner performance
and efficiency in navigation goal recognition. We evaluated the approach in a
challenging navigational goals domain over hundreds of experiments and varying
levels of problem complexity. The results demonstrate the power of our proposed
heuristics and show that, while powerful by themselves, a combination of them
leads to a reduction of a substantial 63% of the calls the recognizer makes to
the planner and planner run-time in comparison with previous work. This, while
showing an increase of over 20% in recognition measures.

We then developed a novel heuristic pruning technique by reasoning over a
generalized notion of landmarks.We have shown how to dynamically generate
continuous and discrete landmarks and empirically evaluated the efficiency and
performance of our approach over hundreds of experiments in both continuous
and discrete domains; comparing our results to the Baseline Mirroring approach
and a newly defined continuous landmark approach. We have shown that not
only is our approach more efficient than the existing online recognizer but also
outperforms both other approaches.
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11 Future Directions and Final Re-
marks

”What would you do if you weren’t afraid?”

Sheryl Sandberg

We summarize the key contribution of this thesis in Section 11.1. We discuss
future directions for this research in Section 11.2.

11.1 Summary of Key Contribution

When I first set out on my academic adventure I knew I wanted to model agents
that will have a positive impact on everyday human life. To achieve this goal I
needed the agents to, in a sense, understand the humans they are operating along
with. This led me to many questions about human behavior modeling. It occurred
to me that in order to achieve my goal of creating efficient, intelligent agents,
that would be able to incorporate seamlessly into human lives I will also have to
understand people and consequently human social behavior models.

This dissertation compiles the first piece of the puzzle I attempted to uncover,
the innate human ability of intention recognition. Intention recognition being a
very important part of any social interaction it is naturally something that humans
excel at. This led me to learn about the mirror neuron system. Recent neuro-
imaging data indicates that the mirror neuron system within the human brain is
in charge of matching the observations and the execution of actions. This system
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is hypothesized to give humans the ability to infer the intentions leading to an
observed action using their own internal mechanism. The human mirror neuron
system may be viewed as a part of the brains’ very own plan/goal recognition
module and can be used to recognize the actions and goals of other agents from a
series of observations of the other agents’ actions.

The result of this work are efficient, cognitive inspired Mirroring algorithms
that work online and offline in continuous and discrete domains. Mirroring uti-
lizes a planner to generate recognition hypotheses that are continually matched
against incremental observations and works in continuous as well as discrete do-
mains. In Chapter 3 we introduced Mirroring as a general formulation of plan
recognition in continuous domains which can also generalize to discrete domains.
By using motion planners in the recognition process, we avoid early commitment
to a granularity (discretization) level, and thus can choose the best discretization
for the recognition problem at hand. The use of Mirroring also allows the use of
OTS, unmodified planners and enables us to re-use existing resources to the best
advantage. Mirroring gives rise to a recognition procedure that uses two calls to a
planner for each goal while accounting for missing observations.

We were then able to contrast Mirroring with human recognition in Chap-
ter 6. To evaluate this aspect we investigated Mirroring within the context of
shape recognition, where by a planner was re-used by the recognition process,
allowing drawn-shape recognition by drawn-shape planning. We instantiated the
shape recognition approach in the recognition of regular polygons, and evaluated
the performance of different ranking and non-ranking variants of the recognizer
against human subjects’ recognition of scanned hand-drawn regular polygons. In
general, Mirroring performed on par, or just below, human levels of recognition
exposing a couple of interesting insights into the human recognition process. We
learned that humans make negative recognition mistakes, both in disqualifying
hypotheses too early and in holding on to them even once it is proven they are in-
correct. However, it might be that the tendencies leading to these mistakes might
also account for the better performance of humans. With each new insight the
importance of each particular in the human brain became more tangible as well as
how much we don’t yet know.

After delving into exactly what Mirroring is we attempted to tackle the prob-
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lem of how best to go about performing it (Chapter 8). We had to deal with
several difficulties arising from the continual re-use of a planner within the recog-
nition process. We therefore identified two key decision points which directly
effect overall run-time and the number of calls made to the planner. We then
introduced a generic online recognition algorithm along with two heuristics to
improve planner performance and efficiency in navigation goal recognition. We
proceeded to further improve Mirroring efficiency by utilizing a combination of
Mirroring along with previous work; information gained from disjunctive land-
marks calculated once in advance.

We evaluated our approach in several challenging domains (Chapter 5 Section
5.1).

• A highly complex, continuous, 3D, navigational goals domain which in-
cluded hundreds of experiments and varying levels of problem complexity.

• The entire set of discrete benchmark plan-recognition problems used in [81]
including 450 problems in six classical planning domains.

• An especially built shape planner to recognize geometric shapes as they
were being drawn.

• A cooperative robotic team task implemented using ROS [79] in which we
utilized our recognition algorithm to recognize the goals of navigation in
3D worlds using the ROS MoveBase default planner.

We measured the success of our approach both in terms of efficiency and in
terms of performance. The results demonstrate the power of our approach, show-
ing that it is capable of efficiently recognizing goals using several different, OTS,
standard motion planners. Additionally, while evaluating our proposed heuristics,
we have shown that while powerful by themselves, a combination of them leads
to a reduction of a substantial 63% of the calls the recognizer makes to the plan-
ner and planner run-time in comparison with the proposed baseline approach and
80% compared to the naive online approach. In terms of convergence and overall
first ranking, we saw an increase of over 20% in comparison with the baseline
approach.
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11.2 Future Directions

In future we hope to study the differences between human and machine recogni-
tion, especially in the ability to disqualify hypotheses earlier on. Understanding
the biases that humans exhibit may prove useful for improving the recognition
process as well as for facilitating any human agent cooperation. We are also inter-
ested in finding methods for automatically calibrating the thresholds in the ranking
procedure to better handle inaccuracy and noise in perception. Another interest-
ing area we hope to investigate is to incorporate learning into our mechanism.
Learning in itself is highly connected to imitation and therefore a combination of
Mirroring along with the benefits of learning should be very interesting to explore.

As our technique continually calls a planner within the recognition process, it
might have limitations in recognizing very complex problems, specifically, those
for which current planning algorithms are not efficient. A limitation of some
of the efficiency improvements we have presented is the use of relatively simple
landmarks for spatial domains, as well as the assumption that landmarks do not
change over the course of the recognition, which would not be realistic for dynam-
ically changing environments. Thus, two additional important refinements should
be made in the future; First, to refine the notion of spatial landmarks for more
informative heuristics, such as the ones developed by Scala et al. [89]. Second,
to use techniques to compute landmarks incrementally so as to allow their online
recomputation in dynamic domains.
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and J. Peters. Probabilistic movement modeling for intention inference in
human–robot interaction. The International Journal of Robotics Research,
32(7):841–858, 2013.

[111] J. S. Weber and M. E. Pollack. Evaluating user preferences for adaptive re-
minding. Extended Abstracts on Human Factors in Computing Systems (ACM),
2949–2954, 2008.

[112] J. Wu, A. Osuntogun, T. Choudhury, M. Philipose and J. M. Rehg. A
scalable approach to activity recognition based on object use. IEEE 11th Inter-

national Conference on Computer Vision (ICCV-07), 1–8, 2007.

[113] Q. Zhu. Hidden markov model for dynamic obstacle avoidance of mobile
robot navigation. Robotics and Automation, IEEE Transactions on, 7(3):390–
397, 1991.

Mor Vered 128



 
 לבסוף אנו מפתחים גישה חדשה לזיהוי תכניות בסביבות רציפות ודיסקרטיות על ידי שילוב של שיטת

 השיקוף ושיטה קיימת המנצלת אבני דרך בסביבה. ניסויים מקיפים מראים ששיטה חדשה זו הינה יותר
  מדויקת ויעילה משיטות קיימות.

  



 תקציר
 

 זיהוי תכניות הינה משימה של הסקת תכניתו של סוכן בהתבסס על רצף חלקי של תצפיות של הפעולות
 שאותן ביצע הסוכן. הגרסה הלא-מכוונת של הבעיה הינה הגרסה שבה הרצף כולו מתקבל כקלט. לעומת

  זאת בגרסה המכוונת של הבעיה התצפיות מסופקות אחת אחרי השנייה לפי הסדר.
 

 גישה חדשה ומעוררת השראה - זיהו תכניות על ידי תיכנון - משתמשת ביכולת לתכנן תכניות על מנת
 לייצר בצורה דינאמית תכניות שונות אשר ישמשו לזיהוי התצפיות. בכך בעצם מוחקים את הצורך

 בשימוש בספריית תכניות קיימת. בסביבות רציפות ועבור זיהוי תכניות מקוונות. שיטה זו נתקלת במספר
  קשיים.

 
 הקושי הראשון הינו שגרסאות קודמות של פורמליזציה לבעיית זיהוי זו התחייבו מבעוד מועד לרמת

 דיסקרטיציה מסוימת של הסביבה ושל תצפיות הסוכן. התחייבות זו עלולה להוביל לירידה בדיוק הזיהוי.
 על מנת להתמודד עם בעיה זו אנו קודם כל מספקים פירמול חדש ומקיף לבעיית זיהוי התכניות. פירמול

 זה לוקח בחשבון סביבות רציפות וגם סביבות דיסקרטיות. לאחר מכן אנו מציגים את שיטת ה שיקוף,
 שיטה חדשה, העובדת בסביבות מכוונות עבור בעיית זיהוי התכניות. ההשראה עבור גישה זו נבעה
 ממחקרים אודות קיום נוירוני מראה הנמצאים בתוך המוח האנושי. שיטת השיקוף נמנעת מההנחה

 המקובלת אודות קיום ספרייה מקיפה של תכניות המייצגות את כל הדרכים להשיג כל מטרה. גישות
 המסתמכות על הנחה זו מוגבלות רק לידע המיוצג בספרייה ולכן אינן יעילות. אנו מראים שדרך שיטת ה
  שיקוף - צורה כללית יותר של זיהוי תכניות על ידי תיכנון - אנו נוכל לתכנן תכניות גם בעולמות רציפים.

 
 אנו מספקים הוכחות פורמליות עבור יעילות גישת השיקוף ובוחנים את הגישה בצורה אמפירית על ידי
 יותר מ 1000 בעיות זיהוי תכניות שונות בשלושה עולמות רציפים ושישה עולמות דיסקרטיים קלאסים.

 בנוסף אנו משווים את תוצאות הגישה לתוצאות שהושגו על אותן בעיות זיהוי על ידי אנשים וכך מספקים
 תובנות לגבי תהליך זיהוי התכניות המתבצע במוח האנושי. לבסוף אנחנו משווים את שיטת השיקוף

  לשיטות קיימות העובדות עם ספריות של תכניות.
 

 הקושי השני איתו עלינו להתמודד הוא שבצורתו הנוכחית, זיהוי תכניות על ידי תיכנון אינו עובד ביעילות
 עבור בעיות מכוונות ולכן אינו יכול להשתמש במתכנני התכניות הקיימים בעולמות הרציפים. על מנת

 להתמודד עם קושי זה אנו מזהים שתי נקודות מפתח בתהליך השיקוף. באמצעות הכנסת יוריסטיקות
 מתאימות בנקודות אלו נוכל לשפר את זמן הריצה עבור הגרסאות המכוונות של הבעיה. אנו מביאים

 דוגמאות ספציפיות ליורסיטיקות העובדות בעולמות רציפים, מוכיחים את יעילותן ועורכים מאות ניסויים
 הבודקים גם את יעילות הגישה וגם את אחוזי ההצלחה. הניסויים מתבצעים בסביבת תלת מימדית של

 בעיית ניווט ובנוסף בסימולציית רובוטים הדורשים לבצע שיתוף פעולה. על מנת לבדוק את עמידות
 השיטה אנו עורכים ניסויים נוספים ברמות שונות של קושי כאשר המטרות הסופיות מפוזרות בצורה

 אחידה או מקובצות ביחד במרחב.
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