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Abstract

Naturally occurring collective motion is an omnipresent, fascinating phenomenon that has
been long studied within different scientific fields. Swarming individuals are believed to
aggregate, coordinate and move utilizing only local social cues projected by conspecifics
in their vicinity. Major theoretical studies of this phenomenon assume perfect information
availability, where agents rely on complete and exact knowledge of inter-agent distances
and velocities. However, the sensory modalities that are responsible for the acquisition of
the environmental information in nature are often ignored. Vision plays a central role in
animal perception, and in many cases of collective motion it is assumed to be the sole
source of social information.

We investigate a vision-based collective motion model, i.e., a model relying on visually
available parameters only, inspired by the case study of locust marching bands. We address
two major challenges: the estimation of distance and velocity, and visual occlusions. We
consider and compare three strategies an agent can use to interpret partially occluded
visual information. In silico experiments were conducted in two different frameworks: the
first simulating physical entities in a square arena, and the second simulating simplified
two-dimensional agents moving under various geometrical conditions. The results show
the feasibility of our model and its three occlusion handling approaches for overcoming
occlusion. While all the models display convergence to an ordered state, they differ
in the respective computational requirements they demand from an agent: the least
computationally demanding approach, in which no object detection is taking place,
shows slower convergence to order. This is mostly apparent in geometrically constrained
environments, which may hint as to the requirements from biological swarming species in
natural settings.



1 Introduction and Background

The phenomenon of collective motion in natural systems has fascinated humanity for
years. The display of hundreds or in some cases thousands of collectively moving animals
is a captivating event and have intrigued scientists from a diversity of disciplines including
animal behavior, physics, biophysics, social sciences and computer science, all trying
to better understand the fascinating emergence of flocking, swarming and schooling in
groups of autonomous agents interacting between them strictly locally in a decentralized
manner [55, 56, 53, 62, 79, 76, 69, 49, 34, 78, 54, 80].

A prime example of flocking behavior in nature is the emergence of marching locust
hopper bands. Some species of locust show behavioral transformation, shifting from
a solitary phase to gregarious [77]. Locusts in their solitary state actively avoid other
locusts. In contrast, in their gregarious phase, locusts display general more active behavior
and have a predisposition to march in immense bands (while in their nymph stage), later
turning into huge flying swarms in their adulthood, consisting of thousands of individuals
[63, 71, 28].

Various attempts have been made in order to capture the mechanisms behind the
collective behavior displayed by different species, many of them in the area of theoretical
agent-based modelling. The leading paradigm is that collective motion results from
repeated local (myopic) interactions between individual swarm members (see, e.g., [80]).
Upon perceiving its local physical and social environments, each individual acts using
a motion-control procedure [35]. This approach is often modeled by ‘self-propelled
particles’ (SPP), where simulated agents navigate while being subjected to mutual
steering forces, caused by interactions with their neighbors [4]. These interactions feed
into each agent’s decision-making scheme, changing its motion [79, 42, 27]. Under the
appropriate conditions, this allows the generation of collectively ordered motion, where
units move in approximately a single spatial direction, similar to flocking1 animals
[3, 13, 5]. Seminal models of collective motion are presented in Section 1.1. However,
these models do not address the problem of information acquisition by an individual,
which in nature is mainly relied on the visual sensory modality.

Recently, several studies have attempted to elucidate the problem of sensory perception
in collective behavior modeling [19, 8, 60]. Some of these investigate the role of the visual
field in self-organizing systems and vision-based navigation, both in natural [64, 74, 19, 58]

1We use flocking and collective motion interchangeably. Flocking describes the emergence of a common
movement direction for all the agents out of uncorrelated initial movements. Once the coherent motion is
achieved on a group level, it should persist in time. Common heading direction with a narrow spread
thus emerges and defines this asymptotic flocking state.
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and simulated environments, either in silico [43, 44, 45, 19, 73, 8, 60] or implemented
via robots [50, 11]. In Section 1.2 we will elaborate on the challenges that vision-based
perception carries and the ways the models mention above face them.

The main goal of this thesis is to investigate the influence of limitations of visual
perception upon the process of flocking and the resultant asymptotic collective motion.
We introduce the specific aspects we study, question and the inspiration for the solution
in Section 1.3.

1.1 Existing Models Ignoring Vision

An early and influential model of collective motion was the Boids model, published
by Reynolds in 1987 [62]. The model’s prime objective was to simulate the visual
appearance of flocking bird-like objects, termed boids. The model comprises three types
of interaction rules that are run by each agent, in parallel, at every time step: firstly,
separation (repulsion) from nearby neighbors. Secondly, alignment of the boids’ heading,
implemented by steering towards the average heading of the neighbors. Finally, cohesion
(attraction) is carried out by steering towards the average position of the local flock
members (center of mass) as illustrated in Fig.1. Neighbors are classified based on a
dedicated radius for each type of interaction, i.e., if the distance from the center of one
boid to another is equal or smaller than some radius r, then they are considered to be
neighbors. Changing the model’s parameters like the radius or the steering influence,
results in different swarming behaviors. The Boids model assumes that the agents are
lacking the notion of volume, and thus can pass through each other.

Figure 1: Boids model’s three interaction rules dictating the behavior of each agent: (a)
Separation – steer away neighboring boids to avoid crowding. (b) Alignment – steer
towards the average heading direction of local flock-mates to create flocking. (c) Cohesion
– Steer towards the average position of the neighbors. From www.red3d.com/cwr/boids/
by Reynolds.
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Vicsek et al. [79] introduced a simplistic model for collective motion in 1995. Based
on ideas from statistical physics, it modelled the behavior of SPP’s in the presence of
perturbations. This work later inspired a wide range of follow-up works and models
extending the original [17, 31, 7, 1]. The model interprets quantitatively the behaviors of
huge flocks in the presence of perturbations.

The perturbations represent various factors, both stochastic and deterministic, in-
volved in the emergence of collective motion of swarms. In practice, these perturbations
were incorporated by adding a random angle to the average direction of neighboring
agents. The agents move with a fixed absolute velocity and change their direction of
motion, at every time step, to be the average direction of others within a fixed predefined
distance. Due to its relative simplicity, using this model one can simulate large numbers
of agents in each simulation, reconstructing the natural phenomenon where sometimes
thousands of flock-mates are involved.

Figure 2: Vicsek Model schematic. Snapshot from https://tinyurl.com/yc4wrruy

1.2 Limitations Introduced by Visual Perception

Collective motion is dependent on the swarm members’ individual capacity for acquiring
complete, reliable, and real-time information of its social environment. All the models
described above were based on the assumption that each individual gets its world
information from global knowledge borrowing from special relativity, the lab frame of the
experiment. For example, in the Vicsek model, every agent is given the exact velocities
of his neighbors when carrying out the average at each time step. Furthermore, in
the Boids model not only the velocities but even the exact coordinates of neighboring
agents are necessary in the implementation of ‘cohesion’ and ‘separation’. This is an
idealization of natural capabilities for species relying on visual perception as the dominant
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Figure 3: Occlusions within a vision radius. Focal agent (0) has vision radius R and 5
neighbors: 1 partially occludes 2. 4 is fully occluded by 3. 5 is not occluding or is being
occluded by any other neighbor. The αi angles correspond to the angles each neighbor
subtends on the focal agent.

sensory modality, since it ignores two major challenges imposed by vision: First, partial
occlusions of swarm members by others necessarily challenge the models that assume
perfect knowledge of the social environment. Second, many species that lack stereoscopic
vision, such as locusts, cannot reliably estimate distances.

1.2.1 Occlusions

When flocking of animals in Nature is observed, typically some of the neighboring subjects
are occluding each other, (see Fig. 3). When the numbers of agents are higher, the
occlusions become more frequent. Occlusions bear significant effect upon the accuracy
of the perception of the environment, and we analyze their entailed influences on the
swarming process.

Work by Da Silva et al. [70] titled ‘Boids that See’ exploited self-occlusion, meaning
the assumption that an agent rear sight is occluded by itself, for purposes of computational
performance improvement thus allowing the simulation of very large swarms. This work
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was a step towards point-of-view analysis of an agent’s perception. However, only self-
occlusion was considered in the paper, while occlusions between neighbors are disregarded.
Soria et al. [73] explored the effect of a limited visual field on the performance of the
Reynolds flocking algorithm [62]. Rosenthal et al. [64] investigated the importance
of the visual field (e.g., “angular area”) in collective evasion maneuvers manifested in
schooling fish. Nonetheless, they also employed globally-acquired information, including
exact metric and topological distances between the swarming fish. Another extension of
the Reynolds model [62] is presented by Kunz et al. [43]. Although their model deals
with obstruction of further distanced neighbors, it does not account for possible partial
obstruction, i.e., simplifying the perception to only seeing the closest neighbors of each
agent. Moreover, neighbors’ exact distances and headings are employed to calculate the
motion of each agent.

1.2.2 Visual Assessment of Neighbors’ Velocities and Distances

Estimation of distance based on visual perception is possible, but makes certain re-
quirements of the sensory abilities of the observing entity. Some animals can use their
binocular, stereoscopic vision capabilities for calculating distance [52]. others, lacking
the anatomical-physiological required mechanisms, can try making up for this limitation
by moving while obtaining the brief visual inputs, thus creating an impression of depth
(in computer science, this is called generating structure from motion).

A key mechanism that is common in animal motion and navigation is the optical flow,
which is in mathematical terms the vectorial difference between two frames an individual
“sees” [33]. However, as described in [68], optical flow cannot be directly used to estimate
distance. As seen in Fig. 4, when the visual field is covered by a single sensor there
exists a multifold ambiguity in assessing the velocity-vector of a neighboring object, since
infinitely many velocity-vectors are projected on the same perceived vector. Another
related mechanism is sensitivity to looming objects in the vicinity [37, 32].

Several recent works tackled the issue of visual based navigation and synchronization.
The work of Collignon et al. [19], though not dealing with flocking, studies zebrafish-
inspired agents that move in a 2D environment. To solve the problem of range estimation,
they introduce higher dimensional solid angles representing the original 3D characteristics
of the simulated fish.

The vision-based model of collective motion presented by Bastien et al. [8] and
extended to obstacle avoidance by Qi et al. [60] offers a different approach for perception
modeling. They introduce specifically designed complex integro-differential operators
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that, depending on the visual input, govern an agent’s motion, which in turn creates
various collective behaviors. To avoid the problem of ranging, this work and others
restricted themselves to a special case of disk-shaped agents [50, 11]. However, the natural
morphologies of locusts and fish are elongated, and very different from circular disks.

Wang et al. [82] demonstrated implicit cooperation between robotic swarm members
using visual inputs. Utilizing an elaborate scheme of positioning poles and sets of LED
lights, positioned in known distances over the poles, the robots are able to estimate
the relative positioning, velocity, state and other features of their neighbors. Using the
acquired information, the robots exhibit, various swarming behaviors, including flocking
(collective motion), formations and foraging.

Figure 4: Ambiguity in velocity estimation when relying only on visual inputs.

1.3 Vision-Based Collective Motion: Our Approach

In contrast to most previous works, this thesis presents a reductionist approach, which
on the one hand stays true to the elongated morphology of natural animals, but on
the other reduces the visual inputs to the bare minimum perceivable in two dimensions
(i.e., no vertical angles, no visual markers at different heights). We draw our inspiration
from the marching locust nymphs, a quintessential example of collective motion ([4], and
references within). In natural conditions, swarms constitute vast numbers of individuals,
demonstrating coordinated and synchronized mass-motion [6, 22, 83]. This model also
lends from controlled laboratory experiments that were successful in providing valuable
insights into the mechanism of collective motion, and specifically, the interactions between

6



the individual and the group (e.g., Ariel et al. [5], Bazazi et al. [9], Knebel et al.
[40]). Based on these and other reports, it is largely accepted that vision is a key
sensory modality underlying the local interactions among a group of locusts. The above-
mentioned challenges are exceptionally relevant in the locust model. Previous work has
established that the Pause-and-Go motion scheme is central to the repeated decision-
making underlying the behavior of locusts in a swarm [4, 5, 41], i.e., a representation of the
local environment, utilized for deciding if and at what direction to move, is constructed
by the locusts when standing. This makes both, distance and velocity assessment and
occlusions, major hindrances.

From a signal processing perspective, vision is a complex, multifaceted process. With-
out dedicated processing, it can result in information loss during acquisition and significant
computational errors introduced in the perception process. We should, therefore, limit
and simplify complex properties by adopting a reductionist approach.

This thesis addresses the challenge of occlusions, whether partial or complete, detailed
in Section 2. We investigate different general methods for handling occlusions and
their consequences. Later, elaborated in Section 3, we propose a model of vision-based
collective motion inspired by the flocking behavior of migrating locusts. We use the
geometrical characteristics of visual perception to present a control algorithm solely based
on the information accessible via the agent’s visual field. Section 4 concludes the thesis.
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2 Addressing Occlusions: Three General Approaches

Occlusions are an inherent part of the visual modality in natural systems. Animals often
swarm in dense flocks [10], and thus conspecifics located closer to the observing animal
are inevitably blocking, partially or entirely, the animals standing behind them.

Figure 5: The visual social environment from the point of view of the individual locust
in a swarm; a composite image following Bleichman et al. 2022 [12]. Original image by
Inga Petelski.

Complete and partial occlusion of neighbors not only reduces the information available
to the focal agent but can also introduce large estimation errors. Neighbors that are
completely occluded are not taken into account in the collective motion model.

2.1 Models of Occlusions

In accounting for visual occlusions, we posit there are three general strategies that may
be taken (illustrated in Fig. 6). Suppose the focal agent may be able to recognize peers
and thus differentiate between entirely-visible individuals and parts (that is, not complete
individuals). This allows it to ignore partially-visible neighbors (Fig. 6-a). It may also
be able to cognitively extrapolate parts to a whole, inferring the position and orientation
of the partially-occluded peer from its visible parts (Fig. 6-b). Or, as an alternative,
it may perceive any visible part of a neighbor as a distinct whole individual. These
strategies place very different requirements on the cognitive-computational processes of
visual perception in the focal agent, as discussed in detail below.
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(a) OMID (b) COMPLID (c) PARTID

Figure 6: Occlusion methods. (a) OMID – partially occluded neighbor (orange) is omitted
from the field of view. (b) COMPLID – Orange neighbor is completed from the seen
segment. (c) PARTID – partially seen segment is regarded as a neighbor.

2.1.1 Approach 1: Omission of the Occluded (OMID)

The first approach disregards any visual information originating in partially occluded
agents (see Fig. 6a). This requires the animal to possess a dedicated peer recognition
mechanism, i.e., be able to recognize fully-imaged conspecifics (and ignore anything else).
Mechanisms of selective attention in visual perception are known to exist in humans and
are achieved in the human brain in multiple stages of perception [47, 16]. Neurobiological
studies showed the existence of selective attention, as well as target detecting abilities
amid cluttered backgrounds, also in insects’ visual neurons [26, 81]. Such visual processing
mechanisms may, in principle, be utilized during collective motion.

It is not known whether locust visual perception mechanisms are able to recognize
peers. Experiments reported in [12] show that an individual locust responds by walking
when exposed to visual images composed of randomly-moving dots projected via computer
screens to both eyes. As the dots are positioned randomly and do not mimic the shape
nor the colors of locust nymphs, these results seem to indicate that the motion is triggered
in the individual sans a dedicated peer recognition mechanism.

2.1.2 Approach 2: Completion of the Occluded (COMPLID)

In the second approach, partially occluded agents are "completed" as if they are fully
visible to the observer. In other words, a neighbor that has even the smallest visible
segment from the focal agent’s perspective would be treated as if no occlusion is present
when processing its visually extractable information. COMPLID utilizes peer recognition
as in OMID. In addition, it requires that the agents will be able to assess the obscured
part of their neighbors (if needed) based on the visible part of a neighbor. This completion
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assumes an agent’s visual extrapolation that reconstructs neighbors’ outlines using their
visible features.

Completing partially visible targets obscured by other objects is a long-studied process
in visual perception. The filling-in of details and image regions partially obscured by
interceding objects [38, 72] is an established neurophysiological process that gives the
organism an ability to identify a complete form based upon observed parts of the contour
and is described by the term “visual completion” [14]. This mechanism produces an
internal representation called “illusory contour”, which extrapolates the physical stimulus
to the full geometrical shape of the object [51, 46, 48]. Visual completion of occluded
objects has been shown in varied and phylogenetically distant species: birds, fishes,
cephalopods, bees, etc., and is accepted as one of the fundamental components of vision
in nature [51, 21, 36]. Hence, the second approach is to extrapolate partially occluded
neighbors to complete the full image.

2.1.3 Approach 3: Every Part is a Full Agent (PARTID)

The third approach treats all visual stimuli related to a neighbor as if they represent a
full-body conspecific. Contrary to OMID and COMPLID, in this approach, agents lack
peer recognition abilities. Instead, the visual field is divided into segments, where each
segment contains the same optical flow vectors. The agent assumes that each segment
represents a different neighbor. In other words, any visual information is considered
complete at face value without any additional interpretation. Hence, apart from the
ability to accurately extract optical flow vectors, no further advanced visual perception
mechanisms are required. Since the optical flow is essentially the vectorial difference
between two consecutive frames and does not consist of any form of object recognition by
itself, PARTID would be the least computationally demanding approach if implemented
in real life.

PARTID takes inspiration from biological mechanisms, in which an organism performs
an action based on visual stimuli originating from an object that is not recognized. For
example, locusts have a pair of visually-sensitive neurons that encode looming stimuli and
cause the locust to produce escape behaviors [30]. The visual stimuli directly affect the
behavior of the individual without passing through object recognition mechanisms [12].

2.1.4 Requirements for Implementation in Robots

Implementing this approach in robotic swarms, one needs to relate to the machine vision
requirements posed by this approach and the computational complexity that follows.
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Since agents sift out incomplete agents present in the field of vision, they have to be
capable of object detection abilities. There are several main methods to achieve that:
one is frame differencing, in which the presence of moving objects in a frame is found
by calculating the difference between two successive frames. Frame differencing method
has strong adaptability for a range of dynamic environments, but it also shows errors in
obtaining a complete outline of moving objects, as a result, the accuracy level of detection
of moving objects is very low [61].

The second method is Optical Flow, mentioned already beforehand, which can be
used directly for object detection. It involves calculating the image’s optical flow field
and doing clustering processing according to the optical flow distribution characteristics
of the image. This method can get the complete movement information of an object, and
it is useful for detecting the moving object from the background with 85% accuracy [18],
but this method has a few disadvantages, including a large quantity of calculations and
sensitivity to noise, which make it not appropriate for real-time object detection and
tracking especially on simple robots often used in swarm robot research.

Another method worth mentioning is Point detectors, in which interest points in an
image are picked and tracked based on whether they have an expressive texture in their
respective localities [65]. A useful interest point is one which is invariant to changes in
illumination and camera viewpoint.

The above methods do not rely on object features, meaning that they can potentially
be utilized in order to implement the PARTID method that does not seek a full outline
detection or completion but merely detects clusters of pixels and differentiates them from
the environment. On the other hand, OMID and COMPLID require either full outline
detection or visual completion, both of which are implemented via features detected on
the object. A common approach that unifies various detection methods is Edge-based
features, where the edge map of an object is extracted and later analyzed in order to
identify the features of the object in terms of edges [59]. Using edges as features is
advantageous over other features due to various reasons. Edges are extremely invariant
to changes in illumination conditions and variations in object’s colors and textures. The
object boundaries are represented well, and the data is analyzed efficiently in the large
spatial extent of the images [75].

2.2 Experimental Setup

The performance of the three occlusion approaches was tested and compared in a
simulation. Vicsek model was used as the decision-making algorithm on top of which
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the occlusion approaches are applied. At each time step, each focal agent calculates
its desired velocity based on the average velocity of all its neighbors located within a
radius. Additionally, Vicsek Model is simulated in its original form (without the effect of
occlusions), as a baseline for comparing the influence of the approaches.

2.2.1 Simulation Environment

The experiments were conducted using ARGoS, a physics-based simulator dedicated
to simulating robotic swarms [57]. It can simulate large-scale swarms of robots, while
enabling the user to define the robots’ parameters and features. Agents were defined
as three-dimensional nonholonomic entities of rectangular shape. The kinematics of
simulation are as follows: agents can change their speed and direction according to
their new desired velocity. The change is not instantaneous, i.e., the agent changes its
orientation with angular speed proportional to the angular difference between the current
heading and the desired velocity direction. Fig. 7 shows a screenshot of the simulation.

Figure 7: Snapshot of the ARGoS simulator. Pictured is a swarm of 30 agents during
a simulation run. The circle represent the vision radius of an arbitrarily chosen focal
agent. Its seen neighbors are denoted by the orange lines pointing to the visible edge with
respect to each agent. The purple lines denote the extreme visible edge of an obstacle, a
wall in this case.

Additionally, the agents simulate a basic collision avoidance algorithm with respect
to obstacles and other agents. Essentially, whenever an agent is moving towards an
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obstacle or neighbor, it activates a collision avoidance protocol that either lowers its
speed or changes heading to a direction perpendicular to the imminent collision threat.
For example, an agent moving towards a wall would steer away from the wall, reflecting
its original heading direction relative to the plane of the wall.

Experiments are conducted in a square-shaped arena with immobile walls serving as
the boundaries of the arena. Each experiment is initialized by uniformly distributing
agents with random locations and headings. The exact initial state is determined by a
seed number used in the random function.

2.2.2 Measured Order Parameter

The ideal flocking is a situation in which all agents are synchronously moving in the same
direction. To compare the approaches, we use the polarization measure of order, denoted
ϕ [79, 23]. It is defined by

ϕ = 1
N

∣∣∣∣∣
N∑
i

vi

|vi|

∣∣∣∣∣ , (1)

where N is the population size, and vi, |vi| correspond to the ith agent’s velocity and
speed. By taking the absolute value of the average heading, we get a scalar value
representing at any given time the degree of global order in the system. This parameter
measures the degree of global alignment by averaging the normalized velocities of the
agents (i.e., headings). From now onward, it will be defined as the order parameter. At
maximal chaotic state, ϕ has the value 0, while for a fully flocked system, with all agents
moving with an identical heading, it approaches the value of 1.

2.3 First Set of Experiments

We investigate the influence of the occlusion handling approaches on the flocking of a
swarm, flocking using the Vicsek Model original model (termed Principal in the figures).
A series of 50 independent experiments were performed with 50 different random seeds.
In each, a swarm of varying population size was run for 3000 simulation steps. The
results are shown in Fig. 8.

The panes are ordered by the population size of the swarm (increasing left to right)
and by the vision radius in each series of experiments, with the first row representing the
smaller radius and the second row the larger one. In each pane, the Y axis is the order
parameter representing the level of alignment, and the X axis is the time measured in
simulation frames.
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(a) (b) (c)

(d) (e) (f)

Figure 8: Time evolution of the order parameter for all occlusion approach with the Vicsek
baseline for swarms of different population size. (a),(b),(c) correspond to populations
of 10, 20, 30 agents, respectively, for vision radius of 3 [BL]. (d),(e),(f) correspond to a
vision radius of 8 [BL].

Figure 9: Time evolution of the order parameter in a setup of a 4 time larger arena. All
other parameters equal those of Fig. 8f.
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2.3.1 Results and Analysis

Examining the results presented in Fig. 8, several observations can be made:

1. All methods in all setups except (f) showed roughly similar convergence behavior.
There is a rather simple explanation for the uniformity of convergence across the
varying occlusion approaches: the original non-visual Vicsek model delivers perfect
velocity information for all approaches. Their differences only appear at higher
radii, at which the number of occlusions becomes considerable.

2. There is a moderate yet consistent decrease of asymptotic order with the growth of
population size: from (a) to (c) and from (d) to (f). Higher population sizes result
in "traffic jams", when groups of agents block the motion of each other, therefore
producing systematic disturbance to the flocking process.

3. The best convergence is displayed by all approaches in Fig. (d) of high vision radius
and low density. This is the only setup that attained high coherence with an order
parameter around 0.95. Here there are no traffic jams to low density and numerous
mutual influences due to the high vision radius, which captures a higher number of
neighbors.

4. OMID in pane (f) performs best for dense and noisy environments. Since OMID
ignores all partially occluded neighbors, it effectively filters out the information
from further distanced neighbors. This improves the signal-to-noise ratio.

5. In all cases but one, the order parameter is poor and stays in the range of 0.4-0.7 at
all times of the experiment. The arena square geometry results in multiple strong
disruptions in the movement and the flocking of the collective: every collision with
a wall disrupts the flock, while the corners produce a focusing and aggregating
effect, causing agents to get stuck in the corners for long periods of time.

6. A pronounced peak of high order appears at early stages (before 500 frames).
The first apparent peak can be attributed to the first encounter of the agents
with one of the arena walls. The agents are distributed uniformly in the arena.
Empirical observations of the experiments for different random seeds show a common
behavioral theme. The agents are able to swarm quite fast into a coherent swarm
before hitting a wall. This is more pronounced for large radii since information is
exchanged more efficiently across all the agents, and the rate of alignment is higher.
Then, when the initial swarm encounters a wall, the agents change direction in a
non-synchronized manner, causing the order parameter to drop.
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7. In pane (f), COMPLID and PARTID achieve slightly weaker flocking, as shown
by their slightly lower order parameters is slightly in comparison to the Principal
approach. At large R with high density, only fully occluded agents are filtered-out
by the COMPLID and PARTID approaches, in contrast to OMID, which filters out
every partial occlusion. Therefore, they neither enjoy the advantage of complete
information (of the Principal model) nor the advantage of strong filtering of OMID.
As a result, in these methods, convergence is slightly hindered with respect to the
principal Vicsek model. Since OMID, which also ignores the fully occluded (in
addition to the partially occluded), performs better in the same conditions, we
infer that the relationship between the amount of seen neighbors and the order
parameter is not linear. As a side note, the difference between COMPLID and
PARTID could be attributed to the number of times a neighbor is occluded in its
center by a closer neighbor, which in turn causes the focal agent to treat the "split"
neighbor as two neighbors with identical velocities.
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2.4 Minimizing the Influence of the Boundaries

In order to test whether the differences in the occlusion approaches displayed in pane
(f) were indeed the result of the perturbations caused by the walls of the arena, another
experiment was performed. In an aim to minimize the influence of the walls, we decided
to examine the flock in an arena four times the size. The result is shown in Fig. 9.

As expected, the asymptotic order of the flock rises for all the approaches. Moreover,
the flocking peak rises to 1, which represents the ideally flocked state.

Close inspection of pane (f) in Fig. 8 (regular arena, high density, high vision radius)
and the large arena in Fig. 9 reveals that OMID approach, which ignores all partially
occluded neighbors leads to higher collective order than other occlusion approaches.
Moreover, OMID in these dense populations outperforms even the “x-ray vision” of the
Principal approach (classic Vicsek), which includes all the neighbors within the radius.
Even in medium density in pane (e) this approach outperforms others, though not as
convincingly as in pane (f).

On the other hand, in the case of a smaller vision radius shown in panes (a) – (c),
the performance of OMID is not distinguishably better. The same can be said for the
smallest density experiments in pane (a) and (d). Either at a small R or a large R, we
do not observe OMID outperforming other methods.

A possible interpretation of these effects is connected to the fact that, basically, partial
occlusions rarely occur in a very small immediate vicinity of the focal agent – there, all
the neighbors are directly and fully visible. In a sense, OMID acts as an effective distance
filter, preventing the inclusion of further agents in the computation.

As seen in the simulations, the corners of the square arena, as well as the reflections
from the walls, introduce a large disruption of directionality, reducing the ordering in
the swarm. Parts of the swarm that had undergone two or more reflections are all but
uncorrelated to their still "un-reflected" agents. So the inclusion of the reflected ones
undermines the flocking process. And so, when OMID prevents further neighbors from
influencing the sum, it effectively prevents those already reflected agents from entering the
sum, and by the way of giving higher weight to closer neighbors, reduces and attenuates
the disrupting influence of reflected parts of the swarm. At short vision radii, OMID has
no advantage since all approaches filter-out further neighbors. At high density and large
radius, the filtering advantage of OMID becomes the most pronounced.
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2.5 Summary

In this section, we proposed three approaches for handling occlusions. The influence of
each approach was compared against the other approaches. The results show that the
difference between the approaches is significant only in high-density conditions with a
large vision radius.

However, so far, we have only dealt with the effect of vision-based occlusions on the
performance of the Vicsek model, essentially influencing the "neighbor-selection" part
of the model. The calculation of the desired velocity of each agent was based on the
exact velocities of neighboring agents. However, this precise information is not directly
accessible via vision. We will tackle the latter issue in the following section.
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3 A Reductionist Vision-Based Model for Velocity Estima-
tion

Now, we move on to tackle the issue of vision-based velocity estimation. We show how
velocities could be estimated with purely visually-available information. Building on
top of the original Vicsek model results in a purely vision-based extension of the Vicsek
model.

In Section 3.1 we present a vision-based collective motion model. The experimental
setup for testing the model is detailed in Section 3.2 followed by the results in Section
3.3. Later, in Section 3.4, we incorporate our occlusion approaches and compare their
performance when applied to our vision-based model.

3.1 The Principal Vision-Based Reductionist Model

Similarly to the Vicsek model, The agent’s perception is assumed to be omnidirectional
(360 degrees) and is limited to a constant radius R around the focal agent. The "real-
ness" of this assumption is supported by the locust vision, which is considered almost
omnidirectional [37, 30].

As depicted in Figure 10, a focal agent P heading “up” with a single neighbor n

moving with velocity vT otal and located at a distance r < R measured between the
centers-of-mass of the two agents. The total velocity is combined from tangential vt

and radial vr velocity components relating to the line of sight (LS), a line between the
center-of-mass (COM) of the neighbor and the focal agent. The angular position of the
neighbor relative to the heading direction is denoted as (bearing, β), and the angular
area is subtended on the vision sensor α n practice. This angle is calculated by finding
the vectors from the focal agent towards the vertices on the edge, that subtends the
largest angle on the sensor; we shall denote it as the effective edge. For convenience, the
full subtended angle is regarded as 2α.

Animals with stereoscopic vision perceive their environment as three-dimensional via
processes in the brain as parallax that relies on both of our eyes focusing on the same
object from two slightly different positions or motion parallaxes, where the observed
object remains static while the eye moves. However, for each of our eyes, light rays are
reflected from a three-dimensional object and hit a two-dimensional retina. In other
words, visual stimuli is one dimension less than the object it originated from. Applying
the same logic to our world of two-dimensional agents, visual input would have to be
one-dimensional. Essentially, a whole dimension of information about the environment

19



𝛽

𝐹𝑜𝑐𝑎𝑙 𝐴𝑔𝑒𝑛𝑡

𝑟

𝛼

𝑣𝑡

𝑣𝑟

Ego-direction

𝛼

Ԧ𝑣𝑇𝑜𝑡𝑎𝑙

Neighbor

𝑤

𝑙

Figure 10: Schematic representation of a focal agent, a neighboring agent, and its visual
parameters as observed by the focal agent.
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is lost when employing vision. The same goes for our simulated two-dimensional world
and how we define vision in the simulation: since the agents are two-dimensional, the
visual information an agent perceives, using its non-stereoscopic visual sensor, is one-
dimensional, as shown in Fig. 11. The geometric angles explained above constitute, by
definition, this one-dimensional type of vision.

Velocity in Reality

Camera Sensor

Position 𝑡2

Position (𝑡1)

Velocity Projection on Sensor

Figure 11: Velocity projection.

Due to the loss of information, the principal challenge when relying on vision is
estimating the velocity heading and magnitude of each neighbor. This requires knowledge
of the distance to a neighbor [68]. However, it is generally impossible to infer inter-agent
distances from projections without additional information. As shown in Fig. 4, different
actual velocities may be projected to identical observed velocity vectors and distances.
Previous works have often assumed a special case where the agents are circular. This case
allows precise calculation of inter-agent distances from projective information since, for
disks, distances are in a one-to-one correspondence to the projected visual area. However,
as the realistic morphologies of swarming locusts are elongated, we do not make this
assumption here.

In this study, we deliberately set our agents to be of elongated shape, in our case,
rectangular. We consider a group of N rectangular agents with width w and length l,
moving in a two-dimensional environment at speed v with heading parallel to their length
axis. The maximal speed the agents can accumulate is vmax. The position coordinates
xi of the agent i are updated at discrete time steps according to the motion equation,

xi (t + ∆t) = xi (t) + vi (t) · ∆t, (2)
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with velocity vi(t) updated at each time-step causing the agent to steer towards a desired
velocity with steering-parameter factor η,

vi (t + ∆t) = vdesired (t) · η + vi (t) · (1 − η) , (3)

where vdesired is calculated based on a decision algorithm similar to the Vicsek Model.
The algorithm’s objective is to estimate the velocities of the neighbors at each time frame
based on visually available geometrical information. Then, the average of these velocities
will constitute as vdesired.

We start our calculation of v by estimating the distance r. Since the orientation of
the neighbor is unknown to the observer, we deliberately use a simplistic approximation:
the neighbor’s effective edge is always perpendicular to the LS, which means the triangle
comprised of the focal point P and the two vertices of the effective edge d (see Fig. 10)
is assumed to be an equilateral. Thus, the LS constitutes both median and altitude
to effective edge and bisector of the subtended angle 2α (See Fig. 10). Therefore, the
distance r is given by

r = 1
2d cot α, (4)

differentiating Eq. 4 we get the radial velocity to be

vr = d

dt
r = −1

2
d α̇

sin2(α)
(5)

where α̇ denotes the time derivative of the subtended angle. Expressing d = 2r tan α

from Eq. 4 and substituting into Eq. 5 results in

vr = − 2α̇r

sin 2α
, (6)

the tangential velocity is obtained using the time derivative of the bearing angle

β̇ = d

dt
β = ω = vt

r

⇒ vt = −β̇ · r,

(7)

where β̇ is the derivative in time of the bearing angle, which is equivalent to the
instantaneous angular velocity ω. Time-derivatives are approximated by the difference
of parameter’s values in two consecutive frames. By calculating both components, we
get v = vr + vt. This process is repeated for all the neighbors, resulting in vdesired of the
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focal agent.
We assume every flock member possesses knowledge of the conspecific’s size (effective

edge d is used in the calculation), i.e., an animal has an inherent representation of the
typical dimensions of individuals from its species. Combining this knowledge with the
angular area angle (α) one can estimate the distance (as shown in Eq. 4). The α angel is
also present in loom calculations [30, 29, 66, 24].

We emphasize that this is a baseline model. It assumes all the neighbors are fully
visible and does not account for possible obstructions of sight. In other words, agents
are presumed to be “transparent”, in the sense that no obstruction of further neighbors
occurs. Obviously, this assumption is a gross oversimplification of the fundamental
capabilities and limitations of visual perception in nature. In Section 3.4 we incorporate
the occlusion approaches from Section 2 to address this issue as well.

3.2 Experimental Setup

In order to evaluate our vision-based model, we developed a two-dimensional (2D)
collective motion simulator based on a basic simulation engine [67] (see Fig. 12). The
principal and the occlusion-handling approaches were implemented in the simulation,
as detailed below. As described in Section 3.1 the agent’s steering is based upon the
mean of the neighbors’ velocities. These velocities, in turn, are derived from the angular
measurements of each perceived neighbor: the subtended angle and the angular velocity
of each neighbor. These inputs serve as the agent’s subjective perception.

3.2.1 Simulating Kinematics

The agents move in 2D by updating their coordinates at each iteration according to their
current velocities. The location and orientation of each rectangular agent are computed
from the coordinates of its COM. It is assumed in our model that velocity heading is
always along the long axis of the body. The velocity magnitude can vary between 0
and a fixed maximal speed value, i.e., the agents can accelerate up to a maximal speed.
Additionally, a steering parameter is introduced to moderate the influence of vdesired at
each point in time, thus reducing the sharpness of turns and accelerations performed by
the agents. This serves as the motion backbone for all the approaches described below.

3.2.2 Simulating Perception

We compare the emergent collective motion resulting from the different occlusion-handling
models. The perception of each agent is calculated from the exact values stored in the
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(a) Toroidal arena snapshot at t = 10[frames].
Agents are initialized at random positions and
random velocities. The purple colored agents
is an arbitrary marked focal agent with its
respective neighbors colored green.

(b) Toroidal arena snapshot at t =
2000[frames]. An apparent flocking behavior
is displayed, with agents moving roughly in a
single direction.

Figure 12: Simulator snapshots.

simulation. This allows emulating different perception models by varying the visual
parameters of the agents and the effects of occlusions. Each simulated focal agent is
given the information it would have perceived in the 2D environment, in each of the
following perception models.

Simulating the Principal Model. The α angle is calculated using the neighbor’s
vertices of the edge that subtends the largest angle on the agent. The angle between
the two vectors pointing from the focal agent’s COM to the respective vertices
equals to α. The β angle is simply the angle of between the focal agent’s velocity
vector and the neighbor’s COM. The calculation of β is the same for the rest of
the approaches. However, since occlusions are non-existent in the principal model,
the focal agent receives visual parameters of all the neighbors, including those
completely occluded by other more closely distanced neighbors.

Simulating OMID. We simulate this capacity by calculating the effective α for each
neighbor, i.e., the subtended angle on the visual field after canceling occluded
individuals, meaning that the occluded agent is ignored in its entirety during the
calculation of vdesired. The effective α calculation starts by sorting all the neighbors
by their exact distances, then sequentially for each neighbor, finding the angle

24



“edges” and storing them in a 1D array representing the visual field, spanning from
−π to π. In case of an angle segment overlaps previously-stored segments, the
neighbor is ignored, and the calculation proceeds to the next neighbor.

Simulating COMPLID. We simulate this capacity by calculating the neighbor’s
“edges” similarly to the process in the OMID approach. Then, subtended angles
that are fulling contained in others (i.e., capturing neighbors completely occluded
by others in the visual field) are eliminated.

Simulating PARTID. The implementation of the last approach in the simulation start
similarly to the OMID and OCLID approaches. We iterate over the neighbors,
from the closest to the furthest. Each neighbor effective edges are calculated and
then checked against an array of edges. If a partial overlap (i.e., partial occlusion)
exist with the current edge and one or two of already checked edges, the effective α

is calculated using only the non-overlapping segment.

3.2.3 Controlled (independent) simulation variables

In the simulation experiments, we controlled the following independent variables:

Population size (N) number of simulated agents participating in each experiment.

Agents length/width sets the agent’s dimensions, that in turn change the effective
edge (d).

Vision radius (R) the radius inside which agents are considered as neighbors (measured
in the same units as agent length).

Steering-parameter (η) sets the weight of vdesired relative to the current velocity (v)
of an agent.

Maximal speed (vmax) sets the maximal speed of the agents. In a case the magnitude
of vdesired exceeds vmax at the end of the model’s calculation, the simulator will
limit it to a magnitude of vmax while keeping the same vector direction.

We utilized different areas (arenas) to test the agents. The key difference between
the arenas is the periodicity of the boundaries:

• The first type (shown in Fig. 12) is a square arena with periodic boundary conditions
(torus), i.e., once an agent’s COM passes the maximal/minimal coordinates or the
X/Y axes, it reappears on the other side respectively. The arena dimensions are L,
W, which stand for the length and width of the arena.
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• The second type is the “infinite corridor” arena (shown in Fig. 13a). In this
arena, the vertical boundaries bounce incoming agents by reflecting their velocity’s
x-component, while the horizontal boundaries are set to be periodic, similarly to the
toroidal arena. The distances between the boundaries are varied in the experiments
and are detailed below.

• The third is the ring arena, modeled after the ring-shaped arena widely used in
in vivo locusts flocking experiments (e.g., [15, 2, 41], shown in Fig. 13b). The
agents are repelled from the boundaries with varying repelling force, depending
on the size of the radial velocity component (relative to the arena center), i.e., an
agent traveling to the external circular boundary will be repelled from with a force
proportional to the size of the agent’s radial velocity component. This was designed
in a way to mimic the behavior of living locusts that align themselves to the ring
walls so as to avoid possible collision with them [2]. The dimensions of the ring
arena are characterized by the two radii of the inner and outer circles that form
the ring’s boundaries.

(a) Snapshot of corridor arena. The vertical
boundaries are repelling, while the horizontal
ones are periodic.

(b) Ring arena snapshot.

Figure 13: Corridor and ring arenas.

For the first set of experiments, we consider a group of N agents, with random
initial positions and velocities, positioned in a square arena of size W × H with periodic
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boundaries. We studied the dynamics for a range of independent variables’ values. We
present the results for representative parameters’ values with arena size of 500 × 600,
typical agent’s main axis length (l) of 20, number of swarm members of N = 60, 120, 180,
and maximal velocity normalized to vmax = 1. Vision radii are measured in units of
body-length (BL), ranging from R = 1 to R = 6[BL]. These ranges for group size and
vision radius were chosen to achieve flock density corresponding to available biological
literature of common flock densities in nature [20].

3.2.4 Measured (dependent) simulation variables

We employ the same order parameter used in Section 2. For detailed description, see
Section 2.2.

3.3 Results for the Principal Model

We begin by testing the principal model in a toroidal arena (in many aspects, close to
open-field conditions), varying independent simulation variables chosen with accordance
to the existing biological literature. We conducted experiments with representative
independent variables’ values of N = 120, R = 3 body lengths [BL], η = 0.01, and
agent length set to 20. The population size was set based on observed locust marching-
bands densities [10], the sensing radius was set according to empirical observations of
locust nymphs not reacting to visual stimuli located farther than 2-3 BLs [5], and the
steering-parameter was chosen according to a sensitivity analysis, detailed below).

Figure 14 shows the time-evolution of a simulated swarm’s mean polarization (the
order parameter ϕ). The order parameter rises from ϕ ≈ 0.1 to an asymptotic value of
ϕ ≈ 0.9, which approximately approaches an ideally parallel ordered state.

3.3.1 Parameter Sensitivity Analysis

We investigate the principal model’s sensitivity to various parameter values, i.e., the
dependence of order parameter ϕ on major controlled quantities: the effects of the steering-
parameter factor η, the vision radius R, the population size N , and body length/width
ratio. For each of the listed simulation independent parameters, we present two types
of graphs. The first is the asymptotic parameter sensitivity, obtained by measuring the
order parameter ϕ at a fixed time of t = 3000 [frames] for different parameter values.
By empirical evidence, at that point in time, the swarm is believed to have reached
its asymptotic converged state and no significant improvement of the order-parameter
later to follow. The second type of graph is the time-evolution of the order parameter
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Figure 14: Swarm’s alignment level vs time. Data points are the mean order parameter
of the swarm at each simulation frame, with a standard error margin. Experiments
performed in torus arena.

measured for various parameter values, measured at each frame until the end of the
experiment at t = 3000 [frames]. For each global parameter, all other parameters’ values
were fixed arbitrarily (typical fixed values were N = 180, R = 3 − −4 [BL], η = 0.01,
agent length=20 − −30). For each combination of parameters, the experiments were
repeated for 50 independent runs and averaged.

We report on the sensitivity to the steering-parameter η. Fig. 15 indicates that a
value of η = 0.01 yields the maximal value of the order parameter, approaching 1. This
is where the swarm is nearly fully aligned. Notably, no convergence occurs for smaller
values, meaning agents are too apathetic to the environment and retain their original
heading directions. On the other hand, we notice a significant drop in the order parameter
magnitude for large η values, i.e., the agents’ convergence worsens due to over-sensitivity
to the external steering parameter.

Figure 16a displays the time evolution of the order parameter for different η values.
As can be seen, there is a bounded zone of values beyond which the algorithm fails to
reach any convergence. A further examination of at the simulated flock for these values is
shown in figure 16b. It shows that agents aggregate in small tight clusters and constantly
change their headings, unable to reach either local or global uniform moving direction.

Based on these results, we fixed the steering-parameter factor parameter to be η = 0.01
for the rest of our investigations.
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Figure 15: Asymptotic steering parameter’s sensitivity analysis. Data points represent
the order parameter at t=3000 [frames] for varying η values with a standard error margin.
Torus arena.

(a) Time-evolution of the order parameter of
the swarm for different steering parameter val-
ues. Data points are the mean order parameter
of the swarm at each simulation frame, with
standard error margin.

(b) Diamond pattern clusterization. High η
value.

Figure 16: Collective motion for high values of η. Experiments performed in the torus
arena.
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3.3.2 Influence of Vision Radius and Population Size

Fig. 17 shows the dependence of the order parameter on the vision radius R and the
population size N, respectively. As seen in Fig. 17a the order parameter increases
monotonically as the vision radius grows. For radii R ≥ 50 ∼ 2.5 [BL], at R = 90 the
improvement of the convergence process reaches saturation and the evolution towards a
fully flocked state becomes the steepest.

Figures 17c,17d depict the population size sensitivity analysis. As seen in Fig. 17c
for relatively small N sizes, increasing the population leads to higher asymptotic order
parameter, though it reaches saturation for N ≥ 100. Moreover, in Fig. 17d a significant
qualitative difference is seen between the convergence of the order parameter for N = 20
compared with bigger population sizes.

3.3.3 Influence of Agent’s Dimensions

We set to test the role of an agent’s dimensions in our model by comparing the parameter
for increasing agent’s lengths, making the agents more and more elongated. As shown in
Fig. 18, the model behaves practically the same for more elongated agent’s morphologies.
In Fig. 18a we see that the asymptotic order parameter is relatively the same for different
dimensions, and even increases a bit for longer agents. Fig. 18b strengthens the above
by pointing the effective ratios of agents’ dimensions (length / width) and the respective
time-evolution for each body-length.
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(a) Asymptotic vision radius (R) sensitivity
analysis.

(b) Time-evolution of the order parameter of
a swarm for different vision radii.

(c) Asymptotic population size (N) sensitivity
analysis.

(d) Time-evolution of the order parameter of
a swarm for different population sizes.

Figure 17: Vision radius and population size sensitivity analysis. For asymptotic analysis:
data points represent the order parameter at t=3000 [frames] for varying R and N
respective varying values, with standard error margin. For time-evolution analysis: data
points are the mean order parameter of the swarm at each simulation frame, with standard
error margin. Torus arena.
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(a) Asymptotic sensitivity analysis for different
agent lengths.

(b) Time-evolution of the order parameter for
different agent length. The legend states the
various ratios between the increasing agent’s
length and its constant width.

Figure 18: Agent’s length sensitivity analysis. For asymptotic analysis: data points
represent the order parameter at t=3000 [frames] for varying l values with standard error
margin. For time-evolution analysis: data points are the mean order parameter of the
swarm at each simulation frame, with standard error margin. Torus arena.
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3.4 Incorporating the three occlusion approaches

We now turn to investigate the role of occlusions by neighbors when used on top of the
reductionist distance and velocity estimation model. The three approaches are evaluated
in comparison with the principal model (which does not account for occlusions). By
way of a reminder: the first approach (OMID) ignores any neighbor that is partially
obstructed by another neighbor; the second approach (COMPLID) extrapolates any
partially visible neighbor to its full size as if the occluding neighbors do not occlude; and
finally, the last approach (PARTID), assumes that any unique set of visible parameters
(α, α̇, β, β̇ ) originates in a completely visible neighbor, so the visible parts of partially
occluded neighbors are treated as if they are a complete neighbor. PARTID produces the
highest potentially erroneous estimations of distance and velocity of a single neighbor,
since the subtended angle (α, α̇) parameters are greatly affected by occlusions.

Partially-occluded neighbors generate additional errors, as the projected area of the
subtended angle is used as a proxy for distance. For example, suppose a neighbor is
partially occluded, such that only a small portion of it is observed, and thus it may be
perceived to be distant. If the occluding animal moves to uncover it, its full length is
now revealed, and it will now be seen as being close within a very short time, implying
high velocity towards the observer and a potential collision. The accumulation of such
frequent errors may disturb the stability of the swarm.

3.4.1 Torus Arena

In Fig. 19 time-evolution in the torus arena of the order-parameter ϕ is compared between
the four approaches. The graphs show the mean order parameter for each point in time.
Data is averaged over 30 runs. Three population sizes of N = 60, 120, 180; R = 3 [BL], l =
30, η = 0.01. As seen from the figures, all three occlusion approaches, alongside the
original model, reach similar asymptotic order-parameter values (ϕ ∼ 0.9), indicative of
reaching similar degrees of synchronization after flocking. It is seen from Fig. 19b and
Fig. 19c that PARTID has a slower rate of convergence. It can be viewed as additional
evidence that this approach results in excessively noisy perception. At higher densities
(Fig. 19c) the rate of convergence of all three perceptive approaches lag behind the
Principal model. At higher densities, rates of convergence become steeper. At the same
time, the asymptotic order parameter remains very close for all the methods, and even
different densities. Finally, the ordering of the rates of convergence at 180 indicates
that COMPLID converges faster than OMID. Completing parts of neighbors, instead of
omitting them, leads to an effectively larger number of neighbors, which leads to stronger
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alignment.

(a) (b) (c)

Figure 19: Comparison of the occlusion approaches in the torus arena. Data points
are the mean order parameter of the swarm at each simulation frame, with a standard
error margin. Compared population sizes: (a) 60 agents, (b) 120 agents, (c) 180 agents.
Convergences are practically indistinguishable between approaches. A higher population
leads to a slightly steeper transition to a flocked state.

3.4.2 Infinite Corridor and Ring Arenas

In order to further test the model’s robustness, we investigate the behavior of the different
approaches (including the principal model, which does not handle occlusions), examining
flocking in other geometrical environments. Specifically, we examine the behavior in an
infinite corridor and in a ring environment (Figure 20) similar to ring arenas present in
biological locust experiments, as noted above.

Three versions of each arena type are tested: wide, intermediate, and narrow. The
geometry of the arenas will be characterized by the ratio of arena-width to single agent
body-length. In our chosen measurement units of body-length (BL) this parameter is
simply the arena width. A swarm of 100 agents was run in each arena configuration. For
the infinite corridor, the distance between the periodical boundaries (length) was 20 [BL]
for all the experiments. The widths were: 10, 23, 33 [BL], respectively. For the ring
arena, the radius of the inner circle is 1.66 [BL] and the outer circle radii tested were: 5,
8.33, 11.66 [BL].

Analyzing the infinite corridor arena, we observe an interesting distinction displayed in
the narrow corridor. All perceptive approaches show a rise in the ordering parameter: The
Principal model and the COMPLID approach converge significantly faster and to a higher
asymptotic value than OMID and PARTID. The fact that this difference is significant
only in the narrow environment indicates that the harsher geometrical constraints cause
some approaches to struggle. A potential reason is that in narrow arenas, interactions
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with the boundaries are much more frequent. Principal and COMPLID converge better
even in highly perturbed geometry, this indicates that acquiring accurate information
from the maximal amount of seen neighbors is beneficial in constrained environments.
As a reminder, COMPLID is able to essentially approximate the information available to
the principal model apart from the agents that are fully occluded. Thus, the information
it perceives is quite similar to the all-seeing Principal approach.

In the ring arena, we observe a common theme in all the different widths. Although the
rest of the approaches seem to converge successfully to an ordered state with similar rates,
the PARTID seems to struggle with the constraints imposed by the circular boundaries.
The agents in the ring arena are faced with external perturbations by the boundaries
that interfere with the alignment of the model itself in a way that is critically detrimental
to the PARTID approach.

(a) Corridor - Wide (b) Corridor - Intermediate (c) Corridor - Narrow

(d) Ring - Wide (e) Ring - Intermediate (f) Ring - Narrow

Figure 20: (a),(b),(c): Infinite corridor arena. Wide / Intermediate / Narrow arena
dimensions are 20 × 33 / 23 / 10 [BL], respectively (agent BL 20-30). Data points are
the mean order parameter of the swarm at each simulation frame, with a standard error
margin. (d),(e),(f): Ring arena. Wide / Intermediate / Narrow ring external border radii
are 11.66 / 8.33 / 5, respectively. The internal ring border is constant for all three types
and equals 50. (agent BL 20–30). Data points are the mean order parameter of the
swarm at each simulation frame, with a standard error margin.
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4 Discussion and Conclusions

In this work, we studied the limitations and implications of vision as the key source of
information for flocking agents. In the first part, we investigated the effect of partial
occlusions (of one neighbor by another) on flocking-related decision-making. To this end,
visual cues from partially occluded objects constitute lost or distorted information. Thus,
the problem of reaching a collective state becomes more challenging. Previous attempts
to account for occlusions and their role in vision-based flocking have been very limited.
To the best of our knowledge, the present work constitutes one of the first attempts to
investigate this question thoroughly.

The influence of partial occlusions was tested in a series of simulations, where each
approach was applied on top of the Vicsek model, which was used as the backbone for
agents’ motion policy. The first (COMPLID) completes the outline of a partially hidden
neighbor. Such abilities were demonstrated in various species, including insects [51, 36].
However, this approach is the most complex of the three (cognitive-wise) as it requires
object detection combined with extrapolating capabilities. The second (OMID) ignores
any partial information altogether. Thus, it calls for differentiating between fully vs.
partially observed neighbors. This approach requires object detection; however, it is
somewhat simpler than COMPLID since it only filters out erroneous visual stimuli rather
than correcting them in the observer’s mind. The last one (PARTID) treats each segment
of a neighbor as if it represents a full-length body. Hence, the latter is the simplest of
the three since it requires minimal cognitive processing from the individual — neither
object detection nor object recognition, each set of distinguishable visual parameters is
regarded as a neighbor. This results in PARTID being the most erroneous perception
of the surrounding agent, e.g., segments change due to closer neighbors revealing or
occluding them, which in turn is perceived as neighbors moving away or towards the
focal agent.

The difference in the required computational power under the different approaches is
very significant, as in nature, organisms demonstrating collective motion are very often
limited in this respect (small brains, simple neuronal substrates). Hence, finding the least
computationally demanding algorithm still capable of reaching flocking can potentially
explain the actual mechanisms involved in the flocking of these relatively simple species.

The three occlusion approaches were tested in a series of simulations, where each
approach was applied on top of the Vicsek model, which was used as the backbone for
agents’ motion policy. The difference between the three proposed approaches only shows
in Fig. 8f, where agents’ population and the vision radius were the largest out of the
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numbers tested. OMID higher resilience to the perturbation induced by the square arena
walls prevailed even in the omniscient Vicsek model. When tested in a significantly
larger arena, where the influence of the walls was substantially diminished, again, OMID
excelled over the others.

In the second part of this thesis, we have introduced a non-stereoscopic perception
framework and developed a novel, purely vision-based flocking algorithm. Taking a
reductionist approach, we considered 2D agents, aiming to generate a collective motion
with the bare minimum of information. This model employs geometrical aspects of vision,
such as subtended visual angle, observable angular velocity, and other derived parameters.
The emergence of the collective state and its dynamics were achieved in several arenas.
Further on, we examined the model with the occlusion approaches described in the first
part, applied on top of the vision-based motion model. The flocking process showed to
be robust enough to emerge with occlusions.

The vision-based motion model does not assume direct measurement of inter-agent
distances or velocities. Instead, it infers distances and velocities from observed angles
and their rates of change. Such measurements are fully available in non-stereoscopic
vision. This was one of the main motivations of the current study, and as noted, it is
essential for modeling natural flocking organisms that lack stereoscopic vision, the prime
examples being insects or fish, as well as similar artificial agents. The inability to directly
assess range hinders even the acquisition of velocity direction of the neighbors, presenting
a significant challenge to efficient flocking. To our knowledge, this is the first time a
non-stereoscopic vision-based model, estimating neighbors’ velocities only from angular
information, has demonstrated flocking.

The collective state is reached by the gradual alignment of the agent’s velocity vector
with the velocity vectors of its neighbors. The algorithm computes the average of the
velocities of an agent’s neighbors that are located within a vision radius. It was observed
that locusts [5] mostly react to their neighbors up to a limited visual distance. Visual
radius thus limits the agent’s knowledge about his neighbors. We expect a smaller vision
radius to reduce collective coordination between the flock members while a larger one to
increase their coordination. A natural assertion would expect better convergence to occur
when using higher vision radii. Experimental results have confirmed this dependence of
convergence rates on R, as shown in Figs. 17a,17b. Rates of convergence were higher for
larger R values. Also, the final asymptotic degrees of the order parameter were higher
for larger radii. A biologically relevant vision radius significance is evident in Fig. 17a.
The asymptotic order parameter reaches saturation at approximately 2-3 BL. In other
words, increasing R beyond 3 BL does not improve asymptotic order.
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Next, we combined the vision-based flocking model with the occlusion handling
approaches. We tested the model with the various approaches in a series of simulations
performed in several arenas and different conditions.

In the torus arena, all three perception approaches of occlusions have successfully
demonstrated the flocking transition from a chaotic initial state to an ordered collective
state. Analyzing in more detail, we saw slight differences in convergence rates, where
PARTID consistently performs slower than the others since it creates a particularly high
misperception rate. This deficiency of PARTID is more pronounced in higher densities
when a higher number of neighbors are present around the focal agent. This, in turn,
leads to an increased prevalence of occlusions and, consequently, to the increased relative
noisiness of PARTID.

We tested our approaches in geometrically constrained environments (arenas): corri-
dors of varying width and rings of varying thickness, where the boundaries lead to velocity
reflections. The convergence process becomes significantly perturbed by rebounds of
agents colliding with the boundaries.

Proceeding to examine the corridor arena, in the wide corridor, all four behaved
statistically similarly as seen in Fig. 20a. In the intermediate width, a slight separation
between the approaches emerges 20b. Finally, at the narrow corridor, a strongly pro-
nounced difference is displayed between COMPLID (at faster convergence) and OMID
and PARTID group with slower convergence. It implies that COMPLID is the more
robust method, withstanding frequent disruptions by the boundary and performing just
as well as the baseline Principal model.

Moving on to examine the ring arena, the results demonstrate a distinct weakness
of the PARTID approach, especially pronounced in the wide ring. The other two
perceptive approaches behaved similarly, though not identical. One can surmise that ring
geometry exudes high geometric influence on the collective motion, thereby leveling out
the consequences of different methods, with the sole exception of PARTID. It could be
suggested that the frequent change of direction present in the ring arena causes agents to
re-appear and disappear from occluding neighbors, therefore strongly perturbing PARTID
perception, while COMPLID and OMID cope well with these changes due to the better
treatment of occluded neighbors.

Comparing the results of the approaches from the first part, where exact velocities
were used, with the results from the second part, we see a common theme. Only in highly
constrained environments do the approaches become distinguishable. However, we should
point out several divergences in the results of the two parts. First, the vision radius in
the first part, sufficiently big enough to express the differences between the approaches,
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was 8 BL rather than 3 BL in the second part. This could be due to the difference of the
simulations. While in the first part, all agents featured physical dimensions preventing
them from colliding through to each other, in the second simulation, this was allowed,
causing agents to move "on top" of one another. The latter allowed for a bigger amount
of agents fitting within the vision radius and creating occlusions.

Another difference in the results can be found in the effect arena boundaries have on
the flocking process. The behavior of the order parameter is much noisier in the square
arena experiments than in the ring and corridor arenas. There is a major geometrical
difference between them. In the ring and corridor arenas, the interactions with the
boundaries guide the agent into order, the ring eventually prods the agents to move
along its perimeter (either clockwise or counter-clockwise), and the corridor blocks free
movement along one axis, which eventually causes the agents to flock either upwards
or downwards. On the other hand, the square arena used in the experiment of the first
part introduces recurring shocks to each agent, practically forcing the agent to undergo a
radical direction shift.

To examine the possible implications of our findings for the real world, one ought
to consider the biological plausibility of the three different approaches; in other words,
the likeliness that the approaches describe the actual visual processing of animals. The
topography of natural terrain has creeks, valleys, ridges, and other lateral constraints
resulting in effectively constrained geometry. As is well established (see [25] and ref-
erences within), marching locusts bands keep flock formation successfully despite such
constraints. Considering our results from constrained arenas, we infer that PARTID is
an oversimplification of the perceptive mechanisms in locust vision. Advanced capabil-
ities are required for coping with occluded neighbors, such as the proposed OMID or
COMPLID approaches. COMPLID, as referenced in Sec. 2, has empirical evidence of
similar capabilities in animals that show the ability to infer complete outlines from only
partial visual cues.

The present work studies different aspects of vision-based collective motion in swarms.
The biological inspiration was to study purely visual and non-stereoscopic inputs without
direct distance measurements and to account for occlusions. We showed that the
reductionist model is sufficient in principle to achieve collective behavior in a swarm for
different geometries. However, its reliability is dependent on the mechanisms used to
address occlusions. This is an important area of continued investigation. The results here
also are relevant for navigation and flocking in robotic swarms, where often robots lack
stereo vision and ranging sensory capabilities (e.g., LIDAR devices) and are expensive in
energy use and computation [39]. As directions for further study, the minimalist model
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could serve as the basis both for the development of more robust mechanisms and for
solving more challenging environments. It also informs the use of alternative interaction
modalities observed in nature or technologically applicable.

This work establishes that a non-stereoscopic, purely vision-based model can achieve
flocking without direct kinematic information — neither of distances nor velocities. It is
an essential step for modeling natural flocking organisms that lack stereoscopic vision,
e.g., insects or fish, as well as similar artificial agents. Also, the stability of the model for
some simplified approaches to neighbor occlusion was proven. Analyzing the differing
emergence rates of collective motion supports the necessity of higher-level visual processes
such as outline completion and conspecific recognition.
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