Detecting Disagreements in Large-Scale
Multi-Agent Teams

Gal A. Kaminka*

The MAVERICK Group
Computer Science Department
Bar Ilan University, Israel
galk@cs.biu.ac.il

October 1, 2008

Abstract

Intermittent sensory, actuation and communication failures may cause
agents to fail in maintaining their commitments to others. Thus to col-
laborate robustly, agents must monitor others to detect coordination fail-
ures. Previous work on monitoring has focused mainly on small-scale
systems, with only a limited number of agents. However, as the number
of monitored agents is scaled up, two issues are raised that challenge pre-
vious work. First, agents become physically and logically disconnected
from their peers, and thus their ability to monitor each other is reduced.
Second, the number of possible coordination failures grows exponentially,
with all potential interactions. Thus previous techniques that sift through
all possible failure hypotheses cannot be used in large-scale teams. This
paper tackles these challenges in the context of detecting disagreements
among team-members, a monitoring task that is of particular importance
to robust teamwork. First, we present new bounds on the number of
agents that must be monitored in a team to guarantee disagreement detec-
tion. These bounds significantly reduce the connectivity requirements of
the monitoring task in the distributed case. Second, we present YOYO, a
highly scalable disagreement-detection algorithm which guarantees sound
detection. YOYO’s run-time scales linearly in the number of monitored
agents, despite the exponential number of hypotheses. It compactly repre-
sents all valid hypotheses in single structure, while allowing for a complex
hierarchical organizational structure to be considered in the monitoring.
Both YOYO and the new bounds are explored analytically and empirically
in monitoring problems involving thousands of agents.

*This research was supported in part by Israel Science Foundation grants #1211/04, and
#1357/07.



1 Introduction

Agents in realistic environments sometimes fail to maintain their commitments
to others. This can occur due to sensor and actuator uncertainties, or (possibly
intermittent) communication failures. It may also occur due to the nature of
dynamic, complex domains, which can challenge the agent’s design in unantic-
ipated environment states, e.g., in industrial systems (e.g., [13]), and virtual
environments (e.g., 24,29, 30, 35]).

Agents must therefore monitor others to ascertain that their commitments
are maintained, and to detect coordination failures when they occur (see e.g.,
[2,5,6,12]; additional works are discussed in Section 2). Indeed, a number
of investigations have explored mechanisms for detecting (and responding to)
failures in coordination and teamwork [3,8,20-22,27,37].

Large-scale multi-agent systems—where the number of agents is the principal
scale factor—pose a number of challenges to the existing monitoring techniques.
First, agents in large-scale systems become physically and logically separated,
and thus less able to directly monitor each other (the limited connectivity chal-
lenge). However, existing approaches often rely on being able to monitor all
agents, either by communications or observations. Second, the number of pos-
sible failures grows combinatorially in the number of agents, with all possible
interactions. Thus approaches that search through failure hypotheses do not
scale well. We discuss these challenges and previous work in detail in Section 2.

This paper addresses these challenges in depth, in the context of detect-
ing disagreements, a principal failure in multi-agent teamwork. Theoretical
and empirical research on teamwork in humans (e.g, [1]) and in synthetic
agents [2,6,13,23,35] stresses agreement as a cornerstone to effective teamwork
(although different terms are used in grounding agreement in various theoretical
and practical constructs). Thus disagreements are a source of great concern in
all of these different investigations (see Section 2 for details).

We make two contributions. First, we tackle the challenge of limited con-
nectivity by providing new bounds on the agents that must be monitored in a
team to detect disagreements. Previous work has shown analytically that dis-
agreement detection can sometimes be guaranteed if all team-members monitor
all of certain key agents in the team [21], in a distributed fashion. However, in
practice, limited connectivity restricts the usefulness of this bound, as often not
all key agents can be observed or communicated with. To address this, we show
analytically that sound (i.e., no false positives) and complete (no false negatives)
detection can be guaranteed in practice even if other agents monitor just one
key agent; however, all key-agents must still monitor each other. In addition,
we show that monitoring only key agents is an also a sufficient condition in the
centralized monitoring case, where a single agent is monitoring all others. Such
monitoring is guaranteed to be sound, and detect any disagreement that would
have been detected had the centralized monitoring agent monitored all others.
Using the techniques presented, a monitoring agent can detect failures in large
teams, involving thousands of agents. The assumptions underlying the bounds
can often be met in practice, simply by allowing an agent to become a key agent



by broadcasting its state to its peers. In such real-world setting, the bounds
can serve to focus such broadcasts and reduce them to a minimum.

Second, we present YOYO, a disagreement-detection monitoring algorithm,
which navigates the (potentially exponential) space of monitoring hypotheses
by representing only hypotheses in which all agents are in agreement. This
allows YOYO to represent the relevant state of all monitored agents together,
in a highly scalable structure, and efficiently detect situations in which the
agents are in a state of disagreement. YOYO can be used to provide sound
disagreement detection capabilities. It is an example of a Socially-Attentive
monitoring algorithm, exploiting knowledge of the social relationships in the
monitored team. We present an empirical evaluation of YOYO in monitoring
problems involving thousands of agents.

This paper is organized as follows. Section 2 discusses related work. Section
3 presents new bounds on the number of agents that must be monitored. Section
4 presents the YOYO algorithm. Section 5 presents the results from experiments
in using YOYO. Section 6 concludes with a discussion of the applicability of the
presented contributions, and future directions for this work.

2 Motivation and Background

We use the term limited connectivity in a general sense to describe the phe-
nomenon where an agent cannot observe, sense, or communicate with its peers,
due to processing and bandwidth limitations. Limited connectivity is only of
little concern in small-scale systems. Given a few cycles, agents can typically
integrate multiple perceptions, over time, to assess what their peers are up to.
However, as the number of agents grows, the ability to integrate such informa-
tion over time diminishes rapidly [38]. For instance, existing peer-to-peer (P2P)
systems include millions of active nodes. Yet not one node is able to communi-
cate directly with all of its peers at once, due to both bandwidth and processing
power issues. Even spreading the efforts over time will not be sufficient in
practice.

Limited connectivity adversely affects the ability of an agent to monitor its
peers and to detect coordination failures. Because of limited connectivity, the
monitoring agent is not able to correctly assess the state of its teammates, and
thus will necessarily face some uncertainty as to their state, and by implication,
as to the existence of a coordination failure. Yet few bounds and few techniques
are known for monitoring with limited connectivity.

Most closely related to monitoring with limited connectivity is our own pre-
vious work on centralized and distributed coordination failure detection. In [20],
we introduced the notion of key agents, whose observable behavior is sufficiently
unambiguous to an observer such that they can be used to detect failures even
under conditions of uncertainty. The same work also showed that in the dis-
tributed case, if all agents monitor each other and there are sufficient key agents,
failure detection will be guaranteed [20]. Later, the result was extended to show
that in fact only the key agents had to be monitored in the distributed case,



thus allowing for reduced connectivity [21]. Our work in this paper lowers this
upper-bound further (see Section 3). However, our work here is specific to
disagreements.

A second important challenge with large-scale multi-agent systems is raised
by the number of monitoring hypotheses that must be processed. As a multi-
agent system grows in the number of agents, so does the the number of potential
coordination failures it may contain. Suppose each of N agents may be in one
of k internal states. Then the number of possible joint states is £V. In loosely-
coupled systems, each agent is essentially independent of its peers, and may
select between its k possible states freely. In such systems, the vast majority of
joint states—if not all—are considered valid states. However, in a coordinated
multi-agent system, the selection of an internal state by an agent is dependent
on the selections of its peers. In other words, agents move between joint states
together; Only a limited portion of the space of joint states would be valid, from
the designer’s perspective. Thus most joint states may in fact be invalid from a
coordination point of view.

Agreement is a good example of such tightly-coupled coordination. Team-
work literature emphasizes the importance of team-members being in agree-
ment on various features of their state, such as goals, plans, and beliefs!
[2,6,7,13,18,23,35]. Since the object of the agreement is irrelevant for our
purposes in this paper, we will use the term state to denote the internal state-
feature of the agent which is the object of the agreement (e.g., a belief in a
proposition p, a plan p, an intention, etc.). Suppose a team of N agents agrees
that their selection of internal state would be synchronous, i.e., for every selected
state of one agent, all others must be in some agreed-upon internal state. There
would be O(k) valid agreement joint states, and the rest of the &V joint states
would be considered invalid—coordination failure—states. Thus large-scale sys-
tems where agents coordinate face a large exponential number of possible faults,
and only a limited set (by comparison) of valid states.

Despite the much greater number of possible failure states, many of the
approaches proposed in the past for coordination failure detection rely on enu-
merating possible faults. Klein and Dellarocas [3,22] have proposed a centralized
approach to detecting failures (which they refer to as ezceptions). Their work
utilizes agent sentinels, which communicate with the agents in the system to
identify their state or actions, and report on it to a centralized fault detection
system. This fault detection system then matches the reported information
against coordination fault-models, for detection. These are generated offline, by
manual analysis of domain-independent coordination models. The fault models
and their use do not address limited connectivity, ambiguities in agent states,
nor failures in the sentinel system. However, they are demonstrated over a larger
range of failures (this paper only covers disagreements).

More recently Platon et al. [25,26] have systematically and methodically
examined different types of agent failures (exceptions), as well as resulting co-

LOf course, the literature also addresses other critical features of teamwork aside from
agreement. But agreement is a repeating theme.



ordination failures and their causes (e.g., those due to agent death, knowledge
inconsistencies, etc.). They propose a number of ways for integrating failure
handling capabilities into the agent architecture. We do not investigate these
issues in this paper.

A different—distributed—approach is taken by Horling et al. [8,9]. They
present an integrated failure-detection and diagnosis system for a multi-agent
system in the context of an intelligent home environment. The system uses
the TAEMS domain-independent multi-agent task-decomposition and model-
ing language to describe the ideal behavior of each agent. The agents are also
supplied with additional information about the expected behavior of the en-
vironment they inhabit under different conditions, and their role within the
multi-agent organization. A distributed diagnosis system, made of diagnosis
agents that use fault-models, is used to identify failures in components (such
as erroneous repeated requests for resources) and inefficiencies (such as over-
or under-coordination). Multiple diagnosis agents may use communications to
inform each other of their actions and diagnoses. The fault-models are used
in planning monitoring actions, in identifying failures responsible for multiple
symptoms, and in guiding recovery actions. Like similar works above, this work
did not address connectivity concerns.

A key issue with fault-model approaches is their scalability, given that the
number of possible faults in large-scale multi-agent systems is likely to be ex-
ponential. Some have addressed this by focusing on general failure conditions.
As an example, Wilkins, Lee, and Berry [37] offer an execution monitoring ap-
proach which encompasses both coordination and task-execution failures. Their
work introduces a taxonomy of generic failure types, which must be adapted
and specialized to the domain and task. Agents responsible for monitoring rely
on communicated state reports from the monitored agents to identify failures.
While experiments with the system were carried out only on relatively small
multi-agent systems, the modeling of the failures shows example of how fault-
models can be sufficiently non-specific so that they may be reused in larger-scale
systems. For instance, the fault models included distance failures (units getting
too close), which are triggered when an adversary gets closer to a friendly unit).
It does not matter who the adversary or friendly units are, nor their specific
location, etc. The use of such general fault-models, however, diminishes from
the ability to detect complex or specific failures.

A common theme running through the fault-model approaches above is that
they utilize communications or direct observations to acquire knowledge as to
the state of monitored agents, and typically require knowledge of all agents,
thus ignoring limited connectivity. This is a potentially limiting factor in their
use in large-scale networks, where limited connectivity will necessarily lead to
uncertainty in monitoring. Moreover, in many domains, even direct monitoring
of another agent may involve some uncertainty. In particular, a monitoring
agent may entertain several hypotheses as to the true internal state of another
agent. However, these approaches often ignore such uncertainty.

In contrast to the fault-model approaches discussed above, we advocate a
model-based approach, in which a model of the correct behavior of the agent



is used to detect failures, by noting discrepancies between ideal and actual
behavior. Earlier work taking this approach to detect disagreements [20, 21]
contrasts with the work in this paper in terms of the run-time complexity of
searching through the hypotheses space to determine if a coordination failure
occurred. Both earlier investigations relied on a plan recognition algorithm
(RESL) which modeled each individual agent separately. While computing the
individual hypotheses using RESL can be done in time O(NL), where L is the
size of the state-space of a single agent, and N the number of agents, extracting
the hypotheses can take exponential time O(L” ). However, RESL can be used
in principle to detect many kinds of coordination failures, and allows either
sound or complete disagreement detection (in the centralized case). In contrast,
YOYO, presented in this paper, runs in time O(N + L), but supports only sound
detection in the centralized case.

Poutakidis et al. [27] have utilized Petri-net representation of interaction
protocols to centrally detect interaction failures, where agents fail to follow the
protocol in their conversation with others. This work does not address limited
connectivity, in that it assumes all messages from all agents are observable.
Although Poutakidis et al. allow for multiple monitoring hypotheses to co-exist,
they do not provide a method for selecting hypotheses such that soundness or
completeness is guaranteed. In contrast, our work in this paper addresses both
centralized and distributed monitoring settings, addresses limited connectivity,
and provides guarantees on the detection results.

RESCieqm [34] is a multi-agent plan-recognition scheme which implicitly
uses coherence as a key constraint in representation. RFESCicq., represents
only a single coherent hypothesis, while YOYO represents all coherent hy-
potheses. However, RESC}cqm can reason about the assignment of agents to
roles/subteams, while YOYO assumes this knowledge is given a-priori.

YOYO is a variant of YOYO*, a probabilistic team plan-recognition algo-
rithm, used for overhearing [19]. In contrast to YOYO*, YOYO is symbolic,
has better run-time complexity, and targets detection. However, it fails at tasks
in which the previous algorithm can excel (e.g., in overhearing).

Once a failure is detected, it needs to be diagnosed and resolved. Kalech
and Kaminka [15] have addressed model-based diagnosis of coordination failures.
Roos et al. [31,32] have addressed model-based diagnosis of non-coordination
failures in multi-agent systems. Horling et al. [8] use the fault-detecting causal
model for diagnosis and subsequent recovery actions. Recently, there is also
work on diagnosis in large-scale systems [14].

3 Monitoring Graphs and Limited Connectivity

A key question is how to guarantee failure-handling results while limiting the
number of agents that must be monitored. The approach we take to this involves
the construction and analysis of monitoring graphs, which represent informa-
tion about which agent can monitor whom. We show that for disagreement
detection, one can set conditions on the structure of the graph which, when



satisfied, guarantee that detection is complete and/or sound, under conditions
of uncertainty. Complete detection guarantees all failures will be detected (i.e.,
no false negatives). Sound detection guarantees only failures will be detected
(i.e., no false positives). We separate discussion of centralized and distributed
monitoring settings.

We begin by formalizing the notion of a monitoring graph (Definition 1).
We will use this construct throughout the paper.

Definition 1. A monitoring graph of a team T is a directed (possibly cyclic)
graph in which nodes correspond to team-members of 7', and edges correspond
to monitoring conditions: If an agent A is able to monitor an agent B (either
visually or by communicating with it), then an edge (A, B) exists in the graph.
We say that monitoring graph is connected, if its underlying undirected graph
is connected.

If the monitoring graph of a team is not connected, then there is an agent
which is not monitored by any agent, and is not monitoring any agent. Obvi-
ously, a disagreement can go undetected in such a team: If the isolated agent
chooses a state different from what has been agreed upon with its peers, it
would go undetected. Thus a connectivity lower-bound for detecting disagree-
ments (indeed, any kind of coordination failure) is that the monitoring graph
must be connected.

However, connectivity by itself is insufficient. Uncertainty can also have
significant impact on the results of monitoring. When an agent A monitors
an agent B, it may often entertain multiple hypotheses as to the state of B.
Suppose B’s state is P (for instance, P is a plan selected by B). We denote by
M (A, B/P) the set of agent-monitoring hypotheses that A constructs based on
communications from B, or inference from B’s observable behavior (i.e., via plan
recognition). In other words, M (A, B/P) is the set of all A’s hypotheses as to
B’s state, when B’s state (e.g., selected plan) is P. Note that when A monitors
itself, it has direct access to its own state and so M (A, A/P) = {P}. We use
the shorthand M (A, B) to denote the hypotheses set of B’s currently selected
state. In this work, we assume observer independence: M (A, B) = M(C, B) for
any agents A, C.

To see the impact of uncertainty, suppose an agent A has selected state P,
and is monitoring another agent B that has selected state P;. A disagreement
exists here since agent B should have selected P;. However, since the internal
state of B may not be known to A with certainty, A may have several interpre-
tations of B’s chosen state. The set of these interpretations may contain P;, in
which case A may come to incorrectly believe that B is also executing P;, and
that therefore no disagreement has occurred. Indeed, if the set of hypotheses
includes both P; and P,, then A may or may not detect the failure, depending
on the choice it makes.

This problem is exacerbated when monitoring a team containing multiple
agents. A team-monitoring hypotheses set for a given team T with n is the



cross-product of the individual hypotheses sets:
M(A,T)=M(A,a1) x M(A, As) x ... x M(A,a,)

Suppose A is monitoring itself (as a member of the team, executing P), and
agents B,C. If M(A,B/P) = {P,Q} and M(A,C/R) = {P, R}, then four
monitoring hypotheses exist overall for the team T containing agents A, B, C":

M(A,T):{(P,P,P),(P,P,R),(P,Q,P),(P,Q,R)}

One hypothesis implies no failure exists. Others differ in how many disagree-
ments there are.

3.1 Centralized Disagreement Detection

In general, as discussed above, the condition of monitoring graph connectivity is
necessary, but insufficient, to guarantee failure detection results. The challenge
is to find an upper-bound, a sufficient condition on the connectivity of the
monitoring graph, which would provide a method for systematically choosing
hypotheses such that a guarantee exists for the results.

Kaminka and Tambe have shown that it is possible to use a ranking heuristic,
mazximum coherence, to select hypotheses such that it is possible to guarantee
certain aspects of the monitoring results [21]. Informally, the coherence value of
an hypothesis is a measure of the number of disagreements it implies. Formally,
coherence is defined in [21] as the ratio of the number of agents to the number of
different states in the team-monitoring hypothesis. Thus (P, P, P) has coherence

of
{A,B,C} 3

it 7 = = 3
{P} 1
while (P, @, P) has coherence of
{4,B.C} _ 3
- =—-=1.5
{rQt 2
and (P, @, R) has coherence of
{ABCY 3 _
HPQ, R} 3

Systematic selection of hypotheses which have maximum coherence is guar-
anteed to result in sound detection [21, Theorem 1]: If a maximum-coherence
hypothesis indicates a failure, then a failure has indeed occurred. However,
some failures may go unnoticed if, due to uncertainty, a maximum-coherence
hypothesis exists which indicates no disagreement. In contrast, selection of a
coherence-minimizing hypothesis is guaranteed to provide complete detection,
where no failure will go unnoticed (but there may be false detections). Unfor-
tunately, no coherence-based heuristic exists that guarantees both sound and
complete detection in the centralized monitoring case [21, Theorem 3].



To provide this guarantee the hypothesis set M (A, B/P) for given agents
A, B must be complete, as defined below (Definition 2). Monitoring complete-
ness is commonly assumed (in its individual form) in plan-recognition work,
(e.g., [4,11,34]), and generally holds in many applications. It means that when
A monitors B, the set M (A, B/P) includes the correct hypothesis P, but will
typically include other matching hypotheses besides P.

Definition 2 (Monitoring Completeness). Given a monitoring agent A, and a
monitored agent B, we say that A’s monitoring of B is complete if for any state
P that may be selected by B, P € M(A, B/P). If A is monitoring a team of
agents B1, ..., By, we say that A’s team-monitoring hypotheses set M(A,T) is
complete if A’s monitoring of each of By, ..., B, is complete.

Kaminka and Tambe show that if a single centralized monitoring agent mon-
itors all others and monitoring is complete, it can guarantee either sound or
complete detection of disagreements, but not both [21, Theorem 3]. They also
found that if certain key agents exist, then it may be possible to reduce the
monitoring requirements in the system.

Key agents have the property that their behavior, when they select one of
two specific states (P, P,), is sufficiently unambiguous, such that any agent
that monitors them cannot confuse P; and P». In other words, key agents,
when executing either P; or P», never have both P, and P, in the hypothesis
set of any agent observing them.

As a result, any observer that is executing one of Pj, P; can identify with
certainty whether a disagreement exists between it and the key agents. We
repeat here the formal definition of key agents from [21]:

Definition 3 (Key Agents). Let P;, P, be two agent states. Suppose an agent
A is monitoring an agent B. If M (A, B/P)NM (A, B/P,) = () for any agent A,
we say that: (i) P, P are observably-different; (i) B is a key agent in { Py, P}.
We assume symmetry so that if two states are not observably different to A,
then they are observably the same:

M(A,B/Pl) ﬂM(A,B/Pz) #+ 0= M(A,B/Pl)ﬁM(A,B/Pg) D) {PLPQ}.

The key-agent is the basis for the conditions under which a team-member
A; will detect a disagreement with a team-member As. This is done by pre-
ferring maximally-coherent hypotheses as to the state of the monitored agent.
Maximally-coherent hypotheses are optimistic—they are hypotheses that min-
imize the number of disagreements between the two agents. The use of such
hypotheses leads to sound disagreement detection [20,21, Theorem 1].

An agent A; (selecting state P;) will detect a disagreement with a team-
member As (selecting a different state P,) if Ao is a key agent for the plans
Py, P, [21, Lemma 1]. A; knows that it has selected P;. If Ay has selected
Ps, and is a key-agent in P; and P», then A; is guaranteed to notice that a
disagreement exists between itself and As, since As is acting observably different
than it would if it had selected P;. A; can now alert its teammate, diagnose
the failure, etc.



We will now show that when key agents exist in a team, it is sufficient for a
single agent to monitor them to guarantee sound disagreement detection in the
centralized case. More accurately, any disagreement that the agent would have
been detected when monitoring all agents (and itself)—as previous work [21]
suggests—would be detected if the agent monitors only key agents (and itself).

Theorem 1. Given a team T (of which some members are key agents), and a
single agent A € T, if A monitors only the key agents of T and itself, such that
(i) monitoring is complete; and (ii) hypotheses are selected based on mazimal
coherence, then A would detect any disagreement that would have been detected
had it monitored all agents.

Proof. We will show that whenever A detects a disagreement when monitoring
all agents, it will detect the same disagreement when monitoring only the key
agents in T. There are two cases. In the first case, agent A detects a dis-
agreement between itself and another agent. In the second case, A detects a
disagreement between two other agents.

Case 1. Suppose that A has selected P, and has detected a disagreement with
another agent B (executing a different plan (). Assume for contradiction that
B is not a key agent in P, Q. Under previous work, A would have monitored
B (since it would have monitored all agents). Because A is using maximal
coherence, the only condition underwhich it would detect a disagreement is if
P ¢ M(A, B/Q). But this means that M (A, B/Q)NM (A, B/P) = 0, because of
the symmetry assumption in the definition of observably-different plans. Thus,
B is in fact a key-agent in P, @, contradicting the assumption in this case.
Case 2. Suppose that A has selected plan P, and is monitoring two other
agents B,C, who have selected plans @, Z, respectively. Assume for con-
tradiction that A has detected a disagreement between B, and C, but not
with itself (otherwise, it would have been handled as in Case 1 above). Thus
M(A,B/Q)NM(A,C/Z) 2 {P}. This contradicts the assumption that A de-
tected a disagreement between B and C|, since under maximal coherence, A
would have selected P as an individual hypothesis for both. A would have
therefore detect no disagreement between B and C, contradicting the given
condition that a disagreement was detected. Thus this case is impossible. O

The intuition for this proof is as follows: If A has detected a disagreement
with B, then A’s model of B did not include P (A’s plan). Because of sym-
metry, we assume that if two plans are not observably different, then they are
observably the same. In other words, if P,Q are not observably-different (by
B), then M(A,B/Q) 2 {P,Q}, and A would therefore have not been able to
detect the disagreement.

The assumption of symmetry in the definition of observably-different plans
is a strong assumption, and critical to the proof. With it, two plans are ei-
ther observably-different, or are observably the same when executed by the
agent. Without it, it would have been possible for A to detect a disagree-
ment with B even if B is not a key agent: For instance, if M(A, B/P) =
{P,R}, M(A,B/Q) = {Q, R} then B is not a key agent in P,@, and yet A

10
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(a) Centralized monitoring, (b) Centralized monitoring,
sound or complete, but not sound, in this paper.
both, in [21].

Figure 1: Illustration of centralized monitoring graphs. Non-filled dots indicate
key agents.

would have been able to detect a disagreement with it if A selects P and B se-
lects . This raises new questions as to upper bounds when this assumption is
removed, but we leave those for future investigation. Note also, that if all agents
are key-agents, then the centralized monitoring agent will end up monitoring all
team-members even with the new bound.

Figure 1 illustrates the significance of this new upper bound for centralized
monitoring. Figure 1-a shows an agent monitoring all others. Figure 1-b shows
the agent monitoring only key agents. Under the new upper-bound shown above,
the agent is still guaranteed to detect all failures it would have detected (using
maximal coherence) when monitoring all agents.

3.2 Distributed Disagreement Detection

We now consider the case of distributed monitoring settings, where team-
members monitor each other. It is easy to see that if the graph is connected,
and each agent knows ezactly the selection of its monitored peer, then sound
and complete detection is possible, in a distributed fashion, with very limited
connectivity: Each agent A monitors at least one other agent B (or is monitored
by another agent B). If A selects an internal state different from B, then at
least one of them would detect the disagreement immediately. If A monitors
B—and knows with certainty B’s state—then a simple comparison with A’s
selected state is all that is needed. Sound and complete detection means that at
least one team-members will detect a disagreement if one occurs, and no false
detections will take place.

A challenge is raised when the state of agents is not known to their monitors
with certainty. This occurs necessarily under conditions of limited connectivity:
Since monitors cannot perceive, sense, or communicate with all the monitored
agents, and do not have shared memory access to the monitored agents, they
necessarily have some uncertainty about their actions.

Fortunately, it is possible to show that under some conditions, having all

11



(a) Distributed monitoring, in [20]. (b) Distributed monitoring, in [21].

-«

(c) Distributed monitoring, in this pa-
per.

Figure 2: Nlustration of distributed monitoring graphs. Non-filled dots indicate
key agents. All cases allow for sound and complete disagreement detection.

agents take part in monitoring (distributed monitoring) allows for complete and
sound detection of coordination failures (in particular, disagreements). Intu-
itively, this happens when there is always a key agent to be found, for any
selected state. This condition is defined below:

Definition 4 (Observably-partitioned state-space). A state-space P is said to
be observably-partitioned if for any two states F;, P; € P there exists a key-agent
A;j. The set of these A;; agents is called the key agents set of P.

Kaminka and Tambe [20] have shown that if at least a single key agent exists
for every pair of team plans (i.e., the team employs an observably-partitioned
state-space), and if all team-members monitor all agents, then detection is not
only sound, but also complete (see Figure 2-a for illustration). Later on [21,
Theorem 4], the result was improved somewhat: All agents must monitor the
key agents only—all of them—and the key agents must monitor each other
(Figure 2-b).

The condition of an observably-partitioned state-space is often easy to sat-
isfy. For instance, teams are very often composed such that not all agents have

12



the same role in the same plan, and in general, roles do have observable dif-
ferences between them. Often, in fact, the set M (A, B/P) can be computed
offline, in advance; this allows the designer to identify the key agents in a team
prior to deployment. Furthermore, any agent can become a key-agent simply
by communicating its state to the monitoring agent and therefore eliminating
ambiguity; thus a team can use highly-focused communications to guarantee
detection. We leave further exploration of such dynamic creation of key-agents
to future work.

However, the requirement that all key-agents be monitored inhibits deploy-
ment of scaled-up applications. As the size of the team grows, limited connec-
tivity becomes more common, since agents become more physically and logically
distributed. Thus not all agents, and in particular not all key agents, will be
accessible for monitoring,.

The theorem below takes an additional step by providing more relaxed con-
ditions on the connected nature of the monitoring graph, in particular with
respect to the connectivity of the nodes representing key agents. These condi-
tions are: (i) every non-key agent selecting a state Py monitors a single key agent
for each possible pair of states involving Py (i.e., for each pair of states, where
one of the states is Py); and (ii) the monitoring sub-graph for all key agents for
a given pair of states forms a clique (i.e., key agents are fully connected between
themselves). This case is illustrated in Figure 2-c.

Theorem 2 (Clique Key-Agent Monitoring). Let T be a team, employing an
observably-partitioned state-space P, where: (i) Fach team-member A € T, se-
lecting a state Py, who is not a key agent for Py, P, monitors one key agent for
Py, Py; (ii) all key agents for a pair of states X, Z monitor all other key agents
for X, Z (forming a bidirectional clique in the underlying monitoring graph);
and (13) all monitoring carried out is complete, and uses mawximal-coherence.
Then disagreement detection in T is sound and complete.

To prove this theorem, we utilize two lemmas. The first has been presented
and proved in [21, Lemma 1], and we repeat it here for clarity:

Lemma 1 (Lemma 1, [21]). Let A1, A2 be agents who are monitoring each other
using the mazimal coherence heuristic. Suppose Ai, As are executing Py, P,
respectively, where Py # Py. Then Ay would detect a disagreement with As if
As is a key agent in Py, Ps.

Proof. See [21]. O

The second lemma (Lemma 2) is a weaker version of the theorem. Here, all
agents in team T are key agents (each, for at least one pair of states). Under the
other conditions of the theorem, we show that disagreement detection is sound
and complete.

Lemma 2. Let T be a team of agents, employing an observably-partitioned
state-space P. If every agent t € T is a key agent for some p1,pa € P, then
Theorem 2 holds.
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In other words, assume: (i) Each team-member A € T, selecting a state
p1 € P, who is not a key agent for pi1,ps € P monitors one key agent for
p1, p2; (it) all key agents for any pair p;, p; € P monitor all other key agents for
pi,p; (forming a bidirectional clique in the underlying monitoring graph); (i)
the team wutilizes an observably-partitioned state-space P; (iv) all monitoring
carried out is complete, and uses mazimal-coherence; and (v) Every agentt € T
is a key agent (there exist some pair of states p;,p; € P such that t is a key
agent for p;,p;. Then disagreement detection in T is sound and complete.

Proof. First, since all monitoring is complete and is done using maximal-
coherence, we know monitoring results are sound [21, Theorem 1]. We will
show that the monitoring results are complete. To do this, we show that if a
disagreement exists, it would be detected.

Assume for contradiction that a disagreement exists, and that it was not
detected by any agent. We consider the monitoring graph G of the team T,
and partition it into k partitions, such that each partition holds the vertices
corresponding to agents selecting the same state. The assumption (for contra-
diction) that a disagreement exists means that k£ > 2. Without loss of generality,
let us arbitrarily denote the states in these partitions p1,...,pr, and name the
partitions Py, ..., Py, respectively.

Let us pick any partition, and arbitrarily denote it X, and the state selected
in it z. Since G is connected, the partitions form a connected graph, though
not necessarily all partitions are connected to all others. Therefore, X must be
connected to a set of partitions Q1, ..., Qm, where g¢; € Pj,... Py, and 1 <m <
k. We denote the states of the partitions Q1, ..., Qm by ¢1, ..., ¢m, respectively.

We will first show that any agent a € X (any agent selecting state x) is not
a key agent for z,q;, 1 <1i < m. To see this, assume for contradiction that a is
key for z, q;. Pick an arbitrary agent b € );. There are two cases:

b is a key agent for z,q;, just like a. In this case a is monitoring b (because
all key agents for x,¢; monitor each other), and would detect a disagree-
ment with b (Lemma 1 above). Contradiction.

b is not a key agent for z,¢q;. Therefore, it must be monitoring a key agent
r for x,¢; (as required in the conditions of the lemma). Because all key
agents for x, g; monitor each other, a is also monitoring r. Since no dis-
agreement is detected, r could not have selected state g; nor =, and must
have therefore selected a different state y, where y # x, ¢;. Now,

e r cannot be a key agent for y, x, or otherwise a would have detected
a disagreement. Thus M (a,r/xz) N\ M(a,r/y) 2y, z.

e 7 cannot be a key agent for y, ¢;, or otherwise ¢ would have detected
a disagreement. This implies that M (b,r/q;) N M(b,r/y) 2y, qi-

But then, based on observer-independence, it follows that M (a,r/z) N
M(a,r/q;) = y # 0. This means that r is not a key agent for x,gq;.
Contradiction.
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The above leads the the conclusion that a cannot be a key agent for z, ¢;,1 <
1< m.

However, a condition of the lemma is that all agents in T are key-agents.
Thus a must be a key agent for some pair of states z,w € P. It must be that
3i, 4, st. z = ¢;, and w = gj, since the partitions for Z, W (Q;, Q;) must be
connected to X. Therefore, a is a key agent for ¢;, ¢;. But a is not a key agent
for z,q;, and is not a key agent for x, ¢;, as we have seen above. Therefore:

e a cannot be a key agent for x,g;. Thus M (b,a/x)NM(b,a/q;) 2 gi,x, for
any observing agent b.

e a cannot be a key agent for x,¢q;. Thus M(b,a/z) N M(b,a/q;) 2 g;,,
for any observing agent b.

But then, based on observer-independence, it follows that M(b,a/q;) N
M(b,a/q;) = = # 0. This means that a is not a key agent for ¢;,q; (z,w).
Contradiction.

Since in all possible cases the assumption that a disagreement exists but was
not detected leads to contradiction, necessarily all agents are in agreement, that
is k = 1. Thus it cannot be the case that two or more agents are in disagreement,
and none detects a failure. Therefore monitoring is complete, and since it must
be sound (see beginning of proof), the theorem holds if every agent is a key
agent. O

With Lemma 2 in place, we can now prove Theorem 2 by induction on the
number of agents in T2,

Proof. We will first show disagreement detection completeness by induction on
the number of agents N. The idea here is to show that if any two agents A;, Ao
have selected two different plans Pj, Py, where P; # P», then a member of the
team T will detect the failure. In other words, to show completeness we need
to show that if a disagreement occurs, it will be detected.

Induction base: Obviously if there is only one agent no disagreement can
occur, so we begin with the case of two agents, A1, As, who have selected plans
Py, Py respectively, where Py # P, and are therefore in disagreement. We
know that at least a single key agent exists for Py, P», because the team employs
an observably-partitioned set of plans. Without loss of generality, assume the
key agent is As. Then A; is monitoring it, and since As is key agent in Py, P,
then A; will detect the disagreement (Lemma 1).

Induction hypothesis: Assume the theorem holds for a team with up to
N — 1 agents. We will show that it holds for a team with N agents. There are
two cases:

2The proof was developed jointly with Michael Bowling [17].
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e Case 1: T has an agent ¢t which is non-key for all pairs of plans
X,Y. We examine Gy, the directed monitoring graph of T' (see Definition
1). Since the monitoring graphs of all key agents are connected, and
since all non-key agents are monitoring key agents, it follows that G is
connected. We examine the incoming and outgoing edges of the vertex
representing t. Since G is connected, ¢ has incoming monitoring edges
(t is monitored by other agents), or ¢ has outgoing monitoring edges (¢
monitors other agents), or both.

Let us now remove t from the graph. Since ¢ is a non-key agent in all
pairs of plans X, Y, it follows that removing it results in a reduced graph
G n_1 which satisfies the conditions of the theorem, for a reduced team of
only N —1 agents: (i) All other non-key agents are continuing to monitor
key agents (we have not modified monitoring edges from these other non-
key agents to key-agents); (ii) all key agents continue to monitor all other
key agents; (iii) the team still employs an observably-partitioned set of
plans—since the removal of ¢ did not change the set of key agents nor
the set of plans; and obviously (iv) monitoring is still complete and uses
maximal coherence. We are now left with a team of NV — 1 agents.

If Ay, As are within the N — 1 agents left, then the disagreement would
be detected (based on the induction hypothesis), and so we are done. If
no disagreement is detected, then it follows from the induction hypothesis
that no disagreement exists among the N — 1 agents, i.e., one of A;, As
is included within the N — 1 agents, and the other is ¢t. Without loss of
generality, assume ¢ = As. Then A;, executing P; is one of the N — 1
agents in the reduced team, and since they are not in disagreement with
Ay, they must all be executing P;. Let us now re-create the original graph
G, reintroducing t into the team by putting back the original incoming
and outgoing edges. Since t = A, it is executing P». And since it is
not a key-agent, it must be monitoring a key-agent for Py, P,. However,
this key agent must be executing P;. Therefore, t would have detected a
disagreement (Lemma 1).

e Case 2: T does not have an agent that is non-key agent for all
pairs of plan. Thus every agent is a key agent in some pair of plans
X,Y. Then the theorem holds for N agents based on Lemma, 2.

In all possible cases, a failure is detected if a disagreement exists, thus failure
detection is complete. Since monitoring is complete, failure detection is also
sound ( [21, Theorem 1]). O

This theorem allows teams to overcome significant connectivity limitations,
without sacrificing detection quality. It translates into significant freedom for
the designer or the agents in choosing whom (if any) to monitor; when a moni-
tored agent is unobservable, an agent may choose to monitor another: Non-key
agents need monitor only a single key agent, rather than all key agents (for
every pair of states).
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Figure 3: Monitoring graphs in a RoboCup simulation-league game situation.

The upper-bound the theorem provides is more general than may seem at
first glance. First, the theorem holds for any state feature of interest—beliefs
about a shared environment, goals, etc.; it is up to the designer to pick a moni-
toring technique that acquires the needed information for constructing the mon-
itoring hypotheses. Second, the theorem does not depend at all on the method
by which monitoring occurs, whether by communications or by observations.
Thus the connectivity of a monitoring graph does not have to be maintained vi-
sually. Some or all of the edges in the monitoring graph may actually correspond
to (possibly unreliable) communication links between agents.

Though this theorem represents a significant advance in lowering the bound
on the number of agents that must be monitored, all key agents must still
monitor each other. This is a critical constraint in practice. For instance,
we have reconstructed the visual monitoring graph in thousands of RoboCup
game situations, to find that even with this new bound, sound and complete
disagreement detection would have been possible without communications only
in small percentage (approximately 5%) of a game. Typically, each RoboCup
player can only see 2-3 key agents, this means that key agents cannot typically
monitor all others. To illustrate, Figure 3 shows the monitoring graph of two
teams overlaid on a screen-shot of an actual game situation. For both teams,
the bound presented in this paper does not apply to the monitoring graph, thus
sound and complete disagreement detection is not guaranteed. This empiric
constraint raises the bar on the challenge to find a lower bound on the number
of agents that must be monitored to guarantee detection.

It remains an open question whether a lower bound than that which is de-
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scribed above may be possible. We believe that it may be possible to guarantee
sound and complete detection in all cases where each key agent is either mon-
itored or is monitoring a single other key agent (rather than all of them), i.e.,
when the monitoring graph forms a spanning tree. This would equate the upper
and lower bounds on connectivity. In practice, it would translate to guarantee-
ing failure detection in over 70% of the thousands of RoboCup monitoring cases
we have examined. Below, we present this formally as a conjecture.

Conjecture 1 (Spanning-Tree Key-Agent Monitoring). Let T' be a team in
which: (i) Each team-member A executing a plan Py, who is not a key-agent in
Py, Py (where Py # Py) monitors a key agent in Py, Py; (ii) every key-agent for
a pair of plans X, Z monitors or is monitored by one other key-agent in X, Z
(if more than one exists); (iii) the team employs an observably-partitioned set
of plans; and (iv) all monitoring carried out is complete, and uses mazimal-
coherence. Then disagreement detection in T is sound and complete.

By allowing for limited connectivity, the agent can reduce the number of its
monitoring targets. However, for each one of those agents that it does monitor,
it must keep track of (possibly multiple) hypothesized states. These are used to
form joint-state hypotheses, from which the maximal coherent hypotheses are
selected. The next section details an efficient mechanism for the generation and
selection of such hypotheses.

4 Efficient Disagreement Detection

Disagreement detection involves a key step of representing the state of moni-
tored agents, such that the state of different agents can be contrasted to de-
tect disagreements. This section presents a method for doing this process effi-
ciently. Section 4.1 describes a general hierarchical representation of monitored
agents’ states, and a basic inference algorithm which uses the representation
for observation-based and communication-based monitoring. Section 4.2 then
presents YOYO, a novel algorithm for highly-scalable disagreement detection.

4.1 Representation

Much of contemporary theoretical and empirical work on teamwork (collabo-
ration), both in synthetic agents and in humans, has emphasized agreement
on a hierarchical recipe, or plan, as a key to effective teamwork (see, for in-
stance, [6,7,13,28,35]). Given this emphasis, we focus on a monitoring rep-
resentation that follows two key constraints: (i) representing agents in terms
of their currently executing plans (and plan-steps); (ii) allowing the designer,
or monitoring agent to mark plans that have to be agreed upon, so that they
are executed jointly (together) by all members of a team (or subteam). These
two constraints give rise to two structures that are used by the monitoring
system: A plan-decomposition hierarchy (recipe), and a team decomposition
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Figure 4: Plan-hierarchy (a) and team-hierarchy (b) in the RoboCup domain.
Boxed plans denote (sub)team plans, which must be agreed-upon by (sub)team-
members. Individual agents—each a subteam—are not shown.

hierarchy. These have been fully described in [19,28], and so we only provide a
brief overview here.

A plan-hierarchy is used to represent a monitored agent’s plan. It is defined
to be a directed connected graph, where vertices are plan steps, and edges signify
hierarchical decomposition of a plan into sub-plans. Each vertex has at most
one parent (i.e., one incoming hierarchical decomposition edge); a plan that
conceptually has many parents (i.e., it is a component in the decomposition of
different parent plans) is represented as multiple instance vertices in the plan-
hierarchy. Multiple outgoing edges signify alternatives available to the agent,
of the first subplan to be executed. The graph forms a tree along hierarchical
decomposition edges, so that no plan can have itself as a descendant. A vertex
with no children edges denotes an atomic step.

For example, Figure 4-a presents a portion of the plan-hierarchy used to mon-
itor the ISIS’97 RoboCup Simulation team [24]. The top-level plan, WING AME,
is selected by all players as soon as they join a game. It has one first child, the
INTERRUPT plan, which is assumed to be selected by the agent whenever the
game is interrupted by the referee. WINGAME’s other child, PLAy, follows IN-
TERRUPT in order of execution, and is selected when the game is currently
playing. Thus INTERRUPT and PLAY follow each other to the end of the game.
In service of PLAY, players choose a plan (ATTACK, DEFEND, etc.) based on
their role in the team: forwards, defenders, etc. (discussed later). This decom-
position continues. For instance, at a particular given moment, a forward may
be monitored to be engaged in executing the following path (from root to leaf):
WINGAME — PLAY — ATTACK — SIMPLE-ADVANCE — SCORE-GOAL.

In order to detect disagreements, the monitoring agent must first know which
plans are ideally to be agreed upon. We assume that such team plans are
known, e.g., because they are marked in advance by the designer [13,18,28,35].
In Figure 4-a, team plans are boxed: WINGAME, PLAY, and INTERRUPT are
to be executed by the all members of the RoboCup team ISIS’97. MIDFIELD,
DEFEND, etc. are to be executed jointly only by members of the corresponding
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subteams of ISIS’97 (midfielders, defenders, etc.).

To maintain knowledge of which teams are assigned to which plans, there
are pointers from each plan to nodes in a team hierarchy (Figure 4-b), used
to track which sub-team is associated with each plan step (and vice versa).
The team hierarchy is a tree structure which encodes knowledge about the
relationships between teams, subteams, and team-members: Each node in the
team-hierarchy corresponds to a monitored organizational unit. The top (root)
team represents the entire monitored team. These teams are then split into
several subteams, etc., until the leaves of the hierarchy contain roles of individual
agents, if they exist. For instance, Figure 4-b presents the team-hierarchy of
the ISIS’97 RoboCup team [24], composed of a root node for the entire team,
and four nodes for its four subteams. Within subteams, members do not have
different roles, and choose sub-plans for individual execution, with no social
constraints on their selection (not shown in Figure 4-b).

4.2 Efficiently Detecting Disagreements

The monitoring agent uses the plan hierarchy to maintain its information on the
state of the monitored agent. Such information can come from communications
[3,19], e.g., where agents announce their initiation or termination of selected plan
steps; or it may come from plan-recognition inference based on observations
of the other agent’s actions [10,21]. An algorithm for such inference, called
RESL, has been previously described in [21] and is presented here briefly: The
designer of the monitoring system associates with each plan a set of observables,
condition monitors that tie in sensor readings and received communications with
particular plans in the hierarchy. When a condition monitor matches the sensor
reading (e.g., when a message is received that is consistent with a plan, or when
an action associated with a plan is observed), we tag the plan matching. If its
observables fail to match, the plan is tagged not-matching.

RESL infers the state of unobservable plans from their children and parents:
An otherwise untagged parent with at least one successfully-matched child is
tagged matching, otherwise it is tagged as failing to match (not matching). And
an untagged child with a successfully-tagged parent is tagged matching, unless
all of its own children are tagged as failing to match. In this way, all plans in the
hierarchy are tagged as matching or not-matching the observations. Multiple
matching siblings denote multiple hypotheses. The process is linear-time in the
size of the plan hierarchy.

After hypothesizing the state of each agent based on received or observed in-
formation, the monitoring agent matches team plans across members of teams—
if agents are in agreement about their selected team plans, then all is well. If
agents are not in agreement about their team plans, then a disagreement is
announced. Note that agents do not have to be in agreement about all plans—
only about those plans that are marked as team plans. Furthermore, the plan-
hierarchies used for different agents may themselves be different (other than in
the team plans), facilitating monitoring of behaviorally-heterogeneous agents.
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This method has been successfully used in monitoring agents deployed in Mod-
SAF [36], RoboCup [24], and civilian evacuation simulation [28].

However, a difficulty emerges in applying this technique in monitoring a
large number of agents. While only a single maximally-coherent hypothesis
is needed, the total number of joint-state hypotheses combinatorially explodes
in the number of agents. If we denote the size of the plan library by L and
the number of agents by N, the number of joint-state hypotheses is O(LY) in
the worst case. Moreover, the space requirements for reasoning also pose some
difficulty, as an array of plan-libraries (one for each agent) requires O(NL)
space.

To address the challenges raised by the time and space complexity of previ-
ously known techniques, we present YOYO, an algorithm that utilizes knowledge
about the team organization to carry out disagreement detection in time and
space linear in the number of agents. The intuition behind YOYO is to represent
only coherent hypotheses (of which there is a linear, not exponential, number),
and then recognize disagreements as cases where the representation fails. As
discussed in Section 2, YOYO is based upon earlier work on the YOYO* prob-
abilistic plan-recognition algorithm [19], but differs from it in several important
ways.

YOYO represents all agents together, in a single shared plan hierarchy. The
shared plan-hierarchy is fully expanded to contain the plans and transitions
for all subteams, annotated so that YOYO can determine which subteam is to
take which transitions, execute which plans, etc. A plan P in this hierarchy,
when tagged as matching, represents the hypothesis that all agents in the team
associated with P are executing P. Observations about agents are then matched
against the shared plan-hierarchy. Intuitively, the process of detection proceeds
as follows: If some team members are executing P, while others are executing
a different plan ), and assuming the observations allow us to differentiate P, Q
then both will be marked matching and not-matching at the same time, and we
will know that a disagreement has occurred.

However, members of different subteams execute different plans by design.
Therefore, YOYO needs to differentiate cases where members of the same team
have selected different plans P, @, and cases where members of different teams
have selected P, Q. To do this, YOYO exploits knowledge of the social struc-
ture within the monitoring system, as provided in the team-hierarchy described
above.

YOYO maintains pointers from each node in the team hierarchy to plan-step
nodes in the shared plan-hierarchy. The plans pointed to are the hypothesized
coherent plans of the monitored team, and thus multiple pointers are allowed
from a single team-hierarchy node. The pointers in the team-hierarchy point at
the lowest-level plans that are consistent with the observations, and are to be
executed by the team in question.

For example, suppose all RoboCup players are executing the PLAY plan
together, and that members of each subteam are in agreement with their team-
mates on the plan chosen for the subteam. A player that observes its team-
mates using the team- and plan-hierarchies in Figure 4 will have pointers from
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the ISIS’97 node in the team hierarchy (Figure 4-b) to the PLAY plan in the
plan-hierarchy (Figure 4-a). Each of the subteam nodes in the team-hierarchy
will have pointers to plans in the plan-hierarchy which are executed by the
different subteams. For instance, the Forwards subteam may have a pointer
to the SIMPLE-ADVANCE plan, signifying that all members of the subteam are
executing this plan.

YOYO (Algorithm 1) maintains the pointers such that the hypotheses they
represent are coherent with each other at all times. If it fails, then this means
that the team’s state is unambiguously incoherent, i.e., a disagreement exists.
YOYO operates as follows: When an observation is made about an agent (called
the focus), we not only update the pointers for this agent, but also re-align the
pointers of its parent (sub)teams, such that their own pointers point at plans
that are coherent with the new hypothesized state of the focus. We then go up
and down the team-hierarchy to re-align the pointers of the other agents which
are either part of the focus’ subteam or its siblings’ subteam. This is done
by moving the pointers of non-focus agents (and the subteams of which they
are members) such that they point at a plan that is coherent with the plans
hypothesized for the focus. If the initial set of pointers for any non-focus agent
is already coherent, no re-alignment is necessary. If no plan can be found for
them, or if all plans for a team are tagged both matching and not-matching at
the same time, then a state of disagreement has been detected.

Algorithm 1 YOYO(plan hierarchy L, team-hierarchy H)

1: for all observations O; at time ¢t do

2:  for all plans X that have conditionals testing O; do
3 let A; be the agent observed in O;

4 if X matches O; and X executable by A; then
5: tag X as matching

6: create pointer from A; node (in H) to X

7 else

8 tag X as not matching

9: for all plans X tagged matching or not matching do
100 T «—team(X), P — X

11:  while parent(P) # null do

12: propagate any tags to parent(P) (match or not match)
13: if team(parent(P)) = parenticqm (T) then

14: propagate tags down to untagged plans

15: create pointer from parentieqm (T) to parent(P)

16: T «— parentieqm (T)

17: P — parent(P)

18: for all teams 7" in H do
19:  if T only points to plans matching and not matching then
20: a disagreement has occurred.

For example, suppose that the players are known to be executing the IN-
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TERRUPT plan (see Figure 4). Suppose now that a defender observes a forward
player running towards the opponent goal (i.e., executing the ATTACK plan, in
service of PLAY). The defender tags INTERRUPT as matching, and PLAY as not
matching (based on its own selected plans). However, YOYO (executed by the
mounitoring defender) will create pointers for observed attacker to point to the
ArTACK plan (lines 1-8), and will tag other plans (in particular INTERRUPT)
as not matching. It will then enter the loop on line 9. For the ATTACK plan, it
will propagate its successful tag up to the PLAY plan (line 12), and then create
a pointer from the root node in the team hierarchy, representing the ISIS’97
team (the root in Figure 4-b) to PLAY, since the team that executes PLAY is
the ISIS’97 team (the parent of the the Forwards subteam). It will then climb
up in both hierarchies (lines 16-17) and begin another iteration. Later on, the
same process will be repeated for the INTERRUPT plan. Since both INTERRUPT
and PLAY are pointed to from the node representing the team ISIS’97, and
since they are both tagged matching and non-matching, a disagreement will be
detected.

YOYO uses minor enhancements of the data-structures as used by RESL.
First, in following children transitions, YOYO is careful to only take paths legal
to the team in question (i.e., plans and transitions that the team is allowed to
execute in its role): It thus makes the assumption that transitions in the plan
hierarchy are marked for the subteams that are allowed to take them. Sec-
ond, YOYO must use a time-stamp to tag plans®, so that observations that
arrive simultaneously (but processed serially) will cause a detection of disagree-
ments (if one exists), instead of overwriting the effects of each other. Per the
example above, if the monitoring defender observes another forward to be exe-
cuting INTERRUPT, while the first forward is executing PLAY, then the inference
process for the two observations would tag these plans as both matching and
not-matching at the same time, and a disagreement would be detected.

YOYOr’s first part matches plans against all observations (lines 1-8), and
thus takes O(INL), where N is the number of agents (generating observations),
and L the size of the plan-hierarchy (i.e., number of nodes). The nested loops
potentially traverse the entire plan-hierarchy O(L) for each team. Since the
team-hierarchy grows with NV, we use that to denote its size; a traversal of the
team-hierarchy is O(N). The propagation down in line 14 may still traverse
the entire O(L) plan-hierarchy (in a theoretical worst case). The process thus
takes O(NNL?). Finally, the disagreement detection goes from every team in the
team-hierarchy to every plan (in the worst case), thus O(NL) again. Overall,
YOYO'’s complexity is O(NL?). The key to this complexity is that YOYO only
maintains coherent hypotheses. If it cannot, then a disagreement has occurred—
but YOYO does not represent the underlying incoherent hypothesis. This time
complexity should be contrasted with RESL’s O(LY). YOYO'’s space complex-
ity also compares well with RESL: With each additional agent, YOYO’s space
requirements grow by one node in H, at most, to represent the additional agent.
In contrast, RESL uses an additional copy of the entire plan hierarchy for every

3The time is taken to be local to the agent running YOYO. No need for a global clock.
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additional agent.

However, YOYO’s run-time complexity is still dominated by a key factor—
the number of observed monitored agents: As long as simultaneous observations
are coming in about agents, YOYO still needs to process all of them, much like
the full array approach. Thus the bounds presented in the previous section play
a significant role in reducing overall run-time, regardless of whether RESL or
YOYO are used.

5 Experiments

To evaluate the efficacy of the YOYO algorithm, we empirically compare the
run-time performance of RESL and YOYO on identical monitoring problems, as
the number of monitored agents is scaled up. Trials were carried out in several
different simulated domains:

ModSAF. The ModSAF environment is a commercially-developed high-
fidelity simulation system, which was used as the environment for
coordination-failure experiments in [20,21]. In the original system, teams
of 3-6 simulated helicopters utilized (individually) a plan-hierarchy (as
described above) to execute training exercises. In this paper, we re-
created the principal components of the plan-hierarchy, encompassing four
sub-hierarchies, with ambiguity between them (i.e., more than one path
through the plan-hierarchy would match a given observation).

RoboCup. The ISIS’97 and ISIS’98 RoboCup Soccer Simulation teams [24]
employed a plan-hierarchy used by the agents to play virtual soccer. In
this paper, we re-created again important (and ambiguous) portions of
their plan-hierarchies.

RoboCup Simple. We revisited the plan-hierarchy for the RoboCup domain
above, but removed any ambiguity. Thus observations lead to selecting
a single correct hypothesis, with no need for reasoning about multiple
hypotheses. The motivation for using this domain is to show the effect of
ambiguity on run-time in both cases. It is not intended to be realistic, but
allows exploration of the performance boundaries of RESL and YOYO.

In each trial, the number of monitored agents was fixed, and then a moni-
toring problem (given by the observables available to the monitoring agent) was
randomly generated. We recorded RESL and YOYO'’s execution time (matching
observations, inference, and disagreement detection). For accuracy, we recorded
actual CPU time, rather than wall-clock time. 30 trials were done for each fixed
number of agents. The number of agents was varied between 2 and 3000, in
skips of 10.

Figures 5 and 6 show the results of these experiments in the ModSAF and
RoboCup domains, respectively (see below for the results in the RoboCup Simple
domain). The X axis in both figures denotes the number of agents monitored
(from 2 to 3000). The Y axis shows the average run-time in CPU seconds, for
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running the disagreement-detection algorithm on a single trial. Figures 5-a and
6-a show the run-time of YOYO and RESL on a scale appropriate for RESL’s
performance (hundreds of seconds). Since it is difficult to see the results for
YOYO on such scale, Figures 5-b and 6-b show the same figures, on a scale
appropriate for YOYO—approximately 3 orders of magnitude smaller.

The RoboCup Simple domain shows different results. Here, there is no un-
certainty in the domain, as observations correspond uniquely to plans within
the plan-hierarchy. As a result, much of RESL’s machinery for tracking multi-
ple hypotheses is not used. Figure 7 shows the run-time results in this domain;
each point is an average of 300 runs. The axis are the same as in the previous
figures (though we skipped 50 agents at a time in varying the number of agents).
However, note here that due to the lack of ambiguity, RESL’s run-time is almost
comparable to YOYO’s (though YOYO is still faster). The small difference be-
tween RESL and YOYO in this domain is likely due to the overhead in RESL’s
maintenance of multiple plan-hierarchy structures: Where RESL updates N
structures (each with a single hypothesis), YOYO updates one.

The difference in performance between YOYO and RESL in the different
domains is not just a function of YOYO’s maintenance of a single structure
(rather than the N structures maintained by RESL). It is also due to the fact
that it considers only coherent hypotheses, of which only a linear number (in
the size of the plan hierarchy) exist.

6 Discussion and Future Work

Multi-agent literature has often emphasized that an agent must monitor other
agents in order to carry out its tasks. However, as the numbers of agents in
deployed teams is scaled up, the challenges of limited connectivity and an ex-
ponential number of potential failures are raised. This paper has addressed
these challenges, in the context of a critical monitoring task—detection of dis-
agreements between teammates. First, the paper has shown that by carefully
constructing the monitoring graphs of the system—who is monitoring whom—
one can make guarantees on the quality of disagreement detection, while re-
ducing the connectivity requirements on the agents. Second, we have presented
YOYO, a highly-scalable algorithm that provides disagreement detection even
in large-scale teams.

Our work in this paper is only one example in a growing body of liter-
ature that considers large-scale systems [33]. There are challenges that are
independent of those discussed above: Reducing the load on the monitor-
ing agent [5], formal methods and data-structures for representing large-scale
organizations [16], planning and execution with large-scale systems [38], etc.
Our work in this paper complements these. For instance, Durfee [5] discussed
decision-theoretic and heuristic methods for reducing the amount of knowledge
that agents consider in coordinating. Thus, while Durfee’s work focuses on
reducing computational loads in monitoring each single self-interested agent,
our work focuses on reducing the number of monitored agents, and on savings
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(b) RESL and YOYO (Y-axis limited to 1 second).
marks the number of agents monitored; the Y axis denotes computation time

Figure 5: RESL and YOYO run-times in the ModSAF domain. The X axis
in CPU seconds. Note that the range of the Y azis is different in (a) and (b).
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time in CPU seconds.

possible only when monitoring teams together.

Recent work on model-based diagnosis has also begun to address limited
connectivity, though indirectly, and only to a limited extent. Work by Roos et
al. [31,32] has examined the use of model-based diagnosis by agents diagnosing
a distributed system. While the methods describe do not address coordination
failures, they are certainly relevant in terms of discussing the type of connectivity
assumptions required for the diagnosis to work. Our recent work [14,15] on the
use of model-based diagnosis of disagreements also limits connectivity: A key
focus is on using only a handful of agents to represent all others in the diagnosis
process, thus limiting run-time and communication load.

Key issues and assumptions remain open for future investigation. With
respect to the monitoring bounds presented in Section 3, there remain questions
as to the satisfaction of the assumptions in practice. We argue for both sides: On
one hand, any agent broadcasting its state to its peers is a key agent. And indeed
many real-world systems utilize communications to alleviate uncertainty; any
such system can now utilize the bounds to manage key agents better, by focusing
such broadcasts where absolutely required. Moreover, the conditions discussed
in the paper only constrain the types of graphs that will guarantee complete and
sound detection: They apply for both static and dynamic monitoring graphs.
Nevertheless, it is certainly the case that we should continue to seek improved
bounds, and/or weakened assumptions.

YOYO also leaves open questions. YOYO works with a known set of
team /subteam plans; and its run-time complexity involves the size of the plan-
hierarchy. It thus expects a closed system, with a manageable plan-hierarchy.
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But as systems grow in the number of agents, they may require working with
an open plan-hierarchy, that can change as agents are added or removed from
the system. Moreover, if the scale-up is not only in the number of agents, but
also in the size of the plan-hierarchy, then this will affect the scalability of the
system. Finally, YOYQ’s scalability comes at the expense of the ability to rep-
resent failure hypotheses: When a disagreement is detected, YOYO knows that
it has occurred, but cannot directly identify what agents are involved, or the
extent of the disagreement. Thus for diagnosis tasks [14,15], YOYO has to
be augmented by mechanisms that allow the monitoring agent to reconstruct
the hypotheses underlying the disagreement. We hope to address these open
questions in future work.
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