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1 IntrodutionAgents in realisti environments sometimes fail to maintain their ommitmentsto others. This an our due to sensor and atuator unertainties, or (possiblyintermittent) ommuniation failures. It may also our due to the nature ofdynami, omplex domains, whih an hallenge the agent's design in unanti-ipated environment states, e.g., in industrial systems (e.g., [13℄), and virtualenvironments (e.g., [24, 29, 30, 35℄).Agents must therefore monitor others to asertain that their ommitmentsare maintained, and to detet oordination failures when they our (see e.g.,[2, 5, 6, 12℄; additional works are disussed in Setion 2). Indeed, a numberof investigations have explored mehanisms for deteting (and responding to)failures in oordination and teamwork [3, 8, 20�22,27, 37℄.Large-sale multi-agent systems�where the number of agents is the prinipalsale fator�pose a number of hallenges to the existing monitoring tehniques.First, agents in large-sale systems beome physially and logially separated,and thus less able to diretly monitor eah other (the limited onnetivity hal-lenge). However, existing approahes often rely on being able to monitor allagents, either by ommuniations or observations. Seond, the number of pos-sible failures grows ombinatorially in the number of agents, with all possibleinterations. Thus approahes that searh through failure hypotheses do notsale well. We disuss these hallenges and previous work in detail in Setion 2.This paper addresses these hallenges in depth, in the ontext of detet-ing disagreements, a prinipal failure in multi-agent teamwork. Theoretialand empirial researh on teamwork in humans (e.g, [1℄) and in synthetiagents [2,6,13,23,35℄ stresses agreement as a ornerstone to e�etive teamwork(although di�erent terms are used in grounding agreement in various theoretialand pratial onstruts). Thus disagreements are a soure of great onern inall of these di�erent investigations (see Setion 2 for details).We make two ontributions. First, we takle the hallenge of limited on-netivity by providing new bounds on the agents that must be monitored in ateam to detet disagreements. Previous work has shown analytially that dis-agreement detetion an sometimes be guaranteed if all team-members monitorall of ertain key agents in the team [21℄, in a distributed fashion. However, inpratie, limited onnetivity restrits the usefulness of this bound, as often notall key agents an be observed or ommuniated with. To address this, we showanalytially that sound (i.e., no false positives) and omplete (no false negatives)detetion an be guaranteed in pratie even if other agents monitor just onekey agent; however, all key-agents must still monitor eah other. In addition,we show that monitoring only key agents is an also a su�ient ondition in theentralized monitoring ase, where a single agent is monitoring all others. Suhmonitoring is guaranteed to be sound, and detet any disagreement that wouldhave been deteted had the entralized monitoring agent monitored all others.Using the tehniques presented, a monitoring agent an detet failures in largeteams, involving thousands of agents. The assumptions underlying the boundsan often be met in pratie, simply by allowing an agent to beome a key agent2



by broadasting its state to its peers. In suh real-world setting, the boundsan serve to fous suh broadasts and redue them to a minimum.Seond, we present YOYO, a disagreement-detetion monitoring algorithm,whih navigates the (potentially exponential) spae of monitoring hypothesesby representing only hypotheses in whih all agents are in agreement. Thisallows YOYO to represent the relevant state of all monitored agents together,in a highly salable struture, and e�iently detet situations in whih theagents are in a state of disagreement. YOYO an be used to provide sounddisagreement detetion apabilities. It is an example of a Soially-Attentivemonitoring algorithm, exploiting knowledge of the soial relationships in themonitored team. We present an empirial evaluation of YOYO in monitoringproblems involving thousands of agents.This paper is organized as follows. Setion 2 disusses related work. Setion3 presents new bounds on the number of agents that must be monitored. Setion4 presents the YOYO algorithm. Setion 5 presents the results from experimentsin using YOYO. Setion 6 onludes with a disussion of the appliability of thepresented ontributions, and future diretions for this work.2 Motivation and BakgroundWe use the term limited onnetivity in a general sense to desribe the phe-nomenon where an agent annot observe, sense, or ommuniate with its peers,due to proessing and bandwidth limitations. Limited onnetivity is only oflittle onern in small-sale systems. Given a few yles, agents an typiallyintegrate multiple pereptions, over time, to assess what their peers are up to.However, as the number of agents grows, the ability to integrate suh informa-tion over time diminishes rapidly [38℄. For instane, existing peer-to-peer (P2P)systems inlude millions of ative nodes. Yet not one node is able to ommuni-ate diretly with all of its peers at one, due to both bandwidth and proessingpower issues. Even spreading the e�orts over time will not be su�ient inpratie.Limited onnetivity adversely a�ets the ability of an agent to monitor itspeers and to detet oordination failures. Beause of limited onnetivity, themonitoring agent is not able to orretly assess the state of its teammates, andthus will neessarily fae some unertainty as to their state, and by impliation,as to the existene of a oordination failure. Yet few bounds and few tehniquesare known for monitoring with limited onnetivity.Most losely related to monitoring with limited onnetivity is our own pre-vious work on entralized and distributed oordination failure detetion. In [20℄,we introdued the notion of key agents, whose observable behavior is su�ientlyunambiguous to an observer suh that they an be used to detet failures evenunder onditions of unertainty. The same work also showed that in the dis-tributed ase, if all agents monitor eah other and there are su�ient key agents,failure detetion will be guaranteed [20℄. Later, the result was extended to showthat in fat only the key agents had to be monitored in the distributed ase,3



thus allowing for redued onnetivity [21℄. Our work in this paper lowers thisupper-bound further (see Setion 3). However, our work here is spei� todisagreements.A seond important hallenge with large-sale multi-agent systems is raisedby the number of monitoring hypotheses that must be proessed. As a multi-agent system grows in the number of agents, so does the the number of potentialoordination failures it may ontain. Suppose eah of N agents may be in oneof k internal states. Then the number of possible joint states is kN . In loosely-oupled systems, eah agent is essentially independent of its peers, and mayselet between its k possible states freely. In suh systems, the vast majority ofjoint states�if not all�are onsidered valid states. However, in a oordinatedmulti-agent system, the seletion of an internal state by an agent is dependenton the seletions of its peers. In other words, agents move between joint statestogether; Only a limited portion of the spae of joint states would be valid, fromthe designer's perspetive. Thus most joint states may in fat be invalid from aoordination point of view.Agreement is a good example of suh tightly-oupled oordination. Team-work literature emphasizes the importane of team-members being in agree-ment on various features of their state, suh as goals, plans, and beliefs1[2, 6, 7, 13, 18, 23, 35℄. Sine the objet of the agreement is irrelevant for ourpurposes in this paper, we will use the term state to denote the internal state-feature of the agent whih is the objet of the agreement (e.g., a belief in aproposition p, a plan p, an intention, et.). Suppose a team of N agents agreesthat their seletion of internal state would be synhronous, i.e., for every seletedstate of one agent, all others must be in some agreed-upon internal state. Therewould be O(k) valid agreement joint states, and the rest of the kN joint stateswould be onsidered invalid�oordination failure�states. Thus large-sale sys-tems where agents oordinate fae a large exponential number of possible faults,and only a limited set (by omparison) of valid states.Despite the muh greater number of possible failure states, many of theapproahes proposed in the past for oordination failure detetion rely on enu-merating possible faults. Klein and Dellaroas [3,22℄ have proposed a entralizedapproah to deteting failures (whih they refer to as exeptions). Their workutilizes agent sentinels, whih ommuniate with the agents in the system toidentify their state or ations, and report on it to a entralized fault detetionsystem. This fault detetion system then mathes the reported informationagainst oordination fault-models, for detetion. These are generated o�ine, bymanual analysis of domain-independent oordination models. The fault modelsand their use do not address limited onnetivity, ambiguities in agent states,nor failures in the sentinel system. However, they are demonstrated over a largerrange of failures (this paper only overs disagreements).More reently Platon et al. [25, 26℄ have systematially and methodiallyexamined di�erent types of agent failures (exeptions), as well as resulting o-1Of ourse, the literature also addresses other ritial features of teamwork aside fromagreement. But agreement is a repeating theme.4



ordination failures and their auses (e.g., those due to agent death, knowledgeinonsistenies, et.). They propose a number of ways for integrating failurehandling apabilities into the agent arhiteture. We do not investigate theseissues in this paper.A di�erent�distributed�approah is taken by Horling et al. [8, 9℄. Theypresent an integrated failure-detetion and diagnosis system for a multi-agentsystem in the ontext of an intelligent home environment. The system usesthe TAEMS domain-independent multi-agent task-deomposition and model-ing language to desribe the ideal behavior of eah agent. The agents are alsosupplied with additional information about the expeted behavior of the en-vironment they inhabit under di�erent onditions, and their role within themulti-agent organization. A distributed diagnosis system, made of diagnosisagents that use fault-models, is used to identify failures in omponents (suhas erroneous repeated requests for resoures) and ine�ienies (suh as over-or under-oordination). Multiple diagnosis agents may use ommuniations toinform eah other of their ations and diagnoses. The fault-models are usedin planning monitoring ations, in identifying failures responsible for multiplesymptoms, and in guiding reovery ations. Like similar works above, this workdid not address onnetivity onerns.A key issue with fault-model approahes is their salability, given that thenumber of possible faults in large-sale multi-agent systems is likely to be ex-ponential. Some have addressed this by fousing on general failure onditions.As an example, Wilkins, Lee, and Berry [37℄ o�er an exeution monitoring ap-proah whih enompasses both oordination and task-exeution failures. Theirwork introdues a taxonomy of generi failure types, whih must be adaptedand speialized to the domain and task. Agents responsible for monitoring relyon ommuniated state reports from the monitored agents to identify failures.While experiments with the system were arried out only on relatively smallmulti-agent systems, the modeling of the failures shows example of how fault-models an be su�iently non-spei� so that they may be reused in larger-salesystems. For instane, the fault models inluded distane failures (units gettingtoo lose), whih are triggered when an adversary gets loser to a friendly unit).It does not matter who the adversary or friendly units are, nor their spei�loation, et. The use of suh general fault-models, however, diminishes fromthe ability to detet omplex or spei� failures.A ommon theme running through the fault-model approahes above is thatthey utilize ommuniations or diret observations to aquire knowledge as tothe state of monitored agents, and typially require knowledge of all agents,thus ignoring limited onnetivity. This is a potentially limiting fator in theiruse in large-sale networks, where limited onnetivity will neessarily lead tounertainty in monitoring. Moreover, in many domains, even diret monitoringof another agent may involve some unertainty. In partiular, a monitoringagent may entertain several hypotheses as to the true internal state of anotheragent. However, these approahes often ignore suh unertainty.In ontrast to the fault-model approahes disussed above, we advoate amodel-based approah, in whih a model of the orret behavior of the agent5



is used to detet failures, by noting disrepanies between ideal and atualbehavior. Earlier work taking this approah to detet disagreements [20, 21℄ontrasts with the work in this paper in terms of the run-time omplexity ofsearhing through the hypotheses spae to determine if a oordination failureourred. Both earlier investigations relied on a plan reognition algorithm(RESL) whih modeled eah individual agent separately. While omputing theindividual hypotheses using RESL an be done in time O(NL), where L is thesize of the state-spae of a single agent, and N the number of agents, extratingthe hypotheses an take exponential time O(LN ). However, RESL an be usedin priniple to detet many kinds of oordination failures, and allows eithersound or omplete disagreement detetion (in the entralized ase). In ontrast,YOYO, presented in this paper, runs in time O(N +L), but supports only sounddetetion in the entralized ase.Poutakidis et al. [27℄ have utilized Petri-net representation of interationprotools to entrally detet interation failures, where agents fail to follow theprotool in their onversation with others. This work does not address limitedonnetivity, in that it assumes all messages from all agents are observable.Although Poutakidis et al. allow for multiple monitoring hypotheses to o-exist,they do not provide a method for seleting hypotheses suh that soundness orompleteness is guaranteed. In ontrast, our work in this paper addresses bothentralized and distributed monitoring settings, addresses limited onnetivity,and provides guarantees on the detetion results.
RESCteam [34℄ is a multi-agent plan-reognition sheme whih impliitlyuses oherene as a key onstraint in representation. RESCteam representsonly a single oherent hypothesis, while YOYO represents all oherent hy-potheses. However, RESCteam an reason about the assignment of agents toroles/subteams, while YOYO assumes this knowledge is given a-priori.YOYO is a variant of YOYO*, a probabilisti team plan-reognition algo-rithm, used for overhearing [19℄. In ontrast to YOYO*, YOYO is symboli,has better run-time omplexity, and targets detetion. However, it fails at tasksin whih the previous algorithm an exel (e.g., in overhearing).One a failure is deteted, it needs to be diagnosed and resolved. Kalehand Kaminka [15℄ have addressed model-based diagnosis of oordination failures.Roos et al. [31, 32℄ have addressed model-based diagnosis of non-oordinationfailures in multi-agent systems. Horling et al. [8℄ use the fault-deteting ausalmodel for diagnosis and subsequent reovery ations. Reently, there is alsowork on diagnosis in large-sale systems [14℄.3 Monitoring Graphs and Limited ConnetivityA key question is how to guarantee failure-handling results while limiting thenumber of agents that must be monitored. The approah we take to this involvesthe onstrution and analysis of monitoring graphs, whih represent informa-tion about whih agent an monitor whom. We show that for disagreementdetetion, one an set onditions on the struture of the graph whih, when6



satis�ed, guarantee that detetion is omplete and/or sound, under onditionsof unertainty. Complete detetion guarantees all failures will be deteted (i.e.,no false negatives). Sound detetion guarantees only failures will be deteted(i.e., no false positives). We separate disussion of entralized and distributedmonitoring settings.We begin by formalizing the notion of a monitoring graph (De�nition 1).We will use this onstrut throughout the paper.De�nition 1. A monitoring graph of a team T is a direted (possibly yli)graph in whih nodes orrespond to team-members of T , and edges orrespondto monitoring onditions: If an agent A is able to monitor an agent B (eithervisually or by ommuniating with it), then an edge (A, B) exists in the graph.We say that monitoring graph is onneted, if its underlying undireted graphis onneted.If the monitoring graph of a team is not onneted, then there is an agentwhih is not monitored by any agent, and is not monitoring any agent. Obvi-ously, a disagreement an go undeteted in suh a team: If the isolated agenthooses a state di�erent from what has been agreed upon with its peers, itwould go undeteted. Thus a onnetivity lower-bound for deteting disagree-ments (indeed, any kind of oordination failure) is that the monitoring graphmust be onneted.However, onnetivity by itself is insu�ient. Unertainty an also havesigni�ant impat on the results of monitoring. When an agent A monitorsan agent B, it may often entertain multiple hypotheses as to the state of B.Suppose B's state is P (for instane, P is a plan seleted by B). We denote by
M(A, B/P ) the set of agent-monitoring hypotheses that A onstruts based onommuniations from B, or inferene from B's observable behavior (i.e., via planreognition). In other words, M(A, B/P ) is the set of all A's hypotheses as to
B's state, when B's state (e.g., seleted plan) is P . Note that when A monitorsitself, it has diret aess to its own state and so M(A, A/P ) = {P}. We usethe shorthand M(A, B) to denote the hypotheses set of B's urrently seletedstate. In this work, we assume observer independene: M(A, B) = M(C, B) forany agents A, C.To see the impat of unertainty, suppose an agent A has seleted state P1,and is monitoring another agent B that has seleted state P2. A disagreementexists here sine agent B should have seleted P1. However, sine the internalstate of B may not be known to A with ertainty, A may have several interpre-tations of B's hosen state. The set of these interpretations may ontain P1, inwhih ase A may ome to inorretly believe that B is also exeuting P1, andthat therefore no disagreement has ourred. Indeed, if the set of hypothesesinludes both P1 and P2, then A may or may not detet the failure, dependingon the hoie it makes.This problem is exaerbated when monitoring a team ontaining multipleagents. A team-monitoring hypotheses set for a given team T with n is the7



ross-produt of the individual hypotheses sets:
M(A, T ) = M(A, a1)×M(A, A2)× . . .×M(A, an)Suppose A is monitoring itself (as a member of the team, exeuting P ), andagents B, C. If M(A, B/P ) = {P, Q} and M(A, C/R) = {P, R}, then fourmonitoring hypotheses exist overall for the team T ontaining agents A, B, C:
M(A, T ) = {(P, P, P ), (P, P, R), (P, Q, P ), (P, Q, R)}One hypothesis implies no failure exists. Others di�er in how many disagree-ments there are.3.1 Centralized Disagreement DetetionIn general, as disussed above, the ondition of monitoring graph onnetivity isneessary, but insu�ient, to guarantee failure detetion results. The hallengeis to �nd an upper-bound, a su�ient ondition on the onnetivity of themonitoring graph, whih would provide a method for systematially hoosinghypotheses suh that a guarantee exists for the results.Kaminka and Tambe have shown that it is possible to use a ranking heuristi,maximum oherene, to selet hypotheses suh that it is possible to guaranteeertain aspets of the monitoring results [21℄. Informally, the oherene value ofan hypothesis is a measure of the number of disagreements it implies. Formally,oherene is de�ned in [21℄ as the ratio of the number of agents to the number ofdi�erent states in the team-monitoring hypothesis. Thus (P, P, P ) has ohereneof
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= 1Systemati seletion of hypotheses whih have maximum oherene is guar-anteed to result in sound detetion [21, Theorem 1℄: If a maximum-oherenehypothesis indiates a failure, then a failure has indeed ourred. However,some failures may go unnotied if, due to unertainty, a maximum-oherenehypothesis exists whih indiates no disagreement. In ontrast, seletion of aoherene-minimizing hypothesis is guaranteed to provide omplete detetion,where no failure will go unnotied (but there may be false detetions). Unfor-tunately, no oherene-based heuristi exists that guarantees both sound andomplete detetion in the entralized monitoring ase [21, Theorem 3℄.8



To provide this guarantee the hypothesis set M(A, B/P ) for given agents
A, B must be omplete, as de�ned below (De�nition 2). Monitoring omplete-ness is ommonly assumed (in its individual form) in plan-reognition work,(e.g., [4,11,34℄), and generally holds in many appliations. It means that when
A monitors B, the set M(A, B/P ) inludes the orret hypothesis P , but willtypially inlude other mathing hypotheses besides P .De�nition 2 (Monitoring Completeness). Given a monitoring agent A, and amonitored agent B, we say that A's monitoring of B is omplete if for any state
P that may be seleted by B, P ∈ M(A, B/P ). If A is monitoring a team ofagents B1, . . . , Bn, we say that A's team-monitoring hypotheses set M(A, T ) isomplete if A's monitoring of eah of B1, . . . , Bn is omplete.Kaminka and Tambe show that if a single entralized monitoring agent mon-itors all others and monitoring is omplete, it an guarantee either sound oromplete detetion of disagreements, but not both [21, Theorem 3℄. They alsofound that if ertain key agents exist, then it may be possible to redue themonitoring requirements in the system.Key agents have the property that their behavior, when they selet one oftwo spei� states (P1, P2), is su�iently unambiguous, suh that any agentthat monitors them annot onfuse P1 and P2. In other words, key agents,when exeuting either P1 or P2, never have both P1 and P2 in the hypothesisset of any agent observing them.As a result, any observer that is exeuting one of P1, P2 an identify withertainty whether a disagreement exists between it and the key agents. Werepeat here the formal de�nition of key agents from [21℄:De�nition 3 (Key Agents). Let P1, P2 be two agent states. Suppose an agent
A is monitoring an agent B. If M(A, B/P1)∩M(A, B/P2) = ∅ for any agent A,we say that: (i) P1, P2 are observably-di�erent ; (ii) B is a key agent in {P1, P2}.We assume symmetry so that if two states are not observably di�erent to A,then they are observably the same:

M(A, B/P1) ∩M(A, B/P2) 6= ∅ ⇒M(A, B/P1) ∩M(A, B/P2) ⊇ {P1,P2}.The key-agent is the basis for the onditions under whih a team-member
A1 will detet a disagreement with a team-member A2. This is done by pre-ferring maximally-oherent hypotheses as to the state of the monitored agent.Maximally-oherent hypotheses are optimisti�they are hypotheses that min-imize the number of disagreements between the two agents. The use of suhhypotheses leads to sound disagreement detetion [20, 21, Theorem 1℄.An agent A1 (seleting state P1) will detet a disagreement with a team-member A2 (seleting a di�erent state P2) if A2 is a key agent for the plans
P1, P2 [21, Lemma 1℄. A1 knows that it has seleted P1. If A2 has seleted
P2, and is a key-agent in P1 and P2, then A1 is guaranteed to notie that adisagreement exists between itself and A2, sine A2 is ating observably di�erentthan it would if it had seleted P1. A1 an now alert its teammate, diagnosethe failure, et. 9



We will now show that when key agents exist in a team, it is su�ient for asingle agent to monitor them to guarantee sound disagreement detetion in theentralized ase. More aurately, any disagreement that the agent would havebeen deteted when monitoring all agents (and itself)�as previous work [21℄suggests�would be deteted if the agent monitors only key agents (and itself).Theorem 1. Given a team T (of whih some members are key agents), and asingle agent A ∈ T , if A monitors only the key agents of T and itself, suh that(i) monitoring is omplete; and (ii) hypotheses are seleted based on maximaloherene, then A would detet any disagreement that would have been detetedhad it monitored all agents.Proof. We will show that whenever A detets a disagreement when monitoringall agents, it will detet the same disagreement when monitoring only the keyagents in T . There are two ases. In the �rst ase, agent A detets a dis-agreement between itself and another agent. In the seond ase, A detets adisagreement between two other agents.Case 1. Suppose that A has seleted P , and has deteted a disagreement withanother agent B (exeuting a di�erent plan Q). Assume for ontradition that
B is not a key agent in P, Q. Under previous work, A would have monitored
B (sine it would have monitored all agents). Beause A is using maximaloherene, the only ondition underwhih it would detet a disagreement is if
P /∈M(A, B/Q). But this means that M(A, B/Q)∩M(A, B/P ) = ∅, beause ofthe symmetry assumption in the de�nition of observably-di�erent plans. Thus,
B is in fat a key-agent in P, Q, ontraditing the assumption in this ase.Case 2. Suppose that A has seleted plan P , and is monitoring two otheragents B, C, who have seleted plans Q, Z, respetively. Assume for on-tradition that A has deteted a disagreement between B, and C, but notwith itself (otherwise, it would have been handled as in Case 1 above). Thus
M(A, B/Q) ∩M(A, C/Z) ⊇ {P}. This ontradits the assumption that A de-teted a disagreement between B and C, sine under maximal oherene, Awould have seleted P as an individual hypothesis for both. A would havetherefore detet no disagreement between B and C, ontraditing the givenondition that a disagreement was deteted. Thus this ase is impossible.The intuition for this proof is as follows: If A has deteted a disagreementwith B, then A's model of B did not inlude P (A's plan). Beause of sym-metry, we assume that if two plans are not observably di�erent, then they areobservably the same. In other words, if P, Q are not observably-di�erent (by
B), then M(A, B/Q) ⊇ {P, Q}, and A would therefore have not been able todetet the disagreement.The assumption of symmetry in the de�nition of observably-di�erent plansis a strong assumption, and ritial to the proof. With it, two plans are ei-ther observably-di�erent, or are observably the same when exeuted by theagent. Without it, it would have been possible for A to detet a disagree-ment with B even if B is not a key agent: For instane, if M(A, B/P ) =
{P, R}, M(A, B/Q) = {Q, R} then B is not a key agent in P, Q, and yet A10



(a) Centralized monitoring,sound or omplete, but notboth, in [21℄. (b) Centralized monitoring,sound, in this paper.Figure 1: Illustration of entralized monitoring graphs. Non-�lled dots indiatekey agents.would have been able to detet a disagreement with it if A selets P and B se-lets Q. This raises new questions as to upper bounds when this assumption isremoved, but we leave those for future investigation. Note also, that if all agentsare key-agents, then the entralized monitoring agent will end up monitoring allteam-members even with the new bound.Figure 1 illustrates the signi�ane of this new upper bound for entralizedmonitoring. Figure 1-a shows an agent monitoring all others. Figure 1-b showsthe agent monitoring only key agents. Under the new upper-bound shown above,the agent is still guaranteed to detet all failures it would have deteted (usingmaximal oherene) when monitoring all agents.3.2 Distributed Disagreement DetetionWe now onsider the ase of distributed monitoring settings, where team-members monitor eah other. It is easy to see that if the graph is onneted,and eah agent knows exatly the seletion of its monitored peer, then soundand omplete detetion is possible, in a distributed fashion, with very limitedonnetivity: Eah agent A monitors at least one other agent B (or is monitoredby another agent B). If A selets an internal state di�erent from B, then atleast one of them would detet the disagreement immediately. If A monitors
B�and knows with ertainty B's state�then a simple omparison with A'sseleted state is all that is needed. Sound and omplete detetion means that atleast one team-members will detet a disagreement if one ours, and no falsedetetions will take plae.A hallenge is raised when the state of agents is not known to their monitorswith ertainty. This ours neessarily under onditions of limited onnetivity:Sine monitors annot pereive, sense, or ommuniate with all the monitoredagents, and do not have shared memory aess to the monitored agents, theyneessarily have some unertainty about their ations.Fortunately, it is possible to show that under some onditions, having all11



(a) Distributed monitoring, in [20℄. (b) Distributed monitoring, in [21℄.
() Distributed monitoring, in this pa-per.Figure 2: Illustration of distributed monitoring graphs. Non-�lled dots indiatekey agents. All ases allow for sound and omplete disagreement detetion.agents take part in monitoring (distributed monitoring) allows for omplete andsound detetion of oordination failures (in partiular, disagreements). Intu-itively, this happens when there is always a key agent to be found, for anyseleted state. This ondition is de�ned below:De�nition 4 (Observably-partitioned state-spae). A state-spae P is said tobe observably-partitioned if for any two states Pi, Pj ∈ P there exists a key-agent

Aij . The set of these Aij agents is alled the key agents set of P .Kaminka and Tambe [20℄ have shown that if at least a single key agent existsfor every pair of team plans (i.e., the team employs an observably-partitionedstate-spae), and if all team-members monitor all agents, then detetion is notonly sound, but also omplete (see Figure 2-a for illustration). Later on [21,Theorem 4℄, the result was improved somewhat: All agents must monitor thekey agents only�all of them�and the key agents must monitor eah other(Figure 2-b).The ondition of an observably-partitioned state-spae is often easy to sat-isfy. For instane, teams are very often omposed suh that not all agents have12



the same role in the same plan, and in general, roles do have observable dif-ferenes between them. Often, in fat, the set M(A, B/P ) an be omputedo�ine, in advane; this allows the designer to identify the key agents in a teamprior to deployment. Furthermore, any agent an beome a key-agent simplyby ommuniating its state to the monitoring agent and therefore eliminatingambiguity; thus a team an use highly-foused ommuniations to guaranteedetetion. We leave further exploration of suh dynami reation of key-agentsto future work.However, the requirement that all key-agents be monitored inhibits deploy-ment of saled-up appliations. As the size of the team grows, limited onne-tivity beomes more ommon, sine agents beome more physially and logiallydistributed. Thus not all agents, and in partiular not all key agents, will beaessible for monitoring.The theorem below takes an additional step by providing more relaxed on-ditions on the onneted nature of the monitoring graph, in partiular withrespet to the onnetivity of the nodes representing key agents. These ondi-tions are: (i) every non-key agent seleting a state P0 monitors a single key agentfor eah possible pair of states involving P0 (i.e., for eah pair of states, whereone of the states is P0); and (ii) the monitoring sub-graph for all key agents fora given pair of states forms a lique (i.e., key agents are fully onneted betweenthemselves). This ase is illustrated in Figure 2-.Theorem 2 (Clique Key-Agent Monitoring). Let T be a team, employing anobservably-partitioned state-spae P , where: (i) Eah team-member A ∈ T , se-leting a state P1, who is not a key agent for P1, P2 monitors one key agent for
P1, P2; (ii) all key agents for a pair of states X, Z monitor all other key agentsfor X, Z (forming a bidiretional lique in the underlying monitoring graph);and (iii) all monitoring arried out is omplete, and uses maximal-oherene.Then disagreement detetion in T is sound and omplete.To prove this theorem, we utilize two lemmas. The �rst has been presentedand proved in [21, Lemma 1℄, and we repeat it here for larity:Lemma 1 (Lemma 1, [21℄). Let A1, A2 be agents who are monitoring eah otherusing the maximal oherene heuristi. Suppose A1, A2 are exeuting P1, P2,respetively, where P1 6= P2. Then A1 would detet a disagreement with A2 if
A2 is a key agent in P1, P2.Proof. See [21℄.The seond lemma (Lemma 2) is a weaker version of the theorem. Here, allagents in team T are key agents (eah, for at least one pair of states). Under theother onditions of the theorem, we show that disagreement detetion is soundand omplete.Lemma 2. Let T be a team of agents, employing an observably-partitionedstate-spae P . If every agent t ∈ T is a key agent for some p1, p2 ∈ P , thenTheorem 2 holds. 13



In other words, assume: (i) Eah team-member A ∈ T , seleting a state
p1 ∈ P , who is not a key agent for p1, p2 ∈ P monitors one key agent for
p1, p2; (ii) all key agents for any pair pi, pj ∈ P monitor all other key agents for
pi, pj (forming a bidiretional lique in the underlying monitoring graph); (iii)the team utilizes an observably-partitioned state-spae P ; (iv) all monitoringarried out is omplete, and uses maximal-oherene; and (v) Every agent t ∈ Tis a key agent (there exist some pair of states pi, pj ∈ P suh that t is a keyagent for pi, pj . Then disagreement detetion in T is sound and omplete.Proof. First, sine all monitoring is omplete and is done using maximal-oherene, we know monitoring results are sound [21, Theorem 1℄. We willshow that the monitoring results are omplete. To do this, we show that if adisagreement exists, it would be deteted.Assume for ontradition that a disagreement exists, and that it was notdeteted by any agent. We onsider the monitoring graph GT of the team T ,and partition it into k partitions, suh that eah partition holds the vertiesorresponding to agents seleting the same state. The assumption (for ontra-dition) that a disagreement exists means that k ≥ 2. Without loss of generality,let us arbitrarily denote the states in these partitions p1, . . . , pk, and name thepartitions P1, . . . , Pk, respetively.Let us pik any partition, and arbitrarily denote it X , and the state seletedin it x. Sine GT is onneted, the partitions form a onneted graph, thoughnot neessarily all partitions are onneted to all others. Therefore, X must beonneted to a set of partitions Q1, . . . , Qm, where qi ∈ P1, . . . Pk, and 1 ≤ m <
k. We denote the states of the partitions Q1, . . . , Qm by q1, . . . , qm, respetively.We will �rst show that any agent a ∈ X (any agent seleting state x) is nota key agent for x, qi, 1 ≤ i ≤ m. To see this, assume for ontradition that a iskey for x, qi. Pik an arbitrary agent b ∈ Qi. There are two ases:
b is a key agent for x, qi, just like a. In this ase a is monitoring b (beauseall key agents for x, qi monitor eah other), and would detet a disagree-ment with b (Lemma 1 above). Contradition.
b is not a key agent for x, qi. Therefore, it must be monitoring a key agent

r for x, qi (as required in the onditions of the lemma). Beause all keyagents for x, qi monitor eah other, a is also monitoring r. Sine no dis-agreement is deteted, r ould not have seleted state qi nor x, and musthave therefore seleted a di�erent state y, where y 6= x, qi. Now,
• r annot be a key agent for y, x, or otherwise a would have deteteda disagreement. Thus M(a, r/x) ∩M(a, r/y) ⊇ y, x.
• r annot be a key agent for y, qi, or otherwise q would have deteteda disagreement. This implies that M(b, r/qi) ∩M(b, r/y) ⊇ y, qi.But then, based on observer-independene, it follows that M(a, r/x) ∩

M(a, r/qi) = y 6= ∅. This means that r is not a key agent for x, qi.Contradition. 14



The above leads the the onlusion that a annot be a key agent for x, qi,1 ≤
i ≤ m.However, a ondition of the lemma is that all agents in T are key-agents.Thus a must be a key agent for some pair of states z, w ∈ P . It must be that
∃i, j, s.t. z = qi, and w = qj , sine the partitions for Z, W (Qi, Qj) must beonneted to X . Therefore, a is a key agent for qi, qj . But a is not a key agentfor x, qi, and is not a key agent for x, qj , as we have seen above. Therefore:
• a annot be a key agent for x, qi. Thus M(b, a/x)∩M(b, a/qi) ⊇ qi, x, forany observing agent b.
• a annot be a key agent for x, qj . Thus M(b, a/x) ∩M(b, a/qj) ⊇ qj , x,for any observing agent b.But then, based on observer-independene, it follows that M(b, a/qj) ∩

M(b, a/qi) = x 6= ∅. This means that a is not a key agent for qi, qj (z, w).Contradition.Sine in all possible ases the assumption that a disagreement exists but wasnot deteted leads to ontradition, neessarily all agents are in agreement, thatis k = 1. Thus it annot be the ase that two or more agents are in disagreement,and none detets a failure. Therefore monitoring is omplete, and sine it mustbe sound (see beginning of proof), the theorem holds if every agent is a keyagent.With Lemma 2 in plae, we an now prove Theorem 2 by indution on thenumber of agents in T 2.Proof. We will �rst show disagreement detetion ompleteness by indution onthe number of agents N . The idea here is to show that if any two agents A1, A2have seleted two di�erent plans P1, P2, where P1 6= P2, then a member of theteam T will detet the failure. In other words, to show ompleteness we needto show that if a disagreement ours, it will be deteted.Indution base: Obviously if there is only one agent no disagreement anour, so we begin with the ase of two agents, A1, A2, who have seleted plans
P1, P2 respetively, where P1 6= P2, and are therefore in disagreement. Weknow that at least a single key agent exists for P1, P2, beause the team employsan observably-partitioned set of plans. Without loss of generality, assume thekey agent is A2. Then A1 is monitoring it, and sine A2 is key agent in P1, P2then A1 will detet the disagreement (Lemma 1).Indution hypothesis: Assume the theorem holds for a team with up to
N − 1 agents. We will show that it holds for a team with N agents. There aretwo ases:2The proof was developed jointly with Mihael Bowling [17℄.15



• Case 1: T has an agent t whih is non-key for all pairs of plans
X, Y . We examine GN , the direted monitoring graph of T (see De�nition1). Sine the monitoring graphs of all key agents are onneted, andsine all non-key agents are monitoring key agents, it follows that GN isonneted. We examine the inoming and outgoing edges of the vertexrepresenting t. Sine GN is onneted, t has inoming monitoring edges(t is monitored by other agents), or t has outgoing monitoring edges (tmonitors other agents), or both.Let us now remove t from the graph. Sine t is a non-key agent in allpairs of plans X, Y , it follows that removing it results in a redued graph
GN−1 whih satis�es the onditions of the theorem, for a redued team ofonly N − 1 agents: (i) All other non-key agents are ontinuing to monitorkey agents (we have not modi�ed monitoring edges from these other non-key agents to key-agents); (ii) all key agents ontinue to monitor all otherkey agents; (iii) the team still employs an observably-partitioned set ofplans�sine the removal of t did not hange the set of key agents northe set of plans; and obviously (iv) monitoring is still omplete and usesmaximal oherene. We are now left with a team of N − 1 agents.If A1, A2 are within the N − 1 agents left, then the disagreement wouldbe deteted (based on the indution hypothesis), and so we are done. Ifno disagreement is deteted, then it follows from the indution hypothesisthat no disagreement exists among the N − 1 agents, i.e., one of A1, A2is inluded within the N − 1 agents, and the other is t. Without loss ofgenerality, assume t = A2. Then A1, exeuting P1 is one of the N − 1agents in the redued team, and sine they are not in disagreement with
A1, they must all be exeuting P1. Let us now re-reate the original graph
GN , reintroduing t into the team by putting bak the original inomingand outgoing edges. Sine t = A2, it is exeuting P2. And sine it isnot a key-agent, it must be monitoring a key-agent for P1, P2. However,this key agent must be exeuting P1. Therefore, t would have deteted adisagreement (Lemma 1).
• Case 2: T does not have an agent that is non-key agent for allpairs of plan. Thus every agent is a key agent in some pair of plans

X, Y . Then the theorem holds for N agents based on Lemma 2.In all possible ases, a failure is deteted if a disagreement exists, thus failuredetetion is omplete. Sine monitoring is omplete, failure detetion is alsosound ( [21, Theorem 1℄).This theorem allows teams to overome signi�ant onnetivity limitations,without sari�ing detetion quality. It translates into signi�ant freedom forthe designer or the agents in hoosing whom (if any) to monitor; when a moni-tored agent is unobservable, an agent may hoose to monitor another: Non-keyagents need monitor only a single key agent, rather than all key agents (forevery pair of states). 16



Figure 3: Monitoring graphs in a RoboCup simulation-league game situation.The upper-bound the theorem provides is more general than may seem at�rst glane. First, the theorem holds for any state feature of interest�beliefsabout a shared environment, goals, et.; it is up to the designer to pik a moni-toring tehnique that aquires the needed information for onstruting the mon-itoring hypotheses. Seond, the theorem does not depend at all on the methodby whih monitoring ours, whether by ommuniations or by observations.Thus the onnetivity of a monitoring graph does not have to be maintained vi-sually. Some or all of the edges in the monitoring graph may atually orrespondto (possibly unreliable) ommuniation links between agents.Though this theorem represents a signi�ant advane in lowering the boundon the number of agents that must be monitored, all key agents must stillmonitor eah other. This is a ritial onstraint in pratie. For instane,we have reonstruted the visual monitoring graph in thousands of RoboCupgame situations, to �nd that even with this new bound, sound and ompletedisagreement detetion would have been possible without ommuniations onlyin small perentage (approximately 5%) of a game. Typially, eah RoboCupplayer an only see 2�3 key agents, this means that key agents annot typiallymonitor all others. To illustrate, Figure 3 shows the monitoring graph of twoteams overlaid on a sreen-shot of an atual game situation. For both teams,the bound presented in this paper does not apply to the monitoring graph, thussound and omplete disagreement detetion is not guaranteed. This empirionstraint raises the bar on the hallenge to �nd a lower bound on the numberof agents that must be monitored to guarantee detetion.It remains an open question whether a lower bound than that whih is de-17



sribed above may be possible. We believe that it may be possible to guaranteesound and omplete detetion in all ases where eah key agent is either mon-itored or is monitoring a single other key agent (rather than all of them), i.e.,when the monitoring graph forms a spanning tree. This would equate the upperand lower bounds on onnetivity. In pratie, it would translate to guarantee-ing failure detetion in over 70% of the thousands of RoboCup monitoring aseswe have examined. Below, we present this formally as a onjeture.Conjeture 1 (Spanning-Tree Key-Agent Monitoring). Let T be a team inwhih: (i) Eah team-member A exeuting a plan P1, who is not a key-agent in
P1, P2 (where P1 6= P2) monitors a key agent in P1, P2; (ii) every key-agent fora pair of plans X, Z monitors or is monitored by one other key-agent in X, Z(if more than one exists); (iii) the team employs an observably-partitioned setof plans; and (iv) all monitoring arried out is omplete, and uses maximal-oherene. Then disagreement detetion in T is sound and omplete.By allowing for limited onnetivity, the agent an redue the number of itsmonitoring targets. However, for eah one of those agents that it does monitor,it must keep trak of (possibly multiple) hypothesized states. These are used toform joint-state hypotheses, from whih the maximal oherent hypotheses areseleted. The next setion details an e�ient mehanism for the generation andseletion of suh hypotheses.4 E�ient Disagreement DetetionDisagreement detetion involves a key step of representing the state of moni-tored agents, suh that the state of di�erent agents an be ontrasted to de-tet disagreements. This setion presents a method for doing this proess e�-iently. Setion 4.1 desribes a general hierarhial representation of monitoredagents' states, and a basi inferene algorithm whih uses the representationfor observation-based and ommuniation-based monitoring. Setion 4.2 thenpresents YOYO, a novel algorithm for highly-salable disagreement detetion.4.1 RepresentationMuh of ontemporary theoretial and empirial work on teamwork (ollabo-ration), both in syntheti agents and in humans, has emphasized agreementon a hierarhial reipe, or plan, as a key to e�etive teamwork (see, for in-stane, [6, 7, 13, 28, 35℄). Given this emphasis, we fous on a monitoring rep-resentation that follows two key onstraints: (i) representing agents in termsof their urrently exeuting plans (and plan-steps); (ii) allowing the designer,or monitoring agent to mark plans that have to be agreed upon, so that theyare exeuted jointly (together) by all members of a team (or subteam). Thesetwo onstraints give rise to two strutures that are used by the monitoringsystem: A plan-deomposition hierarhy (reipe), and a team deomposition18
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(a) (b)Figure 4: Plan-hierarhy (a) and team-hierarhy (b) in the RoboCup domain.Boxed plans denote (sub)team plans, whih must be agreed-upon by (sub)team-members. Individual agents�eah a subteam�are not shown.hierarhy. These have been fully desribed in [19,28℄, and so we only provide abrief overview here.A plan-hierarhy is used to represent a monitored agent's plan. It is de�nedto be a direted onneted graph, where verties are plan steps, and edges signifyhierarhial deomposition of a plan into sub-plans. Eah vertex has at mostone parent (i.e., one inoming hierarhial deomposition edge); a plan thatoneptually has many parents (i.e., it is a omponent in the deomposition ofdi�erent parent plans) is represented as multiple instane verties in the plan-hierarhy. Multiple outgoing edges signify alternatives available to the agent,of the �rst subplan to be exeuted. The graph forms a tree along hierarhialdeomposition edges, so that no plan an have itself as a desendant. A vertexwith no hildren edges denotes an atomi step.For example, Figure 4-a presents a portion of the plan-hierarhy used to mon-itor the ISIS'97 RoboCup Simulation team [24℄. The top-level plan, winGame,is seleted by all players as soon as they join a game. It has one �rst hild, theInterrupt plan, whih is assumed to be seleted by the agent whenever thegame is interrupted by the referee. winGame's other hild, Play, follows In-terrupt in order of exeution, and is seleted when the game is urrentlyplaying. Thus Interrupt and Play follow eah other to the end of the game.In servie of play, players hoose a plan (Attak, Defend, et.) based ontheir role in the team: forwards, defenders, et. (disussed later). This deom-position ontinues. For instane, at a partiular given moment, a forward maybe monitored to be engaged in exeuting the following path (from root to leaf):winGame � Play � Attak � Simple-Advane � Sore-Goal.In order to detet disagreements, the monitoring agent must �rst know whihplans are ideally to be agreed upon. We assume that suh team plans areknown, e.g., beause they are marked in advane by the designer [13,18,28,35℄.In Figure 4-a, team plans are boxed: winGame, Play, and Interrupt areto be exeuted by the all members of the RoboCup team ISIS'97. Midfield,Defend, et. are to be exeuted jointly only by members of the orresponding19



subteams of ISIS'97 (mid�elders, defenders, et.).To maintain knowledge of whih teams are assigned to whih plans, thereare pointers from eah plan to nodes in a team hierarhy (Figure 4-b), usedto trak whih sub-team is assoiated with eah plan step (and vie versa).The team hierarhy is a tree struture whih enodes knowledge about therelationships between teams, subteams, and team-members: Eah node in theteam-hierarhy orresponds to a monitored organizational unit. The top (root)team represents the entire monitored team. These teams are then split intoseveral subteams, et., until the leaves of the hierarhy ontain roles of individualagents, if they exist. For instane, Figure 4-b presents the team-hierarhy ofthe ISIS'97 RoboCup team [24℄, omposed of a root node for the entire team,and four nodes for its four subteams. Within subteams, members do not havedi�erent roles, and hoose sub-plans for individual exeution, with no soialonstraints on their seletion (not shown in Figure 4-b).4.2 E�iently Deteting DisagreementsThe monitoring agent uses the plan hierarhy to maintain its information on thestate of the monitored agent. Suh information an ome from ommuniations[3,19℄, e.g., where agents announe their initiation or termination of seleted plansteps; or it may ome from plan-reognition inferene based on observationsof the other agent's ations [10, 21℄. An algorithm for suh inferene, alledRESL, has been previously desribed in [21℄ and is presented here brie�y: Thedesigner of the monitoring system assoiates with eah plan a set of observables,ondition monitors that tie in sensor readings and reeived ommuniations withpartiular plans in the hierarhy. When a ondition monitor mathes the sensorreading (e.g., when a message is reeived that is onsistent with a plan, or whenan ation assoiated with a plan is observed), we tag the plan mathing. If itsobservables fail to math, the plan is tagged not-mathing.RESL infers the state of unobservable plans from their hildren and parents:An otherwise untagged parent with at least one suessfully-mathed hild istagged mathing, otherwise it is tagged as failing to math (not mathing). Andan untagged hild with a suessfully-tagged parent is tagged mathing, unlessall of its own hildren are tagged as failing to math. In this way, all plans in thehierarhy are tagged as mathing or not-mathing the observations. Multiplemathing siblings denote multiple hypotheses. The proess is linear-time in thesize of the plan hierarhy.After hypothesizing the state of eah agent based on reeived or observed in-formation, the monitoring agent mathes team plans aross members of teams�if agents are in agreement about their seleted team plans, then all is well. Ifagents are not in agreement about their team plans, then a disagreement isannouned. Note that agents do not have to be in agreement about all plans�only about those plans that are marked as team plans. Furthermore, the plan-hierarhies used for di�erent agents may themselves be di�erent (other than inthe team plans), failitating monitoring of behaviorally-heterogeneous agents.20



This method has been suessfully used in monitoring agents deployed in Mod-SAF [36℄, RoboCup [24℄, and ivilian evauation simulation [28℄.However, a di�ulty emerges in applying this tehnique in monitoring alarge number of agents. While only a single maximally-oherent hypothesisis needed, the total number of joint-state hypotheses ombinatorially explodesin the number of agents. If we denote the size of the plan library by L andthe number of agents by N , the number of joint-state hypotheses is O(LN ) inthe worst ase. Moreover, the spae requirements for reasoning also pose somedi�ulty, as an array of plan-libraries (one for eah agent) requires O(NL)spae.To address the hallenges raised by the time and spae omplexity of previ-ously known tehniques, we present YOYO, an algorithm that utilizes knowledgeabout the team organization to arry out disagreement detetion in time andspae linear in the number of agents. The intuition behind YOYO is to representonly oherent hypotheses (of whih there is a linear, not exponential, number),and then reognize disagreements as ases where the representation fails. Asdisussed in Setion 2, YOYO is based upon earlier work on the YOYO* prob-abilisti plan-reognition algorithm [19℄, but di�ers from it in several importantways.YOYO represents all agents together, in a single shared plan hierarhy. Theshared plan-hierarhy is fully expanded to ontain the plans and transitionsfor all subteams, annotated so that YOYO an determine whih subteam is totake whih transitions, exeute whih plans, et. A plan P in this hierarhy,when tagged as mathing, represents the hypothesis that all agents in the teamassoiated with P are exeuting P . Observations about agents are then mathedagainst the shared plan-hierarhy. Intuitively, the proess of detetion proeedsas follows: If some team members are exeuting P , while others are exeutinga di�erent plan Q, and assuming the observations allow us to di�erentiate P, Qthen both will be marked mathing and not-mathing at the same time, and wewill know that a disagreement has ourred.However, members of di�erent subteams exeute di�erent plans by design.Therefore, YOYO needs to di�erentiate ases where members of the same teamhave seleted di�erent plans P, Q, and ases where members of di�erent teamshave seleted P, Q. To do this, YOYO exploits knowledge of the soial stru-ture within the monitoring system, as provided in the team-hierarhy desribedabove.YOYO maintains pointers from eah node in the team hierarhy to plan-stepnodes in the shared plan-hierarhy. The plans pointed to are the hypothesizedoherent plans of the monitored team, and thus multiple pointers are allowedfrom a single team-hierarhy node. The pointers in the team-hierarhy point atthe lowest-level plans that are onsistent with the observations, and are to beexeuted by the team in question.For example, suppose all RoboCup players are exeuting the Play plantogether, and that members of eah subteam are in agreement with their team-mates on the plan hosen for the subteam. A player that observes its team-mates using the team- and plan-hierarhies in Figure 4 will have pointers from21



the ISIS'97 node in the team hierarhy (Figure 4-b) to the Play plan in theplan-hierarhy (Figure 4-a). Eah of the subteam nodes in the team-hierarhywill have pointers to plans in the plan-hierarhy whih are exeuted by thedi�erent subteams. For instane, the Forwards subteam may have a pointerto the Simple-Advane plan, signifying that all members of the subteam areexeuting this plan.YOYO (Algorithm 1) maintains the pointers suh that the hypotheses theyrepresent are oherent with eah other at all times. If it fails, then this meansthat the team's state is unambiguously inoherent, i.e., a disagreement exists.YOYO operates as follows: When an observation is made about an agent (alledthe fous), we not only update the pointers for this agent, but also re-align thepointers of its parent (sub)teams, suh that their own pointers point at plansthat are oherent with the new hypothesized state of the fous. We then go upand down the team-hierarhy to re-align the pointers of the other agents whihare either part of the fous' subteam or its siblings' subteam. This is doneby moving the pointers of non-fous agents (and the subteams of whih theyare members) suh that they point at a plan that is oherent with the planshypothesized for the fous. If the initial set of pointers for any non-fous agentis already oherent, no re-alignment is neessary. If no plan an be found forthem, or if all plans for a team are tagged both mathing and not-mathing atthe same time, then a state of disagreement has been deteted.Algorithm 1 YOYO(plan hierarhy L, team-hierarhy H)1: for all observations Oi at time t do2: for all plans X that have onditionals testing Oi do3: let Ai be the agent observed in Oi4: if X mathes Oi and X exeutable by Ai then5: tag X as mathing6: reate pointer from Ai node (in H) to X7: else8: tag X as not mathing9: for all plans X tagged mathing or not mathing do10: T ← team(X), P ← X11: while parent(P ) 6= null do12: propagate any tags to parent(P ) (math or not math)13: if team(parent(P )) = parentteam(T ) then14: propagate tags down to untagged plans15: reate pointer from parentteam(T ) to parent(P )16: T ← parentteam(T )17: P ← parent(P )18: for all teams T in H do19: if T only points to plans mathing and not mathing then20: a disagreement has ourred.For example, suppose that the players are known to be exeuting the In-22



terrupt plan (see Figure 4). Suppose now that a defender observes a forwardplayer running towards the opponent goal (i.e., exeuting the Attak plan, inservie of Play). The defender tags Interrupt as mathing, and Play as notmathing (based on its own seleted plans). However, YOYO (exeuted by themonitoring defender) will reate pointers for observed attaker to point to theAttak plan (lines 1�8), and will tag other plans (in partiular Interrupt)as not mathing. It will then enter the loop on line 9. For the Attak plan, itwill propagate its suessful tag up to the Play plan (line 12), and then reatea pointer from the root node in the team hierarhy, representing the ISIS'97team (the root in Figure 4-b) to Play, sine the team that exeutes Play isthe ISIS'97 team (the parent of the the Forwards subteam). It will then limbup in both hierarhies (lines 16�17) and begin another iteration. Later on, thesame proess will be repeated for the Interrupt plan. Sine both Interruptand Play are pointed to from the node representing the team ISIS'97, andsine they are both tagged mathing and non-mathing, a disagreement will bedeteted.YOYO uses minor enhanements of the data-strutures as used by RESL.First, in following hildren transitions, YOYO is areful to only take paths legalto the team in question (i.e., plans and transitions that the team is allowed toexeute in its role): It thus makes the assumption that transitions in the planhierarhy are marked for the subteams that are allowed to take them. Se-ond, YOYO must use a time-stamp to tag plans3, so that observations thatarrive simultaneously (but proessed serially) will ause a detetion of disagree-ments (if one exists), instead of overwriting the e�ets of eah other. Per theexample above, if the monitoring defender observes another forward to be exe-uting Interrupt, while the �rst forward is exeuting Play, then the infereneproess for the two observations would tag these plans as both mathing andnot-mathing at the same time, and a disagreement would be deteted.YOYO's �rst part mathes plans against all observations (lines 1�8), andthus takes O(NL), where N is the number of agents (generating observations),and L the size of the plan-hierarhy (i.e., number of nodes). The nested loopspotentially traverse the entire plan-hierarhy O(L) for eah team. Sine theteam-hierarhy grows with N , we use that to denote its size; a traversal of theteam-hierarhy is O(N). The propagation down in line 14 may still traversethe entire O(L) plan-hierarhy (in a theoretial worst ase). The proess thustakes O(NL2). Finally, the disagreement detetion goes from every team in theteam-hierarhy to every plan (in the worst ase), thus O(NL) again. Overall,YOYO's omplexity is O(NL2). The key to this omplexity is that YOYO onlymaintains oherent hypotheses. If it annot, then a disagreement has ourred�but YOYO does not represent the underlying inoherent hypothesis. This timeomplexity should be ontrasted with RESL's O(LN ). YOYO's spae omplex-ity also ompares well with RESL: With eah additional agent, YOYO's spaerequirements grow by one node in H , at most, to represent the additional agent.In ontrast, RESL uses an additional opy of the entire plan hierarhy for every3The time is taken to be loal to the agent running YOYO. No need for a global lok.23



additional agent.However, YOYO's run-time omplexity is still dominated by a key fator�the number of observed monitored agents: As long as simultaneous observationsare oming in about agents, YOYO still needs to proess all of them, muh likethe full array approah. Thus the bounds presented in the previous setion playa signi�ant role in reduing overall run-time, regardless of whether RESL orYOYO are used.5 ExperimentsTo evaluate the e�ay of the YOYO algorithm, we empirially ompare therun-time performane of RESL and YOYO on idential monitoring problems, asthe number of monitored agents is saled up. Trials were arried out in severaldi�erent simulated domains:ModSAF. The ModSAF environment is a ommerially-developed high-�delity simulation system, whih was used as the environment foroordination-failure experiments in [20,21℄. In the original system, teamsof 3�6 simulated heliopters utilized (individually) a plan-hierarhy (asdesribed above) to exeute training exerises. In this paper, we re-reated the prinipal omponents of the plan-hierarhy, enompassing foursub-hierarhies, with ambiguity between them (i.e., more than one paththrough the plan-hierarhy would math a given observation).RoboCup. The ISIS'97 and ISIS'98 RoboCup Soer Simulation teams [24℄employed a plan-hierarhy used by the agents to play virtual soer. Inthis paper, we re-reated again important (and ambiguous) portions oftheir plan-hierarhies.RoboCup Simple. We revisited the plan-hierarhy for the RoboCup domainabove, but removed any ambiguity. Thus observations lead to seletinga single orret hypothesis, with no need for reasoning about multiplehypotheses. The motivation for using this domain is to show the e�et ofambiguity on run-time in both ases. It is not intended to be realisti, butallows exploration of the performane boundaries of RESL and YOYO.In eah trial, the number of monitored agents was �xed, and then a moni-toring problem (given by the observables available to the monitoring agent) wasrandomly generated. We reorded RESL and YOYO's exeution time (mathingobservations, inferene, and disagreement detetion). For auray, we reordedatual CPU time, rather than wall-lok time. 30 trials were done for eah �xednumber of agents. The number of agents was varied between 2 and 3000, inskips of 10.Figures 5 and 6 show the results of these experiments in the ModSAF andRoboCup domains, respetively (see below for the results in the RoboCup Simpledomain). The X axis in both �gures denotes the number of agents monitored(from 2 to 3000). The Y axis shows the average run-time in CPU seonds, for24



running the disagreement-detetion algorithm on a single trial. Figures 5-a and6-a show the run-time of YOYO and RESL on a sale appropriate for RESL'sperformane (hundreds of seonds). Sine it is di�ult to see the results forYOYO on suh sale, Figures 5-b and 6-b show the same �gures, on a saleappropriate for YOYO�approximately 3 orders of magnitude smaller.The RoboCup Simple domain shows di�erent results. Here, there is no un-ertainty in the domain, as observations orrespond uniquely to plans withinthe plan-hierarhy. As a result, muh of RESL's mahinery for traking multi-ple hypotheses is not used. Figure 7 shows the run-time results in this domain;eah point is an average of 300 runs. The axis are the same as in the previous�gures (though we skipped 50 agents at a time in varying the number of agents).However, note here that due to the lak of ambiguity, RESL's run-time is almostomparable to YOYO's (though YOYO is still faster). The small di�erene be-tween RESL and YOYO in this domain is likely due to the overhead in RESL'smaintenane of multiple plan-hierarhy strutures: Where RESL updates Nstrutures (eah with a single hypothesis), YOYO updates one.The di�erene in performane between YOYO and RESL in the di�erentdomains is not just a funtion of YOYO's maintenane of a single struture(rather than the N strutures maintained by RESL). It is also due to the fatthat it onsiders only oherent hypotheses, of whih only a linear number (inthe size of the plan hierarhy) exist.6 Disussion and Future WorkMulti-agent literature has often emphasized that an agent must monitor otheragents in order to arry out its tasks. However, as the numbers of agents indeployed teams is saled up, the hallenges of limited onnetivity and an ex-ponential number of potential failures are raised. This paper has addressedthese hallenges, in the ontext of a ritial monitoring task�detetion of dis-agreements between teammates. First, the paper has shown that by arefullyonstruting the monitoring graphs of the system�who is monitoring whom�one an make guarantees on the quality of disagreement detetion, while re-duing the onnetivity requirements on the agents. Seond, we have presentedYOYO, a highly-salable algorithm that provides disagreement detetion evenin large-sale teams.Our work in this paper is only one example in a growing body of liter-ature that onsiders large-sale systems [33℄. There are hallenges that areindependent of those disussed above: Reduing the load on the monitor-ing agent [5℄, formal methods and data-strutures for representing large-saleorganizations [16℄, planning and exeution with large-sale systems [38℄, et.Our work in this paper omplements these. For instane, Durfee [5℄ disusseddeision-theoreti and heuristi methods for reduing the amount of knowledgethat agents onsider in oordinating. Thus, while Durfee's work fouses onreduing omputational loads in monitoring eah single self-interested agent,our work fouses on reduing the number of monitored agents, and on savings25
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Figure 7: RESL and YOYO run-times in the RoboCup Simple domain. TheX axis marks the number of agents monitored; the Y axis denotes omputationtime in CPU seonds.possible only when monitoring teams together.Reent work on model-based diagnosis has also begun to address limitedonnetivity, though indiretly, and only to a limited extent. Work by Roos etal. [31,32℄ has examined the use of model-based diagnosis by agents diagnosinga distributed system. While the methods desribe do not address oordinationfailures, they are ertainly relevant in terms of disussing the type of onnetivityassumptions required for the diagnosis to work. Our reent work [14,15℄ on theuse of model-based diagnosis of disagreements also limits onnetivity: A keyfous is on using only a handful of agents to represent all others in the diagnosisproess, thus limiting run-time and ommuniation load.Key issues and assumptions remain open for future investigation. Withrespet to the monitoring bounds presented in Setion 3, there remain questionsas to the satisfation of the assumptions in pratie. We argue for both sides: Onone hand, any agent broadasting its state to its peers is a key agent. And indeedmany real-world systems utilize ommuniations to alleviate unertainty; anysuh system an now utilize the bounds to manage key agents better, by fousingsuh broadasts where absolutely required. Moreover, the onditions disussedin the paper only onstrain the types of graphs that will guarantee omplete andsound detetion: They apply for both stati and dynami monitoring graphs.Nevertheless, it is ertainly the ase that we should ontinue to seek improvedbounds, and/or weakened assumptions.YOYO also leaves open questions. YOYO works with a known set ofteam/subteam plans; and its run-time omplexity involves the size of the plan-hierarhy. It thus expets a losed system, with a manageable plan-hierarhy.28



But as systems grow in the number of agents, they may require working withan open plan-hierarhy, that an hange as agents are added or removed fromthe system. Moreover, if the sale-up is not only in the number of agents, butalso in the size of the plan-hierarhy, then this will a�et the salability of thesystem. Finally, YOYO's salability omes at the expense of the ability to rep-resent failure hypotheses: When a disagreement is deteted, YOYO knows thatit has ourred, but annot diretly identify what agents are involved, or theextent of the disagreement. Thus for diagnosis tasks [14, 15℄, YOYO has tobe augmented by mehanisms that allow the monitoring agent to reonstrutthe hypotheses underlying the disagreement. We hope to address these openquestions in future work.AknowledgmentsThis work is based in part on a 2002 paper by the author and Mihael Bowling[17℄. We are indebted to Mihael Bowling for his help in proving Theorem 2, forwhih he deserves joint redit. We also owe Mihael many thanks for disussionsand omments on earlier drafts of this work, inluding �nding �aws with earlierattempted proofs. Milind Tambe and David V. Pynadath helped with initialversions of the YOYO algorithm. We also thank Meir Kaleh, Dorit Avrahami-Zilberbrand, and Mihael Lindner for useful disussions and orretions. Asalways, thanks to K. Ushi.Referenes[1℄ J. J. Burns, E. Salas, and J. A. Cannon-Bowers. Team training, men-tal models, and the team model trainer. In Advanements in IntegratedDelivery Tehnologies, Denver, CO, 1993.[2℄ P. R. Cohen and H. J. Levesque. Teamwork. Nous, 35, 1991.[3℄ C. Dellaroas and M. Klein. An experimental evaluation of domain-independent fault-handling servies in open multi-agent systems. In Pro-eedings of the Fourth International Conferene on Multiagent Systems(ICMAS-00), pages 95�102, Boston, MA, 2000. IEEE Computer Soiety.[4℄ M. Devaney and A. Ram. Needles in a haystak: Plan reognition in largespatial domains involving multiple agents. In Proeedings of the FifteenthNational Conferene on Arti�ial Intelligene (AAAI-98), pages 942�947,Madison, WI, 1998.[5℄ E. H. Durfee. Blissful ignorane: Knowing just enough to oordinate well.In Proeedings of the First International Conferene on Multiagent Systems(ICMAS-95), pages 406�413, 1995.[6℄ B. J. Grosz and S. Kraus. Collaborative plans for omplex group ations.Arti�ial Intelligene, 86:269�358, 1996.29
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