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tIntermittent sensory, a
tuation and 
ommuni
ation failures may 
auseagents to fail in maintaining their 
ommitments to others. Thus to 
ol-laborate robustly, agents must monitor others to dete
t 
oordination fail-ures. Previous work on monitoring has fo
used mainly on small-s
alesystems, with only a limited number of agents. However, as the numberof monitored agents is s
aled up, two issues are raised that 
hallenge pre-vious work. First, agents be
ome physi
ally and logi
ally dis
onne
tedfrom their peers, and thus their ability to monitor ea
h other is redu
ed.Se
ond, the number of possible 
oordination failures grows exponentially,with all potential intera
tions. Thus previous te
hniques that sift throughall possible failure hypotheses 
annot be used in large-s
ale teams. Thispaper ta
kles these 
hallenges in the 
ontext of dete
ting disagreementsamong team-members, a monitoring task that is of parti
ular importan
eto robust teamwork. First, we present new bounds on the number ofagents that must be monitored in a team to guarantee disagreement dete
-tion. These bounds signi�
antly redu
e the 
onne
tivity requirements ofthe monitoring task in the distributed 
ase. Se
ond, we present YOYO, ahighly s
alable disagreement-dete
tion algorithm whi
h guarantees sounddete
tion. YOYO's run-time s
ales linearly in the number of monitoredagents, despite the exponential number of hypotheses. It 
ompa
tly repre-sents all valid hypotheses in single stru
ture, while allowing for a 
omplexhierar
hi
al organizational stru
ture to be 
onsidered in the monitoring.Both YOYO and the new bounds are explored analyti
ally and empiri
allyin monitoring problems involving thousands of agents.
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1 Introdu
tionAgents in realisti
 environments sometimes fail to maintain their 
ommitmentsto others. This 
an o

ur due to sensor and a
tuator un
ertainties, or (possiblyintermittent) 
ommuni
ation failures. It may also o

ur due to the nature ofdynami
, 
omplex domains, whi
h 
an 
hallenge the agent's design in unanti
-ipated environment states, e.g., in industrial systems (e.g., [13℄), and virtualenvironments (e.g., [24, 29, 30, 35℄).Agents must therefore monitor others to as
ertain that their 
ommitmentsare maintained, and to dete
t 
oordination failures when they o

ur (see e.g.,[2, 5, 6, 12℄; additional works are dis
ussed in Se
tion 2). Indeed, a numberof investigations have explored me
hanisms for dete
ting (and responding to)failures in 
oordination and teamwork [3, 8, 20�22,27, 37℄.Large-s
ale multi-agent systems�where the number of agents is the prin
ipals
ale fa
tor�pose a number of 
hallenges to the existing monitoring te
hniques.First, agents in large-s
ale systems be
ome physi
ally and logi
ally separated,and thus less able to dire
tly monitor ea
h other (the limited 
onne
tivity 
hal-lenge). However, existing approa
hes often rely on being able to monitor allagents, either by 
ommuni
ations or observations. Se
ond, the number of pos-sible failures grows 
ombinatorially in the number of agents, with all possibleintera
tions. Thus approa
hes that sear
h through failure hypotheses do nots
ale well. We dis
uss these 
hallenges and previous work in detail in Se
tion 2.This paper addresses these 
hallenges in depth, in the 
ontext of dete
t-ing disagreements, a prin
ipal failure in multi-agent teamwork. Theoreti
aland empiri
al resear
h on teamwork in humans (e.g, [1℄) and in syntheti
agents [2,6,13,23,35℄ stresses agreement as a 
ornerstone to e�e
tive teamwork(although di�erent terms are used in grounding agreement in various theoreti
aland pra
ti
al 
onstru
ts). Thus disagreements are a sour
e of great 
on
ern inall of these di�erent investigations (see Se
tion 2 for details).We make two 
ontributions. First, we ta
kle the 
hallenge of limited 
on-ne
tivity by providing new bounds on the agents that must be monitored in ateam to dete
t disagreements. Previous work has shown analyti
ally that dis-agreement dete
tion 
an sometimes be guaranteed if all team-members monitorall of 
ertain key agents in the team [21℄, in a distributed fashion. However, inpra
ti
e, limited 
onne
tivity restri
ts the usefulness of this bound, as often notall key agents 
an be observed or 
ommuni
ated with. To address this, we showanalyti
ally that sound (i.e., no false positives) and 
omplete (no false negatives)dete
tion 
an be guaranteed in pra
ti
e even if other agents monitor just onekey agent; however, all key-agents must still monitor ea
h other. In addition,we show that monitoring only key agents is an also a su�
ient 
ondition in the
entralized monitoring 
ase, where a single agent is monitoring all others. Su
hmonitoring is guaranteed to be sound, and dete
t any disagreement that wouldhave been dete
ted had the 
entralized monitoring agent monitored all others.Using the te
hniques presented, a monitoring agent 
an dete
t failures in largeteams, involving thousands of agents. The assumptions underlying the bounds
an often be met in pra
ti
e, simply by allowing an agent to be
ome a key agent2



by broad
asting its state to its peers. In su
h real-world setting, the bounds
an serve to fo
us su
h broad
asts and redu
e them to a minimum.Se
ond, we present YOYO, a disagreement-dete
tion monitoring algorithm,whi
h navigates the (potentially exponential) spa
e of monitoring hypothesesby representing only hypotheses in whi
h all agents are in agreement. Thisallows YOYO to represent the relevant state of all monitored agents together,in a highly s
alable stru
ture, and e�
iently dete
t situations in whi
h theagents are in a state of disagreement. YOYO 
an be used to provide sounddisagreement dete
tion 
apabilities. It is an example of a So
ially-Attentivemonitoring algorithm, exploiting knowledge of the so
ial relationships in themonitored team. We present an empiri
al evaluation of YOYO in monitoringproblems involving thousands of agents.This paper is organized as follows. Se
tion 2 dis
usses related work. Se
tion3 presents new bounds on the number of agents that must be monitored. Se
tion4 presents the YOYO algorithm. Se
tion 5 presents the results from experimentsin using YOYO. Se
tion 6 
on
ludes with a dis
ussion of the appli
ability of thepresented 
ontributions, and future dire
tions for this work.2 Motivation and Ba
kgroundWe use the term limited 
onne
tivity in a general sense to des
ribe the phe-nomenon where an agent 
annot observe, sense, or 
ommuni
ate with its peers,due to pro
essing and bandwidth limitations. Limited 
onne
tivity is only oflittle 
on
ern in small-s
ale systems. Given a few 
y
les, agents 
an typi
allyintegrate multiple per
eptions, over time, to assess what their peers are up to.However, as the number of agents grows, the ability to integrate su
h informa-tion over time diminishes rapidly [38℄. For instan
e, existing peer-to-peer (P2P)systems in
lude millions of a
tive nodes. Yet not one node is able to 
ommuni-
ate dire
tly with all of its peers at on
e, due to both bandwidth and pro
essingpower issues. Even spreading the e�orts over time will not be su�
ient inpra
ti
e.Limited 
onne
tivity adversely a�e
ts the ability of an agent to monitor itspeers and to dete
t 
oordination failures. Be
ause of limited 
onne
tivity, themonitoring agent is not able to 
orre
tly assess the state of its teammates, andthus will ne
essarily fa
e some un
ertainty as to their state, and by impli
ation,as to the existen
e of a 
oordination failure. Yet few bounds and few te
hniquesare known for monitoring with limited 
onne
tivity.Most 
losely related to monitoring with limited 
onne
tivity is our own pre-vious work on 
entralized and distributed 
oordination failure dete
tion. In [20℄,we introdu
ed the notion of key agents, whose observable behavior is su�
ientlyunambiguous to an observer su
h that they 
an be used to dete
t failures evenunder 
onditions of un
ertainty. The same work also showed that in the dis-tributed 
ase, if all agents monitor ea
h other and there are su�
ient key agents,failure dete
tion will be guaranteed [20℄. Later, the result was extended to showthat in fa
t only the key agents had to be monitored in the distributed 
ase,3



thus allowing for redu
ed 
onne
tivity [21℄. Our work in this paper lowers thisupper-bound further (see Se
tion 3). However, our work here is spe
i�
 todisagreements.A se
ond important 
hallenge with large-s
ale multi-agent systems is raisedby the number of monitoring hypotheses that must be pro
essed. As a multi-agent system grows in the number of agents, so does the the number of potential
oordination failures it may 
ontain. Suppose ea
h of N agents may be in oneof k internal states. Then the number of possible joint states is kN . In loosely-
oupled systems, ea
h agent is essentially independent of its peers, and maysele
t between its k possible states freely. In su
h systems, the vast majority ofjoint states�if not all�are 
onsidered valid states. However, in a 
oordinatedmulti-agent system, the sele
tion of an internal state by an agent is dependenton the sele
tions of its peers. In other words, agents move between joint statestogether; Only a limited portion of the spa
e of joint states would be valid, fromthe designer's perspe
tive. Thus most joint states may in fa
t be invalid from a
oordination point of view.Agreement is a good example of su
h tightly-
oupled 
oordination. Team-work literature emphasizes the importan
e of team-members being in agree-ment on various features of their state, su
h as goals, plans, and beliefs1[2, 6, 7, 13, 18, 23, 35℄. Sin
e the obje
t of the agreement is irrelevant for ourpurposes in this paper, we will use the term state to denote the internal state-feature of the agent whi
h is the obje
t of the agreement (e.g., a belief in aproposition p, a plan p, an intention, et
.). Suppose a team of N agents agreesthat their sele
tion of internal state would be syn
hronous, i.e., for every sele
tedstate of one agent, all others must be in some agreed-upon internal state. Therewould be O(k) valid agreement joint states, and the rest of the kN joint stateswould be 
onsidered invalid�
oordination failure�states. Thus large-s
ale sys-tems where agents 
oordinate fa
e a large exponential number of possible faults,and only a limited set (by 
omparison) of valid states.Despite the mu
h greater number of possible failure states, many of theapproa
hes proposed in the past for 
oordination failure dete
tion rely on enu-merating possible faults. Klein and Dellaro
as [3,22℄ have proposed a 
entralizedapproa
h to dete
ting failures (whi
h they refer to as ex
eptions). Their workutilizes agent sentinels, whi
h 
ommuni
ate with the agents in the system toidentify their state or a
tions, and report on it to a 
entralized fault dete
tionsystem. This fault dete
tion system then mat
hes the reported informationagainst 
oordination fault-models, for dete
tion. These are generated o�ine, bymanual analysis of domain-independent 
oordination models. The fault modelsand their use do not address limited 
onne
tivity, ambiguities in agent states,nor failures in the sentinel system. However, they are demonstrated over a largerrange of failures (this paper only 
overs disagreements).More re
ently Platon et al. [25, 26℄ have systemati
ally and methodi
allyexamined di�erent types of agent failures (ex
eptions), as well as resulting 
o-1Of 
ourse, the literature also addresses other 
riti
al features of teamwork aside fromagreement. But agreement is a repeating theme.4



ordination failures and their 
auses (e.g., those due to agent death, knowledgein
onsisten
ies, et
.). They propose a number of ways for integrating failurehandling 
apabilities into the agent ar
hite
ture. We do not investigate theseissues in this paper.A di�erent�distributed�approa
h is taken by Horling et al. [8, 9℄. Theypresent an integrated failure-dete
tion and diagnosis system for a multi-agentsystem in the 
ontext of an intelligent home environment. The system usesthe TAEMS domain-independent multi-agent task-de
omposition and model-ing language to des
ribe the ideal behavior of ea
h agent. The agents are alsosupplied with additional information about the expe
ted behavior of the en-vironment they inhabit under di�erent 
onditions, and their role within themulti-agent organization. A distributed diagnosis system, made of diagnosisagents that use fault-models, is used to identify failures in 
omponents (su
has erroneous repeated requests for resour
es) and ine�
ien
ies (su
h as over-or under-
oordination). Multiple diagnosis agents may use 
ommuni
ations toinform ea
h other of their a
tions and diagnoses. The fault-models are usedin planning monitoring a
tions, in identifying failures responsible for multiplesymptoms, and in guiding re
overy a
tions. Like similar works above, this workdid not address 
onne
tivity 
on
erns.A key issue with fault-model approa
hes is their s
alability, given that thenumber of possible faults in large-s
ale multi-agent systems is likely to be ex-ponential. Some have addressed this by fo
using on general failure 
onditions.As an example, Wilkins, Lee, and Berry [37℄ o�er an exe
ution monitoring ap-proa
h whi
h en
ompasses both 
oordination and task-exe
ution failures. Theirwork introdu
es a taxonomy of generi
 failure types, whi
h must be adaptedand spe
ialized to the domain and task. Agents responsible for monitoring relyon 
ommuni
ated state reports from the monitored agents to identify failures.While experiments with the system were 
arried out only on relatively smallmulti-agent systems, the modeling of the failures shows example of how fault-models 
an be su�
iently non-spe
i�
 so that they may be reused in larger-s
alesystems. For instan
e, the fault models in
luded distan
e failures (units gettingtoo 
lose), whi
h are triggered when an adversary gets 
loser to a friendly unit).It does not matter who the adversary or friendly units are, nor their spe
i�
lo
ation, et
. The use of su
h general fault-models, however, diminishes fromthe ability to dete
t 
omplex or spe
i�
 failures.A 
ommon theme running through the fault-model approa
hes above is thatthey utilize 
ommuni
ations or dire
t observations to a
quire knowledge as tothe state of monitored agents, and typi
ally require knowledge of all agents,thus ignoring limited 
onne
tivity. This is a potentially limiting fa
tor in theiruse in large-s
ale networks, where limited 
onne
tivity will ne
essarily lead toun
ertainty in monitoring. Moreover, in many domains, even dire
t monitoringof another agent may involve some un
ertainty. In parti
ular, a monitoringagent may entertain several hypotheses as to the true internal state of anotheragent. However, these approa
hes often ignore su
h un
ertainty.In 
ontrast to the fault-model approa
hes dis
ussed above, we advo
ate amodel-based approa
h, in whi
h a model of the 
orre
t behavior of the agent5



is used to dete
t failures, by noting dis
repan
ies between ideal and a
tualbehavior. Earlier work taking this approa
h to dete
t disagreements [20, 21℄
ontrasts with the work in this paper in terms of the run-time 
omplexity ofsear
hing through the hypotheses spa
e to determine if a 
oordination failureo

urred. Both earlier investigations relied on a plan re
ognition algorithm(RESL) whi
h modeled ea
h individual agent separately. While 
omputing theindividual hypotheses using RESL 
an be done in time O(NL), where L is thesize of the state-spa
e of a single agent, and N the number of agents, extra
tingthe hypotheses 
an take exponential time O(LN ). However, RESL 
an be usedin prin
iple to dete
t many kinds of 
oordination failures, and allows eithersound or 
omplete disagreement dete
tion (in the 
entralized 
ase). In 
ontrast,YOYO, presented in this paper, runs in time O(N +L), but supports only sounddete
tion in the 
entralized 
ase.Poutakidis et al. [27℄ have utilized Petri-net representation of intera
tionproto
ols to 
entrally dete
t intera
tion failures, where agents fail to follow theproto
ol in their 
onversation with others. This work does not address limited
onne
tivity, in that it assumes all messages from all agents are observable.Although Poutakidis et al. allow for multiple monitoring hypotheses to 
o-exist,they do not provide a method for sele
ting hypotheses su
h that soundness or
ompleteness is guaranteed. In 
ontrast, our work in this paper addresses both
entralized and distributed monitoring settings, addresses limited 
onne
tivity,and provides guarantees on the dete
tion results.
RESCteam [34℄ is a multi-agent plan-re
ognition s
heme whi
h impli
itlyuses 
oheren
e as a key 
onstraint in representation. RESCteam representsonly a single 
oherent hypothesis, while YOYO represents all 
oherent hy-potheses. However, RESCteam 
an reason about the assignment of agents toroles/subteams, while YOYO assumes this knowledge is given a-priori.YOYO is a variant of YOYO*, a probabilisti
 team plan-re
ognition algo-rithm, used for overhearing [19℄. In 
ontrast to YOYO*, YOYO is symboli
,has better run-time 
omplexity, and targets dete
tion. However, it fails at tasksin whi
h the previous algorithm 
an ex
el (e.g., in overhearing).On
e a failure is dete
ted, it needs to be diagnosed and resolved. Kale
hand Kaminka [15℄ have addressed model-based diagnosis of 
oordination failures.Roos et al. [31, 32℄ have addressed model-based diagnosis of non-
oordinationfailures in multi-agent systems. Horling et al. [8℄ use the fault-dete
ting 
ausalmodel for diagnosis and subsequent re
overy a
tions. Re
ently, there is alsowork on diagnosis in large-s
ale systems [14℄.3 Monitoring Graphs and Limited Conne
tivityA key question is how to guarantee failure-handling results while limiting thenumber of agents that must be monitored. The approa
h we take to this involvesthe 
onstru
tion and analysis of monitoring graphs, whi
h represent informa-tion about whi
h agent 
an monitor whom. We show that for disagreementdete
tion, one 
an set 
onditions on the stru
ture of the graph whi
h, when6



satis�ed, guarantee that dete
tion is 
omplete and/or sound, under 
onditionsof un
ertainty. Complete dete
tion guarantees all failures will be dete
ted (i.e.,no false negatives). Sound dete
tion guarantees only failures will be dete
ted(i.e., no false positives). We separate dis
ussion of 
entralized and distributedmonitoring settings.We begin by formalizing the notion of a monitoring graph (De�nition 1).We will use this 
onstru
t throughout the paper.De�nition 1. A monitoring graph of a team T is a dire
ted (possibly 
y
li
)graph in whi
h nodes 
orrespond to team-members of T , and edges 
orrespondto monitoring 
onditions: If an agent A is able to monitor an agent B (eithervisually or by 
ommuni
ating with it), then an edge (A, B) exists in the graph.We say that monitoring graph is 
onne
ted, if its underlying undire
ted graphis 
onne
ted.If the monitoring graph of a team is not 
onne
ted, then there is an agentwhi
h is not monitored by any agent, and is not monitoring any agent. Obvi-ously, a disagreement 
an go undete
ted in su
h a team: If the isolated agent
hooses a state di�erent from what has been agreed upon with its peers, itwould go undete
ted. Thus a 
onne
tivity lower-bound for dete
ting disagree-ments (indeed, any kind of 
oordination failure) is that the monitoring graphmust be 
onne
ted.However, 
onne
tivity by itself is insu�
ient. Un
ertainty 
an also havesigni�
ant impa
t on the results of monitoring. When an agent A monitorsan agent B, it may often entertain multiple hypotheses as to the state of B.Suppose B's state is P (for instan
e, P is a plan sele
ted by B). We denote by
M(A, B/P ) the set of agent-monitoring hypotheses that A 
onstru
ts based on
ommuni
ations from B, or inferen
e from B's observable behavior (i.e., via planre
ognition). In other words, M(A, B/P ) is the set of all A's hypotheses as to
B's state, when B's state (e.g., sele
ted plan) is P . Note that when A monitorsitself, it has dire
t a

ess to its own state and so M(A, A/P ) = {P}. We usethe shorthand M(A, B) to denote the hypotheses set of B's 
urrently sele
tedstate. In this work, we assume observer independen
e: M(A, B) = M(C, B) forany agents A, C.To see the impa
t of un
ertainty, suppose an agent A has sele
ted state P1,and is monitoring another agent B that has sele
ted state P2. A disagreementexists here sin
e agent B should have sele
ted P1. However, sin
e the internalstate of B may not be known to A with 
ertainty, A may have several interpre-tations of B's 
hosen state. The set of these interpretations may 
ontain P1, inwhi
h 
ase A may 
ome to in
orre
tly believe that B is also exe
uting P1, andthat therefore no disagreement has o

urred. Indeed, if the set of hypothesesin
ludes both P1 and P2, then A may or may not dete
t the failure, dependingon the 
hoi
e it makes.This problem is exa
erbated when monitoring a team 
ontaining multipleagents. A team-monitoring hypotheses set for a given team T with n is the7




ross-produ
t of the individual hypotheses sets:
M(A, T ) = M(A, a1)×M(A, A2)× . . .×M(A, an)Suppose A is monitoring itself (as a member of the team, exe
uting P ), andagents B, C. If M(A, B/P ) = {P, Q} and M(A, C/R) = {P, R}, then fourmonitoring hypotheses exist overall for the team T 
ontaining agents A, B, C:
M(A, T ) = {(P, P, P ), (P, P, R), (P, Q, P ), (P, Q, R)}One hypothesis implies no failure exists. Others di�er in how many disagree-ments there are.3.1 Centralized Disagreement Dete
tionIn general, as dis
ussed above, the 
ondition of monitoring graph 
onne
tivity isne
essary, but insu�
ient, to guarantee failure dete
tion results. The 
hallengeis to �nd an upper-bound, a su�
ient 
ondition on the 
onne
tivity of themonitoring graph, whi
h would provide a method for systemati
ally 
hoosinghypotheses su
h that a guarantee exists for the results.Kaminka and Tambe have shown that it is possible to use a ranking heuristi
,maximum 
oheren
e, to sele
t hypotheses su
h that it is possible to guarantee
ertain aspe
ts of the monitoring results [21℄. Informally, the 
oheren
e value ofan hypothesis is a measure of the number of disagreements it implies. Formally,
oheren
e is de�ned in [21℄ as the ratio of the number of agents to the number ofdi�erent states in the team-monitoring hypothesis. Thus (P, P, P ) has 
oheren
eof

|{A, B, C}|

|{P}|
=

3

1
= 3while (P, Q, P ) has 
oheren
e of

|{A, B, C}|

|{P, Q}|
=

3

2
= 1.5and (P, Q, R) has 
oheren
e of

|{A, B, C}|

|{P, Q, R}|
=

3

3
= 1Systemati
 sele
tion of hypotheses whi
h have maximum 
oheren
e is guar-anteed to result in sound dete
tion [21, Theorem 1℄: If a maximum-
oheren
ehypothesis indi
ates a failure, then a failure has indeed o

urred. However,some failures may go unnoti
ed if, due to un
ertainty, a maximum-
oheren
ehypothesis exists whi
h indi
ates no disagreement. In 
ontrast, sele
tion of a
oheren
e-minimizing hypothesis is guaranteed to provide 
omplete dete
tion,where no failure will go unnoti
ed (but there may be false dete
tions). Unfor-tunately, no 
oheren
e-based heuristi
 exists that guarantees both sound and
omplete dete
tion in the 
entralized monitoring 
ase [21, Theorem 3℄.8



To provide this guarantee the hypothesis set M(A, B/P ) for given agents
A, B must be 
omplete, as de�ned below (De�nition 2). Monitoring 
omplete-ness is 
ommonly assumed (in its individual form) in plan-re
ognition work,(e.g., [4,11,34℄), and generally holds in many appli
ations. It means that when
A monitors B, the set M(A, B/P ) in
ludes the 
orre
t hypothesis P , but willtypi
ally in
lude other mat
hing hypotheses besides P .De�nition 2 (Monitoring Completeness). Given a monitoring agent A, and amonitored agent B, we say that A's monitoring of B is 
omplete if for any state
P that may be sele
ted by B, P ∈ M(A, B/P ). If A is monitoring a team ofagents B1, . . . , Bn, we say that A's team-monitoring hypotheses set M(A, T ) is
omplete if A's monitoring of ea
h of B1, . . . , Bn is 
omplete.Kaminka and Tambe show that if a single 
entralized monitoring agent mon-itors all others and monitoring is 
omplete, it 
an guarantee either sound or
omplete dete
tion of disagreements, but not both [21, Theorem 3℄. They alsofound that if 
ertain key agents exist, then it may be possible to redu
e themonitoring requirements in the system.Key agents have the property that their behavior, when they sele
t one oftwo spe
i�
 states (P1, P2), is su�
iently unambiguous, su
h that any agentthat monitors them 
annot 
onfuse P1 and P2. In other words, key agents,when exe
uting either P1 or P2, never have both P1 and P2 in the hypothesisset of any agent observing them.As a result, any observer that is exe
uting one of P1, P2 
an identify with
ertainty whether a disagreement exists between it and the key agents. Werepeat here the formal de�nition of key agents from [21℄:De�nition 3 (Key Agents). Let P1, P2 be two agent states. Suppose an agent
A is monitoring an agent B. If M(A, B/P1)∩M(A, B/P2) = ∅ for any agent A,we say that: (i) P1, P2 are observably-di�erent ; (ii) B is a key agent in {P1, P2}.We assume symmetry so that if two states are not observably di�erent to A,then they are observably the same:

M(A, B/P1) ∩M(A, B/P2) 6= ∅ ⇒M(A, B/P1) ∩M(A, B/P2) ⊇ {P1,P2}.The key-agent is the basis for the 
onditions under whi
h a team-member
A1 will dete
t a disagreement with a team-member A2. This is done by pre-ferring maximally-
oherent hypotheses as to the state of the monitored agent.Maximally-
oherent hypotheses are optimisti
�they are hypotheses that min-imize the number of disagreements between the two agents. The use of su
hhypotheses leads to sound disagreement dete
tion [20, 21, Theorem 1℄.An agent A1 (sele
ting state P1) will dete
t a disagreement with a team-member A2 (sele
ting a di�erent state P2) if A2 is a key agent for the plans
P1, P2 [21, Lemma 1℄. A1 knows that it has sele
ted P1. If A2 has sele
ted
P2, and is a key-agent in P1 and P2, then A1 is guaranteed to noti
e that adisagreement exists between itself and A2, sin
e A2 is a
ting observably di�erentthan it would if it had sele
ted P1. A1 
an now alert its teammate, diagnosethe failure, et
. 9



We will now show that when key agents exist in a team, it is su�
ient for asingle agent to monitor them to guarantee sound disagreement dete
tion in the
entralized 
ase. More a

urately, any disagreement that the agent would havebeen dete
ted when monitoring all agents (and itself)�as previous work [21℄suggests�would be dete
ted if the agent monitors only key agents (and itself).Theorem 1. Given a team T (of whi
h some members are key agents), and asingle agent A ∈ T , if A monitors only the key agents of T and itself, su
h that(i) monitoring is 
omplete; and (ii) hypotheses are sele
ted based on maximal
oheren
e, then A would dete
t any disagreement that would have been dete
tedhad it monitored all agents.Proof. We will show that whenever A dete
ts a disagreement when monitoringall agents, it will dete
t the same disagreement when monitoring only the keyagents in T . There are two 
ases. In the �rst 
ase, agent A dete
ts a dis-agreement between itself and another agent. In the se
ond 
ase, A dete
ts adisagreement between two other agents.Case 1. Suppose that A has sele
ted P , and has dete
ted a disagreement withanother agent B (exe
uting a di�erent plan Q). Assume for 
ontradi
tion that
B is not a key agent in P, Q. Under previous work, A would have monitored
B (sin
e it would have monitored all agents). Be
ause A is using maximal
oheren
e, the only 
ondition underwhi
h it would dete
t a disagreement is if
P /∈M(A, B/Q). But this means that M(A, B/Q)∩M(A, B/P ) = ∅, be
ause ofthe symmetry assumption in the de�nition of observably-di�erent plans. Thus,
B is in fa
t a key-agent in P, Q, 
ontradi
ting the assumption in this 
ase.Case 2. Suppose that A has sele
ted plan P , and is monitoring two otheragents B, C, who have sele
ted plans Q, Z, respe
tively. Assume for 
on-tradi
tion that A has dete
ted a disagreement between B, and C, but notwith itself (otherwise, it would have been handled as in Case 1 above). Thus
M(A, B/Q) ∩M(A, C/Z) ⊇ {P}. This 
ontradi
ts the assumption that A de-te
ted a disagreement between B and C, sin
e under maximal 
oheren
e, Awould have sele
ted P as an individual hypothesis for both. A would havetherefore dete
t no disagreement between B and C, 
ontradi
ting the given
ondition that a disagreement was dete
ted. Thus this 
ase is impossible.The intuition for this proof is as follows: If A has dete
ted a disagreementwith B, then A's model of B did not in
lude P (A's plan). Be
ause of sym-metry, we assume that if two plans are not observably di�erent, then they areobservably the same. In other words, if P, Q are not observably-di�erent (by
B), then M(A, B/Q) ⊇ {P, Q}, and A would therefore have not been able todete
t the disagreement.The assumption of symmetry in the de�nition of observably-di�erent plansis a strong assumption, and 
riti
al to the proof. With it, two plans are ei-ther observably-di�erent, or are observably the same when exe
uted by theagent. Without it, it would have been possible for A to dete
t a disagree-ment with B even if B is not a key agent: For instan
e, if M(A, B/P ) =
{P, R}, M(A, B/Q) = {Q, R} then B is not a key agent in P, Q, and yet A10



(a) Centralized monitoring,sound or 
omplete, but notboth, in [21℄. (b) Centralized monitoring,sound, in this paper.Figure 1: Illustration of 
entralized monitoring graphs. Non-�lled dots indi
atekey agents.would have been able to dete
t a disagreement with it if A sele
ts P and B se-le
ts Q. This raises new questions as to upper bounds when this assumption isremoved, but we leave those for future investigation. Note also, that if all agentsare key-agents, then the 
entralized monitoring agent will end up monitoring allteam-members even with the new bound.Figure 1 illustrates the signi�
an
e of this new upper bound for 
entralizedmonitoring. Figure 1-a shows an agent monitoring all others. Figure 1-b showsthe agent monitoring only key agents. Under the new upper-bound shown above,the agent is still guaranteed to dete
t all failures it would have dete
ted (usingmaximal 
oheren
e) when monitoring all agents.3.2 Distributed Disagreement Dete
tionWe now 
onsider the 
ase of distributed monitoring settings, where team-members monitor ea
h other. It is easy to see that if the graph is 
onne
ted,and ea
h agent knows exa
tly the sele
tion of its monitored peer, then soundand 
omplete dete
tion is possible, in a distributed fashion, with very limited
onne
tivity: Ea
h agent A monitors at least one other agent B (or is monitoredby another agent B). If A sele
ts an internal state di�erent from B, then atleast one of them would dete
t the disagreement immediately. If A monitors
B�and knows with 
ertainty B's state�then a simple 
omparison with A'ssele
ted state is all that is needed. Sound and 
omplete dete
tion means that atleast one team-members will dete
t a disagreement if one o

urs, and no falsedete
tions will take pla
e.A 
hallenge is raised when the state of agents is not known to their monitorswith 
ertainty. This o

urs ne
essarily under 
onditions of limited 
onne
tivity:Sin
e monitors 
annot per
eive, sense, or 
ommuni
ate with all the monitoredagents, and do not have shared memory a

ess to the monitored agents, theyne
essarily have some un
ertainty about their a
tions.Fortunately, it is possible to show that under some 
onditions, having all11



(a) Distributed monitoring, in [20℄. (b) Distributed monitoring, in [21℄.
(
) Distributed monitoring, in this pa-per.Figure 2: Illustration of distributed monitoring graphs. Non-�lled dots indi
atekey agents. All 
ases allow for sound and 
omplete disagreement dete
tion.agents take part in monitoring (distributed monitoring) allows for 
omplete andsound dete
tion of 
oordination failures (in parti
ular, disagreements). Intu-itively, this happens when there is always a key agent to be found, for anysele
ted state. This 
ondition is de�ned below:De�nition 4 (Observably-partitioned state-spa
e). A state-spa
e P is said tobe observably-partitioned if for any two states Pi, Pj ∈ P there exists a key-agent

Aij . The set of these Aij agents is 
alled the key agents set of P .Kaminka and Tambe [20℄ have shown that if at least a single key agent existsfor every pair of team plans (i.e., the team employs an observably-partitionedstate-spa
e), and if all team-members monitor all agents, then dete
tion is notonly sound, but also 
omplete (see Figure 2-a for illustration). Later on [21,Theorem 4℄, the result was improved somewhat: All agents must monitor thekey agents only�all of them�and the key agents must monitor ea
h other(Figure 2-b).The 
ondition of an observably-partitioned state-spa
e is often easy to sat-isfy. For instan
e, teams are very often 
omposed su
h that not all agents have12



the same role in the same plan, and in general, roles do have observable dif-feren
es between them. Often, in fa
t, the set M(A, B/P ) 
an be 
omputedo�ine, in advan
e; this allows the designer to identify the key agents in a teamprior to deployment. Furthermore, any agent 
an be
ome a key-agent simplyby 
ommuni
ating its state to the monitoring agent and therefore eliminatingambiguity; thus a team 
an use highly-fo
used 
ommuni
ations to guaranteedete
tion. We leave further exploration of su
h dynami
 
reation of key-agentsto future work.However, the requirement that all key-agents be monitored inhibits deploy-ment of s
aled-up appli
ations. As the size of the team grows, limited 
onne
-tivity be
omes more 
ommon, sin
e agents be
ome more physi
ally and logi
allydistributed. Thus not all agents, and in parti
ular not all key agents, will bea

essible for monitoring.The theorem below takes an additional step by providing more relaxed 
on-ditions on the 
onne
ted nature of the monitoring graph, in parti
ular withrespe
t to the 
onne
tivity of the nodes representing key agents. These 
ondi-tions are: (i) every non-key agent sele
ting a state P0 monitors a single key agentfor ea
h possible pair of states involving P0 (i.e., for ea
h pair of states, whereone of the states is P0); and (ii) the monitoring sub-graph for all key agents fora given pair of states forms a 
lique (i.e., key agents are fully 
onne
ted betweenthemselves). This 
ase is illustrated in Figure 2-
.Theorem 2 (Clique Key-Agent Monitoring). Let T be a team, employing anobservably-partitioned state-spa
e P , where: (i) Ea
h team-member A ∈ T , se-le
ting a state P1, who is not a key agent for P1, P2 monitors one key agent for
P1, P2; (ii) all key agents for a pair of states X, Z monitor all other key agentsfor X, Z (forming a bidire
tional 
lique in the underlying monitoring graph);and (iii) all monitoring 
arried out is 
omplete, and uses maximal-
oheren
e.Then disagreement dete
tion in T is sound and 
omplete.To prove this theorem, we utilize two lemmas. The �rst has been presentedand proved in [21, Lemma 1℄, and we repeat it here for 
larity:Lemma 1 (Lemma 1, [21℄). Let A1, A2 be agents who are monitoring ea
h otherusing the maximal 
oheren
e heuristi
. Suppose A1, A2 are exe
uting P1, P2,respe
tively, where P1 6= P2. Then A1 would dete
t a disagreement with A2 if
A2 is a key agent in P1, P2.Proof. See [21℄.The se
ond lemma (Lemma 2) is a weaker version of the theorem. Here, allagents in team T are key agents (ea
h, for at least one pair of states). Under theother 
onditions of the theorem, we show that disagreement dete
tion is soundand 
omplete.Lemma 2. Let T be a team of agents, employing an observably-partitionedstate-spa
e P . If every agent t ∈ T is a key agent for some p1, p2 ∈ P , thenTheorem 2 holds. 13



In other words, assume: (i) Ea
h team-member A ∈ T , sele
ting a state
p1 ∈ P , who is not a key agent for p1, p2 ∈ P monitors one key agent for
p1, p2; (ii) all key agents for any pair pi, pj ∈ P monitor all other key agents for
pi, pj (forming a bidire
tional 
lique in the underlying monitoring graph); (iii)the team utilizes an observably-partitioned state-spa
e P ; (iv) all monitoring
arried out is 
omplete, and uses maximal-
oheren
e; and (v) Every agent t ∈ Tis a key agent (there exist some pair of states pi, pj ∈ P su
h that t is a keyagent for pi, pj . Then disagreement dete
tion in T is sound and 
omplete.Proof. First, sin
e all monitoring is 
omplete and is done using maximal-
oheren
e, we know monitoring results are sound [21, Theorem 1℄. We willshow that the monitoring results are 
omplete. To do this, we show that if adisagreement exists, it would be dete
ted.Assume for 
ontradi
tion that a disagreement exists, and that it was notdete
ted by any agent. We 
onsider the monitoring graph GT of the team T ,and partition it into k partitions, su
h that ea
h partition holds the verti
es
orresponding to agents sele
ting the same state. The assumption (for 
ontra-di
tion) that a disagreement exists means that k ≥ 2. Without loss of generality,let us arbitrarily denote the states in these partitions p1, . . . , pk, and name thepartitions P1, . . . , Pk, respe
tively.Let us pi
k any partition, and arbitrarily denote it X , and the state sele
tedin it x. Sin
e GT is 
onne
ted, the partitions form a 
onne
ted graph, thoughnot ne
essarily all partitions are 
onne
ted to all others. Therefore, X must be
onne
ted to a set of partitions Q1, . . . , Qm, where qi ∈ P1, . . . Pk, and 1 ≤ m <
k. We denote the states of the partitions Q1, . . . , Qm by q1, . . . , qm, respe
tively.We will �rst show that any agent a ∈ X (any agent sele
ting state x) is nota key agent for x, qi, 1 ≤ i ≤ m. To see this, assume for 
ontradi
tion that a iskey for x, qi. Pi
k an arbitrary agent b ∈ Qi. There are two 
ases:
b is a key agent for x, qi, just like a. In this 
ase a is monitoring b (be
auseall key agents for x, qi monitor ea
h other), and would dete
t a disagree-ment with b (Lemma 1 above). Contradi
tion.
b is not a key agent for x, qi. Therefore, it must be monitoring a key agent

r for x, qi (as required in the 
onditions of the lemma). Be
ause all keyagents for x, qi monitor ea
h other, a is also monitoring r. Sin
e no dis-agreement is dete
ted, r 
ould not have sele
ted state qi nor x, and musthave therefore sele
ted a di�erent state y, where y 6= x, qi. Now,
• r 
annot be a key agent for y, x, or otherwise a would have dete
teda disagreement. Thus M(a, r/x) ∩M(a, r/y) ⊇ y, x.
• r 
annot be a key agent for y, qi, or otherwise q would have dete
teda disagreement. This implies that M(b, r/qi) ∩M(b, r/y) ⊇ y, qi.But then, based on observer-independen
e, it follows that M(a, r/x) ∩

M(a, r/qi) = y 6= ∅. This means that r is not a key agent for x, qi.Contradi
tion. 14



The above leads the the 
on
lusion that a 
annot be a key agent for x, qi,1 ≤
i ≤ m.However, a 
ondition of the lemma is that all agents in T are key-agents.Thus a must be a key agent for some pair of states z, w ∈ P . It must be that
∃i, j, s.t. z = qi, and w = qj , sin
e the partitions for Z, W (Qi, Qj) must be
onne
ted to X . Therefore, a is a key agent for qi, qj . But a is not a key agentfor x, qi, and is not a key agent for x, qj , as we have seen above. Therefore:
• a 
annot be a key agent for x, qi. Thus M(b, a/x)∩M(b, a/qi) ⊇ qi, x, forany observing agent b.
• a 
annot be a key agent for x, qj . Thus M(b, a/x) ∩M(b, a/qj) ⊇ qj , x,for any observing agent b.But then, based on observer-independen
e, it follows that M(b, a/qj) ∩

M(b, a/qi) = x 6= ∅. This means that a is not a key agent for qi, qj (z, w).Contradi
tion.Sin
e in all possible 
ases the assumption that a disagreement exists but wasnot dete
ted leads to 
ontradi
tion, ne
essarily all agents are in agreement, thatis k = 1. Thus it 
annot be the 
ase that two or more agents are in disagreement,and none dete
ts a failure. Therefore monitoring is 
omplete, and sin
e it mustbe sound (see beginning of proof), the theorem holds if every agent is a keyagent.With Lemma 2 in pla
e, we 
an now prove Theorem 2 by indu
tion on thenumber of agents in T 2.Proof. We will �rst show disagreement dete
tion 
ompleteness by indu
tion onthe number of agents N . The idea here is to show that if any two agents A1, A2have sele
ted two di�erent plans P1, P2, where P1 6= P2, then a member of theteam T will dete
t the failure. In other words, to show 
ompleteness we needto show that if a disagreement o

urs, it will be dete
ted.Indu
tion base: Obviously if there is only one agent no disagreement 
ano

ur, so we begin with the 
ase of two agents, A1, A2, who have sele
ted plans
P1, P2 respe
tively, where P1 6= P2, and are therefore in disagreement. Weknow that at least a single key agent exists for P1, P2, be
ause the team employsan observably-partitioned set of plans. Without loss of generality, assume thekey agent is A2. Then A1 is monitoring it, and sin
e A2 is key agent in P1, P2then A1 will dete
t the disagreement (Lemma 1).Indu
tion hypothesis: Assume the theorem holds for a team with up to
N − 1 agents. We will show that it holds for a team with N agents. There aretwo 
ases:2The proof was developed jointly with Mi
hael Bowling [17℄.15



• Case 1: T has an agent t whi
h is non-key for all pairs of plans
X, Y . We examine GN , the dire
ted monitoring graph of T (see De�nition1). Sin
e the monitoring graphs of all key agents are 
onne
ted, andsin
e all non-key agents are monitoring key agents, it follows that GN is
onne
ted. We examine the in
oming and outgoing edges of the vertexrepresenting t. Sin
e GN is 
onne
ted, t has in
oming monitoring edges(t is monitored by other agents), or t has outgoing monitoring edges (tmonitors other agents), or both.Let us now remove t from the graph. Sin
e t is a non-key agent in allpairs of plans X, Y , it follows that removing it results in a redu
ed graph
GN−1 whi
h satis�es the 
onditions of the theorem, for a redu
ed team ofonly N − 1 agents: (i) All other non-key agents are 
ontinuing to monitorkey agents (we have not modi�ed monitoring edges from these other non-key agents to key-agents); (ii) all key agents 
ontinue to monitor all otherkey agents; (iii) the team still employs an observably-partitioned set ofplans�sin
e the removal of t did not 
hange the set of key agents northe set of plans; and obviously (iv) monitoring is still 
omplete and usesmaximal 
oheren
e. We are now left with a team of N − 1 agents.If A1, A2 are within the N − 1 agents left, then the disagreement wouldbe dete
ted (based on the indu
tion hypothesis), and so we are done. Ifno disagreement is dete
ted, then it follows from the indu
tion hypothesisthat no disagreement exists among the N − 1 agents, i.e., one of A1, A2is in
luded within the N − 1 agents, and the other is t. Without loss ofgenerality, assume t = A2. Then A1, exe
uting P1 is one of the N − 1agents in the redu
ed team, and sin
e they are not in disagreement with
A1, they must all be exe
uting P1. Let us now re-
reate the original graph
GN , reintrodu
ing t into the team by putting ba
k the original in
omingand outgoing edges. Sin
e t = A2, it is exe
uting P2. And sin
e it isnot a key-agent, it must be monitoring a key-agent for P1, P2. However,this key agent must be exe
uting P1. Therefore, t would have dete
ted adisagreement (Lemma 1).
• Case 2: T does not have an agent that is non-key agent for allpairs of plan. Thus every agent is a key agent in some pair of plans

X, Y . Then the theorem holds for N agents based on Lemma 2.In all possible 
ases, a failure is dete
ted if a disagreement exists, thus failuredete
tion is 
omplete. Sin
e monitoring is 
omplete, failure dete
tion is alsosound ( [21, Theorem 1℄).This theorem allows teams to over
ome signi�
ant 
onne
tivity limitations,without sa
ri�
ing dete
tion quality. It translates into signi�
ant freedom forthe designer or the agents in 
hoosing whom (if any) to monitor; when a moni-tored agent is unobservable, an agent may 
hoose to monitor another: Non-keyagents need monitor only a single key agent, rather than all key agents (forevery pair of states). 16



Figure 3: Monitoring graphs in a RoboCup simulation-league game situation.The upper-bound the theorem provides is more general than may seem at�rst glan
e. First, the theorem holds for any state feature of interest�beliefsabout a shared environment, goals, et
.; it is up to the designer to pi
k a moni-toring te
hnique that a
quires the needed information for 
onstru
ting the mon-itoring hypotheses. Se
ond, the theorem does not depend at all on the methodby whi
h monitoring o

urs, whether by 
ommuni
ations or by observations.Thus the 
onne
tivity of a monitoring graph does not have to be maintained vi-sually. Some or all of the edges in the monitoring graph may a
tually 
orrespondto (possibly unreliable) 
ommuni
ation links between agents.Though this theorem represents a signi�
ant advan
e in lowering the boundon the number of agents that must be monitored, all key agents must stillmonitor ea
h other. This is a 
riti
al 
onstraint in pra
ti
e. For instan
e,we have re
onstru
ted the visual monitoring graph in thousands of RoboCupgame situations, to �nd that even with this new bound, sound and 
ompletedisagreement dete
tion would have been possible without 
ommuni
ations onlyin small per
entage (approximately 5%) of a game. Typi
ally, ea
h RoboCupplayer 
an only see 2�3 key agents, this means that key agents 
annot typi
allymonitor all others. To illustrate, Figure 3 shows the monitoring graph of twoteams overlaid on a s
reen-shot of an a
tual game situation. For both teams,the bound presented in this paper does not apply to the monitoring graph, thussound and 
omplete disagreement dete
tion is not guaranteed. This empiri

onstraint raises the bar on the 
hallenge to �nd a lower bound on the numberof agents that must be monitored to guarantee dete
tion.It remains an open question whether a lower bound than that whi
h is de-17



s
ribed above may be possible. We believe that it may be possible to guaranteesound and 
omplete dete
tion in all 
ases where ea
h key agent is either mon-itored or is monitoring a single other key agent (rather than all of them), i.e.,when the monitoring graph forms a spanning tree. This would equate the upperand lower bounds on 
onne
tivity. In pra
ti
e, it would translate to guarantee-ing failure dete
tion in over 70% of the thousands of RoboCup monitoring 
aseswe have examined. Below, we present this formally as a 
onje
ture.Conje
ture 1 (Spanning-Tree Key-Agent Monitoring). Let T be a team inwhi
h: (i) Ea
h team-member A exe
uting a plan P1, who is not a key-agent in
P1, P2 (where P1 6= P2) monitors a key agent in P1, P2; (ii) every key-agent fora pair of plans X, Z monitors or is monitored by one other key-agent in X, Z(if more than one exists); (iii) the team employs an observably-partitioned setof plans; and (iv) all monitoring 
arried out is 
omplete, and uses maximal-
oheren
e. Then disagreement dete
tion in T is sound and 
omplete.By allowing for limited 
onne
tivity, the agent 
an redu
e the number of itsmonitoring targets. However, for ea
h one of those agents that it does monitor,it must keep tra
k of (possibly multiple) hypothesized states. These are used toform joint-state hypotheses, from whi
h the maximal 
oherent hypotheses aresele
ted. The next se
tion details an e�
ient me
hanism for the generation andsele
tion of su
h hypotheses.4 E�
ient Disagreement Dete
tionDisagreement dete
tion involves a key step of representing the state of moni-tored agents, su
h that the state of di�erent agents 
an be 
ontrasted to de-te
t disagreements. This se
tion presents a method for doing this pro
ess e�-
iently. Se
tion 4.1 des
ribes a general hierar
hi
al representation of monitoredagents' states, and a basi
 inferen
e algorithm whi
h uses the representationfor observation-based and 
ommuni
ation-based monitoring. Se
tion 4.2 thenpresents YOYO, a novel algorithm for highly-s
alable disagreement dete
tion.4.1 RepresentationMu
h of 
ontemporary theoreti
al and empiri
al work on teamwork (
ollabo-ration), both in syntheti
 agents and in humans, has emphasized agreementon a hierar
hi
al re
ipe, or plan, as a key to e�e
tive teamwork (see, for in-stan
e, [6, 7, 13, 28, 35℄). Given this emphasis, we fo
us on a monitoring rep-resentation that follows two key 
onstraints: (i) representing agents in termsof their 
urrently exe
uting plans (and plan-steps); (ii) allowing the designer,or monitoring agent to mark plans that have to be agreed upon, so that theyare exe
uted jointly (together) by all members of a team (or subteam). Thesetwo 
onstraints give rise to two stru
tures that are used by the monitoringsystem: A plan-de
omposition hierar
hy (re
ipe), and a team de
omposition18



ISIS’97

Midfielders Defenders Forwards Goalies

Interrupt Play

winGame

AttackDefend Midfield

Careful−Defense Simple−Advance Flank−Attack

Score−Goal Kick−Out

(a) (b)Figure 4: Plan-hierar
hy (a) and team-hierar
hy (b) in the RoboCup domain.Boxed plans denote (sub)team plans, whi
h must be agreed-upon by (sub)team-members. Individual agents�ea
h a subteam�are not shown.hierar
hy. These have been fully des
ribed in [19,28℄, and so we only provide abrief overview here.A plan-hierar
hy is used to represent a monitored agent's plan. It is de�nedto be a dire
ted 
onne
ted graph, where verti
es are plan steps, and edges signifyhierar
hi
al de
omposition of a plan into sub-plans. Ea
h vertex has at mostone parent (i.e., one in
oming hierar
hi
al de
omposition edge); a plan that
on
eptually has many parents (i.e., it is a 
omponent in the de
omposition ofdi�erent parent plans) is represented as multiple instan
e verti
es in the plan-hierar
hy. Multiple outgoing edges signify alternatives available to the agent,of the �rst subplan to be exe
uted. The graph forms a tree along hierar
hi
alde
omposition edges, so that no plan 
an have itself as a des
endant. A vertexwith no 
hildren edges denotes an atomi
 step.For example, Figure 4-a presents a portion of the plan-hierar
hy used to mon-itor the ISIS'97 RoboCup Simulation team [24℄. The top-level plan, winGame,is sele
ted by all players as soon as they join a game. It has one �rst 
hild, theInterrupt plan, whi
h is assumed to be sele
ted by the agent whenever thegame is interrupted by the referee. winGame's other 
hild, Play, follows In-terrupt in order of exe
ution, and is sele
ted when the game is 
urrentlyplaying. Thus Interrupt and Play follow ea
h other to the end of the game.In servi
e of play, players 
hoose a plan (Atta
k, Defend, et
.) based ontheir role in the team: forwards, defenders, et
. (dis
ussed later). This de
om-position 
ontinues. For instan
e, at a parti
ular given moment, a forward maybe monitored to be engaged in exe
uting the following path (from root to leaf):winGame � Play � Atta
k � Simple-Advan
e � S
ore-Goal.In order to dete
t disagreements, the monitoring agent must �rst know whi
hplans are ideally to be agreed upon. We assume that su
h team plans areknown, e.g., be
ause they are marked in advan
e by the designer [13,18,28,35℄.In Figure 4-a, team plans are boxed: winGame, Play, and Interrupt areto be exe
uted by the all members of the RoboCup team ISIS'97. Midfield,Defend, et
. are to be exe
uted jointly only by members of the 
orresponding19



subteams of ISIS'97 (mid�elders, defenders, et
.).To maintain knowledge of whi
h teams are assigned to whi
h plans, thereare pointers from ea
h plan to nodes in a team hierar
hy (Figure 4-b), usedto tra
k whi
h sub-team is asso
iated with ea
h plan step (and vi
e versa).The team hierar
hy is a tree stru
ture whi
h en
odes knowledge about therelationships between teams, subteams, and team-members: Ea
h node in theteam-hierar
hy 
orresponds to a monitored organizational unit. The top (root)team represents the entire monitored team. These teams are then split intoseveral subteams, et
., until the leaves of the hierar
hy 
ontain roles of individualagents, if they exist. For instan
e, Figure 4-b presents the team-hierar
hy ofthe ISIS'97 RoboCup team [24℄, 
omposed of a root node for the entire team,and four nodes for its four subteams. Within subteams, members do not havedi�erent roles, and 
hoose sub-plans for individual exe
ution, with no so
ial
onstraints on their sele
tion (not shown in Figure 4-b).4.2 E�
iently Dete
ting DisagreementsThe monitoring agent uses the plan hierar
hy to maintain its information on thestate of the monitored agent. Su
h information 
an 
ome from 
ommuni
ations[3,19℄, e.g., where agents announ
e their initiation or termination of sele
ted plansteps; or it may 
ome from plan-re
ognition inferen
e based on observationsof the other agent's a
tions [10, 21℄. An algorithm for su
h inferen
e, 
alledRESL, has been previously des
ribed in [21℄ and is presented here brie�y: Thedesigner of the monitoring system asso
iates with ea
h plan a set of observables,
ondition monitors that tie in sensor readings and re
eived 
ommuni
ations withparti
ular plans in the hierar
hy. When a 
ondition monitor mat
hes the sensorreading (e.g., when a message is re
eived that is 
onsistent with a plan, or whenan a
tion asso
iated with a plan is observed), we tag the plan mat
hing. If itsobservables fail to mat
h, the plan is tagged not-mat
hing.RESL infers the state of unobservable plans from their 
hildren and parents:An otherwise untagged parent with at least one su

essfully-mat
hed 
hild istagged mat
hing, otherwise it is tagged as failing to mat
h (not mat
hing). Andan untagged 
hild with a su

essfully-tagged parent is tagged mat
hing, unlessall of its own 
hildren are tagged as failing to mat
h. In this way, all plans in thehierar
hy are tagged as mat
hing or not-mat
hing the observations. Multiplemat
hing siblings denote multiple hypotheses. The pro
ess is linear-time in thesize of the plan hierar
hy.After hypothesizing the state of ea
h agent based on re
eived or observed in-formation, the monitoring agent mat
hes team plans a
ross members of teams�if agents are in agreement about their sele
ted team plans, then all is well. Ifagents are not in agreement about their team plans, then a disagreement isannoun
ed. Note that agents do not have to be in agreement about all plans�only about those plans that are marked as team plans. Furthermore, the plan-hierar
hies used for di�erent agents may themselves be di�erent (other than inthe team plans), fa
ilitating monitoring of behaviorally-heterogeneous agents.20



This method has been su

essfully used in monitoring agents deployed in Mod-SAF [36℄, RoboCup [24℄, and 
ivilian eva
uation simulation [28℄.However, a di�
ulty emerges in applying this te
hnique in monitoring alarge number of agents. While only a single maximally-
oherent hypothesisis needed, the total number of joint-state hypotheses 
ombinatorially explodesin the number of agents. If we denote the size of the plan library by L andthe number of agents by N , the number of joint-state hypotheses is O(LN ) inthe worst 
ase. Moreover, the spa
e requirements for reasoning also pose somedi�
ulty, as an array of plan-libraries (one for ea
h agent) requires O(NL)spa
e.To address the 
hallenges raised by the time and spa
e 
omplexity of previ-ously known te
hniques, we present YOYO, an algorithm that utilizes knowledgeabout the team organization to 
arry out disagreement dete
tion in time andspa
e linear in the number of agents. The intuition behind YOYO is to representonly 
oherent hypotheses (of whi
h there is a linear, not exponential, number),and then re
ognize disagreements as 
ases where the representation fails. Asdis
ussed in Se
tion 2, YOYO is based upon earlier work on the YOYO* prob-abilisti
 plan-re
ognition algorithm [19℄, but di�ers from it in several importantways.YOYO represents all agents together, in a single shared plan hierar
hy. Theshared plan-hierar
hy is fully expanded to 
ontain the plans and transitionsfor all subteams, annotated so that YOYO 
an determine whi
h subteam is totake whi
h transitions, exe
ute whi
h plans, et
. A plan P in this hierar
hy,when tagged as mat
hing, represents the hypothesis that all agents in the teamasso
iated with P are exe
uting P . Observations about agents are then mat
hedagainst the shared plan-hierar
hy. Intuitively, the pro
ess of dete
tion pro
eedsas follows: If some team members are exe
uting P , while others are exe
utinga di�erent plan Q, and assuming the observations allow us to di�erentiate P, Qthen both will be marked mat
hing and not-mat
hing at the same time, and wewill know that a disagreement has o

urred.However, members of di�erent subteams exe
ute di�erent plans by design.Therefore, YOYO needs to di�erentiate 
ases where members of the same teamhave sele
ted di�erent plans P, Q, and 
ases where members of di�erent teamshave sele
ted P, Q. To do this, YOYO exploits knowledge of the so
ial stru
-ture within the monitoring system, as provided in the team-hierar
hy des
ribedabove.YOYO maintains pointers from ea
h node in the team hierar
hy to plan-stepnodes in the shared plan-hierar
hy. The plans pointed to are the hypothesized
oherent plans of the monitored team, and thus multiple pointers are allowedfrom a single team-hierar
hy node. The pointers in the team-hierar
hy point atthe lowest-level plans that are 
onsistent with the observations, and are to beexe
uted by the team in question.For example, suppose all RoboCup players are exe
uting the Play plantogether, and that members of ea
h subteam are in agreement with their team-mates on the plan 
hosen for the subteam. A player that observes its team-mates using the team- and plan-hierar
hies in Figure 4 will have pointers from21



the ISIS'97 node in the team hierar
hy (Figure 4-b) to the Play plan in theplan-hierar
hy (Figure 4-a). Ea
h of the subteam nodes in the team-hierar
hywill have pointers to plans in the plan-hierar
hy whi
h are exe
uted by thedi�erent subteams. For instan
e, the Forwards subteam may have a pointerto the Simple-Advan
e plan, signifying that all members of the subteam areexe
uting this plan.YOYO (Algorithm 1) maintains the pointers su
h that the hypotheses theyrepresent are 
oherent with ea
h other at all times. If it fails, then this meansthat the team's state is unambiguously in
oherent, i.e., a disagreement exists.YOYO operates as follows: When an observation is made about an agent (
alledthe fo
us), we not only update the pointers for this agent, but also re-align thepointers of its parent (sub)teams, su
h that their own pointers point at plansthat are 
oherent with the new hypothesized state of the fo
us. We then go upand down the team-hierar
hy to re-align the pointers of the other agents whi
hare either part of the fo
us' subteam or its siblings' subteam. This is doneby moving the pointers of non-fo
us agents (and the subteams of whi
h theyare members) su
h that they point at a plan that is 
oherent with the planshypothesized for the fo
us. If the initial set of pointers for any non-fo
us agentis already 
oherent, no re-alignment is ne
essary. If no plan 
an be found forthem, or if all plans for a team are tagged both mat
hing and not-mat
hing atthe same time, then a state of disagreement has been dete
ted.Algorithm 1 YOYO(plan hierar
hy L, team-hierar
hy H)1: for all observations Oi at time t do2: for all plans X that have 
onditionals testing Oi do3: let Ai be the agent observed in Oi4: if X mat
hes Oi and X exe
utable by Ai then5: tag X as mat
hing6: 
reate pointer from Ai node (in H) to X7: else8: tag X as not mat
hing9: for all plans X tagged mat
hing or not mat
hing do10: T ← team(X), P ← X11: while parent(P ) 6= null do12: propagate any tags to parent(P ) (mat
h or not mat
h)13: if team(parent(P )) = parentteam(T ) then14: propagate tags down to untagged plans15: 
reate pointer from parentteam(T ) to parent(P )16: T ← parentteam(T )17: P ← parent(P )18: for all teams T in H do19: if T only points to plans mat
hing and not mat
hing then20: a disagreement has o

urred.For example, suppose that the players are known to be exe
uting the In-22



terrupt plan (see Figure 4). Suppose now that a defender observes a forwardplayer running towards the opponent goal (i.e., exe
uting the Atta
k plan, inservi
e of Play). The defender tags Interrupt as mat
hing, and Play as notmat
hing (based on its own sele
ted plans). However, YOYO (exe
uted by themonitoring defender) will 
reate pointers for observed atta
ker to point to theAtta
k plan (lines 1�8), and will tag other plans (in parti
ular Interrupt)as not mat
hing. It will then enter the loop on line 9. For the Atta
k plan, itwill propagate its su

essful tag up to the Play plan (line 12), and then 
reatea pointer from the root node in the team hierar
hy, representing the ISIS'97team (the root in Figure 4-b) to Play, sin
e the team that exe
utes Play isthe ISIS'97 team (the parent of the the Forwards subteam). It will then 
limbup in both hierar
hies (lines 16�17) and begin another iteration. Later on, thesame pro
ess will be repeated for the Interrupt plan. Sin
e both Interruptand Play are pointed to from the node representing the team ISIS'97, andsin
e they are both tagged mat
hing and non-mat
hing, a disagreement will bedete
ted.YOYO uses minor enhan
ements of the data-stru
tures as used by RESL.First, in following 
hildren transitions, YOYO is 
areful to only take paths legalto the team in question (i.e., plans and transitions that the team is allowed toexe
ute in its role): It thus makes the assumption that transitions in the planhierar
hy are marked for the subteams that are allowed to take them. Se
-ond, YOYO must use a time-stamp to tag plans3, so that observations thatarrive simultaneously (but pro
essed serially) will 
ause a dete
tion of disagree-ments (if one exists), instead of overwriting the e�e
ts of ea
h other. Per theexample above, if the monitoring defender observes another forward to be exe-
uting Interrupt, while the �rst forward is exe
uting Play, then the inferen
epro
ess for the two observations would tag these plans as both mat
hing andnot-mat
hing at the same time, and a disagreement would be dete
ted.YOYO's �rst part mat
hes plans against all observations (lines 1�8), andthus takes O(NL), where N is the number of agents (generating observations),and L the size of the plan-hierar
hy (i.e., number of nodes). The nested loopspotentially traverse the entire plan-hierar
hy O(L) for ea
h team. Sin
e theteam-hierar
hy grows with N , we use that to denote its size; a traversal of theteam-hierar
hy is O(N). The propagation down in line 14 may still traversethe entire O(L) plan-hierar
hy (in a theoreti
al worst 
ase). The pro
ess thustakes O(NL2). Finally, the disagreement dete
tion goes from every team in theteam-hierar
hy to every plan (in the worst 
ase), thus O(NL) again. Overall,YOYO's 
omplexity is O(NL2). The key to this 
omplexity is that YOYO onlymaintains 
oherent hypotheses. If it 
annot, then a disagreement has o

urred�but YOYO does not represent the underlying in
oherent hypothesis. This time
omplexity should be 
ontrasted with RESL's O(LN ). YOYO's spa
e 
omplex-ity also 
ompares well with RESL: With ea
h additional agent, YOYO's spa
erequirements grow by one node in H , at most, to represent the additional agent.In 
ontrast, RESL uses an additional 
opy of the entire plan hierar
hy for every3The time is taken to be lo
al to the agent running YOYO. No need for a global 
lo
k.23



additional agent.However, YOYO's run-time 
omplexity is still dominated by a key fa
tor�the number of observed monitored agents: As long as simultaneous observationsare 
oming in about agents, YOYO still needs to pro
ess all of them, mu
h likethe full array approa
h. Thus the bounds presented in the previous se
tion playa signi�
ant role in redu
ing overall run-time, regardless of whether RESL orYOYO are used.5 ExperimentsTo evaluate the e�
a
y of the YOYO algorithm, we empiri
ally 
ompare therun-time performan
e of RESL and YOYO on identi
al monitoring problems, asthe number of monitored agents is s
aled up. Trials were 
arried out in severaldi�erent simulated domains:ModSAF. The ModSAF environment is a 
ommer
ially-developed high-�delity simulation system, whi
h was used as the environment for
oordination-failure experiments in [20,21℄. In the original system, teamsof 3�6 simulated heli
opters utilized (individually) a plan-hierar
hy (asdes
ribed above) to exe
ute training exer
ises. In this paper, we re-
reated the prin
ipal 
omponents of the plan-hierar
hy, en
ompassing foursub-hierar
hies, with ambiguity between them (i.e., more than one paththrough the plan-hierar
hy would mat
h a given observation).RoboCup. The ISIS'97 and ISIS'98 RoboCup So

er Simulation teams [24℄employed a plan-hierar
hy used by the agents to play virtual so

er. Inthis paper, we re-
reated again important (and ambiguous) portions oftheir plan-hierar
hies.RoboCup Simple. We revisited the plan-hierar
hy for the RoboCup domainabove, but removed any ambiguity. Thus observations lead to sele
tinga single 
orre
t hypothesis, with no need for reasoning about multiplehypotheses. The motivation for using this domain is to show the e�e
t ofambiguity on run-time in both 
ases. It is not intended to be realisti
, butallows exploration of the performan
e boundaries of RESL and YOYO.In ea
h trial, the number of monitored agents was �xed, and then a moni-toring problem (given by the observables available to the monitoring agent) wasrandomly generated. We re
orded RESL and YOYO's exe
ution time (mat
hingobservations, inferen
e, and disagreement dete
tion). For a

ura
y, we re
ordeda
tual CPU time, rather than wall-
lo
k time. 30 trials were done for ea
h �xednumber of agents. The number of agents was varied between 2 and 3000, inskips of 10.Figures 5 and 6 show the results of these experiments in the ModSAF andRoboCup domains, respe
tively (see below for the results in the RoboCup Simpledomain). The X axis in both �gures denotes the number of agents monitored(from 2 to 3000). The Y axis shows the average run-time in CPU se
onds, for24



running the disagreement-dete
tion algorithm on a single trial. Figures 5-a and6-a show the run-time of YOYO and RESL on a s
ale appropriate for RESL'sperforman
e (hundreds of se
onds). Sin
e it is di�
ult to see the results forYOYO on su
h s
ale, Figures 5-b and 6-b show the same �gures, on a s
aleappropriate for YOYO�approximately 3 orders of magnitude smaller.The RoboCup Simple domain shows di�erent results. Here, there is no un-
ertainty in the domain, as observations 
orrespond uniquely to plans withinthe plan-hierar
hy. As a result, mu
h of RESL's ma
hinery for tra
king multi-ple hypotheses is not used. Figure 7 shows the run-time results in this domain;ea
h point is an average of 300 runs. The axis are the same as in the previous�gures (though we skipped 50 agents at a time in varying the number of agents).However, note here that due to the la
k of ambiguity, RESL's run-time is almost
omparable to YOYO's (though YOYO is still faster). The small di�eren
e be-tween RESL and YOYO in this domain is likely due to the overhead in RESL'smaintenan
e of multiple plan-hierar
hy stru
tures: Where RESL updates Nstru
tures (ea
h with a single hypothesis), YOYO updates one.The di�eren
e in performan
e between YOYO and RESL in the di�erentdomains is not just a fun
tion of YOYO's maintenan
e of a single stru
ture(rather than the N stru
tures maintained by RESL). It is also due to the fa
tthat it 
onsiders only 
oherent hypotheses, of whi
h only a linear number (inthe size of the plan hierar
hy) exist.6 Dis
ussion and Future WorkMulti-agent literature has often emphasized that an agent must monitor otheragents in order to 
arry out its tasks. However, as the numbers of agents indeployed teams is s
aled up, the 
hallenges of limited 
onne
tivity and an ex-ponential number of potential failures are raised. This paper has addressedthese 
hallenges, in the 
ontext of a 
riti
al monitoring task�dete
tion of dis-agreements between teammates. First, the paper has shown that by 
arefully
onstru
ting the monitoring graphs of the system�who is monitoring whom�one 
an make guarantees on the quality of disagreement dete
tion, while re-du
ing the 
onne
tivity requirements on the agents. Se
ond, we have presentedYOYO, a highly-s
alable algorithm that provides disagreement dete
tion evenin large-s
ale teams.Our work in this paper is only one example in a growing body of liter-ature that 
onsiders large-s
ale systems [33℄. There are 
hallenges that areindependent of those dis
ussed above: Redu
ing the load on the monitor-ing agent [5℄, formal methods and data-stru
tures for representing large-s
aleorganizations [16℄, planning and exe
ution with large-s
ale systems [38℄, et
.Our work in this paper 
omplements these. For instan
e, Durfee [5℄ dis
ussedde
ision-theoreti
 and heuristi
 methods for redu
ing the amount of knowledgethat agents 
onsider in 
oordinating. Thus, while Durfee's work fo
uses onredu
ing 
omputational loads in monitoring ea
h single self-interested agent,our work fo
uses on redu
ing the number of monitored agents, and on savings25
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onds.possible only when monitoring teams together.Re
ent work on model-based diagnosis has also begun to address limited
onne
tivity, though indire
tly, and only to a limited extent. Work by Roos etal. [31,32℄ has examined the use of model-based diagnosis by agents diagnosinga distributed system. While the methods des
ribe do not address 
oordinationfailures, they are 
ertainly relevant in terms of dis
ussing the type of 
onne
tivityassumptions required for the diagnosis to work. Our re
ent work [14,15℄ on theuse of model-based diagnosis of disagreements also limits 
onne
tivity: A keyfo
us is on using only a handful of agents to represent all others in the diagnosispro
ess, thus limiting run-time and 
ommuni
ation load.Key issues and assumptions remain open for future investigation. Withrespe
t to the monitoring bounds presented in Se
tion 3, there remain questionsas to the satisfa
tion of the assumptions in pra
ti
e. We argue for both sides: Onone hand, any agent broad
asting its state to its peers is a key agent. And indeedmany real-world systems utilize 
ommuni
ations to alleviate un
ertainty; anysu
h system 
an now utilize the bounds to manage key agents better, by fo
usingsu
h broad
asts where absolutely required. Moreover, the 
onditions dis
ussedin the paper only 
onstrain the types of graphs that will guarantee 
omplete andsound dete
tion: They apply for both stati
 and dynami
 monitoring graphs.Nevertheless, it is 
ertainly the 
ase that we should 
ontinue to seek improvedbounds, and/or weakened assumptions.YOYO also leaves open questions. YOYO works with a known set ofteam/subteam plans; and its run-time 
omplexity involves the size of the plan-hierar
hy. It thus expe
ts a 
losed system, with a manageable plan-hierar
hy.28



But as systems grow in the number of agents, they may require working withan open plan-hierar
hy, that 
an 
hange as agents are added or removed fromthe system. Moreover, if the s
ale-up is not only in the number of agents, butalso in the size of the plan-hierar
hy, then this will a�e
t the s
alability of thesystem. Finally, YOYO's s
alability 
omes at the expense of the ability to rep-resent failure hypotheses: When a disagreement is dete
ted, YOYO knows thatit has o

urred, but 
annot dire
tly identify what agents are involved, or theextent of the disagreement. Thus for diagnosis tasks [14, 15℄, YOYO has tobe augmented by me
hanisms that allow the monitoring agent to re
onstru
tthe hypotheses underlying the disagreement. We hope to address these openquestions in future work.A
knowledgmentsThis work is based in part on a 2002 paper by the author and Mi
hael Bowling[17℄. We are indebted to Mi
hael Bowling for his help in proving Theorem 2, forwhi
h he deserves joint 
redit. We also owe Mi
hael many thanks for dis
ussionsand 
omments on earlier drafts of this work, in
luding �nding �aws with earlierattempted proofs. Milind Tambe and David V. Pynadath helped with initialversions of the YOYO algorithm. We also thank Meir Kale
h, Dorit Avrahami-Zilberbrand, and Mi
hael Lindner for useful dis
ussions and 
orre
tions. Asalways, thanks to K. Ushi.Referen
es[1℄ J. J. Burns, E. Salas, and J. A. Cannon-Bowers. Team training, men-tal models, and the team model trainer. In Advan
ements in IntegratedDelivery Te
hnologies, Denver, CO, 1993.[2℄ P. R. Cohen and H. J. Levesque. Teamwork. Nous, 35, 1991.[3℄ C. Dellaro
as and M. Klein. An experimental evaluation of domain-independent fault-handling servi
es in open multi-agent systems. In Pro-
eedings of the Fourth International Conferen
e on Multiagent Systems(ICMAS-00), pages 95�102, Boston, MA, 2000. IEEE Computer So
iety.[4℄ M. Devaney and A. Ram. Needles in a haysta
k: Plan re
ognition in largespatial domains involving multiple agents. In Pro
eedings of the FifteenthNational Conferen
e on Arti�
ial Intelligen
e (AAAI-98), pages 942�947,Madison, WI, 1998.[5℄ E. H. Durfee. Blissful ignoran
e: Knowing just enough to 
oordinate well.In Pro
eedings of the First International Conferen
e on Multiagent Systems(ICMAS-95), pages 406�413, 1995.[6℄ B. J. Grosz and S. Kraus. Collaborative plans for 
omplex group a
tions.Arti�
ial Intelligen
e, 86:269�358, 1996.29



[7℄ B. J. Grosz and C. L. Sidner. Plans for dis
ourse. In P. R. Cohen, J. Morgan,and M. Polla
k, editors, Intentions in Communi
ation, pages 417�445. MITPress, Cambridge, MA, 1990.[8℄ B. Horling, B. Benyo, and V. Lesser. Using self-diagnosis to adapt orga-nizational stru
tures. In Pro
eedings of the Fifth International Conferen
eon Autonomous Agents (Agents-01), pages 529�536, 2001.[9℄ B. Horling, V. R. Lesser, R. Vin
ent, A. Bazzan, and P. Xuan. Diagnosisas an integral part of multi-agent adaptability. Te
hni
al Report CMPSCITe
hni
al Report 1999-03, University of Massa
husetts/Amherst, 1999.[10℄ M. J. Huber and E. H. Durfee. De
iding when to 
ommit to a
tion duringobservation-based 
oordination. In Pro
eedings of the First InternationalConferen
e on Multiagent Systems (ICMAS-95), pages 163�170, 1995.[11℄ S. S. Intille and A. F. Bobi
k. A framework for re
ognizing multi-agenta
tion from visual eviden
e. In Pro
eedings of the Sixteenth National Con-feren
e on Arti�
ial Intelligen
e (AAAI-99), pages 518�525. AAAI Press,1999.[12℄ N. R. Jennings. Commitments and 
onventions: the foundations of 
oordi-nation in multi-agent systems. Knowledge Engineering Review, 8(3):223�250, 1993.[13℄ N. R. Jennings. Controlling 
ooperative problem solving in industrial multi-agent systems using joint intentions. Arti�
ial Intelligen
e, 75(2):195�240,1995.[14℄ M. Kale
h and G. A. Kaminka. Diagnosing a team of agents: S
aling-up. InPro
eedings of the Fourth International Joint Conferen
e on AutonomousAgents and Multi-Agent Systems (AAMAS-05), 2005.[15℄ M. Kale
h and G. A. Kaminka. Towards model-based diagnosis of 
oor-dination failures. In Pro
eedings of the Twentieth National Conferen
e onArti�
ial Intelligen
e (AAAI-05), 2005.[16℄ M. Kale
h, M. Lindner, and G. A. Kaminka. Matrix-based representationfor 
oordination fault dete
tion: A formal approa
h. In Pro
eedings of theSixth International Joint Conferen
e on Autonomous Agents and Multi-Agent Systems (AAMAS-07), 2007.[17℄ G. A. Kaminka and M. Bowling. Towards robust teams with many agents.In Pro
eedings of the First International Joint Conferen
e on AutonomousAgents and Multi-Agent Systems (AAMAS-02), 2002.[18℄ G. A. Kaminka and I. Frenkel. Flexible teamwork in behavior-based robots.In Pro
eedings of the Twentieth National Conferen
e on Arti�
ial Intelli-gen
e (AAAI-05), 2005. 30



[19℄ G. A. Kaminka, D. V. Pynadath, and M. Tambe. Monitoring teams byoverhearing: A multi-agent plan re
ognition approa
h. Journal of Arti�
ialIntelligen
e Resear
h, 17:83�135, 2002.[20℄ G. A. Kaminka and M. Tambe. I'm OK, You're OK, We're OK: Exper-iments in distributed and 
entralized so
ial monitoring and diagnosis. InPro
eedings of the Third International Conferen
e on Autonomous Agents(Agents-99), pages 213�220, Seattle, WA, 1999. ACM Press. A slightlydi�erent version appears in pro
eedings of the IJCAI-99 workshop on teambehavior and plan re
ognition.[21℄ G. A. Kaminka and M. Tambe. Robust multi-agent teams via so
ially-attentive monitoring. Journal of Arti�
ial Intelligen
e Resear
h, 12:105�147, 2000.[22℄ M. Klein and C. Dellaro
as. Ex
eption handling in agent systems. InPro
eedings of the Third International Conferen
e on Autonomous Agents(Agents-99). ACM Press, 1999.[23℄ S. Kumar, P. R. Cohen, and H. J. Levesque. The adaptive agent ar-
hite
ture: A
hieving fault-toleran
e using persistent broker teams. InPro
eedings of the Fourth International Conferen
e on Multiagent Systems(ICMAS-00), pages 159�166, Boston, MA, 2000. IEEE Computer So
iety.[24℄ S. C. Marsella, J. Adibi, Y. Al-Onaizan, G. A. Kaminka, I. Muslea,M. Tallis, and M. Tambe. On being a teammate: Experien
es a
quiredin the design of robo
up teams. Journal of Autonomous Agents and Multi-Agent Systems, 4(1�2), 2001.[25℄ E. Platon. Modeling Ex
eption Management in Multi-Agent Systems. PhDthesis, Laboratoire d'informatique de Paris 6, Universté et Marie Curie,2007.[26℄ E. Platon, N. Sabouret, and S. Honiden. An ar
hite
ture for ex
eption man-agement in multi-agent systems. International Journal of Agent-OrientedSoftware Engineering, 2(3):267�289, 2008.[27℄ D. Poutakidis, L. Padgham, and M. Winiko�. Debugging multi-agent sys-tems using design artifa
ts: The 
ase of intera
tion proto
ols. In Pro
eed-ings of the First International Joint Conferen
e on Autonomous Agentsand Multi-Agent Systems (AAMAS-02), 2002.[28℄ D. V. Pynadath and M. Tambe. Automated teamwork among heteroge-neous software agents and humans. Journal of Autonomous Agents andMulti-Agent Systems, 7:71�100, 2003.[29℄ J. Ri
kel and W. L. Johnson. Animated agents for pro
edural training invirtual reality: Per
eption, 
ognition, and motor 
ontrol. Applied Arti�
ialIntelligen
e, 13:343�382, 1999. 31



[30℄ J. Ri
kel and W. L. Johnson. Virtual humans for team training in virtualreality. In Pro
eedings of the Ninth International Conferen
e on Arti�
ialIntelligen
e in Edu
ation, pages 578�585. IOS Press, 1999.[31℄ N. Roos, A. t. Teije, A. Bos, and C. Witteveen. An analysis of multi-agentdiagnosis. in Pro
eedings of Autonomous Agents and Multi Agent Systems(AAMAS-02), 2002.[32℄ N. Roos, A. t. Teije, and C. Witteveen. A proto
ol for multi-agent diagnosiswith spatially distributed knowledge. in Pro
eedings of Autonomous Agentsand Multi Agent Systems (AAMAS-03), pages 655�661, 2003.[33℄ P. S
erri, R. Vin
ent, and R. Mailler, editors. Challenges of Large S
aleCoordination. Springer, 2005.[34℄ M. Tambe. Tra
king dynami
 team a
tivity. In Pro
eedings of the Thir-teenth National Conferen
e on Arti�
ial Intelligen
e (AAAI-96), 1996.[35℄ M. Tambe. Towards �exible teamwork. Journal of Arti�
ial Intelligen
eResear
h, 7:83�124, 1997.[36℄ M. Tambe, W. L. Johnson, R. Jones, F. Koss, J. E. Laird, P. S. Rosenbloom,and K. S
hwamb. Intelligent agents for intera
tive simulation environments.AI Magazine, 16(1), 1995.[37℄ D. E. Wilkins, T. Lee, and P. Berry. Intera
tive exe
ution monitoring ofagent teams. Journal of Arti�
ial Intelligen
e Resear
h, 18:217�261, 2003.[38℄ Y. Xu, P. S
erri, B. Yu, S. Okamoto, M. Lewis, and K. Sy
ara. An in-tegrated token-based approa
h to s
alable 
oordination. In Pro
eedingsof the Fourth International Joint Conferen
e on Autonomous Agents andMulti-Agent Systems (AAMAS-05), 2005.

32


