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Abstract

Multi-agent collaboration or teamwork and learning are two critical research chal-
lenges in a large number of multi-agent applications. These research challenges are
highlighted in RoboCup, an international project focused on robotic and synthetic
soccer as a common testbed for research in multi-agent systems. This article describes
our approach to address these challenges, based on a team of soccer-playing agents built
for the simulation league of RoboCup — the most popular of the RoboCup leagues so
far.

To address the challenge of teamwork, we investigate a novel approach based on the
(re)use of a domain-independent, explicit model of teamwork, an explicitly represented
hierarchy of team plans and goals, and a team organization hierarchy based on roles
and role-relationships. This general approach to teamwork, shown to be applicable in
other domains beyond RoboCup, both reduces development time and improves team-
work flexibility. We also demonstrate the application of off-line and on-line learning
to improve and specialize agents’ individual skills in RoboCup. These capabilities en-
abled our soccer-playing team, ISIS, to successfully participate in the first international
RoboCup soccer tournament (RoboCup’97) held in Nagoya, Japan, in August 1997.
ISIS won the third-place prize in over 30 teams that participated in the simulation
league.



1 Introduction

Increasingly, multi-agent systems are being designed for a variety of complex, dynamic do-
mains. Effective agent interactions in such domains raise some of most fundamental research
challenges for agent-based systems. An agent in such domains may often need to model other
agents’ behaviors, or learn/adapt from its interactions, or form teams and act effectively in
a team, or negotiate with other agents, and so on. For each of these research challenges,
the uncertainty and the presence of multiple cooperative and non-cooperative agents, only
conspires to exacerbate the difficulty.

To pursue such research challenges, the RoboCup research initiative has proposed sim-
ulation and robotic soccer as a common, unified testbed for Al research in general, and
multi-agent research in particular[14, 13] (www.robocup.org). By focusing on a common,
standard testbed, and highlighting several research issues of critical concern in multi-agents,
the RoboCup effort aims to accelerate the advance of the state-of-the-art in multi-agent sys-
tems. Indeed, the RoboCup initiative has proved extremely popular with researchers, with
annual competitions in several different leagues. Of particular interest in this article is the
simulation league, which has attracted the largest number of participants. The stated re-
search goals of the simulation league are to investigate the areas of (i) multi-agent teamwork,
(ii) multi-agent learning, and (iii) agent modeling (plan-recognition)[15].

Yet, the lessons learned by researchers participating in RoboCup, particularly the simula-
tion league, have largely not been reported in a form that would be accessible to the research
community at large. There are just a few notable exceptions (e.g., [27]). However, extract-
ing such general lessons in areas of teamwork, agent modeling and multi-agent learning, so
as to be applicable in other domains beyond RoboCup, is an important task for RoboCup
researchers.

This article attempts to remedy the above situation by focusing on two of the RoboCup
research challenges — teamwork and multi-agent learning — and attempting to extract gen-
eral lessons from our experience in building an agent-team for RoboCup. These two research
challenges are of critical concern in a wide variety of multi-agent domains, ranging from
virtual environments for training[33, 22], to multi-agent entertainment[9], to information-
integration on the Internet[34], to multi-robotic space missions. With respect to teamwork,
one key challenge is to enable an agent team to perform coherently in highly uncertain,
dynamic environments. In particular, in such complex environments, individual team mem-
bers often encounter differing, incomplete, and even inconsistent views of their environment.
Furthermore, individual members can unexpectedly fail in fulfilling their responsibilities. To
surmount such uncertainties and maintain coherence in teamwork, team members must be
provided the capability of highly flexible coordination and communication. With respect to
multi-agent learning, a key challenge is to enable individuals and teams to improve perfor-
mance, despite the complexities introduced by the presence of other agents in the multi-agent
environments.

This article presents our approach to address the above research challenges. For team-
work, we investigate the use of a novel approach, where agent-teams are developed based
on an explicitly represented hierarchy of team goals and plans, an explicitly represented
team organization hierarchy, and more importantly, a general-purpose, explicit model of



teamwork[11, 32]. The teamwork model is an attempt to provide agents with commonsense
knowledge of teamwork, particularly in terms of individuals’ commitments and responsibil-
ities in teamwork. There are two key implications of this approach to team development.
First, it speeds up team development by providing both a conceptual framework and im-
plementation support in terms of reusable code. Second, it promises to improve teamwork
flexibility, since the teamwork model enables agents to autonomously reason about coordi-
nation and communication. Such autonomous reasoning contrasts with an approach that
relies purely on pre-planned domain-specific coordination, which often leads to inflexibility.

Thus, one of the goals of this article is to understand the benefits and costs of pursuing the
above teamwork-model-based approach, an issue highly relevant for developing agent-teams
for a variety of multi-agent domains. To this end, we investigate the (re)use of STEAM][29,
31, 32] (a Shell for TEAMwork), in building agent-teams in RoboCup. STEAM is a state-
of-the-art system, and it contributes in two ways in building RoboCup agent-teams. First,
it provides a framework for rapid development of agent teams based on a hierarchical role-
based team organization and a hierarchical description of team and individual actions, with
coordination relationships among them. This framework is not only a conceptual one, rather,
the STEAM implementation supports a concrete realization of this framework. Second,
STEAM provides an explicit teamwork model, attempting to enhance teamwork flexibility,
by providing agents abilities to autonomously reason about coordination and communication
in teamwork. In STEAM, the teamwork model is based both on the joint intentions theory|[3,
16] and the SharedPlans theory[7, 6, 8], but with key enhancements to reflect the constraints
of real-world domains. The article discusses in detail STEAM’s contribution in building
RoboCup teams. It also discusses the difficulties we have faced in applying STEAM in
RoboCup, and thus points to areas of future work.

With respect to agent learning, the article explores the effectiveness of learning in spe-
cializing and/or improving an individual agent’s skill-set in the presence of multiple other
agents in the environment. We have focused on a divide-and-conquer learning approach in
designing agents. With this approach, skills for different modules within individual agents
were learned separately, using different learning techniques. In particular, one of the skills,
to pick a direction to shoot into the opponents’ goal while avoiding opponents, was learned
off-line using C4.5[21]. Another skill, to intercept the ball, used a mix of off-line and on-line
reinforcement learning. One of the key surprises here was the degree to which individual
agents specialized in their individual tasks in a given team. Thus, sharing experiences of
different individuals in the team would in some cases appear to be significantly detrimental
to team performance.

The vehicle for all of our research investigations in RoboCup is ISIS (ISI Synthetic),
a team of synthetic soccer-players that successfully participated in the simulation league
of RoboCup’97. Developed at the University of Southern California’s Information Sciences
Institute (IST), ISIS won the third place prize in the simulation league out of 32 teams.* SIS
was also the top US simulation team out of at least five US teams.

The rest of this article is organized as follows. Section 2 describes the RoboCup simulation
domain and the architecture of an individual ISIS agent. This description is the basis for
the discussion of the research issues. After an overview of STEAM in Section 3, Section 4

!Three out of the 32 teams forfeited, so that 29 agent-teams actually played.



discusses the application of STEAM in ISIS. Section 5 discusses learning in ISIS. Section
6 provides an evaluation of ISIS, while Section 7 discusses related work. Section 8 then
provides a summary and topics for future work.

2 Background

This section first describes the RoboCup simulation domain in Section 2.1. Researchers fa-
miliar with the domain may skip this description. Next, Section 2.2 describes the architecture
of individual ISIS agents.

2.1 RoboCup Domain Description

Computer chess has long been a standard problem for Al research. Chess is a turn taking,
static game where players have complete and accurate information about the current status of
the game with a centralized control. The recent success of the Deep Blue team in computer
chess increases the need for a new research challenge which involves more complex tasks.
Soccer is a dynamic, real time game with incomplete sensory information and distributed
control. Robocup 1s an attempt to stimulate Al and robotics research based on robotics and
synthetic (simulated) soccer as a common testbed [15, 14].

For readers unfamiliar with Soccer, here is our attempt to briefly describe the game. Soc-
cer is a continuous game between two teams competing in a rectangular field, each attacking
a goal at the end of the opposite side of the field. The borders of the soccer field are referred
to as sidelines (or touch lines). A soccer match is played in two halves of equal time duration
and two extra periods (in playoff games, if necessary). The team scoring a greater number
of goals during the entire course of the match is the winner. FEach team consists of eleven
players, one of whom is a designated goal keeper (the goal keeper was not implemented in
the Robocup’97 competition). A kick-off from the center of the field is the way for starting
the match. The play also resumes from the center after any team’s scoring a goal, starting
the second half, or starting the extra time period. All players must be in their own side of
the field before a kick-off.

Due to the dynamic nature of the game, a team plays according to a general team strategy
but not to detailed step-by-step instructions. The ultimate goal of a team engaged in a soccer
match is winning the match by scoring as many goals as possible and attempting to keep
the opponents from scoring. In order to achieve the team’s goal, soccer players are expected
to possess several defensive and offensive skills (depending on their role in the game) with
different levels of sophistication. Some of these skills are: passing to a teammate, shooting
at the opponent’s goal, dribbling, intercepting the ball, clearing the ball away from own goal
area, marking opponents, tackling opponents, and positioning in the field. These skills often
require a great deal of coordination between the player and one or more of his teammates.
For example, a player passing the ball to a teammate expects the intended receiver to be
prepared to intercept the ball in order for the pass to be successful.

This article focuses on the simulation league of RoboCup. This league uses a standard
2D simulation testbed called the soccer server. This standard server enables agents of two
different teams to compete by playing a simulated soccer game. The server provides 11



player “bodies” per team, to be controlled by 11 separate agents. No centralized control
is allowed. Furthermore, agent processes cannot directly communicate with one another;
instead all such communication is mediated by the soccer server as discussed below. Figure
1 shows a snapshot of the soccer server with two competing teams: CMUnited [25] versus
our ISIS team.

Figure 1: The Robocup synthetic soccer domain.

The soccer server provides each individual player agent input in the form of two types
of sensory information: visual information (i.e. see messages) and audio information (i.e.
hear messages). See messages are sent by the soccer server every 300 ms? and they provide
information about the distance and angle to visible stationary landmarks (e.g. corner flags,
center spot, and goal posts); team name, uniform number, distance and angle of players
within a certain range based on the current setting of the agent’s visual field; distance
and angle to the sidelines (the field has 4 sidelines, however not all of them are visible at a
given time); the distance, distance change rate, angle, and angle change rate to the ball. The
stationary landmarks are distributed inside and outside the field. Since no direct information
about an agent’s own position is being provided by the server, the landmark information is
very useful to help agents orient themselves in the field. Agents have a limited perceptual
field based on the direction they are facing, and thus do not possess perfect information
about their surroundings. Hear messages are either announcement from the server (e.g.
corner kick call, or free kick call) or messages that have been posted by other players.

2While the rate was 300 ms in the RoboCup’97 competitions, more recently, the rate for See messages
has changed to 150 ms.



With respect to output, player agents are equipped with the following set of primitive
actions: say to post messages, dash with a certain power in the agents facing direction, turn
to change the players facing direction, and kick to kick the ball with a certain power and
direction. These primitive actions are used as building blocks to implement more sophisti-
cated actions. For example, dribbling might involve a kick, a dash, and a turn. Agents are
allowed kick, dash, or turn action every action period (in RoboCup’97, it was set to 100 ms).

The soccer server captures many of the complexities of real-world soccer, including the
following:

e Players have limited perceptual information.

e Players can communicate only by posting messages through the soccer server which
are accessible only by players within a certain range.

e Players have limited stamina which is consumed by dashing actions.
e Actions and sensory information sent to players are noisy.

e The game occurs in a real time and dynamic environment.

Work continues to improve the quality of the soccer server, and to continue to make it
increasingly realistic.

2.2 1ISIS Individual Agent Architecture

The architecture of an individual ISIS player agent as shown in figure 2, has two layers of
abstractions. The lower layer, input and output processing, provides the interface between
the soccer server and the agent. This layer does all the preprocessing of the sensory infor-
mation sent by the soccer server and prepares them for the use by the higher layer. The
higher layer handles all the decision making for the agent using the information provided by
the lower layer.

The lower layer consists of two components, input and output processing. Both compo-
nents use a shared communication library to send and receive messages to/from the soccer
server. The input processing module first decides which messages to process and which
messages to drop if there is an overflow in the incoming message buffer. Generally, hear
messages are considered more important than the see messages and are never dropped. If
there is more than one see message waiting, only the last see message i1s processed and all
the prior see messages are dropped.

Then, the received messages are parsed and the data structures that correspond to the
state of the game are updated. The state of the game for the last few cycles is remembered
and this information is used when necessary. For example, if the ball is not visible in the
current cycle, the last known position of the ball is used.

After the messages are parsed and the data structures are updated, the input processing
module calls separate subroutines for calculating the parameters of interest for the higher
layer. The results of these calculations are communicated to the higher layer using the shared
variables. These parameters can be categorized in two major groups:
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Figure 2: ISIS agent architecture

o Kicking directions: These parameters contain the recommended direction to kick the
ball. Three possible directions to kick the ball are calculated: (i) a group of C4.5 rules
compute a direction to intelligently shoot the ball into the opponents’ goal (discussed
further in Section 5); (ii) a hand-coded routine computes kicking direction to clear the
ball; (iii) a second hand-coded routine computes direction to kick the ball directly into
the center of the opponent’s goal (without taking opponents’ location into account).

o Interception parameters: Interception subroutines compute a plan consisting of turn
or dash actions for the player if the player is to intercept an approaching ball (also
discussed further in Section 5).

The lower layer does not make any decisions with respect to its recommendations however.
For example, it does not decide which one of its three suggested kicking directions should
actually be used by a player-agent. Instead, all such decision-making rests with the higher
layer implemented in the Soar integrated Al architecture[20, 24]. Once the Soar-based higher
layer reaches a decision, it communicates with the lower layers, which then send the relevant
commands to the soccer server.

We found the timing of the command submissions to the server to be very critical in
agent’s performance, since the soccer server will drop the extra commands submitted in
an action cycle. To prevent this, the output processing module in the lower layer provides
synchronization between the soccer server and the agent.

The higher layer, Soar architecture, involves dynamic execution of an operator (reactive
plan) hierarchy. An operator begins execution (i.e., the operator is activated), when it is
selected for execution, and it remains active until explicitly terminated. Execution of high-
level abstract operators leads to subgoals, where new operators are selected for execution,



and thus a hierarchical expansion of operators ensues. An operator is composed of three sets
of rules: (i) precondition rules; (ii) application rules; and (iii) termination rules. Precondition
rules help select operators for execution based on the agent’s current high-level goals and
beliefs about its environment. Once operators are selected for execution, they are executed
by the application rules. If the agent’s current beliefs match an operator’s termination rules,
then the operator terminates. Agents built in other architectures such as PRS[10], BB1[9],
RAPI[5] for dynamic domains may be similarly characterized in this fashion.

The key here is that in a dynamic domain such as Robocup, the operator selection, exe-
cution and termination may be heavily dependent on the current state of the environment as
perceived by the individual agent. For instance, figure 3 illustrates a portion of the operator
hierarchy for ISIS player-agents in RoboCup.® At any one time, depending on the state of
the environment, only one path through this hierarchy is selected or active. Thus, an agent
may have selected the intercept operator (under careful-defense) to intercept the ball based
on its current perception of the environment. However, the agent will terminate intercept
and switch to the locate-invisible-ball operator if the ball becomes invisible unexpectedly
before the completion of the intercept.

WIN-GAME

INTERRUPT

DEFEND
Simple
"""" defense

Clear~by intercept
kick—out

ATTACK

Cormer Simple Flank
Kick Advance Attack
/ Score-goal  Pass Péo Das

locate Dash-to b d
invisible ball  ball partner ~ forwar

MIDFIELD Defend

| Kick-out

ocate ball
invisible ball

intercept Get-close
to-goal

Figure 3: A portion of the operator hierarchy for player-agents in RoboCup soccer simulation.
Boxed operators are team operators (discussed in a following section), others are individual
operators.

3 Overview of STEAM

As mentioned earlier, to address the teamwork challenge, we explore a new teamwork-model
based approach for agent-team development, via the the application of the STEAM system
in RoboCup. STEAM was originally developed in the context of building teams of attack-
helicopter pilot-agents for real-world military simulations[32, 33]. STEAM was later reused
in the same simulation environment, for building teams of transport helicopter pilot agents.
RoboCup is a third domain for STEAM’s reuse. It provides a challenging domain for testing

3Some of the operators shown were encoded after the RoboCup’97 competition.



the generality and reuse of STEAM concepts and code, given that this is a substantially
dissimilar domain. Indeed, some of the generalizations in STEAM were inspired by its
application in RoboCup. This section provides only a brief overview of STEAM. For a more
extensive discussion of STEAM please see [32].

There are two key aspects of STEAM that are relevant in building agent-teams. First,
it provides an implemented framework for team development, based on two separate hierar-
chies, each with key constraints:

o Team organization hierarchy and roles: In STEAM, a team may have a flat or a hier-
archical organization (where a team may be recursively composed of subteams). Thus,
for instance, a company of attack helicopter pilots (8 helicopters) may be composed of
two teams, which in turn consist of individuals. A critical feature of this organization
hierarchy is that it may be based on particular roles. Roles are of two types:

Persistent roles: These are long-term assignments of roles to the individuals or
subteams in the organization. For instance, in the synthetic attack-helicopter
domain, a team may be designated as the scouting team, or an individual may
be designated the commander. This assignment typically will not change in the
short term.

Task-specific roles: These are shorter-term assignments of roles, based on the cur-
rent task and situation. For instance, in formation flying in the attack-helicopter
domain, the assignment of the leader of the formation is determined based on
the type of formation. For instance, a particular helicopter H1 may be the leader
when flying into the battlefield, but another helicopter H2 may be the leader of
the formation when flying out of the battlefield.

There are specific properties associated with each team, subteam or individual. For
instance, teams have a set of members, they may possess capabilities, and may have one
or more communication channels with specific associated communication commands
and costs. The assignment of roles to individuals or subteams is based on their capabil-
ities. However, this assignment may not be provided ahead of time, so that individuals
may need to volunteer or be requested to fill in the roles. Furthermore, if an individ-
ual’s or subteam’s capability degrades during performance, roles may be reassigned (as
discussed in more detail later in this section).

o Team activity hierarchy: STEAM relies on an explicit representation of team activ-
ities in the form of team operators or reactive team plans. Team operators explic-
itly express a team’s joint activities, unlike the regular “individual operators” which
express an agent’s own activities. For instance, in Figure 3, boxed operators such
as ‘VVIN—GAME‘ are explicitly represented team operators. When all of the player

agents in a team select the ‘VVIN—GAME‘ operator in their operator hierarchy, the

‘\VIN—GAME‘ team operator is considered selected by the team for execution. There
is a hierarchy of such team operators, which bottom out in individual operators (not

boxed). As with individual operators, team operators also consist of: (i) precondition
rules; (ii) application rules; and (iii) termination rules. However, while an individual
operator applies to an agent’s private state (an agent’s private beliefs), a team operator



applies to an agent’s team state. A team state is the agent’s (abstract) model of the
team’s mutual beliefs about the world, e.g., the team’s currently mutually believed
strategy. There is of course no shared memory, and thus each team member maintains
its own copy of the team state, and any subteam states for subteams it participates
in. To preserve the consistency of a (sub)team state, a (sub)team member modifies its
copy of the (sub)team state only through the use of (sub)team operators.

The mapping between the two hierarchies mentioned above is centered on roles. In
particular, suppose a team is executing a team operator, with several suboperators. Then,
the role of a subteam or individual in that team may constrain the suboperators it can
execute in service of the team operator. Thus, if a team O is executing a team operator
, then the assignment of a role v; to a member p of O, constrains p to a certain subset o;

of the suboperators of . Furthermore, roles may have specific coordination relationships
among them. For instance, the execution of operators for one role may be dependent on
operators for another role. The concept of roles has been discussed before in the multi-agent
literature[12]. The key in STEAM is the instantiation of this concept as part of the team
organization hierarcy, with its use as a constraint on the selection of the sub-operators of a
team operator, and its use in expressing coordination relationships.

The second, and perhaps the more important contribution of STEAM is that it provides
an explicit, general-purpose teamwork model, which encode domain-independent axioms and
theorems that explicitly outline team members’ responsibilities and commitments in team-
work. In essence, it attempts to provide agents with commonsense knowledge of teamwork,
that would enable them to autonomously reason about coordination and communication in
teamwork. Thus, it aims to substantially reduce the encoding effort, and improve teamwork
flexibility. STEAM uses the joint intentions theory[16, 3] as the basic building block of
teamwork, but it is also strongly influenced by the SharedPlans theory[7, 8], and constraints
realized in practical applications.

The tie between the teamwork model and the previously discussed team operators is
as follows: when executing (sub)team operators, agents bring to bear all of the teamwork
reasoning of a general teamwork model, which facilitates their communication and coordi-
nation. Currently, STEAM’s teamwork knowledge could be categorized into three classes of
domain-independent teamwork axioms. The first class is coherence preserving or CP axioms.
These require that team members communicate with others to ensure coherent initiation
and termination of team operators. Thus, for instance, if an agent privately discovers that
the currently selected team operator is unachievable, then it must not just terminate the
team operator on its own. Instead, it must communicate this unachievability information
about the team operator to its teammates, so that teammates do not waste their resources,
and that the team as a whole coherently terminates the team operator. The second class of
monitor and repair or MR axioms detect if a team task is unachievable due to unexpected
member (individual or subteam) failure. It then leads the team into reorganization — via
reassignment of roles — to overcome this failure. As an example of STEAM’s application,
consider the synthetic attack-helicopter pilot team in a situation where the pilot team is
flying in formation. If one of the helicopter pilots sees some unanticipated enemy vehicles on
their flight route, STEAM’s C'P axioms require that this pilot inform its teammates about
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the enemy units (since it makes the relevant team operator unachievable), so that the team
reacts coherently to the enemy.

The third set of selectivity-in-communication or SC axioms in STEAM arise because
communication to attain perfect coherence in teamwork can sometimes be excessive, and
indeed it may have highly detrimental side-effects[32]. Hence, STEAM also includes decision-
theoretic communication selectivity. The key idea is to explicitly reason about the costs and
benefits of different techniques for attaining mutual beliefs. For instance, in some cases, if
there is high likelihood that the relevant information can be obtained by other teammates
via observation (even if with a slight delay), then costly communication can be avoided.
In contrast, communication becomes essential if there is low likelihood that teammates can
obtain the relevant information independently, and if there is a high cost to not making
this information available to the teammates. For this decision-theoretic reasoning, one of
the critical questions is determining the costs associated with the communication channels
available the team. Such costs may indeed change over time. The next section discusses some
experiments, trying to determine if the communication costs were reasonably accurately set
in ISIS during the RoboCup’97 competitions.

STEAM’s teamwork model has also been currently encoded in the Soar integrated archi-
tecture, in the form of 283 rules[32]. These rules, with documentation, traces and pointers
to their usage are available at (www.isi.edu/teamcore/tambe/steam/steam.html).

4 Applying STEAM in ISIS

The application of STEAM in ISIS tests a novel approach to building agent-teams. This
section discusses STEAM’s application in ISIS in further detail. Section 4.1 describes the
team organization and the team operator hierarchies. Section 4.2 discusses the use of the

teamwork model in ISIS. Section 4.3 evaluates STEAM in ISIS.

4.1 Team Organization and Team activity Hierarchies

Figure 4 shows the team organization hierarchy in ISIS. The top-level node represents the
entire team. This team is currently divided into four subteams, each with a different role: (i)
forwards; (ii)midfielders; (iii) defenders; (iv) goalies. There are two-three roles per subteam
as shown in the figure. For instance, agents in the subteam of forwards have roles such as
“center”, “left” and “right”. More than one agent can play the same role. For instance, it
is possible to have two centers in the forward subteam.

Figure 3 shows the team operator hierarchy for ISIS agents. As discussed before, opera-

tors shown in boxes such as ‘WIN—GAME‘ are team operators, while others are individual
operators. ‘WIN—GAME‘ is the highest-level team operator. When all of the player agents
select ‘VVIN—GAME‘ in their operator hierarchy, the ‘VVIN—GAME‘ team operator is estab-
lished. There are two possible operators that can be executed in service of ‘VVIN—GAME L

specifically | PLAY | (when the ball is in play) or ‘INTERRUPT‘ (when the ball is not in
play, and the players may be attempting to take up positions on the field). The execution

of any of ‘ WIN-GAME L ‘PLAY‘ or ‘INTERRUPT ‘ involves the entire team.

11
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Figure 4: The team organization hierarchy in ISIS.

There are some team operators that are executed by subteams. Thus, once the
team operator is selected for execution, an agent selects one of its four children — team
operators | ATTACK|, [MIDFIELD |, |DEFEND | and | DEFEND-GOAL| — depending on
the role of the subteam the agent participates in. Thus, if an agent participates in a sub-
team with the role of forwards, then it executes the | ATTACK | team operator. In service
of | ATTACK|, the entire subteam may execute ‘FLANK—ATTACK L ‘CORNER—KICK‘ or

‘ SIMPLE-ADVANCE ‘ The roles of individuals within the forwards subteam may constrain
the individual operators they execute in service of these team operators, although some op-
erators could be executed by individuals in any of the roles. For instance, the individual
operator “score-goal” may be executed by any of the agents in the forward subteam, to take
advantage of any goal scoring opportunities.

4.2 Applying STEAM’s Teamwork Model in ISIS

In applying STEAM’s teamwork model, the CP axioms were relatively easily transferred
to the RoboCup domain, to enable agents to communicate and ensure coherence in exe-
cution of team operators. A typical example of such communication is seen when three
players in the “goalie” subteam execute the ‘ DEFEND-GOAL ‘ team operator. In service of
‘ DEFEND-GOAL L players in this subteam normally execute the ‘ SIMPLE-DEFENSE ‘ team

operator to position themselves properly on the field and to try to be aware of the ball posi-

tion. Of course, each player can only see in its limited cone of vision, and particularly while
re-positioning itself, can be unaware of the approaching ball. Here is where CP axioms can
be beneficial. In particular, if any one of the players in the goalie subtam sees the ball as be-
ing close, it declares to everyone in its subteam that the ‘ SIMPLE-DEFENSE ‘ team operator
is irrelevant. Its teammates now focus on defending the goal in a coordinated manner via the
‘ CAREFUL-DEFENSE ‘ team operator. Should any one player in the goalie subteam see the
ball move sufficiently far away, it again alerts its team mates (that ‘CAREFUL—DEFENSE‘
is achieved). The subteam players once again execute ‘SIMPLE—DEFENSE‘ to attempt to
position themselves close to the goal. In this way, agents attempt to coordinate their defense
of the goal.

Agents also jointly initiate team operators. For instance, when agents attempt a corner
kick (‘ CORNER-KICK ‘ team operator), they ensure coherent initiation by exchanging mes-

12



sages. The result is that team members are appropriately positioned when a corner-kick is
executed, greatly increasing the chances of scoring a goal.

Indeed, all communication in ISIS agents is currently driven by STEAM’s general-purpose
teamwork reasoning. Yet, given STEAM’s decision-theoretic communication selectivity (SC
axioms), not all team operators lead to communication in their initiation and termination.
For instance, the INTERRUPT team operator is terminated by a referee’s message to “kick-
off”. Since agents assume that all team members can hear a referee’s message, they do
not communicate in addition when terminating INTERRUPT. Such selectivity ensures a
significant reduction in communication overheads.

There are unfortunately significant portions of STEAM that have yet to be applied in
ISIS. These portions focus on MR axioms: reasoning about maintenance and repair of failed
team operators, particularly via exchange of roles in teamwork. For instance, STEAM could
potentially enable forwards to reason about aiding defenders if own goal is under threat.
However, such reasoning requires some domain-dependent reasoning, possibly based on plan
recognition, to first recognize the failures of own team members in fulfilling allocated roles.
For instance, a defender may have rushed off to a side and may be unable to move back
quickly enough to fulfill its role to defend its allocated area. In the absence of capabilities to
recognize such role failures on part of individuals or subteams, STEAM’s further application
is currently hampered.

4.3 Evaluating STEAM in ISIS

There are several aspects of evaluating the use of STEAM in ISIS. One key aspect is its
benefit in building an agent team. Here, STEAM’s implemented framework was beneficial in
developing the team organization and team operator hierarchies, and in providing readymade
teamwork reasoning via the reuse of the teamwork model. We may approximately measure
the reuse of the teamwork model in terms of the number of rules reused. This measure shows
that the reuse has varied over time. At the time of RoboCup’97, about 101 rules, i.e., about
35% of STEAM rules, were reused. At the time of submitting this article, the number of rules
used have increased to about 130 (which is roughly 45% of STEAM rules).* The remaining
rules in STEAM could potentially be used, but as discussed in Section 4.2, further work is
necessary to accomplish this use. Nonetheless, the existing level of reuse is still useful, since
without this code, all of the communication for jointly initiating and terminating the key
team operators would have had to be implemented via dozens of domain-specific coordination
plans.

A second key aspect of the evaluation is impact of STEAM on ISIS performance in actual
games. Here the aspect of STEAM that could be meaningfully evaluated is the contribution
of the teamwork reasoning based on the teamwork model. To this end, we experimented
with different settings of communication cost in STEAM. While in complex environments,
the communication costs would vary over time, in RoboCup’97 competitions, we fixed the
cost to “low” throughout the entire competition. At this “low” communication cost, ISIS
agents communicate a significant number of messages (even though they do filter out several

*In the ISIS team fielded at RoboCup’98, interactions with the player resources (stamina) caused the
reuse to go down to 35%.
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messages that they would communicate if the communication cost were set to zero). At
“high” communication cost, ISIS agents communicate no messages. Since the portion of the
teamwork model in use in ISIS is effective only with communication, a “high” setting of
communication cost essentially nullifies the effect of the teamwork model.

Tables below shows the results of games for the two settings of communication cost. These
games were run on a soccer server version that was developed after the RoboCup’97 com-
petitions (we discuss below the results on the server used at the RoboCup’97 competitions).
Table 1 compares the performance of the two settings against the Andhill97 team developed
by T. Andou of NTT labs, which came in 2nd in the RoboCup’97 competitions. Table
2 compares the performance of the two settings against the CMUnited97 team developed
by Stone and Veloso of Carnegie Mellon University, which came in 4th in the RoboCup’97
competitions. Table 1 shows that with the “low” setting, the goal difference between ISIS
and Andhill97 was -52 at 15 games (mean -3.46 per game), while with “high” settings, the
goal difference was -66 (mean -4.40 per game) in 15 games. In contrast, Table 2 shows
that with the “low” setting, the goal difference between ISIS and CMUnited97 was 49 at
15 games (mean 3.26), while with “high” settings, the goal difference was 26 in 15 games
(mean 1.73). That is, communication with low costs helped to significantly improve ISIS’s
performance in both cases. Indeed, in both the following cases, the difference in the means
of the goal-differences were seen to be significant under a T-test.

Communication | Total | Total score | Total Goal | Mean goal
cost games | in goals difference | difference
Low 15 4-56 -52 -3.46
High 15 0-66 -66 -4.40

Table 1: The contribution of STEAM’s communication to ISIS’s performance when playing

against Andhill97.

Communication | Total | Total score | Total Goal | Mean goal
cost games | in goals difference | difference
Low 15 50-1 +49 3.26
High 15 31-5 +26 1.73

Table 2: The contribution of STEAM’s communication to ISIS’s performance when playing
against CMUnited97.

The above results indicate that the communication instigated by the STEAM teamwork
model did make a useful contribution to ISIS’s performance. This does not imply that the
“low” setting for communication costs in STEAM is the right one under all circumstances.
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Indeed, in other instances, “high” might outperform “low”, so that no communication is
the best strategy. For instance, identical experiments were also done with the soccer server
version used during the RoboCup’97 competitions. The results there have shown a very large
variance in the performance of the teams with “high” and “low” settings, so that the results
cannot be reported meaningfully. At this stage, we can only speculate that the variance
appears related to the amount of general network traffic and computer load. Thus, in that
version of the soccer server, it is unclear at this stage if a particular communication cost
setting is always the best, or if it should be varied over time, depending on the network load.

5 Agent Learning

Our work on agent learning in ISIS was inspired by previous work on machine learning
in RoboCup|25, 19]. We focused on a divide-and-conquer learning approach in designing
agents. With this approach, different modules (skills) within individual agents were learned
separately, using different learning techniques. This approach was possible because of the
separation of the individuals skills of the ISIS players, such as skills to kick in different ways,
intercept the ball, pass etc. into different modules. There are two separate individual agent
skills where learning has currently been applied in ISIS: (i) selecting an intelligent direction
to shoot the ball when attempting to score a goal (using C4.5); (ii) selecting a plan to
intercept a ball (using reinforcement learning).

5.1 Learning to Shoot to Score a Goal

Shooting a ball to score a goal is clearly one of the critical skills in soccer. Yet, our initial
hand-coded approaches, based on heuristics such as ”shoot at the center of the goal”, or
”shoot to a corner of the goal”, failed drastically because of three main problems. First, these
simple heuristics, which did not take into account the players’ configuration in the proximity
of the goal, were often foiled even by stationary opponents. Second, as we attempted to
introduce more complex heuristics, we discovered that for a given configuration of players
around the opponent’s goal, a small variation in the shooter’s position may have dramatic
effects on the best shooting direction. Third, a careful analysis of different game situations
appeared to lead to a large number of heuristic rules.

To address these problems, we decided to rely on automated, off-line learning of the
shooting rules: a human specialist created a set of 3000 shooting situations and selected
the optimal shooting direction for each such situation; then we used these labeled shooting
scenarios as training examples for a learning system. The choice of the learning system was
a crucial decision, and we selected C4.5[21] for several reasons. First, C4.5 offers the appro-
priate expressive power because each game situation can be easily described in propositional
logic. Second, considering the large number of shooting scenarios and the fact that in most
of them only a fraction of the players were visible to the shooter, it was essential to choose
a learning algorithm than can easily handle both missing attributes and a large number of
training cases. Third, we needed a learning system that can generate sophisticated rules
(such as C4.5’s decision trees) because our experiments showed that simplistic rules ulti-
mately lead to a poor scoring capabilities. Last but not least, the real-time constraints of
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the soccer-server required a fast, C-written classifier.

The expert labeled each shooting scenario with one of the UP, DOWN, and CENTER
kicking directions; when the shooting direction wasn’t straightforward, the expert had the
shooter execute all three kicks and selected the one with the best outcome. Each such labeled
shooting scenario was used as a training case described by 40 attributes: the recommended
kicking direction, the shooter’s facing direction, and the shooter’s angles to the other visible
players, the 12 flags, the 4 lines, the ball, and the opponent’s goal. Our decision to use
only the angle information and to ignore the corresponding distances was motivated by
the following reason. The purpose of recommending a kicking direction is to inform the
higher-level (Soar) about the clearest path towards one of the three goal regions. As the
higher-level is the one that selects the next action (e.g., shoot, pass, or clear the ball), it is
its responsibility to take into account the distances between the ball and the opponents in
order to estimate the chances of the ball being intercepted.

The system was trained on 1600 randomly chosen training cases, and the other 1400
examples were used for testing. We repeated this procedure 50 times, and the average
accuracy of the rules on the testing sets was 70.8%. Even though the predictive power seems
to be fairly low, the kicking rules were quite efficient in practice. This apparent paradox
has several explanations. First, the shooting scenarios were quite exhaustive and included a
significant number of shootings from far away and from “closed angles”. In such situations,
the difference between the three possible kicking directions are smaller than the noise and
randomness of the Robocup domain. Second, as the higher-level typically selects the learned
shooting direction only when players are reasonably close to the goal and can see the goal,
it follows that the actual kicking directions is rarely used from unfavorable situations such
as the ones described above.

While we had earlier started out with the three shooting directions only as a first step,
after the extensive testing of the system it became clear that a finer discretization of the
goal is unlikely to be beneficial because of two reasons. First, the relatively small dimensions
of the goal in conjunction with the noise and randomness of the Robocup domain are not
appropriate for finer kicking directions. Second, even with only three kicking directions,
the human expert seemed to have trouble to be consistent in the labeling of the shooting
scenarios. For instance, the average accuracy of the C4.5 rules over the 50 training sets
was only 76.3%. Besides the noise and randomness of the domain, we found that the low
accuracy over the training set was caused both by inconsistent labelings and by insufficient
training data for some scenarios, which lead to the pruning of some important branches of
the decision tree.

5.2 Learning to Intercept

Intercepting the ball is also a critical skill but it is not a simple skill. Whether in human
soccer or RoboCup, there are many external and internal playing conditions that can impact
a player’s intercept. The opposing side may kick/pass/run harder than normal, thereby
requiring a player to modify the path they take or forego interception. Changes in the
environment that impact the ball’s motion or visibility may also dramatically impact play.
Human players, at least, fluidly adapt to these conditions. The same could not be said for
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the ISIS players fielded at the RoboCup’97 competitions.

The intercept used by ISIS at RoboCup’97 was hand-coded based on offline experiments
and then fitted into the players. Our experience during RoboCup’97 and in subsequent
testing has been that there is considerable variation as to how well these plans worked under
actual playing conditions. The result seemed to depend on factors, some of which were
external to the agent and could not be taken into account during the offline engineering of
the intercept, such as reliability of perceptual updates, network and cpu load and the style of
opponent play. What was certain that unlike real soccer players, our ISIS players’ intercept
skills were not adapting very well to differing internal and external factors.

One could approach this problem by engineering an intercept based on the details of how
the soccer server calculates ball and player velocities, decays in these velocities, perceptual
information sent to players, and the various randomizations of motion and perception. All
these internal simulation factors are available to the designer. Using this information, one
could, for example, build an intercept that simulated the soccer simulation in order to predict
future states of the world based on the assumption that there are no other agents in the
world.

We have taken a different approach, driven by the question as to what would happen if
players could learn their intercept plans themselves and what would that learning tell us.
To that end, we are exploring a reinforcement learning[28, 4] approach whereby players can
adapt their intercept online, under actual playing conditions using just the perceptual input
provided by the RoboCup’97 server to the player: the ball’s current direction, change in
direction, distance.

Although our focus is more on what is learned as opposed to how it is learned, any
approach must nevertheless address the difficulties inherent in online learning of intercept.
In the course of a game, there are not many opportunities to intercept the ball. Yet even
one failed intercept can have dire consequences. Therefore, rapid learning of intercepts is
critical. Indeed, if an agent waited for its intercept to complete in success or failure and
then adapted its behavior based on the feedback only at the end of such an intercept, the
result would appear to be inadequate for rapid, real-time adaptation. At the same time,
since exogenous events may cause the intercept to fail, the system’s need to fully exploit the
learning opportunities is further accentuated.

In keeping with these concerns, we have pursued an approach whereby reinforcement
occurs over a fixed temporal extent (a fixed horizon of actions), defined by an intercept
micro-plan, and there is immediate reinforcement, occurring as this micro-plan is in progress.
Specifically, the learning uses the same simple plan structure used in the non-learning version
of the team, whereby a player intercepts the ball by stringing together a collection of micro-
plans. For every step in a micro-plan, ISIS has an expectation as to what any new information
from the server should inform it as to the ball’s location. Failure to meet that expectation
results in a learning opportunity. The micro-plans consist of a turn increment followed by
one or two dashes. For most input conditions, the actual turn is calculated from the turn
increment in the following fashion:

ActualTurn = CurrentBall Dir + (TurnIncrement « Change Ball Dir)

Furthermore, learning is generalized spatially via a clustering of perceptual input condi-
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tions (i.e., states). For each cluster, the learning proceeds independently so, for instance, a
different micro-plan may be learned for balls that are moving towards the player as opposed
to balls moving away. Repeated failures lead to changes in the plan assigned to that input
condition. In particular, the turn increment specific to that input condition is adjusted ei-
ther up or down upon repeated failure. Currently, this clustering is designed by hand and is
fixed, but automated, dynamic approaches may be applicable here (e.g., [18]).

Finally, to provide for a more accurate assessment of success or failure, evaluation itself
is driven by an “oracle”, ISIS’s higher-level, decision-making tier, which tends to have more
complete information on why an intercept plan is failing. For instance, failure due to a
blocking player is treated differently from failure due to an improper turn angle.

5.2.1 Experimental Results

To date, we have performed several preliminary experiments in which ISIS made online
adjustments to the turn increment factor. These experiments involved six extended-length
games between [SIS and two other teams, CMUnited97 (team of Stone and Veloso of Carnegie
Mellon) and Andhill97 (team of T. Andou of NTT labs). In each game, every ISIS player
started with a default value of 2.0 for their turn increment across all input conditions.

By the end of game, learning can result in turn increment values that range from +5 down
to -1, across input condition clusters. Because of the multiplicative factors and because the
intercept plans are invoked repeatedly, these can constitute a dramatic change. However, for
any particular input condition, the trend in the learning seems uniform in its direction across
teams and positions. If one player playing Andhill97 increased the turn increment under a
certain input condition then all the players with sufficient training examples would tend
show an increase whether in games with Andhill97 or CMUnited97 for that input condition.
There however were often striking differences in magnitude across teams and players. Below,
we consider two illustrative examples.

Test 1: Same player against different Teams

In particular, lets consider the case of what a player in a particular position learns while
playing a game against CMUnited97 as opposed to what the same player learns playing
against Andhill97. In Figure 5, the mean results for Player 1, a forward, are graphed against
the mean for all players, at 3000 ticks of the game clock until the end of the game at 15000
(RoboCup games normally run to 6000, here the time has been lengthened by a factor of
2.5 to simplify data collection). This particular data is for the input condition of balls
moving across the player’s field of vision, a middling-to-close distance away. Note that in
games against Andhill97, the player is learning a turn increment similar to the mean across
all players for this input condition. However, in games against CMUnited97, the player is
learning a much larger increment. The difference for CMUnited97 and Andhill97 at 15000
ticks is significant (at a 5% level of significance using a t-test).

Test 2: Different Players Against Same Team

Different players against the same team can also learn different increments. Consider
Figure 6 which depicts the same input condition for Player 10, a fullback. Against both
Andhill97 and CMUnited97, the mean stabilizes around 3, in either case a significant differ-
ence with respect to the means seen for Player 1 against CMUnited97. In fact, to date, large
values (greater than 4) have only been common in CMUnited97 games and only with respect
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Figure 5: Contrast of Player 1 versus CMUnited97 with Player 1 versus Andhill97 under
same input condition. Means across all players provided for comparison. Player 1 is a
forward. (X-axis plots the simulation time, y-axis plots the turn increment.)

to Player 1 and to a lesser extent the other two forwards. However, similar values occur for
at least two separate input conditions (the one discussed for Test 1, and a different input
condition where the ball has the same sideways motion but is a little bit further away).
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Figure 6: Contrast of Player 1 versus CMUnited97 with Player 10 versus both CMUnited97
and Andhill97, under the same input condition. Player 1 is a forward and Player 10 is a goal
defender.

5.2.2 Analysis

In performing these experiments, we wanted to find out what ISIS would tell us about
ball interception within the dynamics of the multi-agent RoboCup environment. We were
not expecting so many revelations. As Test 1 and 2 reveal, Player 1 distinctly tailors its
intercept to its role and its particular opponents. There is a domain-level analysis of these
results, which clarified why player 1 had specialized its role so significantly — CMUnited97’s

19



defenders often cleared the ball with a strong sideways kick, which player 1 (and also other
forwards) continuously faced. This maneuver catches non-learning ISIS players offguard,
with their resulting turns and pursuit consistently lagging the ball’s travel. ISIS’s low-level
learning is trying to compensate by turning more in order to cut the ball off. Thus, the
learning in Player 1 was adapting to other agents via the unique interactions with them as
the two sides respectively performed their roles.

These results reveal a significant role-based specialization of skills. The skill specializa-
tion reveals that agents in different roles undergo very unique experiences. Thus, sharing
experiences between individuals in different roles, or letting individuals experience different
roles, may be detrimental to their performance.

Nevertheless, the trends, if not the magnitude, of the changes, were similar across player.
This suggests there is still benefit to social learning, or cross-agent communication of learning
experiences. For instance, in the case of goalies, because they have fewer chances typically
to intercept the ball, it is particularly useful to transfer mean values from the other players.

Finally, even though the on-line learning has not been active in competitions, the results
of the learning were deployed in the final competitions of RoboCup’98. Our subjective
evaluation is that it lead to a marked improvement.

6 Evaluating ISIS as an Agent Team in RoboCup

ISIS agents, as described in this article, are implemented in the hybrid architecture discussed
in Section 2.2, where the higher-level is controlled by Soar, and the lower-level by C. Each
ISIS agent currently contains about 665 Soar rules total, which include rules for all of the
roles (goalie, forward, midfielder etc) as well as the general, domain-independent STEAM
rules.

Previous sections describe our evaluation of ISIS’s individual capabilities. This section
focuses on the evaluation of the complete team that results. One aspect of this evaluation is
the team’s performance at RoboCup’97 (all of the capabilities described earlier, were present
in our ISIS team at RoboCup’97, except for the learning of intercepts, which was developed
after the competitions). As mentioned earlier, ISIS successfully participated in RoboCup’97,
winning the third-place prize in the simulation league tournament, in over 30 teams that
participated. Table 3 presents the results of ISIS from the first round of RoboCup’97. The
first round had 8 groups (Group A to Group H). ISIS participated in group H. In this round,
ISIS managed to easily defeat its opponents, in one-sided games.

Figure 7 presents the results of ISIS from the second round of RoboCup’97. As expected,
ISIS met with stronger opponents in the second round. Here, ISIS won three games, and
lost one game. Thus, over the seven games in the two rounds, ISIS lost just one game, but
won six. It scored 37 goal, and had 19 goals scored against it.

A second aspect of evaluation of the ISIS team, given the goals of the RoboCup effort,
is research contributions. To this end, this article has described the approach taken in ISIS
to address the research challenges of RoboCup simulation league, in particular, the research
challenges of multi-agent teamwork and learning. This article provides some evaluation of
these approaches as well.
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Vs ISIS | Team | Team | Wins/defeat | Ranking
#2 | #3

ISIS N/A | 17-0 | 10-0 2/0 1
Team #2 | 0-17 | N/A | 4-0 1/1 2
Team #3 | 0-10 | 0-4 | N/A 0/2 3
Team #4 - - - - -

Table 3: ISIS results in first round of RoboCup’97, simulation league. Team #2 is a private
entry by Tomabechi. Team #3 is Innoue and Wilkin of Waseda University, Japan. Team
#4 is Linkoping University, Sweden, which was a no-show at this RoboCup.

7 Related Work

There are two arenas of related work: (i) related work within RoboCup; and (ii) related
work outside of RoboCup, in other multi-agent systems. Given the focus of this special issue
on RoboCup, we will emphasize the related work in RoboCup, only briefly discussing the
other related work.

With respect to teamwork in RoboCup, ISIS was the only team at RoboCup’97 that
investigated the use of a general, domain-independent teamwork model to guide agent’s
communication and coordination in teamwork. Some researchers investigating teamwork
in RoboCup have used explicit team plans and roles, but they have relied on domain-
dependent communication and coordination. A typical example includes work by Ch’ng
and Padgham|[2]. They present an elaborate analysis of roles in motivating teamwork and
team plans. In this scheme, agents dynamically adopt and abandon roles in pre-defined
tactics. The responsibilities and actions of each agent are determined by its current role
in the current plan. Unlike ISIS agents, whose team-related responsibilities are part of the
general domain-independent STEAM model, Ch’'ng and Padgham’s roles include both team-
level responsibilities as well as personal responsibilities — and so there is no separation of
the domain-dependent from the domain-independent responsibilities. A similar scheme is
used by Stone and Veloso [26]. They offer an approach to managing flexible formations and
roles within those formations, allowing agents to switch roles and formations dynamically
in a domain-dependent manner. Their agents synchronize their individual beliefs periodi-
cally in a fixed manner, in contrast with ISIS’s STEAM in which communications are issued
dynamically and can be parameterized based on the domain of deployment.

Another RoboCup effort focusing on explicit team plans and roles is [1]. They define levels
of teamwork, starting at basic roles (which are static throughout the game), and building on
top of those with formations and team plans for carrying out more complex tactics. These
teamwork levels determine the agent’s coordination responsibilities and prioritize its actions.

Other investigations of teamwork in RoboCup have used implicit or emergent coordina-
tion. A typical example is Yokota et al.[35]. They report on a hybrid technique for attaining
physical robot cooperation: (i) negotiations-based cooperation utilizing explicit commu-
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Figure 7: Results of the second round of RoboCup’97 simulation league.

nications, and (ii) sensing-based cooperation. Negotiations-based cooperation is achieved
through explicit communications between the robots on the allocation of resources, conflict
resolution, and exchange of information. The sensing-based cooperation is the "emergent”
type coordination. It is based on the robots individually interpreting the sensed information
and choosing actions such that their own self-interest is satisfied. They provide an example
of how these two types of cooperation may work with a ball-pass between two robots.

Our application of learning in ISIS agents is similar to some of the other investigations of
learning in RoboCup agents. For instance, Luke et al.[17] use genetic programming to build
agents that learn to use their basic individual skills in coordination. Stone and Veloso[27]
present a related approach, in which the agents learn a decision tree which enables them to
select a recipient for a pass. The confidence values from the decision tree are also used to
direct the agents actions — if no good recipient for a pass is suggested by the decision tree,
the agent chooses a different, individual tactic.

In terms of related work outside RoboCup, the use of a teamwork model remains a distin-
guishing aspect of teamwork in ISIS. Indeed, teamwork models have only recently begun to
emerge as a promising and useful approach to multi-agent collaboration. Thus, the STEAM
teamwork model used in ISIS, is among just a very few implemented general models of
teamwork. Other models include Jennings’ joint responsibility framework in the GRATE*
system[11] (based on Joint Intentions theory), and Rich and Sidner’s COLLAGEN][23] (based
on the SharedPlans theory), that both operate in complex domains. STEAM significantly
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differs from both these frameworks, via its focus on a different (and arguably wider) set
of teamwork capabilities that arise in domains with teams of more than two-three agents,
with more complex team organizational hierarchies, and with practical emphasis on com-
munication costs (see [32] for a more detailed discussion). The other implementations of
teamwork model emphasize different capabilities, e.g., COLLAGEN focuses on human-agent
collaboration, and brings to bear capabilities more useful in such a collaboration.

8 Summary

This article focused on two important research issues in multi-agent systems: (i) teamwork
and (ii) learning. With respect to teamwork, the article investigated a novel approach of the
use of a domain-independent explicit model of teamwork, and the explicit representation of
team goals and team plans. Teamwork models have recently been proposed as a promising
approach to enhance teamwork flexibility and to enable reuse of teamwork capabilities[11, 32].
This article has empirically illustrated the usefulness of this teamwork-model-based approach
in a novel domain. The teamwork model was shown to improve team performance, and reduce
development and coding time. This teamwork-model-based approach is a general approach
to teamwork, widely applicable in other domains beyond RoboCup. Indeed, the teamwork
model applied in our work, STEAM, has also been applied for building teams of helicopter
pilot agents for real-world combat simulations for training[32].

The article has also investigated the learning of low-level skills within a dynamic multi-
agent setting. Both the off-line learning of goal kicking direction and on-line learning of
intercept have been critical in improving ISIS agents. In some ways, our results also point
out the importance of learning in ”"context”. In the off-line learning, it was difficult for the
expert to map their expertise of human soccer to a consistent labelling of instances which
was appropriate for the context of a RoboCup player. Similarly, on-line learning revealed
that different players, even the same player facing different opponents, learned different
intercepts. Thus, not only does an outside expert have difficulty translating their expertise
to what a player should do but also the skills of fellow players or even the same player may
not translate directly to a particular context in a particular game. This appears to argue
for a role-based learning approach based on an agent’s unique experiences and for learning
which 1s an ongoing process that adjusts to new experiences as opposed to converging on
some fixed value.

Our team of soccer playing agents, ISIS, which was based on the above teamwork and
learning capabilities, has successfully participated in the simulation league of the RoboCup’97
soccer tournament. We have taken a principled approach in developing ISIS, guided by the
research opportunities in RoboCup. Despite the significant risk in following such a principled
approach, ISIS won the third place in over 30 teams that participated in the RoboCup’97
simulation league tournament.

There are several key issues that remain open for future work. One key issue is improved
agent- or team-modeling. One immediate application of such modeling is recognition that
an individual, particularly a team member, is unable to fulfill its role in the team activity. In
such cases, STEAM enables agents to reason about taking over others’ roles, e.g., enabling
a midfielder to take over the role of a non-performing forward. However, currently, in the
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absence of the required agent modeling capability STEAM cannot engage in such reasoning.
Techniques for team modeling such as [30] would be applicable in this case. Indeed, this is
partly the reason that many STEAM rules have currently not applied in RoboCup (so that
STEAM reuse is limited to 45% of rules). A second key issue is improved agent and team
learning, particularly to learn new team tactics. Further information about ISIS, including
the code, is available at the following web site:

www.isi.edu/teamcore/tambe/socteam.html.
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