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Abstract
Goal recognition is the problem of inferring the
goal of an agent, based on its observed actions. An
inspiring approach—plan recognition by planning
(PRP)—uses off-the-shelf planners to dynamically
generate plans for given goals, eliminating the need
for the traditional plan library. However, existing
PRP formulation is inherently inefficient in online
recognition, and cannot be used with motion plan-
ners for continuous spaces. In this paper, we uti-
lize a different PRP formulation which allows for
online goal recognition, and for application in con-
tinuous spaces. We present an online recognition
algorithm, where two heuristic decision points may
be used to improve run-time significantly over ex-
isting work. We specify heuristics for continuous
domains, prove guarantees on their use, and empir-
ically evaluate the algorithm over hundreds of ex-
periments in both a 3D navigational environment
and a cooperative robotic team task.

1 Introduction
Goal recognition is the problem of inferring the (unobserved)
goal of an agent, based on a sequence of its observed ac-
tions [Hong, 2001; Blaylock and Allen, 2006; Baker et al.,
2007; Lesh and Etzioni, 1995]. It is a fundamental research
problem in artificial intelligence, closely related to plan, ac-
tivity, and intent recognition [Sukthankar et al., 2014]. The
traditional approach to plan recognition is through the use
of a plan-library, a pre-calculated library of known plans to
achieve known goals [Sukthankar et al., 2014]. Ramirez and
Geffner [2010] introduced a seminal recognition approach
which avoids the use of a plan library completely. Given a
set of goals G, the Plan Recognition by Planning (PRP) ap-
proach uses off-the-shelf planners in a blackbox fashion, to
dynamically generate recognition hypotheses as needed.

The use of PRP in continuous domains, and in an on-
line fashion (i.e., when observations are made incrementally)
raises new challenges. The original [2010] formulation, re-
lies on synthesizing two optimal plans for every goal g ∈ G:
(i) a plan to reach goal g in a manner compatible with the ob-
servations O; and (ii) a plan to reach goal g while (at least
partially) deviating from O, i.e. complying with O. The like-
lihood of each goal is computed from the difference in costs

of optimal solutions to the two plans. Overall, 2|G| planning
problems are solved, two for each goal.

However, in online recognition the set O is incrementally
revealed, and O changes with it. Thus two new planning
problems are solved with every new observation, for a total
of 2|G||O| calls to the planner instead of 2|G|. In addition,
using an off-the-shelf continuous-space planner to generate a
plan that may partially go through previous observations, but
must not go through all of them, is currently impossible given
the state of the art.

We present a general heuristic algorithm for online recog-
nition in continuous domains that solves at most |G|(|O|+1)
planning problems, and at best, |G|. The algorithm relies on
an alternative formulation, that does not use O. It has two
key decision points where appropriate heuristics reduce the
number of calls to the planner: for each new observation, the
first decision is whether to generate and solve a new plan-
ning problem for each g, or remain with the former calculated
plans. In the best case, this may reduce the number of over-
all calls to the planner to only |G| calls. A second decision
is whether to prune unlikely goal candidates, incrementally
reducing |G|, thus making fewer calls to the planner.

We describe the algorithm in detail, and examine sev-
eral heuristic variants. Utilizing off-the-shelf continuous-
space planners, without any modification, we evaluate the
different variants in hundreds of recognition problems, in
two continuous-environment tasks: a standard motion plan-
ning benchmark, and simulated ROS-enabled robots utilizing
goal-recognition for coordination.

2 Related Work
Sukthankar et al. [2014] provide a survey of recent work in
goal and plan recognition, most of it assuming a library of
plans for recognition of goals. Though successful in many
applications, library-based methods are limited to recogniz-
ing known plans. Alternative methods have been sought.

Geib [2015], and Sadeghipour et al. [2011] offer meth-
ods that utilize the same library for both planning and plan-
recognition. Hong [2001] presents an online method, with
no use of a library, but lacking the ranking of the recognized
goals. Baker et.al [2005] present a Bayesian framework to
calculate goal likelihoods, marginalizing over possible ac-
tions. Keren et al. [2015] investigate ways to ease goal recog-
nition by modifying the domain.



Ramirez and Geffner [2010] proposed the PRP formula-
tion (which plans for g twice: with O and with O), for offline
recognition. We build on their earlier formulation [2009], in
which they did not probabilistically rank the hypotheses, as
we do here. This allows us to more efficiently compute the
likelihood of different goals, given incrementally revealed ob-
servations. We embed this formulation in a definition of plan
recognition for continuous spaces, which also varies from the
original in that the recognizer observes effects, rather than
actions.

Other investigations of PRP exist. [Masters and Sardina,
2017] provided a simpler formula than that of [2010] achiev-
ing identical results in half the time, still in discrete environ-
ments. Sohrabi et. al [2016] also observe effects, though
in discrete environments, and have also sought to eliminate
planner calls, by using a k-best planner in an offline man-
ner to sample the plans explaining the observations. Ramirez
and Geffner [2011] extend the model to include POMDP set-
tings with partially observable states. Martin et. al [2015] and
Pereira et al. [2017] refrain from using a planner at all, instead
using pre-computed information (cost estimates and land-
marks, resp.) to significantly speed up the recognition. These
approaches complement ours. Vered and Kaminka [2016]
present an online recognizer, which we prove is a special case
of the algorithm we present here. We go a significant step be-
yond by introducing heuristics to significantly improve both
run-time and accuracy.

3 Goal Recognition in Continuous Spaces
We begin by giving a general definition of the goal recogni-
tion problem in continuous spaces ( Section 3.1). We proceed
to develop an efficient online recognizer, which can utilize
heuristics to further improve the efficiency ( Section 3.2). We
then discuss such heuristics in detail ( Section 3.3).

3.1 Problem Formulation
We define R, the online goal recognition problem in contin-
uous spaces as a quintuple R = 〈W, I,G,O,M〉. W ⊆ Rn
is the world in which the observed motion takes place, as de-
fined in standard motion planning [LaValle, 2006]. I ∈ W ,
the initial pose of the agent. G, a set of goals; each goal
g ∈ W , i.e., a point. O, a discrete set of observations, where
for all o ∈ O, o ⊂ W , i.e., each observation a specific subset
of the work area i.e., a point or trajectory. M , a (potentially
infinite) set of plan trajectories, each beginning in I , and end-
ing in one of the goal positions g ∈ G. For each goal g, there
exists at least one plan mg ∈M that has it as its end point.

Intuitively, given the problem R, a solution to the goal
recognition problem is a specific goal v ∈ G that best
matches the observations O. For each goal g, trajectories mg

(ending with g) are matched against the observations O.
Formally, we seek to determine v ≡ argmaxg∈GPr(g|O).

Ramirez and Geffner [2009, Thm. 7] have shown that neces-
sarily, a goal g is a solution to the goal recognition problem
iff the cost of an optimal plan to achieve g (denoted here ig ,
for ideal plan) is equal to the cost of an optimal plan that
achieves g, while including all the observations (a plan we
refer to as mg). Vered and Kaminka [2016] build on this
to establish a ranking over the goals. They define the ratio

score(g) ≡ cost(ig)
cost(mg)

, and rank goals higher as score(g) gets
closer to 1. They show experimentally that the ratio works
well in continuous domains, and thus we use it here (ignor-
ing priors on Pr(g) for simplicity): Pr(g|O) ≡ ηscore(g),
where the normalizing constant η is 1/

∑
g∈G score(g).

The next step is to compute the plans ig (ideal plan, from
initial pose I to goal g) andmg (an optimal plan that includes
the observations). As described in [Vered et al., 2016], com-
puting ig is a straightforward application of a planner. The
synthesis ofmg is a bit more complex, asmg candidates must
minimize the error in matching the observations.

To do this, we take advantage of the opportunity afforded
by the equal footing of observations O and plans in M in
continuous environments. Each observation is a trajectory or
point in continuous space. Each plan is likewise a trajectory
in the same space, as plans are modeled by their effects. Thus
generating a plan mg that perfectly matches the observations
is done by composing it from two parts:
• A plan prefix, (denoted m−g ) is built by concatenating

all observations in O into a single trajectory ( [Masters
and Sardina, 2017] have shown that the same plan prefix
may be generated for all possible trajectories ).
• A plan suffix (denoted m+

g ) is generated by calling the
planner, to generate a trajectory from the last observed
point in the prefix m−g (the ending point of the last ob-
servation in O) to the goal g.

Using ⊕ to denote trajectory concatenation, a plan mg ≡
m−g ⊕m+

g is a trajectory from the first observed point in O,
to g. Notice that mg necessarily perfectly matches the obser-
vations O, since it incorporates them.

Given a goal g and a sequence of observations O, the plan-
ner is called twice: to generate ig and to generate m+

g , used
to construct mg . The cost of ig and mg is contrasted using
a scoring procedure, denoted match(mg, ig), which uses the
ratio as described above. As ig does not depend on O, it can
be generated once for every goal, while mg needs to be re-
synthesized from its component parts as O is incrementally
revealed. This establishes the baseline of (1 + |O|)|G| calls
to the planner [Vered et al., 2016]. We now generalize this
procedure to further improve on this baseline.

3.2 Heuristic Online Recognition Algorithm
We identify two key decision points in the baseline recogni-
tion process described above, that can be used to improve its
efficiency:
• Recompute plans only if necessary, i.e., if the new

observation may change the ranking (captured by a
RECOMPUTE function);
• Prune (eliminate) goals which are impossible or ex-

tremely unlikely (as they deviate too much from the ideal
plan ig), (captured by the PRUNE function).

A good RECOMPUTE heuristic reduces calls to the plan-
ner by avoiding unnecessary computation of m+

g for new ob-
servations. A good PRUNE heuristic reduces calls to the
planner by eliminating goals from being considered for fu-
ture observations. Using appropriate heuristics in these func-
tions, we can reduce the number of calls made to the planner



and consequently overall recognition run-time. This section
presents the algorithm. The next section will examine candi-
date heuristics.

Algorithm 1 begins (lines 3–5) by computing the ideal plan
ig for all goals, once. It also sets ig as a default plan suffix
m+
g . This suffix guarantees that valid (though not necessarily

optimal plans) mg can be created from m+
g , even in the ex-

treme case where no computation of m+
g is ever done. Then,

the main loop begins (line 6), iterating over observations as
they are made available. We then reach the first decision:
should we recompute the suffix m+

g (line 7).
We will begin by giving a general outline. The

RECOMPUTE function takes the current winning trajec-
torymυ (υ is the current top-ranked goal) and the latest obser-
vation o. It matches the observation to mυ and heuristically
determines (see next section) whether o may cause a change
in the ranking of the top goal υ. If so, then the suffixes m+

g
of all goals (lines 8–12) will be recomputed (lines 11–12) ,
unless pruned (lines 9–10) . Otherwise (lines 13–15) the cur-
rent suffix m+

g of all goals will be modified based on o, but
without calling the planner.

Algorithm 1 ONLINE GOAL RECOGNITION (R, planner)

1: ∀g : mg,m
−
g ← ∅

2: υ ← ∅ B the top-ranked goal
3: for all g ∈ G do
4: ig ← planner(I, g)
5: m+

g ← ig B default value for plan suffix
6: while new o ∈ O available do
7: if RECOMPUTE(mυ, o) then
8: for all g ∈ G do
9: if PRUNE(m+

g , o, g) then
10: G← G− {g}
11: else
12: m+

g ← planner(o, g)
13: else
14: for all g ∈ G do
15: m+

g ← m+
g 	 prefix(o,m+

g )
16: for all g ∈ G do
17: m−g ← m−g ⊕ o
18: mg ← m−g ⊕m+

g
19: for all g ∈ G do
20: Pr(g|O)← η · score(g)
21: υ ← argmaxg∈G P (g|O)

Recomputing m+
g . Here a straightforward call to the plan-

ner is made per the discussion in section 3.1, to generate an
optimal trajectory. From the initial point (the last point in o,
as o might contain more than a single point), to the goal g.

Modifying m+
g . When no recomputation of the suffix is

deemed necessary, o will be added to the prefix m−g , and the
existing m+

g must be updated so that it continues m−g and
leads towards g. The baseline algorithm calls a planner to do
this, but the point of this step is to approximate the planner

call so as to avoid its run-time cost. This is done by removing
(denoted by 	) any parts that are inconsistent with respect to
the observation from the beginning of the old suffix m+

g .
The old m+

g begins where the old m−g (without o) ended.
The new m+

g should ideally begin with the last point of the
new m−g (which is the new observation o), and continue as
much as possible with the old m+

g . Thus a prefix of the old
m+
g , denoted (prefix(o,m+

g ), line 15) is made redundant by
o and needs to be removed. If o is directly on m+

g , then
prefix(o,m+

g ) is exactly the trajectory from the beginning
point of m+

g to o. But in general, we cannot expect o to be
directly onm+

g . We thus define the ending point for the prefix
to be õ, the geometrically closest point to o on m+

g .

Pruning. Intuitively, when the newest observation o leads
away from a goal g, we may want to eliminate the goal from
being considered further, by permanently removing it fromG.
This is a risky decision, as a mistake will cause the algorithm
to become unsound (will not return the correct result, even
given all the observations). On the other hand, a series of
correct decisions here can incrementally reduce G down to a
singleton (|G| = 1), which will mean that the number of calls
to the planner in the best case will approximate (|O|+ 1).

Finally, when the algorithm reaches line 16, a valid suffix
m+
g is available for all goals in G. For all of them, it then

concatenates the latest observation to the prefixm−g (line 17),
and creates a new plan mg by concatenating the prefix and
suffix (line 18). This means that a new score(g) can be used
to estimate Pr(g|O) (lines 19–20), and a (potentially new)
top-ranked goal υ to be selected (line 21).

3.3 Recognition Heuristics
Algorithm 1 is a generalization of the algorithm described
in [Vered et al., 2016]. By varying the heuristic functions
used, we can specialize its behavior to be exactly the same
(Thm. 1), or change its behavior in different ways.

Theorem 1. If RECOMPUTE = > and PRUNE = ⊥
then Algorithm 1 will generate exactly the same number of
planner calls as the algorithm in [Vered et al., 2016].

Proof. (Sketch) By setting RECOMPUTE to be always
true, and PRUNE to be always false, initially a single call
to the planner will be made to calculate ig , and then a new
call to generate m+

g will be made for all goals and every ob-
servation (since no calls will be skipped and no goals would
be pruned). This is in accordance with the behavior of the
algorithm reported in [Vered et al., 2016].

Let us now turn to examine how to avoid unnecessary plan-
ner calls. An ideal scenario would be for Alg. 1 to never
compute a new suffix m+

g , for any goal. In line 5 of Alg. 1
the initial suffixes m+

g are set to the ideal plans, ig . If
RECOMPUTE is always false, then no new planner calls
will be made and m+

g will be incrementally modified (Alg. 1,
line 15) to accommodate the observations.



This approach offers significant savings (Thm. 2), and in
the best case, when the observations closely match the origi-
nally calculated paths, can produce good recognition results.
However, realistically, the observations may contain a certain
amount of noise or the observed agent may not be perfectly
rational. Moreover, it could be that the observed agent is per-
fectly rational and there is no noise in the observations and
yet the approach will fail. This is due to cases where there
are multiple perfectly-rational (optimal) plans, which differ
from each other but have the exact same optimal cost. In
such cases, it is possible that the planner used by the rec-
ognizer will generate an ideal plan ig which differs from an
equivalent—but different—ideal plan mg carried out by the
observed agent.

Theorem 2. If RECOMPUTE = ⊥ there will be exactly
|G| calls to the planner.

Proof. Straightforward, omitted for space.

RECOMPUTE. As we cannot realistically expect the
observations to perfectly match the predictions, we need a
heuristic that evaluates to false when the new observation o
does not alter the top ranked goal υ (saving a redundant |G|
calls to the planner), and evaluates to true otherwise.

A suggestion for such a heuristic in continuous domains is
to measure the shortest distance dist(o,mg) between o and
all plans mg . If dist(o,mυ) is shortest we can assume the
observed agent is still heading towards the same goal and do
not need to re-call the planner, keeping the current rankings.

PRUNE. Finally, we introduce a pruning heuristic for ob-
serving rational agents in continuous domains. It is inspired
by studies of human estimates of intentionality and intended
action [Bonchek-Dokow and Kaminka, 2014]. Such studies
have shown a strong bias on part of humans to prefer hy-
potheses that interpret motions as continuing in straight lines,
i.e., without deviations from, or corrections to, the heading of
movements. Once a rational agent is moving away or past a
goal point g, it is considered an unlikely target.

Figure 1: Illustration of goal angles used in pruning heuristic.

To capture this, the PRUNE heuristic takes a geometric
approach. We calculate αg , the angle created between the
end-point of the old m−g , the newly received observation o
and the previously calculated plan mg . αg is calculated using
the cosine formula, cos(α) = (~u · ~v)/(||~u||||~v||), where ~u is
the vector created by the previous and new observation and ~v,

the vector created by the previously calculated plan and the
new observation.

Figure 1 presents an illustration of the heuristic approach
in 2D. For the new observation, o2, we measure the angle αi
created by the new observation o2, the previous observation
o1 (which ends m−g ) and the previous plans m1,2 (shown as
the dashed lines). If the angle is bigger than a given threshold
we deduce that the previous path is heading in the wrong di-
rection and prune the goal. By defining different sized thresh-
old angles we can relax or strengthen the pruning process as
needed.

4 Evaluation
We empirically evaluated our online recognition approach
and the suggested heuristics over hundreds of goal recogni-
tion problems while measuring both the efficiency of the ap-
proach in terms of run-time and overall number of calls to
the planner, and the performance of the approach in terms
of convergence and correct ranking of the chosen goal. We
additionally implemented our approach on simulated ROS-
enabled robots while measuring the efficiency of the algo-
rithm as compared to two separate approaches, one contain-
ing full knowledge of the observed agents’ intentions and the
other containing no knowledge and no reasoning mechanism.

4.1 Online Goal Recognition In A 3D Navigation
Domain

We implemented our approach and the proposed heuristics
to recognize the goals of navigation in 3D worlds. We used
TRRT (Transition-based Rapidly-exploring Random Trees),
an off-the-shelf planner that guarantees asymptotic near-
optimality , available as part of the Open Motion Planning
Library (OMPL [Şucan et al., 2012]) along with the OMPL
cubicles environment and default robot. Each call to the plan-
ner was given a time limit of 1 sec. The cost measure being
the length of the path. For the Pruning heuristic we used a
threshold angle of 120◦.

We set 11 points spread through the cubicles environments.
We then generated two observed paths from each point to all
others, for a total of 110× 2 goal recognition problems. The
observations were obtained by running an RRT* planner on
each pair of points, with a time limit of 5 minutes per run.
RRT* was chosen because it is an optimized planner that
guarantees asymptotic optimality. The longer the run-time
the more optimal the path. Each problem contained between
20-76 observed points.

Performance Measures We use two measures of recogni-
tion performance : (1) the time (measured by number of ob-
servations from the end) in which the recognizer converged to
the correct hypothesis (including 0 if it failed). Higher values
indicate earlier convergence and are therefore better; and (2)
the number of times they ranked the correct hypothesis at the
top (i.e., rank 1), which indicates their general accuracy. The
more frequently the recognizer ranked the correct hypothesis
at the top, the more reliable it is, hence a larger value is better.

Efficiency Measures In order to evaluate the overall effi-
ciency of each approach we also used two separate measures:



(1) the number of times the planner was called within the
recognition process; and (2) the overall time (in sec.) spent
planning. Though these two parameters are closely linked,
they are not wholly dependant. While a reduction in over-
all number of calls to the planner will also necessarily result
in a reduction in planner run-time, the total amount of time
allowed for each planner run may vary according to the diffi-
culty of the planning problem and therefore create consider-
able differences.

4.2 Effects of the different heuristic approaches
We ran the TRRT based recognizer on the above-mentioned
220 problems, comparing the different approaches. The re-
sults are displayed in Table 1, columns 1–4. Baseline, refers
to the algorithm of Vered et al. [2016], making (O + 1)|G|
planner calls. The second approach, No Recomp, refers to
the method of no recomputation at all, meaning the planner is
only utilized once in the beginning of the process, to calculate
ig , the ideal path, for all of the goals. The third approach, Re-
compute, measures the effect of RECOMPUTE which aims
to reduce overall number of calls to the planner (Section 3.2).
The fourth approach, Prune, measures the effect of PRUNE
which aims to reduce the overall number of goals by elim-
inating unlikely goal candidates (Section 3.2). And the last
approach, Both, measures the effects of utilizing a combina-
tion of both the Pruning and Recompute Heuristics.

Efficiency Table 1, column 1, displays the average of the
results of each approach as the mean of total planner run-time
measured in seconds. When only calling the planner once
in the recognition process the No Recompute approach takes
an average of only 7.1 sec. Baseline has a time average of
105 sec. The Pruning heuristic reduces the average time to
only 74.9 sec. And the Recompute heuristic further reduces
the average time to 49.9 sec. When utilizing both heuristics
we achieved a reduction to 36.5 sec. an improvement of a
substantial 65.25% from the Baseline approach.

The second column displays the average of the results in
terms of number of calls made by the recognizer to the plan-
ner. The No Recompute approach had an average of an ex-
tremely efficient 9 calls, i.e. the number of goals. Baseline
had an average of 265.05 calls while the Recomputation and
Pruning heuristics had similar success with a further reduc-
tion to 148.9 and 151.4 calls each. Using both heuristics the
number of calls was reduced to an average of only 90.6 calls,
a reduction of 63.3% from the Baseline approach.

In conclusion we see that employing the heuristics makes a
big impact on run-time and successfully reduces overall num-
ber of calls to the planner. While the recomputation heuris-
tic outperformed the pruning heuristic, both in run-time and
overall number of calls, utilizing both heuristics can reduce
both run-time and number of calls made to the planner by over
60% from the baseline approach. The most efficient method
proved to be the No Recompute approach, only calculating
|G| plans. We will now show that this improvement in effi-
ciency costs considerably in performance.

Performance Table 1, column 3, measures the average
convergence to the correct result percent, higher values are

better. As we can see with no reuse of the planner at all,
No Recompute only produces 6.7% convergence. As this ap-
proach does not make use of the incrementally revealed ob-
servations within the recognition process, any deviation from
the initially calculated path, ig , will have considerable impact
on recognition results.

By converting to the online Baseline algorithm, we were
able to more than double the convergence percent to 21.8%.
Each incremental observation was now taken into account
during the reuse of the planner and therefore had greater
weight on the ranking of the goals. Applying both the Prun-
ing and Recomputation heuristics further improve the over-
all convergence. By eliminating goals the ranking process
now proved to be easier, as there were less goals to com-
pare to. Furthermore, the early elimination of goals in the
pruning process was able to also eliminate the further noise
these goals might introduce to the ranking process, when their
paths deviated from the optimal. The Recomputation heuris-
tic increases it to 25.4% and the Pruning to 42.2%, an im-
provement of 20.4% from the Baseline approach. When uti-
lizing both heuristics we see that the high convergence level
obtained by the Pruning heuristic is maintained.

Column 4, measures the percent of times the correct goal
was ranked first. Here too a higher value is better and will
reflect on overall reliability of the ranking procedure. The
results mostly agree with the convergence results. With no
planner reuse at all, No Recompute, performs poorly with a
low 9.5%. Baseline more than doubles the success here as
well, to 20.2%. The Recomputation heuristic achieves 33.9%
and the Pruning heuristic increases the results to 40.5%, an
improvement of 20.3% from the Baseline approach. Again,
when applying both heuristics the success level of the Prun-
ing method is obtained.

Employing the heuristics has made a big impact on overall
performance successfully increasing convergence and overall
correct rankings. The Pruning heuristic outperformed the Re-
computation heuristic in both measures and a combination of
both heuristics maintains the high success rate leading to an
improvement of over 20% in both measures.

4.3 Sensitivity to recognition difficulty
In online, continuous domains, the hardness of the recogni-
tion problem could possibly effect recognizer performance
and efficiency. We wanted to evaluate the sensitivity of the
results shown above to the hardness of the recognition prob-
lems. We therefore added another 9 goal points (e.g., 19 po-
tential goals in each recognition problem),for a total of 380
recognition problems. These extra points were specifically
added in close proximity to some of the preexisting 10 points,
such that navigating towards any one of them appears (to hu-
man eyes) to be just as possible as any other.

Table 1, columns 5–6, examines the efficiency of the dif-
ferent online recognition approaches over the harder clus-
tered goals problems. We omitted the No Recompute heuris-
tic in these instances as the behavior of this heuristic is very
straightforward. The results are consistent with the results
from the original scenario. The Baseline approach is the least
efficient, having a higher run-time and larger number of calls
to the planner, than the rest. The most efficient approach is



10 goals 19 goals
Efficiency Performance Efficiency Performance

Run-Time PlannerCalls Conv. Rank. Run-Time PlannerCalls Conv. Rank.
Baseline 105.02 265.05 21.82 20.24 194.65 516.57 16.37 19.54

Recompute 49.98 148.94 25.44 33.91 126.75 397.85 18.7 22.76
Prune 74.90 151.46 42.16 40.50 160.29 386.53 23.18 24.03
Both 36.49 90.68 42.41 40.21 97.63 287.36 20.98 25.82

No Recompute 7.10 9.00 6.77 9.54 - - - -

Table 1: Comparison of all approaches across scattered and clustered goal scenarios.

still the approach of utilizing both the Pruning heuristic and
the Recompute heuristic together. In run-time the Recompute
heuristic is still more efficient than the Pruning however for
the measure of number of calls made to the planner we see
that, for more clustered goals scenarios, the Pruning heuristic
slightly outperforms the Recompute heuristic.

Table 1, columns 7–8, examines the performance of the
different online recognition approaches over the harder clus-
tered goals problems. For the harder problems the best perfor-
mance achieved, in terms of convergence, was by the Prun-
ing heuristic with a convergence of 23.18% from the end. In
terms of the amount of times the correct goal was ranked first
the Both approach, combining both Pruning and Recompute
heuristics, only slightly outperformed the Pruning approach.
The worst performance was achieved by the Baseline ap-
proach, in terms of both criteria measured; convergence and
ranked first, in congruence with the performance results of
the scattered goal scenario.

Table 2 measures the deterioration in efficiency and perfor-
mance with comparison to the scattered goal scenario. The
deterioration is measured in terms of deterioration percent,
hence a 100% deterioration in run-time means the planner
took twice as long on average, on the harder problems. There-
fore lower values are better. In terms of efficiency, we can
clearly see that the least deterioration, both in run-time and
number of calls to the planner, occurred for the Baseline ap-
proach proving this approach to be very reliable with a de-
terioration of 85.35% and 94.90% respectively. The biggest
deterioration in terms of run-time occurred for the combina-
tion of both heuristics with a deterioration of 167.58%. This
was considerably caused by the substantial deterioration of
the Recompute approach which deteriorated by 153.58%. The
Pruning heuristic deteriorated considerable less in terms of
run-time with only 114% deterioration.

In terms of number of calls made to the planner, again,
the worst deterioration occurred for the Both approach, with
a deterioration of 216.9% while the deterioration for each of
the heuristics was considerably less; 155.2% for the Pruning
heuristic and 153.6% for the Recomputation heuristic.

In terms of performance deterioration we again see that the
most resilient approach in terms of performance, as well as
efficiency, proved to be the Baseline both in terms of Con-
vergence and Ranked first with a deterioration of 25.98% in
convergence and only 3.46% in ranked first. The biggest de-
terioration in convergence occurred for the Both approach, as
was in the efficiency results. However, in terms of ranked first
the biggest deterioration occurred for the Pruning heuristic.
This was, in part, due to the fact that clustered goals make the
pruning process considerably less efficient as the goals are

too close to be pruned.

4.4 Online Goal Recognition on Robots
As a final set of experiments, and to show the applicability of
our approach, we implemented Alg. 1 in a cooperative robotic
team task. We used ROS [Quigley et al., 2009] to control sim-
ulated robots in Gazebo, using the default ROS motion plan-
ner, move_base, in the recognition process. We simulated
a soccer field, with two robots operating as members of the
same team (Figure 2). The observed robot was given an initial
goal to travel to, proceeding to execute the plan in a straight-
forward manner, and the observing robot had to strategically
place itself in a pre-chosen position to assist the other robot
team member. If the observed robot navigated to goal 4 the
strategic place to assist it on the offense would be to navigate
to goal 3 and vice versa. Likewise also with goals 1 and 2.

The observed robot always started at the same initial point
in the middle of the field, while we experimented with 3 dif-
ferent starting points for the observing robot; two points be-
hind the observed robots position and on parallel sides (Fig-
ure 2, init points 1 and 2) and one point past the observed
robot in the middle of the field (init point 3). We ran 10–20
runs from each initial position to each of the goals for a total
of 193 problems.

We compared our online goal recognizer (OGR) in its base-
line form, to two different approaches: (a) giving full knowl-
edge (FK) of the intended goal to the observing robot, ahead
of time, allowing the observing robot to navigate directly to-
wards it; and (b) giving no (zero) knowledge (ZK) of intended
goal, thus forcing the observing robot to wait for its team
member to reach its desired goal, before it can navigate to-
wards the complementary location.

To evaluate the different approaches we measured the over-
all time (in seconds) the simulated robot ran until reaching
its target goal. The lower the time the more efficient the
robot.The results are displayed in Table 3.

Figure 2: Experiment setup (via RVIZ)



Deterioration
Efficiency Performance

Run-Time PlannerCalls Conv. Rank.
Baseline 85.35% 94.90% 24.98% 3.46%

Recompute 153.58% 167.11% 26.49% 32.88%
Prune 114.01% 155.20% 45.02% 40.67%
Both 167.58% 216.90% 50.53% 35.79%

Table 2: Deterioration of performance and efficiency between scattered and clustered goal scenarios.

FK OGR ZK
I1 G1 10.00 17.35 21.50

G2 5.80 12.31 17.18
G3 9.10 16.19 20.43
G4 5.80 17.10 26.03

I2 G1 5.80 14.09 17.67
G2 9.10 19.56 24.45
G3 10.00 15.89 25.45
G4 12.35 15.32 32.62

I3 G1 12.41 17.36 20.88
G2 10.10 18.65 24.26
G3 9.24 10.62 20.66
G4 5.72 13.40 20.40

Table 3: Online goal recognizer vs. full and zero knowledge

The results show that the goal recognition approach sub-
stantially improves on the zero knowledge approach, while
requiring no precalculations; all needed plans are generated
on-the-fly via the planner. Understandably our approach falls
short of the full knowledge approach as it generates hypothe-
ses on the fly following observations, which leads to some
deviations from the optimal, direct route.

5 Summary
We presented an efficient, heuristic, online goal recognition
approach which utilizes a planner in the recognition process
to generate recognition hypotheses. We identified key deci-
sion points which effect both overall run-time and the num-
ber of calls made to the planner and introduced a generic
online goal recognition algorithm along with two heuristics
to improve planner performance and efficiency in navigation
goal recognition. We evaluated the approach in a challenging
navigational goals domain over hundreds of experiments and
varying levels of problem complexity. The results demon-
strate the power of our proposed heuristics and show that,
while powerful by themselves, a combination of them leads
to a reduction of a substantial 63% of the calls the recognizer
makes to the planner and planner run-time in comparison with
previous work. This, while showing an increase of over 20%
in recognition measures. We further demonstrated the algo-
rithm in a realistic simulation of a simple robotic team task,
and showed that it is capable of recognizing goals using stan-
dard robotics motion planners.
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