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Abstract—The use of unmanned autonomous vehicles is vehicle’s systems to note deviations between the vehicles
becoming more and more significant in recent years. The actual behavior, and its nominal behavior (as generated
fact that the vehicles are unmanned (whether autonomous or by the model): these rely on the availability, resolution

not), can lead to greater difficulties in identifying failure and d f del. Fault del le-based
anomalous states, since the operator cannot rely on its own and accuracy of a model. Fault models (e.g., rule-based)

body perceptions to identify failures. Moreover, as the autonomy Can be used to capture expert's experience in recognizing
of unmanned vehicles increases, it becomes more difficult for faults [6], but this approach is inherently tied to the scope

operators to monitor them closely, and this further exacerbates of the expert's experience. Several approaches also attemp
the difficulty of identifying anomalous states, in a timely to identify outliers in the data based on the history of

manner. Model-based diagnosis and fault-detection systems th hicle’ fi tured in its st f
have been proposed to recognize failures. However, these rely € venicies operation, as captured In Its stream of sensor

on the capabilities of the underlying model, which necessarily readings ([7], [9]).
abstracts away from the physical reality of the robot. In this In particular, a promising technique to determining anoma-
paper we propose a novel, model-free, approach for detecting |oys values in data is based on the use of the Mahalanobis

anomalies in unmanned autonomous vehlcle_s, based on their distance ([12], [9]), which measures the multi-dimensiona
sensor readings (internal and external). Experiments conducte

on Unmanned Aerial Vehicles (UAVs) and Unmanned Ground distance between a sample point and a distribution, in units
Vehicles (UGVs) demonstrate the efficacy of the approach by Of standard deviation This allows, in principle, relatively
detecting the vehicles deviations from nominal behavior. straightforward discovery of outlier measurements. Unfor
tunately, the technique often fails in practice (due to both
run-time and data availability issues) when the number of
Unmanned Aerial Vehicles (UAVs) and Unmanneddifferent variables (i.e., the number of dimensions) scale
Ground Vehicles (UGVs) are finding increasing use imup [9]. Because of this, the Mahalanobis distance can only
real-world applications. These include surveillance and pbe used with a limited number of variables. Of course, a
trolling ([1]), aerial search [8], and more. Increasing €ep in monitoring UVs, we often have dozens, if not hundreds,
dence on UAVs and UGVs (UVs, in general) for critical tasksf different variables whose values are reported to the
makes it vital to remotely assure the nominal behavior of theonitoring station.
vehicles, whether teleoperated or autonomous. In this paper we propose a novel approach for detecting
Yet, paradoxically, the prominent advantage of UVs beingnomalies in the behavior of UVs, using the Mahalanobis
unmanned, raises the challenge of detecting deviatiortseof tdistance. The approach consists of a pre-processing phase
UV from its normal behavior. For example, when driving ayhich finds dependencies between different internal sensor
car, the driver can use her own body perceptions to detegh the vehicles. Thisdependency detectiofDD) phase
a failure (e.g., a flat tire can be detected when the whegkes an efficient search method—developed for data-mining
seems to “pull” to a particular direction, or the sound of theypplications and described in [13]—to identify sub-groups
driving changes). However, in unmanned vehicles, a remogg variables that are statistically dependent (i.e., thalues
monitoring station no longer receives all the informatiorthanges together in predictable ways). The results of this
available to a driver, and must instead rely on informatiophase are therefore several distinct groups of variablesh-ea
gathered from (potentially faulty or inaccurate) sensans 0of much smaller number of dimensions. The second phase,
the vehicle. Thus, it can be difficult for a remote operatofaking place during the execution of the mission, uses the
to detect anomalies. The problem is further exacerbateu wipahalanobis distance to identify anomalous values in each
increasing autonomy of the unmanned vehicles, as this leagisthe smaller-dimensional groups of variables.
to reduced human monitoring, and therefore even further \ye provide results of extensive experiments conducted
degradation in timely detection of failures. using data from commercial UAVs, and in laboratory mobile
A number of previous investigations have explored a vari-

ety of ways to improve monitoring. MOde_l'based diagnosis 1gor gne-dimensional data, the Mahalanobis distance is eetitm the
methods (e.g., [10], [14]) rely on a detailed model of thetandard z-score of a point.

I. INTRODUCTION



ground robots. In the experiments, we investigate the efficaa finite automaton under the assumption that it is feasible
of this approach in detecting anomalies in the UVs’ behavioto create a model that captures all relevant system behavior
We also demonstrate the critical role of the first phase. Another approach for anomaly detection is based on model
based reasoning (e.g., [10], [14]). Yet, this requires teeha
model of the robot and its interactions with the environment
The problem of anomaly detection in the context ofSuch a model is expensive and complex to build.
real-time data is not new to researches in robotics and Others have been using Mahalanobis distance for anomaly
autonomous systems. We cannot hope to cover all relatedtection. Using the Mahalanobis distance allows testing
work in this vast area, and so focus here on the most closelythether a given sample point (say, a vector of all current
related investigations. values for all state variables) is “similar” to the nominal
In the context of unmanned vehicles, many investigationsample (defined by a distribution of such vectors), where the
(e.g., [7], [15], [B]), propose the use of Kalman filters assimilarity accounts not only for the centers of each vasabl
a basic building block in detecting anomalies. Typicallyput also for the variance of its values. For instance, Broth-
one or more filters is use to make predictions of specifierton and Mackey [4] use the Mahalanobis distance as the
state variable values (e.g., sensors), and those praticii®@ key factor for determining whether signals measured from an
compared against the observed values. Since often usingiecraft are of nominal or abnormal behavior. However, they
simple Kalman Filter usually yields a large number of falsare limited in the number of dimensions (variables) across
positives, additional computation is used to robustly deci which they can use the distance, due to run-time issues. This
on the failure state and its significance. For instance, Coik one challenge the DD approach addresses.
and Walker [5] present a non-linear model which, together
with Kalman Filters, tries to compensate for malfuncti@nin
sensors of UAVs. Goett al. [7] use a classifying neural- We define the problem of detecting anomalies in the
network to determine when and which of several filter-baseldehavior of unmanned autonomous vehicles. We deal with
fault detectors to believe. The use of Kalman filters makes multi-stream data which is measured by the UV and
assumptions with regard to the behavioral nature of the dati@nsmittedonline to a remote monitoring computer. The
and noise (e.g., that the time series models are linear wittata consists of various types of measurements collected by
additive Gaussian noise). The DD technique we introdudhe UV and its sensors, internal and external, physical and
to detect subgroups of dependent variables can be usefulMictual. For instance, the pose and altitude of the UV (e.g.,
eliminate redundant variables from the Kalman filters, antbcation at theX, Y and Z axes, heading), odometry data,
thus simplify their design. engine temperature, mass, and other telemetry/lggnote
Oateset al. [13] and Lotzeet al. [11] studied the problem the set of measurable inputs (callettributes below) the
of detecting anomalies in sequence of real-time data of p&/V maintains,V; the set of values (whether finite values or
tience and diseases. Our DD method is based on the work finite range of values) for each € I, and S a finite set
multi-stream dependency-detection, described in [13JvHo of all joint values for all attributes; x Vo x ... x V|p|).
ever, we use only a subset of the results generated, and tfitrerefore astate of the UV is denoted as a vectare S.
can potentially alleviate the computational load, comgareLet Time denote the set of time periods in which the UV is
to the original work. Machine learning methods are usuallin motion, that isTime = {0, 1, ...,ep}, whereep denotes
employed to model what constitutes a nominal behavior artie end period, in which no more data is communicated to
deriving from the representation of the nominal behaviothe ground station. Astreamof data of the UV is then an
the abnormal behavior. For example, Ahmedal. ([3], ordered sequence of vectors,, ... s;, ... stime, forming a
[2]) investigate the use of two distinct machine learningnatrix A/ of dimensions{|Time| x |I|} which consists of
approaches, namely the block-based One-Class Neighlmistate per each time unit. It is assumed that at each time
Machine and the recursive Kernel-based Online Anomalynit (henceforth,tick) all attributes are transmitted at the
Detection algorithms, to detect network anomaly. Yet, as ofate of the highest frequency; that is, even if some atteibut
ten happens in machine learning techniques, their models @re measured in a lower frequency the state of the UV will
constrained and cannot be easily adapted to other domaiagvays be sent in full.
Besides the fact that it is sensitive to different threshptd We define anominal setm of the UV as an uninterrupted
enable its use in different domains many parameters mustquence of vectors i/ (i.e., an ordered set of consecutive
be fine tuned. We, on the other hand, demonstrate thatctors), in which the behavior of the UV is characterized as
our proposed approach can be easily adapted to differestable and following a predetermined logic. For example, we
domains, while preserving the high anomaly detection rategistinguish between the lift-off, the landing of the UAV and
Recently, Daigleet al. [6] proposed an event basedthe constant speed flight. Each such stream can constitute
approach for diagnosis parametric faults in continuous sya nominal behavior which characterizes the flight, and is
tems. Their approach is based on a qualitative abstracfion @aptured by a different set.
deviations from the nominal behavior. Yet, in contrast to ou An abnormal readings a vectorm* € S which is defined
proposed approach, their approach is aimed to diagnose @ such that the UV deviates from the nominal setby
isolating single fault. Moreover, their technique is based at least some threshold. In other words; ¢ m, and also

Il. RELATED WORK

IIl. PROBLEM DESCRIPTION



Dist(m*, m) > hg, whereDist is a distance function which It relies on estimating a centroid of a distribution from
measures the multi-dimensional distance between thevectbe data available to it, and as a result, sparse data can
m* and the setn. It returns a number which is contrastedcomplete throw off the estimation process. Thus a significan
with the constantiy. A value higher tham, indicates an amount of data is needed to construct a good sample of the
abnormal reading. distribution, in order to allow the Mahalanobis distance to
provide robust results. Now, as the number of dimensions
increases, the amount of data required for such good sample
Naively, to detect anomalies, we can use the matrigrows combinatorially. For instance, having 50 different
M from nominal run as the nominal state, and the attributes means that the nominal distributieris built from
Mahalanobis distance [12] for the distance functibvst.  50-dimensional vectors. To have each nominal vector appear
We describe this method in Section IV-A. Unfortunatelyonce inm, we would requiquPO vectors ¥ is the set of
for realistic UVs this fails due to the large number ofpossible values for each attribute) just as training data.
attributes. We explain this—and describe a solution to this— We believe this is the principal reason why methods
in Section 1V-B. based on Mahalanobis distance have only been used in UVs
indirectly, in support of other methods. The Mahalanobis

i ) ) anomaly detector by itself simply does not scale with the
The anomaly detection component is the online mechay,mber of attributes.

nism which can be invoked at any given time on the stream-
ing data. In this mechanism we also use the assumption tf&it The Dependency Detection (DD) Component

historical input is accessible, and thus it is used to compar .. introduce a pre-processing mechanism that uses sta-
]Ehe o?rl]lne data tlob|t :]O a_lllowff!{rr:dlrbnghlch stream deviateggjicy dependency-detection methods to determine possi
rom the nominal behavior of the LV. .. ble sub-groups of attributes which are statistically inter
To find a correlation between two sets of data a statistic ependent. These sub-groups are then used in the second
modgl shoulq be used. A simple distance metrlc,_ such ‘?‘St line) phase to form the basis for the Mahalanobis digtanc
Euclidean dlstaqce, for example, could be applicable if w easurements. Thus, instead of using the Mahalanobis out-
are only comparing one vector to another. However, we ne ier detector on the entire input vector, we break the tagk in

to _I(_:ompzre ;_vectogz* toa shet of \;ectorsn.th Mahal ba set of outlier detectors, each focused on parts of the input

_‘owards this end, we chose 1o use ine liahalano {?ector, each using its own nominal distributiony and each
distance [12] as the distance metric that we invoke. Gelryeral0 erating in a small-dimensional space (in our experiments
speaking, the Mahalanobis distance is the distance of t ically 2-3 attributes)

input stream from the centroid in the multidimensional gpac In this work we build on earlier work by Oatest

where the centroid is built based on the distribution. Thus,, [13], which have developed efficient data-mining algo-

?t provide_s an _indication of whether or not a given vecm?ithm called Multi-Stream Dependency Detection (MSDD).
is an outlier with respect to the nominal set Ofaxggors'The algorithm finds statistically significant patterns oé th
Formally, we denote the known sample matrix&$

. X B x|s| . type A,B, — C.D,, which should be understood as
wheret € T is the total time units in the sample matrix. ¢ ows: In an input vectord, if the value A appears in

The mean of all attributes in the sample matrix is a Vecm&ttributex, and the valueB appears in attribute, then the

fi = (p1, pi2; - jy5)) @nd the covariance matrix is denoted, o o likely appear in attributez and the valueD
as .COV' Thus, t.he Mahalanobis distance of a new matrl)\$vill likely appear in attributeg. In other words, MSDD is
X Is denoted as: able to determine that attribute values are dependent dn eac
other. The statistical strength of the patterns are medsure
Dimanat(X) = \/(X — TCOV-1(X — i) (1) bytheG s?tatistic [16F. MSDD uses an efficient heuristic
search which guarantees finding the complete set of patterns
The output of the Mahalanobis distance is given in unit§jithout examining the entire combinatorial search space.
of standard deviations. A large value is a stronger inditati  MSDD is both too crude and too good for our needs.
of the stream being an outlier than a smaller number. Noi®n one hand, MSDD has the capability for finding such
that this method has the benefit of not relying on domaigatterns even when they are spread over time (i.e., to find
knowledge with regard to the UV's behavior (e.g., motion opatterns of the form “if attributer has valueA, then in
physical model of the flight/drive). two ticks, we expect attributg to have valueB”), and can
Unfortunately, the naive method described above does n@fus produce finer-grained information than what is needed
work in realistic UVs (see Experiments section), for selergor the Mahalanobis distance. Indeed, using this finer grain
reasons. The first obvious prObIem is that as the number ﬁ'fay be interesting for anoma|y detection by itse|f, but we
attributes is easily in the dozens, and often in the hundredgave this for future work. On the other hand, rather than
the run-time increases to the point where processing canngnply outputting a single pattern for each set of dependent

keep up with the incoming data. attributes, MSDD very often detects redundant dependsncie
However, a more fundamental problem exists with the use

of the Mahalanobis distance with large-dimensional data. 2Similar in principle to thex? statistic.

IV. DETECTINGANOMALIES IN UVS' BEHAVIOR

A. The Anomaly Detection Component
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by finding different variations on the same basic dependence
AzBy — C.D,
C.A;B, — D,
Cqu — AxBy I|I

We therefore used a modified version of MSDD—called
simply Dependency Detection (DD)—in which redundant
patterns of the type abqve are mer_ged together to fOr\&-‘gobotics RV-400) used in our lab and fitted with our own
groups of dependent attributes (in this case, the set WOL%ntrO' software (Figure 1).
be z,y, z, ¢). This modified version, in effect, tells us what
attributes are correlated, and this, in turn, allows to fum t

Fig. 1. An RV-400 robot.

The RV-400 robot is equipped with many less sensors and

L ) actuators than the UAV. It has 22 attributes measured by ten
Mahalanobis distance only on the dependent attributes, thEonar sensors which measure ranges, four bumper sensors,
significantly reducing the dimensionality of the space.eéNot

hat oft h fd q b uind various other measurements including the target vgloci
t at'o er'1.more.t an one group of depen ent attri ‘_“es wo q\d the actual velocity (based on wheel motor encoder data),
be identified, in which case multiple Mahalanobis outlier,

etc. The data itself is recorded in a 10Hz frequency.
detectors should be used, one for each group. In the course of evaluations, we utilized data from several
nominal runs of the robots, as well as from failure runs. We
refer to these runs in the discussion of the experimentsbelo
To evaluate the efficacy of our approach for detecting For the UAV we the following errors were recorded:
anomalies in UVs we conducted several sets of experiments., pescend In this error, one of the sensors is malfunc-

The Qiﬁerent experiments demonstra’ge the strength of the tioning and thus causes the sensor's input to decrease
combination between the pre-processing dependency detec- ranigiy from a valid input to a constant value of zero.
tion mechanism and the online anomaly detection mecha-  constant In this error, one of the sensors is malfunc-
nism, as well as the generality of the approach. We begin  {joning and reports a constant value for a period.

by describing the experiment setup, and then continue to For the UGV the following errors were recorded:

describe the different experiments and results. ) )

o Weight Drag Halt and Weight Drag Slowin these

A. Experiment Setup errors, the robot was attached to a cart via a fishing
string which was loose. Then, the robot started its
movement away from the cart, causing the string to
stretch, until it was completely stretched. This caused
the robot to either completely halt or slow down, based
on the weight that was on the cart.

« Direction Deviation In this error, a coin was attached to
one of the robot’s wheels. This caused the robot to divert
from nominal behavior every time the coin touched the
floor (which was about every 5 seconds). It also changed
its heading, etc.

For each UV we had a nominal behavior file which was

V. EXPERIMENTS

We chose two different unmanned vehicles to demonstrate
the generality of our approach. The first set of data came
from actual commercial unmanned aerial vehicles. The UAV
is equipped with several sensors and actuators, as well as
a communication system. The communication system trans-
mits the information, along with monitoring informatiorg t
the ground station.

The information which is measured by the UAV sensors
and is relevant for the anomaly detection process includes
more than 50 attributes. The different attributes can be

categorized to different families:
i. data: includes tel irv data that the UAV used for two purposes. First, it was used in the pre-procgssi
+ Alrdata includes telemetry data that the DAV measure%hase to obtain the strongest dependent attributes for the
(e.g.., air pressure, air tempgrature, ar velocity an(_j'etc'domain of the UV. Then, it was used in the online anomaly
* ,I[.n?rt'al .datt?’ Wh'Cht'nCIUI?\IeSS |n1;otrr]maﬂz{1/about Lhe 'dn.er'detection process for finding deviations in the behavior of
lal navigation system (INS) of the (e.9. hea "NYthe vehicle from the nominal behavior recorded in that file

pltch, roll, yaw, a_ccel_eratlon). _ . (i.e., as the basis for the nominal sef). The experiment
« Engine data which includes information about the data sets are summarize in Table |

engine’s air and water temperature, RPM and throttle.

« Servoinformation, and B. Successfully Detecting Anomalies
« Other information, including the UAV mass, the air  As we mentioned, the anomaly detection process requires
temperature and other information. that we first find the attributes that are considered cordlat

The data is measured by the sensors either in a 1Hz Do this end, we ran the pre-processing mechanism described
10Hz frequencies, yet the whole data is downloaded from the Section IV-B on a nominal data file, Nominal UAV A
UAV to the ground control station at a frequency of 10Hz. (Nominal UGV A for the UGV domain). Out of the 56

The second set of experiments was conducted on a cof22 for the UGV) different attributes that are measured
mercial vacuum-cleaning robot mobile robot (the Friendlyseveral attributes were found to be significantly strongly



Data Type Description

Nominal UAV A Contains nominal flight behavior.
This file was also used for the pre-process
phase and the comparison of

other UAVS’ behavior. 25 1
Nominal UAV B Contains an additional nominal flight behavia
201
Descend UAV C Contains an error in a sensor, which

rapidly decreases its value until a constant z
The error is between time units
15,990 and 16,054.

Constant UAV D Contains an error in a sensor, which
value is stuck constant.
The error is between time units 51
8,105 and 8205.

Nominal UGV A Contains nominal driving behavior. 6000 7000 8000 9000 10000 11000 12000 13000
This file was also used for the pre-process Time
phase and the comparison of
other UGVs’ behavior.

Weight Drag Halt UGV Contains an error in the nominal
driving behavior: The UGV attempts to drag
a heavy load, which causes to comes to
a complete halt at time unit 100.

Fig. 2. Determining the deviations’ threshold in UAV.

Weight Drag Slow UGV Contains an error in the nominal
driving behavior: The UGV attempts to drag | **
a moderate load, which causes it to

slow down at time unit 95. 250 [

Direction Deviation UGV  Contains an error in the nominal m
driving behavior: The UGV has an object 200 .
stuck in one of its wheels, causing it to boun -

every 5 seconds.

100

TABLE | .
DESCRIPTION OF EXPERIMENT DATA 50

15250 15750 16250 16750 17250

Time

correlated (based on thg statistic). We chose to use 2 of

the correlated attributes in our anomaly detection process

(both in the UAV and the UGV domains). It is notable toFig. 3. Descend UAV C: Mahalanobis distance (in std unitsy &snction

mention that in the case of the UGV domain, the MSDUDyf flight time.

pre-processing mechanism returned somewhat unsurprising

correlation between the odometry sensors, yet it alsoretur

a surprising correlation between two sonars on-board ttsee from the figure that in the exact times of the error, the

robot. Later we found this dependency highly useful fooutput of the Mahalanobis distance is significantly higher

detecting the anomalies in the UGV experiments. than the threshold. Out of the 64 time units of the error, a
In the process of detecting the anomalies we need total of 59 (92%) were above the 15 threshold.

determine the threshold above which an anomaly is flagged.Figure 4 shows the results of the Mahalanobis distance

To this end we first run the Mahalanobis distance algorithralgorithm when applied on the Constant UAV D data. Again,

on the nominal file and create a histogram of the standawde disregard the start and end of the flight time periods

deviations that are the output of the algorithm. The thriesho (we discuss them later). Unfortunately, though, the atpori

is then determined in such that at least 93% of the measufeund no evidence of deviations from the nominal behavior in

ments are below it. For the UAV and UGV domains, thighis case. The explanation for this is the fact that “fregzin

generates a threshold of 15 and 0.081 standard deviatiarsensor on a constant value does not cause deviations from

units, respectively. See Figure 2 for an example. We begimominal behavior, since the value is legit, and thus the

by describing the results on the UAV domain and finish witiviahalanobis distance cannot detect these kinds of errors.

the description of the UGV experiments. Trying to overcome this issue we ran an additional ex-
1) Detecting Anomalies in UAVsFigure 3 shows the periment. In this experiment we took the differential of the

results of the Mahalanobis distance algorithm when appliedhata per each attribute, and now ran the anomaly detection

on the Descend UAV C data. Disregarding the end of thmechanism to find whether there are deviations from the

flight, in which the behavior of the UAV changes, we camominal behavior of the UAV based on the differential of
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) . . Finally, Figure 8 depicts the results of the Mahalanobis
the data. Figure 5 now shows the results of this experimegisiance algorithm when applied on the Direction Deviation

(no_te that for dis_play purposes we omitted the start and engis, anomaly. We can see that approximately every 5
periods of the flight from the figure’s scale). Now we caryeconds the standard deviation units leap to a value larger
see that the algorithm was indeed able to find a deviatiqfan .08, An operator at the control station watching this
from the nominal behavior at the end_of the error pe”c,)ddata online (or rather, being notified as the measures pass th
just before the sensor re-started reporting normal behaviog, ashold) would have been able to detect that there is some

Encouraged by these results, we moved to apply thigajfunction with the robot, which is taking place every 5
technique to the UGV experiment data. The results of thgscongs.

approach on the UGV domain is given below. .

2) Detecting Anomalies in UGV<Figures 6 and 7 show C. The Importance of DD Pre-Processing
the results of the Mahalanobis distance algorithm when usedThe Mahalanobis distance cannot stand on its own to
with the UGV Weight Drag data, causing the UGV either tadetect anomalies. Its success in detecting anomalies above
halt or slow down, respectively. In Figure 6 we can see thdies in the fact that the dependency detection pre-procgssi
the approach accurately detected the stop movement of theechanism was invoked prior to the anomaly detection
UGV around time unit 100. For the slowing down motion,algorithm, and chose specific attributes on which to focus
we can see that it also accurately detected the beginning tbe Mahalanobis distance measure. Here, we demonstrate the
slowing down at around the same time in Figure 7. importance of invoking this mechanism.



0.16 100.00%

90.00%
- 80.00%
0.12 70.00%

60.17%
60.00%

50.00%

std
o
=
3
"
»
L

.
% False Alarms

40.00%

34.29%

0.06 30.00%

20.00%

10.00%

0719 _206% 0.17% 0.10%
] 0.00%
0.02 - bt .- - - o® Nominal UAV A Nominal UAV B Descend UAV C

- hind Correlated Attributes 0.71% 017% 0.10%
Uncorrelated Attributes 2.06% 34.29% 60.17%

0 50 100 150 200 250 300 350 Data Type

BcCorrelated Attributes B Uncorrelated Attributes

Fig. 8. Direction Deviation UGV: Mahalanobis distance (id snits) as  Fig. 10. False alarm rates when applying the Mahalanobisrtis on
a function of movement time. correlated and uncorrelated attributes.

of each other (we verified also that they do not appear in the
02182 results of the DD process). We then applied the Mahalanobis
outlier detector based on these attributes, to see if wedcoul
detect the failures using these attributes instead of those
selected by the DD process. We hypothesized that both on the
_01:26.41 nominal files and the simulated error files the results would
o100 generate high rates of false alarms (detecting anomaless ev
though there is none), making the algorithm useless.

We started by running the algorithm on two different data
00:34.6 files which describe a nominal behavior (Nominal UAV A
001751 and Nominal UAV B). Then, we applied the same mechanism
on a data file which simulated errors in predefined times
N 5 u 6 ‘21 % a % a «+ (Descend UAV C). Figure 10 show the percentage of false

Attrbuites Number alarms detected when running the Mahalanobis distance

02:01.04

01:43.74

)

Time (sec

00:51.8

00:00.0

on uncorrelated attributes as compared to running it on
correlated attributes.
Fig. 9. Mahalanobis distance’s run-time (in minutes) as a tiancof As we hypothesized, we can see that the approach does
attributes number. not scale well if the input is not fine tuned. While the rates
of false alarms when applying the algorithm on dependent
attributes is relatively low (0.71%, 0.17% and 0.10% for
First, let us examine the run-time of using the Mahalanobigominal UAV A, Nominal UAV B and Descend UAV C,
distance as the number of attributes increases. Figurer@pectively), the rates increase significantly when appli
demonstrates the importance of narrowing down the inpéh uncorrelated attributes (2.06%, 34.29% and 60.17% for
to the Mahalanobis distance algorithm. The figure show§ominal UAV A, Nominal UAV B and Descend UAV C,
the run-time (in minutes) of the algorithm as a function ofespectively). That is, the algorithm “found” that the noti
the number of attributes in each stream of data it uses tfghts actually deviated from the nominal behavior, which,
detect the deviation from the nominal behavior. The resuligf course, was not the case.
demonstrate that the algorithm’s run-time increases dyick As we argued in Section IV-B, a small number of attributes
as a function of the number of attributes. This is a part of th% also important because it facilitates increased acgurac
motivation for allowing the DD process to select a smalleFigure 11 demonstrates that the number of false alarms
set of attributes. dramatically increases (compared to the DD-based runs) if
However, it is not simply a case of reducing the numbefoo many attributes are used (3.97%, 1.19% and 21.81%
of attributes. To demonstrate the importance of running thier Nominal UAV A, Nominal UAV B and Descend UAV
Mahalanobis distance on dependent attributes we ran tg respectively, when four attributes are used—compare to
following experiment. 0.71%, 0.17% and 0.10% when using the two strongly-
Here, we built on a predefined knowledge of the UAVdependent attributes). From the figure we can see the differ-
domain and chose several attributes which are independemice in the false alarm ratio when only two of the strongest



with two different domains we showed that applying our
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approach allows detecting anomalies successfully in the
different domains, encouraging us with regard to the efficac
and adaptability of our approach.

As discussed, future work also warrants careful investiga-
tion due to different behavioral characteristics and dyicam
of the motion of the autonomous robots, to allow the dif-
ferentiation between the anomaly detection when a change
is occurring in the behavioral settings of the robot. Future
work in this field will also focus on an efficient automated
way for determining the threshold for the Mahalanobis
distance algorithm, above which anomaly should be detected
While negative examples might be a scarce resource, another
research direction would be to understand how to utilize
positive examples, which might be abundant, and reflect from

them on nominal behavior and the deviation from it.

Fig. 11. False alarm rates when applying the Mahalanobiartie on two
and four correlated attributes.
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correlated attributes are used as compared to using four
strongest attributes. Thus, using the DD algorithm to fired th [1]
K strongest correlated attributes can also allow minimizing[Z]
false alarms in the anomaly detection process.

D. Drawbacks of Mahalanobis Distance 3

Despite these promising results, we do not believe tha{
this combination process (DD and Mahalanobis distance)
is a silver bullet for finding anomalies. While it is a good (4]
mechanism for finding outliers, hence our usage of it in our
anomaly detection approach, it has its limitations, and we
believe it should be used to complement other methods. [5]

The most obvious drawback of the method is that it does
not work well with qualitative changes in behavioral modes.[6]
For example, we can see in Figures 3 and 4 that in the start of
the flight and the end of the flight the distance measurements;
are significantly larger, and would have been recognized as
anomalies. This is because a UAV taking off and Ianding[S]
acts qualitatively different than during flight. In other rds,
the setm which defines nominal behavior changes with the
flight mode. [9]

We also saw from the results of the Constant UAV D data
that detecting frozen values, which do not deviate from thi0]
normal values the sensor measures, is not straightforward
for the algorithm and another direction should be sought iay)
these cases. In the case of the constant value, for example,
the use of the differential data assisted, yet only to some
extent, as the algorithm found the deviation only at the endy]
of the simulated error.

We are currently investigating ways to address thedé®!
challenges. In particular, by combining the techniquesrabo
with a model of the mission behavior, i.e., a model that
defines the qualitative flight modes of the UAV, and adjustEM]
the nominal distribution in each mode.

VI. CONCLUSIONS ANDFUTURE WORK 1)

In this work we presented a novel approach for detectinﬁel
anomalies in unmanned autonomous vehicles. Experimenting
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