Towards Robust Multi-Robot Formations

Gal A Kaminka and Ruti Glick*
The MAVERICK Group, Department of Computer Science
Bar Ilan University, Israel
{galk, glickr} @cs.biu.ac.il

Abstract— Robots in formations move while maintaining a pre-
defined geometric shape. Previous work has examined formation-
maintenance algorithms that would ensure the stability of the
formation. However, for each geometric formation, an exponential
number of stable controllers exists. Thus a key question is how
to select (construct) a formation controller that optimizes desired
properties, such as sensor usage for robustness. This paper
presents a monitoring multi-graph framework for formation con-
troller selection, based on sensor-morphology considerations. We
instantiate framework, and present two contributions. First, we
show that graph-theoretic techniques can then be used to compute
sensing policies that maintain a given formation. In particular,
sensor-based control laws for separation-bearing (distance-angle)
formation control can be automatically constructed. Second, we
present a protocol allowing controllers to be switched on-line,
to allow robots to adjust to sensory failures. We report on
results from comprehensive experiments with physical robots.
The results show that the use of the dynamic protocol allows
formations of physical robots to move significantly faster and
with greater precision, while reducing the number of formation
failures.

I. INTRODUCTION

In formation-maintenance (formation control) tasks, robots
maintain their relative position with respect to their peers,
according to a desired geometric shape. Various formation
maintenance algorithms have been suggested (e.g., [1], [3],
[5], [7], [8]). The algorithms assign each robot with a single
or multiple neighboring robots (targets) that it must monitor, to
maintain the given geometric shape while moving. The set of
assigned targets (and their associated controller type) is called
control graph in [3].

Previous work has examined constraints on a given control-
graph, that would ensure the stability of the formation. In
particular, one popular method for such control is Separation-
Bearing Control (SBC) [1], [3]-[5] In SBC, a single robot
is chosen as the leader of the formation. Each robot (but the
leader) must maintain a given distance (separation) and angle
(bearing) with respect to an assigned target. It was shown
that control-graphs that induce SBC controllers for each robot,
and satisfy other constraints (e.g., connectivity, a single leader,
etc.) are sufficient to maintain stable formations.

However, for each geometric formation, an exponential
number of stable possible control graphs exists [3]. Thus a
key question is how to select (construct) a control graph
that optimizes other desired properties than stability. Many
such desired properties have to do with each robot’s sensor

*This work was supported in part by Isracl’s Ministry of Science and
Technology.

morphology—the type, placement, and configuration of sen-
sors on robot bodies. For instance, a control-graph in which
one robot must pan its camera backwards (relative to the
direction of movement) is likely less preferable than one
in which the same robot can monitor a target ahead of it.
Unfortunately, previous work has often ignored the role of the
sensor morphology in selecting between control graphs (see
Section 1I for a detailed discussion)

This paper presents an instantiated graph-theoretic frame-
work for control-graph selection, based on sensor-morphology
consideration. The framework represents alternative sensing
schemes in a monitoring multi-graph, in which directed,
weighted, edges, denote monitoring capabilities (sensors or
communications) and their associated costs. We present two
contributions. First, we provide an efficient method for auto-
matically constructing sensor-optimal control-graphs for SBC
control. Second, we present a protocol allowing control-graphs
to be switched on-line, to allow robots to adjust to permanent
and intermittent sensory failures.

To evaluate these contributions, the monitoring multi-graphs
framework has been fully implemented for Sony AIBO robots.
We show the results of extensive experiments, demonstrating
the robustness of the formations resulting from using mon-
itoring multi-graphs. We show empirically that use of the
framework leads to significantly increased precision, better
performance, and robustness to changing environmental con-
ditions.

II. BACKGROUND AND RELATED WORK

We focus here on most related previous investigations.
These have typically made the assumption that sensor con-
figurations match the control algorithms. Moreover, existing
works often assume all robots are homogeneous, and thus do
not generate monitoring rules that are individually-tailored to
the sensing capabilities of different robots. Our work addresses
these challenges. Other differences with existing work are
discussed below.

Fierro et al. [4] analyzed the stability of SBC and other
controllers, and proposed using manually-constructed control
laws to allow up to three robots to switch between alternative
controllers on-line without relying on communications. Our
work complements their results by providing (i) a method for
optimal selection of alternative control graphs, for any number
of robots; (ii)) a protocol using communications for making
synchronized control-graph decisions.

Desai [3] shows how an un-weighted control graph de-
scribes the monitoring from a global perspective. Desai does

not discuss selection of a control graph, and assumes omni-
directional sensing. However, Desai discusses switching for-
mations (and their associated control graphs) to tackle terrain
changes. Our framework complements such switching.

Balch and Arkin [1] examine three techniques for formation
maintenance of up to 4 homogeneous robots. Two of these
(Leader-Referenced and Neighbor-Referenced) techniques are
essentially SBC controllers, using fixed control graphs. Fred-
slund and Matari¢ [5] describe an algorithm for generating
SBC monitoring rules for robots in a given formation. The
robots are assumed to have specific sensing capabilities, and
the position of the leader is given. The monitoring rules
are supplemented by communications for robustness. Our
algorithms allow for automated selection of the leader, and
considers the unique sensor configuration of each robot.

Lemay et al. [7] and Michaud et al. [8] present a method for
quantifying the cost of using the sensors to determine distance
and angle to a neighbor. They present an algorithm where
each robot broadcasts its distance and angle from its peers.
Using this knowledge, each robot finds the target to which
it has the smallest deviation in angle and distance. However,
this is used only in selecting the formation positions of all
robots. In contrast, our method uses cost information after the
positions have been assigned, to select the optimal target for
each robot. We use additional sensory cost factors to allow
dynamic switching of control graphs.

III. COoST-OPTIMAL FORMATION CONTROL GRAPHS

We begin by describing the use of monitoring multi-
graphs to analytically describe various ways in which a robot
may monitor its peers by observation (Section III-A). Then,
we describe how a multi-graph can be used in formation-
maintenance tasks to assist in the automatic generation of
monitoring rules for robots (Section III-B).

A. Monitoring Multi-Graphs in Formation Control

We introduce the use of multi-graphs to represent the
monitoring capabilities of robots in a multi-robot system. A
monitoring multi-graph is a tuple {V, E) where V is a set of
vertices, denoting robots, and E is a bag of weighted edges
{{u,v,w)}, each linking two vertices u,v € V, and having a
non-negative weight w € N. Since FE is a bag, an edge linking
two vertices may appear more than once.

Edges denote monitoring capabilities. An edge (u,v,w)
exists if robot u is able to monitor (sense) robot v in some
distinct fashion, i.e., through a specific sensor. The weight w
indicates the cost of using the sensor. As multiple sensors
may exist for one robot to monitor another, multiple edges
may exist, with various costs. When a robot can monitor
another, the reverse is not always true; thus edges are directed,
ie.(u,v,w) € E # (v,u,w) € E.

In practice, most tasks require monitoring to be selective. A
monitoring multi-graph can be useful in such reasoning, and
allow the robot to represent monitoring options available to
it, and the costs involved. The robots can reason about their
monitoring decisions in the context of the global monitoring
constraints.

| Attribute | Range | Cost |
Distance (mm) [0, 450] 04
(450,600 | 0.75
Field of View [—30°,30°] 0.2
(30°,50°] | 0.4
[—50°,—30°) | 04
Pan [=90°,90°] | 06

TABLE I
TYPE-1 ROBOT SENSOR CONFIGURATION.

We construct monitoring multi-graphs to represent the sen-
sory capabilities of robots in the formation. Here, vertices
(denoting robots) have an associated position which denotes
the associated robot’s position in the formation. The initial
pose of all robots is to the direction of the movement. Previous
work typically assumes that teams are homogeneous, and
thus does not address preferences over allocation of robots
to places. While we do not make such an assumption (see
below), we leave allocation to future work.

For each robot (vertex), we add edges by considering its
sensors that can be used for monitoring other robots. We
focus on sensors that can provide identification, distance, and
bearing to other robots. For instance, combination of cameras
and distance sensors. The weight of an edge is an indication
of its expected cost-of-usage: Smaller weights indicate lower
costs, and thus greater preference for usage. This cost can
be computed based on any number of factors, however we
empirically found the following three factors to be useful
in practice: sensing distance limits, field of view limits, and
panning angle (rotation of the field of view with respect to the
center of the robot). We therefore focus on these in this paper.

For each factor, for each relevant range of values, we assign
a cost. For instance, Table I shows an example of a set of
such assignments, for a hypothetical robot. The first column
(attribute) marks the sensor attribute in question—distance,
field of view, or panning angle. The second column (range)
marks the values (ranges of values) for which we wish to
specify costs. The costs are noted in the final column. Note
that several ranges may be possible for each attribute, which
may differ in their costs or range of values.

Figure 1 shows the Type 1 robot using its single sensor at
different pan angles. Each curved subregion denotes monitor-
ing areas with different costs. The two arcs differentiate dis-
tance limitations. The numbered squares denote other robots.
Figure 1-a, for instance, shows the robot panning straight
ahead (at 0°). Square 1 shows a robot that is outside of the
distance range of the monitoring, regardless of panning angle
or field of view. The bottom right robot (square 3) cannot
be monitored given the current pan and field of view. The
remaining robot (square 2) is currently within the central field
of view. Figures 1-b,c show all robots in the same positions,
but with different panning angles for the sensor.

To contrast alternative sensing possibilities, we will edges
from the monitoring robot to the other (monitored) robots. An
edge will be created for each combination of distance, field-
of-view and pan angle. This is done as follows.

First, we compute the area covered by a sensor, given

(a) Pan 0°.

(b) Pan 30°. (c) Pan 90°.
Fig. 1. Monitoring possibilities change based on sensor panning.

its field-of-view possibilities, distance ranges, and pan op-
tions. For a field-of-view range [fmin, fmaez], @ pan range
[Pmin, Pmaz), and a distance range [dmin,dmaz], the area
covered is a curved region enclosed by the distance range, and
defined by the arcs at an angle [Pmin + fmin, Pmaz + fmaz)-
Multiple pan, field-of-view, and distance range options give
rise to multiple curved regions, which may overlap. For
instance, based on Table I, the leftmost field-of-view range
covers the arc [—50 + —90, —30 + 90] = [—140, 60] degrees.

We then locate robots within each region. For each, we
create a directed edge from the monitoring robot. Since
the positions of vertices in the multi-graph correspond to
geometric positions in the formation, the distance between to
robots corresponds to the length of the line connecting them,
and the angle between any two robots can be computed relative
to the initial pose. For instance, In Figure 1 the left top robot
is outside of the distance range of the monitoring. Thus there
would be no edge from the monitoring robot to this left top
robot. Figures 1-a,b, show multiple ways in which the robot
ahead of the monitoring robot (and slightly to the left) can
be monitored—within the central field of view (when the pan
angle is set to 0°) and within the left field of view (pan angle
set to 30°). Thus two edges to it would be created.

Finally, we compute the weight of each edge, as a function
of the costs of the distance, field-of-view and pan ranges
involved. We use a weighted sum function to combine cost
factors into a single cost value for the weight of the edge.

In real-world settings, robots may occlude each other. Thus
the last step includes removal of physically occluded edges. As
embodied robots occlude each other, any robot x positioned
on an edge between a pair of other robots a,b will block
their view of each other. Thus any edges {(a,b), (b,a)} are
removed from the monitoring multi-graph. When applying this
technique with physical robots, we have found it useful to
consider occlusion even if z is not positioned exactly on the
edges between a and b, to account for the size of the physical
body of an occluding robot.

The result of this process (after it is repeated for all robots,
and all sensors) is a weighted, directed, monitoring multi-
graph where vertices denote robots and (multi-)edges represent
all possible ways in which the robots can monitor each other,
given their sensors and limitations.

B. Computing Optimal Control Laws
Now that the monitoring multi-graph is complete for a
given formation, it can be used to induce individual controllers

for each robot, such that if all robots maintain the distances
and angles represented by the selected edges, the formation
will be correctly maintained. In particular, we show how to
use a version of Dijkstra’s single-source shortest paths (S3P)
algorithm to construct SBC controllers for each robot, that
guarantee optimal-cost formations.

In SBC, a robot—called leader—is responsible for deter-
mining the overall global path (e.g., by deferring to a human
operator [6], or using a path planner). Each of the other
robots (followers) is given an individually-tailored control rule,
restricting it to maintain a given distance and angle (with
respect to the direction of movement) to its target—either
the leader, or another follower—that in turn monitors its own
target. Separation-Bearing control (SBC) thus relies on a single
monitoring link for each robot.

We can induce the SBC monitoring rules from the mon-
itoring multi-graph, by choosing edges that signify sensor
choices. The edges length and angle with respect to the initial
pose signify the separation and bearing, respectively. For now,
we make the assumption that the leader position has been
pre-determined Given the leader, a formation graph can be
maintained using SBC under the following conditions:

1) The out-degree of the leader robot is 0.

2) The out-degree of every follower robot is exactly 1, the
outgoing edge pointing to its target.

3) There exists a path from every follower to the leader.

The first condition guarantees that the leader does not have
to monitor anyone. The second condition guarantees that each
of all other robots has an separation-bearing target to monitor.
The final condition guarantees that the formation is connected
such that all robots monitoring others will eventually monitor
the leader. In other words, it guarantees that the leader robot
is indeed positioned such that it is capable of leading, given
how it is monitored.

We define a formation graph as optimal, if in addition to the
conditions above, it also guarantees that each individual robot
is monitoring the leader, directly or indirectly (transitively)
using the minimal sensor cost. This is not achievable in
general by simply selecting the least costly edge out of each
robot’s position, since such local selection may cause robots to
form a cycle, where robots monitor each other, instead of the
leader. Moreover, such local selection does not address a key
challenge: a robot’s overall monitoring cost in the context of
a formation depends also on its target’s monitoring cost. This
is because a robot’s position depends on its target, and thus
shorter paths to the leader reduce latency in position update.
In other words, it may be better to monitor a robot at a higher
local cost, to guarantee that overall, the path from the target
to the leader is shorter and less expensive.

Fortunately, graph-theoretic algorithms have already been
devised to address such challenges. In particular, we use a
version of Dijkstra’s S3P algorithm (described in [2]). How-
ever, rather than computing the shortest paths from a source
vertex to all others, we compute the Single Target Shortest
Paths. This is easily done by traversing edges backwards.

Another departure from Dijkstra’s algorithm is that it must
be modified to work with multi-graphs. In particular, its edge-
selection policy now must consider multiple edges between
any two vertices. It can be shown that this does not change
the optimality of the algorithm. We only provide the proof
sketch for lack of space: The optimality of Dijkstra’s algorithm
depends on a greedy step in which it chooses the lowest-cost
edge from a vertex that has already been visited, to a vertex
that has not been visited yet. Modifying this step such that it
considers multiple edges does not modify its result, which is
a single lowest-weight edge from the current vertex.

This step in which edges are selected also touches on a
final modification of Dijkstra’s algorithm for our purposes. In
theory, any ties in alternatives (i.e., edges with same weight)
can be broken arbitrarily by the algorithm, since the selection
will not affect optimality. In practice, however, we have found
it useful to reduce hops, the number of edges that leads from
a given robot to the leader. This is done by breaking ties in
such a manner as to prefer edges that minimize hops

Using the modified Dijkstra’s algorithm, a single edge is
selected optimally for each robot but the leader. These edges
form an SBC control-graph to be executed by the robots, i.e.,
the algorithm induces a control graph G out of the monitoring
multi-graph MG. Because each edge is specific to the robot
in which it origins, the SBC control law of each robot is
individually tailured to the monitoring capabilities of the robot.
This admits sensor-heterogeneous robots.

IV. DYNAMIC SWITCHING OF CONTROL GRAPHS

The generation of an SBC control law for each robot is
done automatically, based on the expected cost of using the
robots sensors. However, during deployment, sensors may act
differently from what was anticipated, due to catastrophic or
intermittent failures. For instance, a camera may get stuck in a
particular angle, or lighting conditions may inhibit the ability
to track specific colors.

To address this, we propose a distributed protocol that
allows robots to dynamically switch control-graphs while
maintaining the formation. Such a protocol (by explicit or
implicit communications) is required, to coordinate the robots
in their switching control graphs. Uncoordinated switches may
result in two or more robots following each other, cyclically,
instead of the leader. The protocol works in several steps

1) If a robot fails to monitor its pre-selected peer, or
needs to updates its cost estimates for its peers, it
first broadcasts a message to all team-members, to let
them know that a recomputation of the graph is needed.
During this phase, any number of robots may broadcast
in parallel. Messages include revised edge costs.

2) Each robot that receives the message halts the move-
ment, and adds it to a local list of robots R that require
re-assignment of targets and sensors. The robot receiving
the message will not report on any readjustment it
wishes to make while within this step of the protocol.

3) All robots make sure that all messsages have been
received and processed. This can be done either by

having receivers acknowledge received communications,
or more simply (but less reliably) by having a timeout
mechanism that ensures no new messages are generated.

4) All robots call on Algorithm 1 to determine the set Ry,
of robots in the team that are potentially affected (i.e.,
transitively) by a change in the initial list of robots’
target assignments.

5) All re-execute the modified Dijkstra’s algorithm on the
monitoring multi-graph MG, to generate a new con-
trol graph. However, because only the subset of team-
members Ry is affected, decisions for other robots do
not have to be revisited.

The GetVertexesToUpdate algorithm essentially computes
all robots that are upstream from an affected robot, where
upstream is taken to mean traversing the edges in a control
graph backwards, from the leader to the outmost followers.
The algorithm essentially follows all edges backward, from
the initial set of robots, adding additional affected robots as it
goes. It halts when no new affected robots can be discovered.

Algorithm 1 GetVertexesToUpdate (control graph G, robots
R)

1: Rk «— (0

2 V&R

3: while Jv € V do

4: Remove v from V, put into Ry

5: for all e; ,, edges from robot j to v do
6 Insert vertex j to V
7: Return Ry,

The protocol above can be executed in parallel by all
team-members, or using a centralized computation which will
distribute the result. When executed in parallel, care must be
taken to ensure that (i) the robots begin their decision-making
in a synchronized manner (i.e., work on the same initial list of
robots R); (ii) arrive at the same choices in the recomputation
of the new control graph. The first requirement can enforced in
several ways. We chose to enfore it by introducing a timeout
mechanism: Once a robot announces that a recomputation is
necessary, other robots have a certain time period in which
they can add to the list. To prevent parallel execution of
Dijkstra’s algorithm from making different decisions, any ties
are arbitrarily broken by preferring the robot with lower ID.

V. EVALUATION

To evaluate the use of monitoring multi-graphs in practice,
we first show a series of experiments on physical robots
(Sony AIBOs), in which automatically-generated, static con-
trol graphs are used (Section V-A). The results show that
fixed, non-switching, control graphs can result in diverse
performance quality. Then, we show that the use of the
dynamic switching of control graphs solves this problem:
In extensive experiments, dynamically-switching formations
proved more robust and better-performing than a fixed control
graph formation (Section V-B).

[Auribute | Range | Cost |
Distance [200,1500] | 04
Field of View | [—35,35] | 0.5
Pan [=90,—30) | 07
[-30,30] | 02
(30,90] | 0.7
TABLE II

SENSOR SPECIFICATION, AIBO

Gavri

300 Ubu
Poli

-600 Shayke

100 150 200 250 300 -500 -400 300 -200 -100 O

“Zfoo 50 0 50 100 200

(a) Ideal Triangle. (b) Ideal Diamond.

Fig. 2. Ideal formations in fixed control-graph experiments. Robot names
are shown.

A. Fixed Control Graphs

The first set of experiments uses fixed control-graphs, gen-
erated from the monitoring multi-graphs, to control formations
of Sony AIBO ERS-7 robots. Each of these robots has a
single camera on its panning head which can be used to
detect color blobs in its = 120° view-field ([—59°,59°)),
although practically, the effective view-field is ([—35°,35°]).
Using such color identification, the robot can identify others,
when appropriately color marked. The head also contains an
infra-red range sensor which can measure distances in the
range [200,,,, 1500,,,,], with some uncertainty. We treat the
head (camera and distance sensor) as a single logical sensor,
providing bearing and distance to another robot The head
pans 90° left and right, and thus the maximal practical angle
range for its vision, when combined with the practical field
of view of [—35°,35°], is [-125°,125°]. However, in our
experience, maintaining the pan angle in the range [—30°, 30°]
tends to produce better results. Based on the manufacturer’s
specifications, and our experience with the robot, we generated
a sensor cost specifications for the robot (Table II). Using this
table, we used our technique to produce alternative control
graphs for the triangular formation specified in Figure 2-a,
and the diamond formation in Figure 2-b.

We discuss the triangle formation first. In the first (normal)
case, the resulting SBC formation had Gavri as the leader (see
Figure 2 for robot names), and the other two robots monitoring
it directly (Figure 3-a). To experiment with different monitor-
ing rules, we modify the sensor specification table such that
the cost of panning in the range [50°,90°] is 0.7, and infinity
anywhere else (forcing the AIBO to look sideways, with only
40°of leeway). This case simulates, for instance, a failure
where the camera pan motor is stuck. Providing this modified
input to our algorithm produces a different monitoring graph,
where Shayke is monitoring robot Poly, which in turn monitors
robot Gavri (Figure 3-b).

In the diamond formation, many control graphs are possible
in principle. We have restricted the algorithm to control graphs
in which the last robot, Shayke, is the only one to select
different targets. This is done by tweaking its associated cost
table, in effect rendering it heterogeneous from its peers. We
experimented with three control graph: Shayke monitoring the
leader (Figure 3-c), the right follower (3-d), and the left fol-
lower (3-e). All control graphs were generated automatically.

We ran 15 trials with each of these alternative SBC for-
mations (a total of 75 trials). In these trials, The leader was
controlled manually to determine an obstacle-free straight-line
of about six meters in length. The objective was to contrast the
stability and robustness of the different control-graphs under
reasonable operating conditions.

Figure 4 shows the resulting formations, as represented by
the average positions of robots with respect to each other.
Figure 4-a shows the two triangle formations, while Figure 4-
b shows the three diamond formations. Each figure also plots
the ideal formation for comparison. The formations shown
in an XY coordinate system measuring millimeters. For the
purpose of comparison, the leader is positioned at (0, 0).

Qualitatively, it can be seen that there exist large variances
in the quality of the formations when maintained statically
by different control graphs. In the triangle formation, the
control graph in which Shayke monitors the leader directly
yields much better formation maintenance than the control
graph in which Shayke is monitoring the leader indirectly,
through another robot. This is likely the result of latency in the
responses of Shayke to the movements of the leader, as they
are filtered by the intermediate robot’s actions and perceptions.

However, in the diamond case, the reverse is true. Here,
two control graphs prove to yield good results; both of these
control-graphs monitor the leader indirectly. In contrast, the
control graph in which Shayke monitors the leader directly
shows that the formation is not maintained. We believe that
this is due to the effective sensor range of the robot, which
causes Shayke to believe that the leader is farther than it really
is, thus leading Shayke to move more quickly to get closer to
the leader.

B. Dynamically Switching Control-Graphs

The principal lessson from the first set of experiments is that
static formation control graphs can lead to markedly different
results. We thus wanted to evaluate the ability of dynamically-
switching control graphs to compensate for such limitations,
and yield better and more robust formations.

To experiment with this, we re-executed the diamond for-
mation experiments, contrasting a static control graph with
that of with a dynamically-switching control graph, using the
switching protocol described above. In both cases, the robots
began with the same control graph, but in the dynamic cases,
they were allowed to switch to a different target. To control
and trigger such switches, we varied a threshold determining
whether a robot believed its target to be lost. Smaller number
indicates that the robot is very quick to judge its target to be
lost, and is thus a good simulation of noisy sensing conditions.

(a) Shayke follows
leader.

Fig. 3.

(b) Shayke follows
Poly.

Ideal
= = = Following the Leader
Following the Right Robot

(a) Triangle.

Ideal

------ Following the Left Robot
''''' Following the Right Robot
= = = Following the Leader

L
oA H
SN v
B i
A -
B \ L
B . 43
\ \\ NS
&
\ \ o
\ RS
\ RS
>
[N

(b) Diamond.

Fig. 4. Ideal and actual robot positions.

A large number indicates that the robot is willing to wait a
relatively long time before declaring it has lost its target. The
numbers actually denote the number of consecutive frames in
which the target was not identified. We used values of 4, 20,
and 40. Each configuration was repeated 15 times, for a total of
90 trials. Unlike the previous set of experiments, the velocity
of the leader was fixed, and thus shorter time for finishing the
course indicates improved performance.

(c) Shayke follows
Leader.

(d) Shayke follows
Poly.

(e) Shayke follows
Ubu.

AIBO robots executing static triangle (Figures a, b) and diamond (Figures c, d,) SBC control-graphs. Note bottom robot (Shayke) head pose.

Figure 5 shows the average positions of robots in the
diamond formation, in the case of static and dynamic control
graphs, for each value of the threshold. As can be seen in
the figures, the dynamic control graph yields results that are
(i) more consistent across the experimental conditions; and
(ii) closer to the ideal formation form. Figure 6 provides
quantitative analysis of the same phenomenon. Here, the Y-
axis measured the error in placement of Shayke (the robot
whose target changed dynamically) in the fixed and dynamic
control graph techniques. As can be seen in the figure, in
all three conditions, the dynamic switching technique leads to
smaller errors.

We examine additional performance measures. Figure 7
shows the time that it took the formation to finish the course,
i.e., smaller values are better. The X-axis shows the differ-
ent threshold settings, simulating different perception errors.
The Y-axis measures the time. The figure shows that the
dynamically-switching technique leads to significantly smaller
durations for finishing the task. A two-tailed t-test (assuming
unequal variances) of this data results in a null-hypothesis
probability value p < 0.0001) in all settings.

Finally, we examine the percentage of time the formation
was maintained, i.e., both angles and distances were within
their tolerance levels (10 degrees, 15cm). In Figure 8 The Y-
axis here shows the percentage of time, and thus larger values
are better. The figure shows two benefits to the dynamic-
switching approach. First, the percentage of time the formation
was maintained was significantly higher than with the static
control graph (a two-tailed t-test assuming unequal variance
shows p < 2.40109 x 10~15). Second, and perhaps more im-
portantly, the percentage essentially remains constant despite
the significant change to environmental conditions. This is in
contrast to the static control graph approach, whose perfor-
mance was lower, and also inconsistent across the controlled
conditions.

VI. DISCUSSION AND FUTURE WORK

We presented a novel representation for reasoning about for-
mation contorl graphs, based on directed weighted monitoring
multi-graphs. We have shown that the approach allows the use
of graph-theoretic techniques, to address key open problems.
In particular, we have provided novel techniques that (i)

Ideal
= = =4 Losses
-100
1= =120 Losses \
+roon 40 Losses
-200
o \
—300F Y A
b A
3 H Y
-400 b g
e
ir
-500
-600

-500 -400 -300 -200 -100 0 100

(a) Fixed.

Ideal
= = =4 Losses
1= =120 Losses
troren 40 Losses

(b) Dynamic Switching.

Fig. 5. Average Formation

120
100

80
60
40 +—
20 1+

0 T T

O Adaptable
B Predefined

m"m

4 20 40

Consecutive Losses

Fig. 6. Position Errors.

180000

160000

140000 |

120000

100000

—&— Adaptable
—m— predefined 80000 - '\”/’,

duration (ms.)

60000

40000
20000 -
0

consecutive losses

0 10 20 30 40

50

Fig. 7. Time to complete course.

—o— Adaptable
—#— predefined

% run time

120
100
80
60
40
20

/‘

/

/

10 20

30 40

50

consecutive losses

Fig. 8. Percentage of time formation maintained.

optimally account for sensor morphology and constraints in
generating distributed formation-maintenance SBC controllers;
(ii) allow robots to dynamically switch formation control
graph for added robustness. We demonstrated the use of the
technique in systematic experiments with physical robots, and
have shown that the use of our techniques leads to significant
increases in both performance and robustness to environmental
conditions.

Acknowledgments. We thank Noa Agmon for useful com-
ments, and K. Ushi for support.

(1]

(2]
(3]
[4]

(3]

(6]

(7]

(81

REFERENCES

T. Balch and R. Arkin. Behavior-based formation control for multi-robot
teams. IEEE Transactions on Robotics and Automation, 14(6):926-939,
1998.

T. T. Cormen, C. E. Leiserson, and R. L. Rivest.
algorithms. MIT Press, 1990.

J. P. Desai. A graph theoretic approach for modeling mobile robot team
formations. Journal of Robotic Systems, 19(11):511-525, 2002.

R. Fierro, A. K. Das, V. Kumar, and J. P. Ostrowski. Hybrid control of
formations of robots. IEEE International Conference on Robotics and
Automation, 2001.

J. Fredslund and M. J. Mataric. A general algorithm for robot formations
using local sensing and minimal communications. /[EEE Transactions on
Robotics and Automation, 18(5):837-846, 10 2002.

G. A. Kaminka and Y. Elmaliach. Experiments with an ecological
interface for monitoring tightly-coordinated robot teams. In ICRA-06,
2006.

M. Lemay, F. Michaud, D. Létourneau, and J.-M. Valin. Autonomous
initialization of robot formations. [EEE International Conference on
Robotics and Automation, pages 3018-3023, 2004.

F. Michaud, D. Létourneau, M. Gilbert, and J.-M. Valin. Dynamic robot
formations using directional visual perception. IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2002.

Introduction to

