
Redundancy, Efficiency and Robustness in
Multi-Robot Coverage

Noam Hazon and Gal A. Kaminka∗

The MAVERICK Group, Computer Science Department
Bar Ilan University, Israel
{haoznn,galk}@cs.biu.ac.il

Abstract— Area coverage is an important task for mobile
robots, with many real-world applications. Motivated by poten-
tial efficiency and robustness improvements, there is growing
interest in the use of multiple robots in coverage. Previous
investigations of multi-robot coverage focuses on completeness
and eliminating redundancy, but does not formally address ro-
bustness, nor examine the impact of the initial positions of robots
on the coverage time. Indeed, a common assumption is that
non-redundancy leads to improved coverage time. We address
robustness and efficiency in a family of multi-robot coverage
algorithms, based on spanning-tree coverage of approximate
cell decomposition. We analytically show that the algorithms
are robust, in that as long as a single robot is able to move, the
coverage will be completed. We also show that non-redundant
(non-backtracking) versions of the algorithms have a worst-case
coverage time virtually identical to that of a single robot—
thus no performance gain is guaranteed in non-redundant
coverage. Moreover, this worst-case is in fact common in real-
world applications. Surprisingly, however, redundant coverage
algorithms lead to guaranteed performance which halves the
coverage time even in the worst case.

I. INTRODUCTION

Area coverage is an important task for mobile robots,
with many real-world applications such as floor cleaning [2],
de-mining [5], and harvesting. In these, a robot is given a
bounded work-area, possibly containing obstacles. The robot
is assumed to have an associated tool of a given shape
[3]—often corresponding to the robot’s relevant sensor or
actuator range—that must visit every point within the work-
area. Since the tool size is typically much smaller than the
work-area, the robot’s task consists of finding and moving
along a path that will take the tool over the entire work-
area. This is sometimes referred to as exhaustive geographical
search [9], or sweeping.

In recent years, there is growing interest in the use of
multiple robots in coverage, motivated by efficiency and
robustness. First, multiple robots may complete the task
more quickly than a single robot, by dividing the work-area
between them. Second, multi-robot algorithms may succeed
in face of failures, since even if a robot fails, its peers might
still be able to cover its assigned area. Formally, a coverage
algorithm is said to be complete if, for any work-area, it

∗This work is partially supported by ISF Grant #1211/04

produces a path that completely covers the work-area. We
want multi-robot algorithms to be not only complete, but also
efficient (in that they minimize the time it takes to cover the
area), non-backtracking (in that any portion of the work area
is covered only once), and robust (in that they can handle
catastrophic robot failures).

Previous investigations that examine the use of multiple
robots in coverage mostly focus on completeness and non-
backtracking. However, much of previous work does not
formally consider robustness. Moreover, while completeness
and non-backtracking properties are sufficient to show that
a single-robot coverage algorithm is also efficient (in cov-
erage time), it turns out that this is not true in the general
case. Surprisingly, in multi-robot coverage, non-backtracking
and efficiency are independent optimization criteria: Non-
backtracking algorithms may be inefficient, and efficient
algorithms may be backtracking. Finally, the initial position
of robots in the work-area significantly affects the comple-
tion time of the coverage, both in backtracking and non-
backtracking algorithms. Yet no bounds are known for the
coverage completion time, as a function of the number of
robots and their initial placement.

This paper examines robustness and efficiency in multi-
robot coverage. We focus on coverage using a map of the
work-area (known as off-line coverage [1]). We assume
the tool to be a square of size D. The work-area is then
approximately decomposed into cells, where each cell is a
square of size 4D, i.e., a square of four tool-size sub-cells. As
with other approximate cell-decomposition approaches ([1]),
cells that are partially covered—by obstacles or the bounds
of the work-area—are discarded from consideration. We use
an algorithm based on a spanning-tree to extract a path that
visits all sub-cells. Previous work on generating such a path
(called STC for Spanning-Tree Coverage) have shown it to
be complete and non-backtracking [3].

We present a family of novel algorithms, called MSTC
(Multirobot Spanning-Tree Coverage) that address robustness
and efficiency. First, we construct a non-backtracking MSTC
algorithm that is guaranteed to be robust: It guarantees that
the work-area will be completely covered in finite time, as
long as at least a single robot is functioning correctly. We



analyze the best-case and worst-case completion times for
this algorithm, and find that in the worst-case, the coverage
time for k robots is essentially equal to that of a single
robot. Unfortunately, this worst-case scenario is common in
coverage applications: This is where all robots start from
approximately the same position (e.g., doorway to the work-
area). We further prove that this result holds for any non-
backtracking algorithm that uses STC paths.

We then present a second MSTC algorithm, which allows
for some backtracking: It may have a robot visit a cell twice,
but no more. We show that surprisingly, even though this
algorithm involves backtracking, its worst-case coverage time
for k > 2 robots is half that of a single robot. These results
show that coverage algorithms must distinguish between non-
backtracking and efficiency properties. These two criteria
converge only in the single-robot case, but are distinct (and
may be mutually exclusive) in the general k-robot case.

II. BACKGROUND

Recent years are seeing much interest in multi-robot cover-
age algorithms, thanks to two key features made possible by
using multiple robots: (i) robustness in face of single-robot
catastrophic failures, and (ii) enhanced productivity, thanks
to the parallelization of sub-tasks.

Choset [1] provides a recent survey of coverage algorithms,
which distinguishes between offline algorithms, in which a
map of the work-area is given to the robots, and online
algorithms, in which no map is given. The survey further
distinguishes between Approximate cellular decomposition,
where the free space is approximately covered by a grid of
equally-shaped cells, and exact decomposition, where the free
space is exactly partitioned.

Our algorithms build on the single-robot off-line STC
(Spanning-Tree Coverage) algorithm [3] that is based on an
approximate cellular decomposition. A different approach to
extending the STC algorithm to multiple robots can be found
in [6], but does not carry the robustness and performance
guarantees we provide below.

Spires and Goldsmith [9] show an off-line multi-robot al-
gorithm based on an approximate cellular decomposition. The
algorithm uses a Hilbert space-filling curve which guarantees
a robust coverage path. Unfortunately, this works only in
obstacle-free work-areas. Also, they argue that the initial
positions of the robots within the work-area significantly
affect the coverage time, but do not provide guarantees on
the performance of their algorithm. In contrast, we provide
an algorithm that handle obstacles, and is guaranteed to
reduce the coverage time (compared to the single-robot case)
regardless of initial positions.

Other investigations of multi-robot coverage also ignore
the initial positions of the robots. Wagner et al. [11] pro-
poses ant-based algorithms which use approximate cellular
decomposition. The algorithms involve little or no direct

communications, instead using simulated pheromones. These
algorithms solve only the discrete coverage problem, without
guaranteeing efficiency and robustness. Instead, heuristics are
used to overcome bad initial starting points.

Kurbayashi et al. [4] suggest an off-line centralized multi-
robots coverage algorithm based on an exact cellular decom-
position. However, no guarantees on robustness are provided.
Our coverage algorithms are distributed and robust.

Rekleitis et al. [7] uses two robots to cover an unknown
environment, using a visibility graph-like decomposition (sort
of exact cellular decomposition). The algorithm use the
robots as beacons to eliminate odometry errors, but does
not address catastrophic failures (i.e., when a robot dies).
In a more recent article, Rekleitis et al. [8] extends the
Boustrophedon approach [1] to a multi-robot version. Their
algorithm also operates under the restriction that communi-
cation between two robots is available only when they are
within line of sight of each other.

III. NON-BACKTRACKING MSTC

We focus in this paper on the off-line coverage case[1], [3],
where the robots have a-priori knowledge of the work-area,
i.e. they have a complete map of the work-area, its boundaries
and all the obstacles (which are assumed to be static). Each
robot has an associated tool shaped as a square of size D.
The objective is to cover the work-area using this tool. In
real-world applications, the tool may correspond to sensors
that must be swept through the work-area to detect a feature
of interest, and the size D may be determined by the effective
range of the sensors. Or, in vacuum cleaning application, the
tool may correspond to the opening of the vacuum itself,
typically underneath the robot. As with previous work [3],
we assume robots can move continuously, in the four basic
directions (up/down, left/right), and can locate themselves
within the work-area to within a sub-cell of size D.

We divide the area into square cells of size 4D (each one
consists of 4 sub-cells of size D), while discarding cells
which are partially covered by obstacles. We define a graph
structure, G(V,E). V is the nodes set, which are the center
points of each cell, and E is the edges set, which are the line
segments connecting centers of adjacent cells. Then we build
a spanning tree for G using any spanning-tree construction
algorithm. We can affect the shape of the covering path
by adding weights to the edges and building a minimum
spanning tree [10]. This can be used, for instance, to reduce
the number of turns, by assigning horizontal edges greater
weights than those of vertical edges [3].

We can now define the MSTC problem: We are given an
STC path for a given work area, and a set of k robots. We
assume that the robots have initial positions S0, . . . , Sk−1

within the cell decomposition of the work-area. In this, we
depart from previous work on multi-robot coverage which
does not take into account the initial positions of the k robots.



The challenge is to assign k portions of the STC path to the
different robots, such that when all the robots complete their
assigned sub-paths, the entire work-area is covered.

We begin by examining an instance of this problem, where
robots are assumed to be homogeneous in their same speed
and tool size D. We use N to denote the number of cells in
the grid, and n to denote the number of sub-cells. We further
assume that the work-area is contiguous, i.e., all cells of the
work-area are accessible from any starting position.

The coverage works in two phases. First, Algorithm 1
builds an STC path using the method in [3] (briefly described
above). Then, to carry out the coverage, each robot uses its
copy of this STC path, and its initial position on the path, to
follow a sub-path that is assigned to it (Algorithm 2). This is
done while making sure that robots make up for catastrophic
failures of their peers. Note that the execution of Algorithm
2 is complete decentralized, as each robot executes its own
independent copy.

Starting from S0, Algorithm 1 constructs a spanning tree
for G. Moving along a path which circumnavigates the
spanning tree along a counterclockwise direction orders the
starting points as shown in Fig. 1. The construction of the
spanning-tree in this pre-process phase can be done by one
robot and broadcast to the others, or it can be done by every
robot independently while they use the same algorithm for
the building of the tree.

Once the path has been constructed and divided into
sections, Algorithm 2 is executed in a distributed fashion
by all robots. After the initialization phase (lines 1–2), each
robot starts to cover its section [Si, . . . , Sj), from its current
location Si to the initial position Sj of the next robot, along
the STC in a counterclockwise direction (lines 3–4, see Fig.
1). Lines 6–11 guarantee the robustness: If one robot fails,
the robot behind it takes the responsibility to cover its section
(see below for formal proof).

Algorithm 1 MSTC Path Plan(work-area W , robots’ initial
positions S0, . . . , Sk−1)

1: Arbitrarily pick the starting point S0

2: Starting from S0, construct P , an STC path of W (as
described above).

3: Order the positions S0, . . . , Sk−1 along the STC, starting
from S0 and moving in a counter-clockwise direction.

4: Return P , ordered list of positions S0, . . . , Sk−1.

Note that the algorithm addresses communication require-
ments in general form. In practice, communications can be
implemented in many different ways. For example, the status
of liveness (lines 6, 8) can be determined by the robots’
sending of an ”I am alive” message every period of time.
When a message is not received by a robot after a defined

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

 

 

 

Fig. 1. The grid, the spanning tree and the paths for three robots.

timeout period, it is considered dead. Alternatively, liveness
can be checked when reaching the initial position of another
robot. Similarly, the announcement of section completion
(line 5) can be communicated in various ways.

Algorithm 2 non-backtracking MSTC(STC path P , ordered
positions S0, . . . , Sk−1)

1: Let i← my own id (in the range 0 . . . k − 1)
2: Let t← (i+1) mod k // next robot’s position, cyclically
3: while current position 6= St − 1 do
4: Move towards St along STC, in counter-clockwise

direction // this changes current position
5: Announce completion of [Si, St)
6: while Rt is alive and [S0, . . . , Sk−1, S0] incomplete do
7: Wait
8: if Rt is not alive and [S0, . . . , Sk−1, S0] incomplete then
9: i← t

10: t← (t + 1) mod k
11: Go to 3 // Take over role of failing robot
12: Stop

We analyze these algorithms. First, to prove completeness
and optimality we remind the reader that circumnavigating
the spanning tree produce a closed curve which visits all the
sub-cells exactly one time [3]. In Algorithm 1 the STC curve
is partitioned into k sections whose union is the whole path.
That leads to the completeness theorem below.

Theorem 3.1 (Completeness): Algorithm 1 generates k
paths that together cover every cell accessible from the
starting cell S0.

Proof: Previous work has shown that step 2 produces
a path that covers all cells (Lemma 3.3 in [3]). Step 3
partitions this path into k sections. Therefore, the union of
the k sections covers every cell accessible from S0.

Given the set of paths produced, Algorithm 2 makes sure
the robots visit all these cells only once (if no failure has



occurred). The following theorem applies.
Theorem 3.2 (Non-Backtracking): If all robots use Algo-

rithm 2, and no robot fails, no cell is visited more than once.
Proof: If no robot fails, then each robot i only covers

the section [Si, Si+1) of the STC path (where if i = k, then
cyclically i + 1 = 0). Thus every cell is covered only by
a single robot. Since robots never backtrack, every point is
only covered once.

Robustness. As key motivation for using multiple robots
comes from robustness concerns, we prove that Algorithm
2 above is robust to catastrophic failures, where robots fail
and can no longer move. This result relies on an assumption
that robots which fail do not block live robots.

Theorem 3.3 (Robustness): Algorithm 2 guarantees that
the coverage will be completed in finite time even with up
to k − 1 robots failing.

Proof: The path is divided to k sections. We will prove
that each section will be covered. Due to the nature of the
path generated, all the robots are topologically moving in a
circle, so the robot that is responsible to cover a section has
k − 1 robots behind it. This is correct for any section i. We
will prove that this section i will be covered, by induction
on the number of robots k.

Induction Base (k = 3). If robot Ri that is responsible
to cover this section is not dead before the completion of
the cover of this section, then this section is covered. Else,
R(i−1) mod k or R(i−2) mod k is alive. If R(i−1) mod k is
alive, according to line 6 in the algorithm it will return to
step 3 and cover this section. If only R(i−2) mod k is alive,
according to line 6 in the algorithm it will return to step 3
and cover section i− 1 (because R(i−1) mod k is not alive).
Then the condition will be true again because Ri is dead,
and R(i−2) mod k will cover also section i.

Induction Step. Suppose it is known that if at least one
of k robots is alive section i will be covered. We will prove
it for k + 1 robots.

If robot Ri that is responsible to cover this section is not
dead before the completion of the cover of this section, then
this section is covered. Otherwise, there is at least one of k
robots behind it that is alive. According the induction step,
every section within k sections behind Ri will be covered,
including the section behind it. The robot that will cover this
section will cover also section i (according to line 6 in the
algorithm, because Ri is not alive).

Robustness is guaranteed with a simple mechanism. There is
no need to reconfigure the group after a robot failed. It also
does not matter which robot fails or how many robots failed
at the same time.

Robustness against collisions is an additional concern with
multiple robots. Normally, as each robot only covers its
own section, theorem 3.2 also guarantees that no collisions
take place, as the STC path never crosses itself. In practice,

localization and movement errors may cause the robot to
move away from its assigned path, and thus risk collision.
Despite this, the separation between the paths of different
robots decreases the chance of collisions.

Efficiency. Additional important motivation for using multi-
ple robots is the possibility of reducing the coverage time
by parallelizing portions of the coverage. In single-robot
settings, guarantees of completeness and non-backtracking
are sufficient to show (in combination) optimality of coverage
time, since every cell is visited, but only once (the minimum).
Thus n cells are covered in n steps.

To analyze the number of steps required to complete the
coverage, we have to take into account the initial config-
uration. We define the running time as the maximum over
the steps that each robot has to go, max i∈kstep(i), where
step(i) is the total number of steps taken by robot i.

Using multiple robots, the hope is to reduce the coverage
time to approximately n/k. Indeed, the following theorem
shows this to be a best-case scenario for Algorithm 2.

Theorem 3.4 (MSTC Best Case): The best running time
for the algorithm is dn

k
− 1e

Proof: The best-case scenario is when the starting
positions S0, . . . , Sk−1 place the robots at equal distance
from each other, thus partitioning the STC path into k
sections, each of size n/k.

Unfortunately, it turns out that the running time is critically
dependent on the initial positions of the robots. Indeed as
the following theorem shows, the worst case scenario for
Algorithm 2 has a running time that is almost equivalent to
that of a single robot.

Theorem 3.5 (MSTC Non-Backtracking Worst Case): The
worst running time for the non-backtracking algorithm is
n− k − 1

Proof: The worst-case scenario is where all the robots
start next to each other, on adjacent cells. Since all robots
move in the same direction, all but one robot will only
cover the cell they are on before reaching the end of their
assigned section. One robot will have a section assigned to
that contains all n− k remaining sub-cells (Fig. 2).

The result demonstrates that the initial position of the robot
within the work-area can adversely affect the coverage time.
Unfortunately, the worst-case scenario is common in real-
world applications, e.g., vacuuming (all robots start from a
single doorway), de-mining (all robots start from a single
entry point to the mine field), or lawn mowing (all robots
start at the mower storage area).

This worst-case scenario may appear deceptively simple
to address. One may reason that by allowing another robot
to head in the opposite direction, two robots may cover the
n − k section in parallel, thus completing the coverage in
approximately n/2 (Fig. 3). However, it turns out that this is



 

R0 

R3 

R1 

R2 

Fig. 2. The worst case scenario in the non-backtracking algorithm.

incorrect.

 

R0 

R3 

R1 

R2 

Fig. 3. Naive solution for the non-backtracking worst case scenario.

A more general result is proven below, and shows that
the worst-case scenario is in fact much more general than
for Algorithm 2. Indeed, it is applicable to any STC-based
algorithm that is non-backtracking.

Theorem 3.6 (General Non-Backtracking Worst Case):
Any non-backtracking covering algorithm based on
partitioning the spanning tree path to sections, has a
worst-case running time of n− 2(k − 1)− 1.

Proof: Consider the case where robots are positioned
such that a single empty sub-cell separates each pair (Fig.
4). Because no backtracking is allowed, only one of the
extreme robots can cover the big part of the path. The others,
including the extreme robot from the other side, can cover
only the empty sub-cell next to them, regardless the method
that the algorithm chooses for deciding on a direction for
movement. So we get k − 1 robots that cover two squares
(their square, and the square next to them), and one robot
that has to cover the rest of the path n− 2(k − 1)− 1.

In other words, there is no non-backtracking algorithm for
setting the coverage direction of the coverage for different
robots such that the worst case above is eliminated. We
remind the reader that the requirement for non-backtracking
movement is inherited from the single-robot STC algorithm
[3], where it also leads to optimality in coverage time. The
next section examines what happens when we remove the

 

R0 

R3 

R1 

R2 

Fig. 4. The worst case scenario for any non-backtracking algorithm.

requirement of non-backtracking movement.

IV. BACKTRACKING MSTC

Let us examine an instance of the worst-case scenario of
a non-backtracking algorithm, with only two robots that are
positioned such that there is a single empty sub-cell between
them. Without backtracking, one of the robots would have
to commit to covering the single sub-cell, while the other
would then be forced to cover the remaining n−3 sub-cells.
However, if we allow robots to backtrack, then the robot that
covers the single sub-cell would be able to cover it, then
backtrack, and head in the other direction. The two robots
would then meet approximately in the middle of the n − 3
section, thus halving the coverage time.

Naturally, a new worst-case scenario can be found for this
back-tracking case. In this scenario, the initial positions of
the two robots separated by are a third of the STC path. One
robot thus covers 2/3 of the path, while the other robot goes
a 1/3 of the path in one direction and then backtracks, but
it can’t help the first one in its section. The overall coverage
time will be 2n/3.

To define a general back-tracking algorithm, let us first
define a few helpful notations. seci is the section that robot
Ri is responsible to cover. Unlike in the non- backtracking
algorithm sometimes seci 6= [Si, Si+1). seci ← [S1, S2)
means that the section starts at S1 and ends just before S2.
The point S2 ← S1 +L, is the point in a distance of L from
S1 when moving in a counterclockwise direction along that
STC path. direction1i is the initial direction of movement
for robot i, while direction2i is the direction of movement
for robot i if it has to backtrack.

We now turn to describing the MSTC backtracking al-
gorithm. The first phase of building the STC and ordering
the starting point is the same as in the non-backtracking
case (Algorithm 1). During run-time, the robots re-divide the
sections if backtracking is needed (Algorithm 3). They then
follow the backtracking algorithm (Algorithm 4). We present
here the general case for k > 2 robots (the case of k = 2
robots is somewhat different, and we skip it for lack of space).



The idea of the initialization phase is to allocate sections
and directions of movement to the robots. If there is no part
of the path that is longer than half of the entire STC path,
all the sections and directions of movement are the same as
in the non-backtracking algorithm (Algorithm 3, lines 1–4).
Otherwise, the two robots that have this section between them
share its coverage. One of them will have to go in a clockwise
direction, leaving to the robot next to it (from the other side)
to also cover the distance between them. To avoid the case
that this robot will have to cover more than half of the path
because of the backtracking, this robot gets help from one of
its neighbors—the one closest to it. They both cover half of
the distance between them and return to cover their original
part of the path. See Fig. 5 for example of this situation.

 

Ri 

Rh 

Rf 

Rj 

Fig. 5. An execution example of Algorithm 4. The indexes used are the
same as in the initialization phase.

The backtracking algorithm (Algorithm 4) follows the
re-divided sections generated in the initialization phase,
similarly to the way the non-backtracking algorithm does.
Algorithm 4 also ensures that only after a robot finishes to
cover its section, even if it includes going in one direction
and then backtrack, it covers sections of dead robots. Thus
this algorithm is also robust.

The algorithm’s completeness and robustness can be
proven similarly to the completeness and robustness of the
non-backtracking Algorithm 2. With respect to its backtrack-
ing, it can be shown that any point that is covered more
than once, is covered by the same robot, and that there is no
point that is covered more than twice. We skip these proofs
for reasons of space.

The best-case coverage time for the backtracking MSTC
algorithm is the same as for the non-backtracking version,
i.e., n/k − 1. This is because in the best case, the initial
positions of the robots are equidistant, and the robots can
cover their sections without backtracking. The worst-case
coverage time is analyzed below:

Theorem 4.1 (MSTC Backtracking Worst Case): The
worst-case running time for the backtracking algorithm is
n/2− 1 when k > 2, and d2n/3− 1e when k = 2.

Proof: There are two cases, depending on the value of

Algorithm 3 initialization phase(STC path P , ordered posi-
tions S0, . . . , Sk−1)

1: for all i such that 0 ≤ i ≤ k − 1 do
2: Let seci ← [Si, S(i+1) mod k)
3: Let direction1i ← counterclockwise
4: Let direction2i ← null
5: if there is h such that sech > 1

2 (
∑k

0 [Si, S(i+1) mod k))
then

6: i← (h + 1) mod k
7: j ← (i + 1) mod k
8: f ← (j + 1) mod k
9: if [Si, Sj) < [Sj , Sf ) then

10: sech ← [Sh, Sh + d
[Sh,Si)−[Si,sj)

2 e)

11: seci ← [d
[Sh,Si)−[Si,Sj)

2 e, d
[Si,Sj)

2 e)
12: direction1i ← counterclockwise
13: direction2i ← clockwise
14: secj ← [d

[Si,Sj)
2 e, Sf )

15: direction1j ← clockwise
16: direction2j ← counterclockwise
17: else
18: direction1j ← counterclockwise
19: direction2j ← clockwise
20: if h = f then
21: sech ← [d

[Sj ,Sh)
2 e, d [Sh,Si)

2 e)
22: direction1h ← clockwise
23: direction2h ← counterclockwise
24: seci ← [d [Sh,Si)

2 e, Si)
25: direction1i ← clockwise
26: secj ← [Si, d

[Sj ,Sh)
2 e)

27: else
28: sech ← [Sh, d [Sh,Si)

2 e)

29: seci ← [d [Sh,Si)
2 e, Si)

30: direction1i ← clockwise
31: secj ← [Si, d

[Sj ,Sf )
2 e)

32: secf ← [d
[Sj ,Sf )

2 e, S(f+1) mod k)
33: direction1f ← clockwise
34: direction2f ← counterclockwise

k. For lack of space, we only show the case k > 2. If there
is no section that is longer than half of the path, then when
every robot covers its section, no robot covers more than half
of the path. On the other hand, if there is a section longer
than half the path, then necessarily it is the only one. We
denote it as [Sh, Si) (as in the algorithm). There are three
possible cases:

• [Si, Sj) < [Sj , Sf ). [Si, Sj) + [Sj , Sf ) < half of the
entire path ⇒ [Si, Sj) < 1/4 of the entire path. Rj

passes twice over half of [Si, Sj) and over [Sj , Sf )
so the its total path is: [Si, Sj) + [Sj , Sf ) < half of
the entire path. Ri passes twice over half of [Si, Sj)
and over [Sh, Si) until it meets Rh. In the time that



Algorithm 4 backtracking MSTC(STC path P , ordered
positions S0, . . . , Sk−1)
Require: initialization phase

1: Let s← my own id (in the range 0 . . . k − 1)
2: Let t← (s+1) mod k // next robot’s position, cyclically
3: while current position 6= one edge of your sec do
4: Move towards edge of your sec along STC, according

your direction1 argument
5: if your direction2 6= null then
6: your direction1← your direction2
7: your direction2← null
8: Go to 3
9: else

10: Announce completion of your sec
11: while Rt is alive and there is i such that seci incom-

plete do
12: Wait
13: if Rt is not alive and and there is i such that seci

incomplete then
14: s← t
15: t← (t + 1) mod k
16: Go to 3 // Take over role of failing robot
17: Stop

Rj passes half of [Si, Sj) and backtracks, Rh passes
this distance to Rj ⇒ The remaining area to cover is
([Sh, Si)+[Si, Sj))/2⇒ The number of steps for every
one of them is: [Sh,Si)+[Si,Sj)

2 +[Si, Sj) = [Sh, Si)/2+
[Si, Sj)/2. [Sh, Si) ≤ n − ([Si, Sj) + [Sj , Sf )) ⇒
[Sh, Si)/2 + [Si, Sj)/2 ≤ n− [Sj , Sf )/2 ≤ n/2− 1

• [Si, Sj) ≥ [Sj , Sf ) and h = f . This case could only
happen with three robots, and the proof is similar to the
proof in the previous case.

• [Si, Sj) ≥ [Sj , Sf ) while h 6= f . Rf passes twice over
half of [Sj , Sf ) and over [Sf , S(f+1) mod k) , so its total
path is [Sj , Sf ) + [Sf , S(f+1) mod k). Rj passes twice
over half of [Sj , Sf ) and over [Si, Sj) , so its total path
is [Si, Sj) + [Sj , Sf ). [Sh, Si) > half of the entire path
⇒ [Si, Sj) + [Sj , Sf ) + [Sf , S(f+1) mod k) ≤ half of
the entire path ⇒ Rj and Rf covered less than half
of the entire path. Rh and Ri passes half of [Sh, Si).
[Sh, Si) < length of the entire path ⇒ Rh and Ri

covered less than half of the entire path.
Thus in all cases, three or more robots take no more than
n/2− 1 to complete coverage.

The key insight offered by these results is that non-
backtracking, the property that no portion of the work-
area is covered more than once, is a distinct performance
criteria from that of efficiency. These converge in the single
robot case, but not in general. Indeed, it can be shown that
only utilizing some backtracking can we guarantee improved

coverage time. To see this, consider a case where the two
robots are behind each other, in a corridor leading into the
work area. Unless the second robot covers at least a portion
of the area covered by the first robot, there is no way for the
robots to split the covering task between them. Without some
redundancy, the first robot will necessarily have to cover
almost all of the work area by itself.

V. CONCLUSION AND FUTURE WORK

We presented algorithms for multi-robot coverage, that are
complete and robust in face of catastrophic robot failures.
We examined the efficiency of these algorithms in terms of
coverage time, and have shown that the initial positions of
the robots have significant impact on the coverage time. In
particular, while all algorithms carry the potential for best-
case coverage in time n/k (where n is the number of cells,
and k the number of robots), non-backtracking coverage has a
worst-case time essentially equal to that of a single robot. Un-
fortunately, this is the common case where robots start right
next to each other. In contrast, the backtracking algorithm
is guaranteed to halve the coverage time of a single robot.
The results shed new light on multi-robot coverage problems,
and show that we must distinguish between redundancy and
efficiency, as these are application-dependent optimization
criteria. While the backtracking algorithm is guaranteed to
perform better than single-robot coverage, it is not necessarily
optimal. We intend to explore optimal efficiency in the future.

Acknowledgments. We thank Moshe Lewenstein for use-
ful discussions. K. Ushi and Shira deserve special thanks.

REFERENCES

[1] H. Choset. Coverage for robotics—a survey of recent results. Ann.
Math. and AI, 31:113–126, 2001.

[2] J. Colegrave and A. Branch. A case study of autonomous household
vacuum cleaner. In AIAA/NASA CIRFFSS, 1994.

[3] Y. Gabriely and E. Rimon. Spanning-tree based coverage of continuous
areas by a mobile robot. Ann. Math. and AI, 31:77–98, 2001.

[4] D. Kurabayashi, J. Ota, T. Arai, and E. Yoshida. Cooperative sweeping
by multiple mobile robots. In ICRA-96, 1996.

[5] J. Nicoud and M. Habib. The pemex autonomous demining robot:
Perception and navigation strategies. In Proc. of IEEE/RSJ Int. Conf.
on Intelligent Robot Systems, pages 1:419–424, 1995.

[6] A. M. Nikolaus Correll, Kjerstin Easton and J. Burdick. Distributed
exploration and coverage. www.coro.caltech.edu.

[7] I. Rekleitis, G. Dudek, and E. Milios. Multi-robot exploration of
an unknown environment, efficiently reducing the odometry error. In
IJCAI-97, volume 2, pages 1340–1345, Nagoya, Japan, August 1997.
Morgan Kaufmann Publishers, Inc.

[8] I. Rekleitis, V. Lee-Shue, A. P. New, and H. Choset. Limited
communication, multi-robot team based coverage. In ICRA-04, pages
3462–3468, New Orleasn, LA, April 2004.

[9] S. V. Spires and S. Y. Goldsmith. Exhaustive geographic search with
mobile robots along space-filling curves. In Proceedings of the First
International Workshop on Collective Robotics, pages 1–12. Springer-
Verlag, 1998.

[10] R. E. Tarjan. Data structures and network algorithms. Society for
Industrial and Applied Mathematics, 1983.

[11] I. Wagner, M. Lindenbaum, and A. Bruckstein. Distributed covering
by ant-robots using evaporating traces. IEEE Trans. Robotics Autom.,
15(5):918–933, 1999.


