
Planning with Multiple Action-Cost Estimates

Eyal Weiss, Gal A. Kaminka
The MAVERICK Group, Bar-Ilan University, Israel

eyal.weiss@biu.ac.il, galk@cs.biu.ac.il

Abstract

AI Planning require computing the costs of ground actions.
While often assumed to be negligible, the run-time of this
computation can become a major component in the overall
planning run-time. To address this, we introduce planning
with multiple action cost estimates, a generalization of clas-
sical planning, where action cost can be incrementally de-
termined using multiple estimation procedures, which trade
computational effort for increasingly tightening bounds on
the exact cost. We then present ACE, a generalized A∗, to
solve such problems. We provide theoretical guarantees, and
extensive experiments that show considerable run-time sav-
ings compared to alternatives.

Introduction
AI planning applications require computing the costs of
ground actions to optimize plans. The costs are computed
by the planner for concrete ground actions that it considers
adding to the plan, as part of the planning process. Typi-
cally, they are computed from a domain action model pro-
vided as input to the planner (e.g., using PDDL (McDermott
et al. 1998; Fox and Long 2003)). The run-time of action
cost computation is generally considered to be negligible.

However, the computation of action costs can incur signif-
icant computational expense, to the point it becomes a major
component in the overall planning run-time. This happens
when the computation is inherently expensive, e.g., as in
the case of robot task and motion planning, where the plan-
ning process considers geometric and kinematic constraints
on movement in continuous environments, and repeatedly
computes distances and potential collisions (LaValle 2006;
Garrett et al. 2021; Dellin and Srinivasa 2016; Narayanan
and Likhachev 2017; Mandalika et al. 2019). Cost computa-
tion run-time can also increase by the use of external black-
box action models (including action costs) that are called by
the planner as needed (Dornhege et al. 2009; Gregory et al.
2012; Francès et al. 2017; Allen et al. 2021).

Transportation logistics planning is an example domain
where the two sources of expensive computation of action
costs combine in real-world applications. The domain deals
with planning efficient routes for trucks and payloads. A

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

simple form of it is captured in the Transport Sequential IPC
domain (Coles et al. 2012), where costs are assumed to be
given in the PDDL problem description, and their compu-
tation is immediate. But in actual commercial applications
(e.g., (TruckNet 2021)), the route cost computation is ex-
pensive in itself, as the system takes into account also truck
maintenance and insurance costs, driver salaries, fuel prices
in different locations, legal speed limits, time-of-day, and
geometrical constraints such as elevation and road curva-
ture. The travel time between cities can also be computed
by queries to an online service such as Google Maps, an ex-
ternal action model. The online query time is measured in
milliseconds per query; far from negligible.

To reduce the computational expense in computing ac-
tion costs, previous work explored mainly two approaches.
The first focuses on minimizing the number of indepen-
dent expensive cost computations that must be carried
out (Dellin and Srinivasa 2016; Narayanan and Likhachev
2017; Mandalika et al. 2019). The second, exemplified by
the D∗ (Stentz 1994)) and Lifelong Planning A∗ (Koenig,
Likhachev, and Furcy 2004) algorithm families, minimizes
cost computations when previously-computed costs change.

We propose an alternative approach building on the key
insight that the computation of action costs can be spread
across multiple procedure calls. A first rough estimate can
be generated quickly, while future calls to cost computation
procedures can increasingly improve the estimation, poten-
tially taking longer to compute. This approach follows the
line of the recently suggested concept of dynamic estimation
during planning (Weiss 2022; Weiss and Kaminka 2022).

In the case of the transportation logistics example, the
travel time between two cities can be estimated quickly—
but inaccurately—from their fixed geographical distance or
mean travel times computed once, offline (e.g., the way a
transport sequential problem file includes fixed costs). On-
line queries and expensive computations of travel time based
on elevation and curvature can serve as more accurate—
and more costly—estimates. More parameters can be taken
into account in increasingly more expensive estimator pro-
cedures, resulting in more accurate estimates.

We therefore define a novel planning problem, planning
with multiple action cost estimates (P-MACE). This is a
generalization of classical planning problems, where every
ground action can have multiple cost estimators. Each esti-

mator provides a lower and upper bound on the actual cost,
and the estimators are ordered by increasing computational
expense. A P-MACE planner’s task is to efficiently find a
plan meeting a target bound on the optimal cost. This defi-
nition generalizes previous work in motion planning (Dellin
and Srinivasa 2016); see details in a separate section.

We present ACE (A∗ with Cost Estimation), a generaliza-
tion of A∗ (Hart, Nilsson, and Raphael 1968) that allows a
planner to efficiently select estimators so to generate plans
meeting the target bound. ACE is sound (finds a correct plan)
and complete (will always find a plan if one exists). Its opti-
mality is not dependent only on the heuristic used, but also
on the available estimators. In case every action cost can ulti-
mately be estimated exactly, ACE is optimal. In other cases,
it may fail to find plans meeting the target bound. To aug-
ment ACE, we present a post-search procedure that improves
the accuracy of non-optimal solutions that do not meet the
target bound. We implemented ACE in the Fast Downward
planner (Helmert 2006). Extensive experiments with 6600
planning problems generated from IPC benchmarks shows
dramatic reduction in run-time compared to available alter-
natives, while maintaining estimated costs well within tar-
get bounds. The savings are also clear in an experiment
with real-world data for the Ontario province (Canada) using
Google Maps query times.

Preliminaries
We use a simple notation for deterministic planning based on
finite-state automaton (Ghallab, Nau, and Traverso 2016).
A planning domain is a 4-tuple Σ = (S,A, γ, c), where S
is a finite set of system states, A is a finite set of (ground)
actions, γ : S × A → S is a partial function called the
state-transition function, and c : S × A → R+ is a partial
function called the cost function, that has the same domain
as γ. If γ(s, a) = s′ is defined, then a is said to be applicable
in s, and its cost c(s, a) < ∞ is called the transition cost.
For simplicity we take c(s, a) to be c(a), i.e., we consider
the costs of ground actions rather than transition costs. This
is common practice and serves here for easier presentation.
Nevertheless, the techniques presented below fully support
dealing with transition costs.
Definition 1. A classical planning problem is a triple P =
(Σ, s0, Sg), where Σ is a planning domain, s0 ∈ S is an
initial state, and Sg ⊂ S is a set of goal states. A solution for
P is a plan π = ⟨a1, ..., an⟩, a finite sequence of actions, s.t.
a1 ∈ π is applicable in s0; for all i ≤ n, ai is applicable in
si−1 and si = γ(si−1, ai); and sn ∈ Sg . The plan length is
|π| = n, and its cost is c(π) =

∑n
i=1 c(ai). A cost-optimal

solution is a plan π∗ that satisfies
c∗ := c(π∗) = min{c(π′) | π′ is a solution for P}.

The directed graph GΣ = (V, E , w) induced by the planning
domain Σ is a weighted digraph, where: V is a set of ver-
tices, each corresponding to a state s ∈ S, and E is a set of
edges, s.t. e = (s, γ(s, a)) ∈ E iff an action a ∈ A is appli-
cable in s. For each edge e ∈ E the weight (cost) is given by
w(e) = c(a). For simplicity, we use c(e) for edge weights.

We note that in the general case, it may be that two dis-
tinct actions a1, a2 applied in a state s both result in the same

state, γ(s, a1) = γ(s, a2), i.e., multiple edges connect the
same source and target vertices, which would make GΣ a
multi-graph. However, for simplicity of the presentation, we
consider the planning domains in the paper to have the prop-
erty that every two actions applied in the same state result
in two distinct states. Therefore, there is a one-to-one corre-
spondence between a planning domain Σ and the graph GΣ.

Planning with Action Cost Estimators
This section introduces mathematical definitions and nota-
tions for discussing action cost estimators. We then pose a
novel planning problem that considers multiple cost estima-
tors, generalizing over problems with exact costs. We con-
clude with a theoretical analysis that lays the basis for devel-
oping algorithms that solve the newly suggested problem.

Multiple Action-Cost Estimates
Mathematical Setting. We begin by associating a set of
cost estimators with every ground action in a planning do-
main Σ (each edge e in GΣ):
Definition 2. The cost estimators function Θ for a planning
domain Σ maps each edge e ∈ E to a finite and non-empty
ordered set of estimators,

Θ(e) = (θ1e , . . . , θ
k(e)
e), k(e) ∈ N,

s.t., ∀e, i, θie : ∅ → R+ × R+,

where each estimator θie defines an accuracy interval, and
Θ(e) is ordered by increasing estimation times (which are
guaranteed to be finite).

Throughout this paper we make the following assump-
tions about cost estimators functions:
1. Each estimator provides finite bounds for the true cost,

i.e., θie = (cimin(e), c
i
max(e)) with 0 ≤ cimin(e) ≤

c(e) ≤ cimax(e) <∞.
2. Positive costs have positive bounds, namely c(e) > 0

implies cimin(e) > 0.
3. Estimation bounds tighten with increasing order of es-

timators, so that the intervals induced by θje, θ
i
e satisfy

[cjmin(e), c
j
max(e)] ⊆ [cimin(e), c

i
max(e)],∀e, i < j.

We note that zero costs are allowed, and that Assumptions
1 and 2 together imply that zero costs are identified by es-
timators, i.e., c(e) = 0 iff cimin(e) = 0. We also note that
Assumption 1 can be relaxed to allow infinite values, and
Assumption 2 can be removed entirely, yet they both sim-
plify the paper’s exposition.

The Planning Problem. The definition of planning
changes when Θ is considered. The notion of a solution
plan remains (sequence of actions from s0 to a goal state).
However, the optimal plan cost, that depends on exact costs,
may not be computable. This is because Def. 2 and As-
sumptions 1–3 allow the exact cost of any edge to remain
unknown, even after utilizing all possible estimates for that
cost. Hence, we define optimality w.r.t. a bound B on the op-
timal (possibly unknown) cost, so estimation uncertainty is
taken into account. This is formalized as follows.

Definition 3. A P-MACE problem is a tuple P =
(Σ,Θ, s0, Sg), where Σ is a planning domain with cost func-
tion c ∈ Σ unknown, Θ is a cost estimators function for Σ,
s0 ∈ S is an initial state, and Sg ⊂ S is a set of goal states.
A B-optimal solution to P is a plan πB that satisfies

c(πB) ≤ c∗ × B,

with c∗ being the optimal cost and B ≥ 1.

P-MACE generalizes classical planning (Thm. 1) in two as-
pects: first, it allows the cost of an action to be unknown,
yet quantified by a bounding interval; and second, it permits
multiple time-consuming cost estimators per action. The im-
plications of latter generalization is that planners can exploit
this flexibility when searching for a solution by spreading
estimation time across cheaper alternatives, when lower ac-
curacy is deemed sufficient, in order to save run-time.
Theorem 1 (Generality). P-MACE problems are a general-
ization of classical planning problems.

Proof. Any classical planning problem can be formulated
as a P-MACE problem, by considering the special case
where each edge has one estimator (i.e., k(e) = 1 for ev-
ery e), that returns the true cost (namely, c1min(e) = c(e) =
c1max(e)), with no relaxation for plan optimality (which
means that B = 1).

Plan Cost Uncertainty Quantification
Naively, B-optimal planning can be carried out by an
estimation-indifferent process, that ignores computational
expense and evaluates all estimators for any action a it con-
siders for a solution. However, unless estimation time is neg-
ligible, the planner should instead carefully select the esti-
mators to be applied.

Let ΘΣ be the set of all estimators, for all edges in GΣ. A
subset Φ of ΘΣ is valid if it contains at least one estimator
per edge. Given a plan π = ⟨a1, ..., an⟩ and a valid Φ ⊆
ΘΣ, the plan lower bound and plan upper bound w.r.t. Φ are
defined (respectively) as

cΦmin(π) :=

n∑
i=1

cimin,Φ, c
Φ
max(π) :=

n∑
i=1

cimax,Φ, (1)

where cimin,Φ and cimax,Φ denote the tightest lower and up-
per bound estimates of ai obtained from Φ. The cost uncer-
tainty ratio of π w.r.t. Φ is then

η(π) :=

∑n
i=1 c

i
max,Φ∑n

i=1 c
i
min,Φ

=
cΦmax(π)

cΦmin(π)
(2)

We define η(π) to be 1 in case
∑n

i=1 c
i
min = 0, as this im-

plies c(π) = 0, meaning that there is no uncertainty.
The choice of Φ directly impacts the cost uncertainty of a

plan π, since

cΦmin(π) ≤ c(π) ≤ cΦmax(π) = cΦmin(π)× η(π) (3)

The optimal plan cost lower bound c∗Φmin, and the optimal
plan cost upper bound c∗Φmax are the minimal plan cost lower
and upper bounds over all plans forP . An optimal optimistic

plan πopt and an optimal pessimistic plan πpes are plans that
satisfy cΦmin(πopt) = c∗Φmin, cΦmax(πpes) = c∗Φmax.

Thm. 2 shows that the cost of an optimal optimistic plan
is bounded by its cost uncertainty ratio and the optimal (un-
known) cost c∗. Corollary 1 then shows this leads to being
able to efficiently find B-optimal plans, by searching for ef-
fective Φ.

Theorem 2 (Bound). Given a P-MACE problem P , an op-
timal optimistic plan πopt w.r.t. any valid Φ ⊆ ΘΣ, satisfies
the following relation for its cost:

c(πopt) ≤ c∗ × η(πopt). (4)

Proof. Denote by (cimin, c
i
max) the lower and upper bounds,

for the cost of the ith action in πopt. By definition of πopt as
an optimal optimistic plan w.r.t. Φ, it follows that

n∑
i=1

cimin ≤ c∗. (5)

From the right inequality of (3), we get

c(πopt) ≤
n∑

i=1

cimax =

n∑
i=1

cimin × η(πopt). (6)

Using Inequality (5) to obtain an upper bound of the right
hand side of Inequality (6) yields Inequality (4).

Corollary 1. It follows from Thm. 2 that an optimal opti-
mistic plan πopt w.r.t. any valid Φ ⊆ ΘΣ with η(πopt) ≤ B
is B-optimal. This implies that we can reduce planning time
by efficiently finding Φ that achieves this.

ACE: A∗ with Cost Estimation
We present ACE, a generalization of A∗, that solves P-
MACE problems while reducing the number of unnecessary
cost estimations. Based on Corollary 1, ACE uses the target
sub-optimality factor B to restrict the number of estimates
used during the search for plans, comparing B to η(p) for
every path p being considered.
ACE (Alg. 1) is given a P-MACE problem P , a target B, a

heuristic h and a procedure GetEstimator, which incremen-
tally selects estimators θie ∈ Θ(e) for an edge e (see details
below). ACE then tries to find a B-optimal plan, and outputs
the plan π it finds and reports its achieved cost uncertainty
ratio η(π). If no plan is found, (∅,∞) is returned.

We explain how ACE works by comparing it to A∗. ACE
uses accumulated bounds gmin and gmax, instead of the
accumulated cost g. Similarly, f -values are computed by
f(s) = gmin(s) + h(s), (i.e., gmin replaces g). There are
two important deviations from A∗: in computing the heuris-
tic values, and in estimating the cost of edges.

First, ACE deviates from A∗ in the costs used for the com-
putation of heuristic h values. In A∗, these are the edge (ac-
tion) cost values. ACE only has access to cost bounds in-
stead of exact costs, so the h-values are computed based on
lower bounds. Specifically, the loosest (lowest) lower bound
for each edge is utilized, to preserve heuristic consistency (a
straightforward minor result; see Lemma 2 in the appendix).

Algorithm 1: ACE
Input: Problem P = (Σ,Θ, s0, Sg), target B
Parameter: Heuristic h, procedure GetEstimator
Output: Plan π, bound η

1: gmin(s0)← 0; gmax(s0)← 0
2: OPEN← ∅; CLOSED← ∅
3: Insert s0 into OPEN with f(s0) = h(s0)
4: while OPEN ̸= ∅ do
5: n← best node from OPEN
6: if Goal(n) then
7: return trace(n), gmax(n)/gmin(n)
8: Insert n into CLOSED
9: for each successor s of n do

10: if s not in OPEN ∪ CLOSED then
11: gmin(s)←∞
12: η ←∞; g ← gmin(n)
13: θ ← GetEstimator(e = (n, s))
14: while η > B and g < gmin(s) and θ ̸= ∅ do
15: c, c̄← apply(θ)
16: g ← gmin(n) + c; ḡ ← gmax(n) + c̄
17: η ← ḡ/g
18: θ ← GetEstimator(e)
19: if g < gmin(s) then
20: gmin(s)← g; gmax(s)← ḡ
21: if s in OPEN ∪ CLOSED then
22: Remove s from OPEN and CLOSED
23: Insert s into OPEN with f(s) = gmin(s)+h(s)
24: return ∅,∞

The second deviation of ACE from A∗ is that instead of
simply using c(e) to calculate g(s) for a node s, an es-
timation loop is introduced (lines 13–18) to acquire esti-
mated cost bounds. For the edge e connecting nodes n and
s (e = (n, s), line 13), the loop iterates over possible es-
timators until the bound B is met by η of the path ending
in node s, or an alternative path with lower gmin(s) was al-
ready found, or no estimators are left. In each iteration, line
15 computes c (the tightest lower bound for e over all es-
timators applied so far), and c (similarly, the tightest upper
bound). When the loop is done, if a path with lower gmin(s)
is found, then gmin(s), gmax(s) are updated (lines 19–20).

Every call to GetEstimator(e) returns the next estima-
tor from the set Θ(e) which has yet to be applied, or ∅
when none are left. ACE’s theoretical guarantees (below) as-
sume nothing about the order of the estimators selected by
GetEstimator. However, to save run-time, Θ(e) is ordered
by increasing run-time. Thus, each time GetEstimator is in-
voked on the edge e, it returns the next estimator θie with
the shortest run-time. This is the approach we took in the
experiments.

Remark 1. Note that an estimation-indifferent planning al-
gorithm is easily derived from Alg. 1, by modifying it to only
consider the tightest bounds.

Analysis of ACE: Guarantees
We start by proving the completeness of ACE, which follows
almost immediately from the structure of A∗, inherited by
ACE.

Theorem 3 (Completeness). ACE always terminates and
returns a plan when one exists.

Proof sketch. First, the fact that ACE always terminates fol-
lows from the same reasoning that A∗ always terminates,
together with the fact that there is a finite number of estima-
tors per edge, each with finite run-time. Second, in order to
prove that ACE terminates with a plan, when one exists, we
can again rely on the same reasoning as in the proof of A∗,
where we only have to show that each new node encoun-
tered during the search is inserted into OPEN. Every new
node (generated in line 9) triggers gmin(s) ← ∞ (line 11).
In line 12 g ← gmin(n), namely g is initialized to some fi-
nite number. Then, in lines 14–18 g may be updated again,
but it is guaranteed to remain a finite number, since every
lower bound returned by an estimator (indicated as c) is also
finite. Thus, the condition in line 19 is met, and so s is nec-
essarily inserted to OPEN (line 23).

Next, we show that ACE is sound, i.e., if it returns a plan
then it must be correct. To do this, we rely on Lemma 1,
stated as follows (see appendix for full proof).

Lemma 1 (Φ Set Optimality). Provided with a consistent
heuristic h, ACE necessarily returns an optimal optimistic
plan w.r.t. some Φ ⊆ ΘΣ, if a plan exists.

Proof sketch. The proof relies on three arguments:

1. That heuristic consistency is preserved under lower
bounds of edge costs (Lemma 2 in the appendix).

2. Recognizing Φ ⊆ ΘΣ as the set that includes exclusively
all estimators invoked by ACE during the search.

3. Following the proof arguments of A∗’s optimality (that
relies on a consistent heuristic) to establish that whenever
ACE selects a node for expansion, an optimal path (w.r.t.
the estimates utilized up to that point) to that node has
been found.

Combining the arguments above proves that ACE, together
with a consistent heuristic h, returns an optimal plan w.r.t.
the lower bound estimates provided by estimators in Φ.

In P-MACE, soundness needs to be defined in terms of
the bound requested of the solution. We define this property
as follows. An algorithm is said to be B-sound if every time
it returns a plan reported as B-optimal, the plan returned is
indeed B-optimal. Thm. 4 shows this is true of ACE.

Theorem 4 (B-Soundness). Provided with a consistent
heuristic h, ACE is B-sound.

Proof of Thm. 4. By induction on the order of nodes enter-
ing OPEN, starting from the base case of the start node,
we show that each node n in OPEN satisfies η(n) :=
gmax(n)/gmin(n) (where the case of gmin(n) = 0 is con-
sidered η(n) = 1, as there is no uncertainty). Thus, if a
plan π is found, terminating at sg , it necessarily means that

η(sg) = η(π) is returned (i.e., the η returned is correct). In
addition, according to Lemma 1, using a consistent h en-
sures that π is guaranteed to be an optimal optimistic plan
w.r.t. some valid Φ ⊆ ΘΣ. Hence, if η(π) ≤ B is satisfied,
then relying on Thm. 2, π is a B-optimal plan, whereas in
case it is not satisfied, then π is not guaranteed by ACE to be
B-optimal.

We now transition to discuss the optimality of ACE. To do
this, we first clarify the following.
B-Optimality: An algorithm is said to be B-optimal if it is
guaranteed to find a plan that can shown to be a B-optimal
plan (Def. 3) using estimators in Θ.

In the general case ACE is not B-optimal. Not every plan
returned will meet the target bound. It might even be that
in generating the resulting plan, not all estimation options
are exhausted, thus ACE could return a plan that is not B-
optimal, though one exists.

However, under some conditions, it is B-optimal
(Thm. 5). Intuitively, if every edge can be estimated to the
desired degree of certainty, then starting from a bound on
the path cost uncertainty which is under the threshold, and
adding only edges with “good enough” cost estimates, it
is possible to retain all paths explored with accumulated η
lower or equal to B. Then, the first solution found (if it ex-
ists) necessarily meets the requirement.

Theorem 5 (SpecialB-Optimality). Given a P-MACE prob-
lem P with sub-optimality target B, if every edge e ∈ E sat-
isfies cimax(e)/c

i
min(e) ≤ B (or cimin(e) = c(e) = 0) for

some i (that can be different for each edge), and a consistent
heuristic h is used, then ACE is B-optimal.

Proof of Thm. 5. First, that fact that ACE is complete fol-
lows from Thm. 3. Second, similar to the proof of Thm. 4,
and using the fact that for every edge e the bound
cimax(e)/c

i
min(e) ≤ B (or the equality cimin(e) = c(e) =

0) can be achieved (for some i), it can be shown by
induction that each node n in OPEN satisfies η(n) =
gmax(n)/gmin(n) ≤ B (where again, gmin(n) = 0 is con-
sidered as η(n) = 1). Therefore, if a B-optimal plan exists,
then ACE will necessarily return such one.

It follows from Thm. 5 that ACE is B-optimal in the case
of classical planning, where an exact-cost estimate is avail-
able for every edge. See below.

Corollary 2. If the cost of every edge can ultimately be es-
timated exactly, i.e., ∀e ∈ E it holds that ∃i : cimax(e) =
cimin(e), then necessarily cimax(e)/c

i
min(e) = 1 ≤ B, i.e.,

ACE is B-optimal (Thm. 5).

Post-Search Improvements
We provide a simple post-search procedure (Proc. 1) that
aims to reduce the cost uncertainty η(π) when ACE termi-
nates with η(π) > B. We observe that even then, there may
still be unused estimators for edges (ground actions) along
the path (plan) found. It therefore may still be possible to im-
prove η(π) by applying additional estimators for edges that
are already in π.

Procedure 1: End of Search Estimations (ESE)
Input: ACE’s inputs and variables before termination
Parameter: Procedure GetEstimator
Output: Bound η

1: for each edge e that corresponds to an action from π do
2: θ ← GetEstimator(e)
3: while η > B and θ ̸= ∅ do
4: c, c̄← apply(θ)
5: update cmax(π) using c̄
6: η ← cmax(π)/cmin(π)
7: θ ← GetEstimator(e)
8: if η ≤ B then
9: return η

10: return η

The basic idea is to loop over all the edges along the path
corresponding to the plan found, and for each one try to re-
duce its uncertainty by applying unused estimators. We em-
phasize that the tightest lower bound we may use to calculate
η(π), so that π can still be guaranteed to be optimal opti-
mistic w.r.t. some Φ (which is needed in order to relate η(π)
to B, due to Thm. 2), cannot be greater than the one already
found. The reason is that a different plan π̃ might exist with
cmin(π̃) equal to that f -value. For this reason only upper
bounds are updated in the procedure.

Empirical Evaluation
The theoretical properties of ACE give little insight as to its
run-time behavior and success rate. ESE does not carry the-
oretical guarantees. We therefore focus on extensive exper-
iments to evaluate ACE and ESE in a variety of benchmark
planning problems where we control the need for estimation
and target sub-optimality bound.

We developed PlanDEM (Planning with Dynamically Es-
timated Action Models), a planner that provides a concrete
implementation of ACE and ESE, in C++. PlanDEM (Weiss
and Kaminka 2023) modifies and extends Fast Downward
(FD) (Helmert 2006) (v20.06), and inherits its use of the
hmax heuristic (Bonet and Geffner 2001), used in the exper-
iments (where hmax was chosen due to its consistency). The
underlying FD search algorithm and data structures were
modified appropriately. All experiments were run on an Intel
i7-6600U CPU (2.6GHz), with 16GB of RAM, in Linux.

We modified standard planning problems from past plan-
ning competitions, to include synthetic estimators at several
levels of uncertainty. Specifically, we selected 20 domains &
problems with action costs (Fox and Long 2003). For each,
we generated a random variant with a target B, and vary-
ing the number of actions with estimated (rather than pre-
cise) costs with a probability p1. When we set p1 = 1, the
costs of all ground actions (edges in GΣ) are estimated by the
planner. When p1 = 0, all costs are given precisely. When
0 < p1 < 1, only some ground actions require estimation
of the cost. Thus a pair B, p1 creates a new instance of a
benchmark problem. The costs, their bounds and names of
domains & problems used are in the technical appendix.

Each estimated-cost edge e with precise cost c(e) is

provided with a set of three estimators of c(e), Θ(e) =
{θ1e , θ2e , θ3e}. These have cimax(e)/c

i
min(e) uncertainty ratios

of 4, 2, and 1 (the correct value), resp.
Since the problems we address have a target bound B, but

no other solution ranking criteria, we choose to prefer time
over smaller uncertainty as a secondary ranking criterion.
Given two B-optimal solutions π1, π2 with corresponding
η1 < η2, but run-times t1 > t2, we consider π2 to be better.

Evaluation of ACE
We take p1 to be one of {0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 1}
and B values in the range [1, 4] in jumps of 0.25, resulting
in a total of 1820 runs. Note that B = 1 requires precise
cost, while B = 4 is equivalent in our setting to having no
requirement at all on precision (as the highest uncertainty ra-
tio given by an estimator is 4). As one of the estimators has
uncertainty ratio of 1, the cost of each edge can be eventually
estimated perfectly, and thus Thm. 5 holds (i.e., the achiev-
able η is 1). Therefore, ACE will always terminate with a
B-optimal solution.

Comparison to Baseline. As the planning problem de-
fined in this paper is new, there is no immediate baseline
for comparison other than the naive estimation-indifferent
planning utilizing all available estimators.

We empirically contrast PlanDEM with estimation-
indifferent planning. We begin by examining ACE’s run-
time behavior from the perspective of estimators utilization.
In particular, as every edge considered has to be estimated at
least once, we focus on the number of expensive estimators,
i.e., (those with tighter ratios 2, 1).

Fig. 1 plots the ratio between the actual number of ex-
pensive estimations that ACE used and the maximum num-
ber of potential expensive estimations on the vertical axis,
against the target B bound. Thus a lower ratio indicates an
improved result, i.e., less expensive estimations used. The
estimation-indifferent planning approach always uses all es-
timators, and therefore its ratio is always 1, indicated by the
the straight solid horizontal black line at the top of the figure.
The figure shows different curves for the several p1 values.
Each point on each curve averages 20 planning runs. The
curves of p1 = {0.01, 0.05} were left out for clarity.

We first compare the estimation-indifferent approach with
ACE. Consider the worst-case where the cost of all actions
is estimated (p1 = 1, solid purple), and the target bound re-
quires maximum accuracy (B = 1). Here, ACE utilizes only
62% of the expensive estimators. For lower p1, it improves
up to 46% (p1 = 0.1). This is due to the condition on g
in line 14 of ACE, which avoids unnecessary estimations in
case another path is examined that leads to a node that is al-
ready in OPEN and has lower f -value. Without sacrificing
accuracy, ACE is superior to its basic competitor that uses
full estimation (indicated as the straight line of ratio 1).

Next, the generally decreasing trend of the curves in Fig. 1
suggests that substantial savings may be achieved even by
minor relaxation of the uncertainty bound (allowing greater
B). Furthermore, as p1 decreases the curves drop rapidly,
allowing ACE to further increase its efficiency.

Figure 1: Normalized expensive estimations versus tar-
get bound B. The curves from the bottom (blue, solid),
to the top (purple, solid) correspond to the p1 values
0.1, 0.25, 0.5, 0.75 and 1. Success rate is 100% for all
runs. The uppermost curve (black, solid) is the baseline
estimation-indifferent

Run-Time and Quality. Figure 2 shows actual and ap-
proximate planning run-time (measured in CPU seconds),
on the vertical axis (logarithmic scale). As the time taken by
expensive estimators is arbitrary in these experiments, we
wanted to get a feel for the planning run-time under var-
ious assumptions of computation time. The bottom curve
in the figure is the actual run-time of PlanDEM without
the estimation. The other curves, bottom-to-top, show what
the run-time would be had we added the estimation run-
time (number of expensive estimates multiplied by assumed
per-estimate run-time). This emphasizes the importance of
avoiding unnecessary estimations, which dominate the to-
tal run-time when estimation time is high (compared to the
heuristic estimation time, contained within the baseline). It
also strengthens the argument mentioned above that signifi-
cant potential savings can be obtained by even slightly loos-
ening the uncertainty bound.

Figure 2: PlanDEM run-time in CPU seconds. Bottom
(blue, solid) to top (purple, solid) curves correspond to per-
estimation times of 0, 10−4, 10−3, 10−2 and 10−1 seconds
for the expensive estimators. p1 = 0.5 for all cases.

Figure 3: Mean η vs B target bounds. The curves bottom
(blue, solid) to top (purple, solid) correspond to the p1 values
0.1, 0.25, 0.5, 0.75 and 1.

We now move to examine the quality of the solutions pro-
duced by ACE. Figure 3 shows mean η values achieved for
different target B bounds. Recall that we consider shorter
planning time to be better than achieving higher accuracy.
Hence, the fact that η tends to B when p1 is high indicates
that ACE is efficient w.r.t. usage of expensive estimations.
When p1 values are low, most costs are precisely known, and
overall uncertainty should be low even with a small amount
of expensive estimations (see Fig. 1). Indeed, η values are
well below the target bounds.

Evaluation of ESE
The section above examines ACE when it can always suc-
ceed in finding a B-solution, and thus ESE is never in-
voked. This section examines cases where it might not. We
introduce probabilities for the existence of the second and
third estimators, denoted by p2 and p3. When setting ei-
ther p2 or p3 to values different than 1, the achievable η
increases, as tighter estimates are no longer available. This
creates cases where ACE can fail, and ESE might be ap-
plicable, and will be invoked. For our experiment we used
p1, p2 ∈ {0.25, 0.5, 0.75, 1}, p3 ∈ {0.25, 0.5, 0.75} and
B ∈ {1.5, 2, 2.5, 3, 3.5}. This resulted in 4800 planning
problem variants to be solved.

The results are summarized in Table 1. Each row corre-
sponds to a different B target, and summarizes 960 prob-
lems. Left to right, the columns show the number of prob-
lems (in parentheses, percentage of problems) in which ACE
succeeded, ESE was applicable and invoked, ESE was suc-
cessful, the resulting η and usage of costly estimations for
both ACE and ESE. The table points to several insights.

First, the number of ESE invocations is not equal to the
number of ACE failures. There are cases where ACE ex-
hausted all estimation options for the actions in the plan and
thus ESE is not applicable. As the success ratio of ACE in-
creases with B, the number of ESE invocations decreases (as
this procedure is required less frequently).

Second, a key insight is that ESE has a considerable suc-
cess ratio, which increases withB. This is striking, given that
it utilizes only a small amount of estimates w.r.t. the amount

ACE uses, i.e., its affect on the total run-time is minor.
To explain this result, we examine the change in η due

to ESE. The data in column 5 from the table indicates val-
ues averaged over both successful and failed runs (when the
bound is not met), without normalization. We therefore ex-
amine the normalized relative change in η, defined as

ηrel := (ηESE − ηACE)/(ηACE − 1),

where the value 1 in the denominator, which is the best (low-
est) achievable η, serves as to normalize the change.

The mean normalized relative change is only −5.72%.
This implies that ACE typically comes very close to the tar-
get (up to roughly several percent). It then becomes rela-
tively easy for ESE to use a few more estimates, to drive η
below the target.

An ACE Experiment on Real-World Data

Inspired by the contrast between the simplistic estimates of
the Transport Sequential domain and the commercial-grade
estimation carried out by TruckNet ((TruckNet 2021); see
introduction), we created a package delivery problem based
on real data for the Ontario province in Canada. The problem
is deceptively small: 9 cities, with 30 road segments (dis-
tances from Google Maps), 2 trucks each with 4-package
capacity, and 6 packages to be delivered (spread across dif-
ferent initial and terminal locations). There are three actions:
drive, pickup and drop. The objective is to minimize mone-
tary costs (a function of both distance and time), subject to
the inherent uncertainty of travel times.

The cost per distance was computed online based on
the truck model depreciation, financing, licensing, insur-
ance, and fuel prices for the region. The cost per minute
was computed from reported driver salaries in Canada. Two
estimators were used for the drive action cost: the first
(cheap) assumed the speed would be between heavy traf-
fic (20km/h) and no traffic (100km/h) conditions; the sec-
ond (more costly) estimator used pessimistic and optimistic
times reported by Google Maps for a specific day and hour.
Both estimators yield travel time in minutes, which was then
used with the cost-per-minute and cost-per-distance (full de-
tails appear in the appendix). In order to test a more compu-
tationally intensive scenario, we assumed that the costs are
state-dependent, which significantly increases the required
time for overall estimation.

Using ACE saved between 60% to 100% of the need to
use the costly estimator, compared to estimation-indifferent
planning. The success rate was 100% on feasible B targets,
and in the cases of unfeasible targets (too demanding B val-
ues) there were no unused estimators for the plan found, so
ESE was not used. The best attainable estimates had uncer-
tainty ratios ranging from 8.5% to 53.8%, demonstrating that
cost uncertainty is often unavoidable. In such cases, ACE
is superior to standard planning. Assuming a realistic 10ms
online-query time for each invocation of the costly second
estimator, and even assuming only 60% savings (worst case
found) this translates to a planning time of 7 hours using
ACE, instead of 18.

B ACE Success (%) ESE Invoked (%) ESE Success (%) η ACE (ESE) Costly Estimations ACE (ESE)
1.5 276 (28.75) 174 (18.13) 50 (28.74) 2.23 (1.98) 132566045 (511)

2 548 (57.08) 171 (17.81) 59 (34.50) 2.63 (2.14) 145826527 (602)
2.5 701 (73.02) 145 (15.10) 52 (35.86) 2.95 (2.33) 136260264 (544)

3 806 (83.96) 97 (10.10) 55 (56.70) 3.29 (2.51) 93636149 (382)
3.5 897 (93.44) 38 (3.96) 23 (60.53) 3.67 (2.68) 29996783 (144)

Table 1: Summarized data of ACE & ESE experiments (960 runs per B value). The values in column 5 are averages of η over
all instances where ESE took place, and the values in column 6 are sums of costly estimations over all those instances.

Related Work
ACE’s repeated evaluation and selection between cost esti-
mators complements the process of choosing between multi-
ple heuristics during planning (Karpas et al. 2018). Heuris-
tics are applied to states (vertices in the state-space graph),
while costs apply to actions (edges).

In shortest-path search, cost uncertainty is considered
by assuming explicit or implicit knowledge about edge
cost distributions, and then solved by performing calcula-
tions involving the full graph, typically minimizing expec-
tation (Kwon, Lee, and Berglund 2013; Shahabi, Unnikrish-
nan, and Boyles 2015). ACE makes no such assumptions.

Related efforts tackle graph search in the context of mo-
tion planning, where verification of edge existence is ex-
pensive (Narayanan and Likhachev 2017; Mandalika et al.
2019). The solution approach dynamically decides when to
search and when to evaluate edges, so as to minimize overall
planning time, but is limited to existence verification. This
is a special case of general action cost computation in P-
MACE (when the cost tends to infinity, an edge can be con-
sidered non-existent). Existence verification is carried out
only once per selected edge, whereas P-MACE may require
multiple estimations for the same edge.

A closer line of work addresses shortest path problems
where obtaining the true edge cost is considered to be com-
putationally expensive. Dellin and Srinivasa (2016) present a
framework for lazy search w.r.t. expensive edge evaluations.
They assume two estimates are provided for each edge: a
computationally-cheap lower-bound (no upper bound), and
a computationally-expensive exact cost. Clearly this is a
special class of P-MACE problems. The lazy search can-
not solve P-MACE problems in general, because it does not
admit upper bound estimates, and cannot target B-bounded
solutions. Technically, the lazy search algorithm strictly re-
quires two estimates, of which one is the exact cost. This
requirement does not exist for ACE.

We emphasize that P-MACE problems can, in general, be
solved without utilizing all the most expensive estimators in
the solution path, hence it is insufficient to simply be lazy
w.r.t. to the most expensive estimators.. For instance, ACE
can sometimes solve a P-MACE problem while utilizing all
estimates for some edges in the solution path, some of the
estimates for other edges in the path, and only one estimate
for the remaining edges.

Discussion
ACE’s theoretical properties hold regardless of the order of
the estimators given by GetEstimator. However, even par-

tial ordering of the estimators by expected run-time can
be used by GetEstimator to return cheaper estimators first,
making ACE faster in practice.

Typically, algorithms that try to reduce resource consump-
tion of one type, have to make the sacrifice of consum-
ing more resources of a different type (the classical trade-
off being run-time vs. memory). ACE is able to greatly re-
duce the number of expensive estimators utilized, compared
to the estimation-indifferent approach (as demonstrated in
Fig. 1). Since the estimation-indifferent baseline considered
here has the same node-expansion behavior of standard A∗

(when it considers only the tightest lower bounds as costs),
it is guaranteed to be optimally efficient (when used with a
consistent heuristic).

One may therefore expect that ACE should be inefficient
w.r.t. the number of node expansions. But this is not true. In
fact, experiments suggest that ACE uses roughly the same
number of node expansions as the estimation-indifferent
baseline. We believe the trade-off is elsewhere. ACE uses
a best-effort approach, and so it is not guaranteed to return
a B-optimal plan in the general case, but only in the spe-
cial case where an exact-cost estimate is given for every ac-
tion. We expect that future extension of ACE that guarantee
general B-optimality will need to increase search effort (i.e.,
will expand a larger number of nodes).

An assumption made in this paper is that estimators repre-
sent cost uncertainty by an interval composed of lower and
upper bounds. In cases where statistical estimators are used,
statistical properties (e.g., standard deviation) may used in-
stead as bounds, in which case the plan accuracy bound
should be considered soft (or approximate) rather than strict.

Conclusions
We introduced planning with multiple action cost estima-
tors (P-MACE), a generalization of deterministic planning
that allows the domain expert to provide the planner with
multiple cost estimators, each with its own uncertainty and
computational requirements. During planning, the planner is
then responsible for balancing the computational cost of es-
timating action costs, and the accuracy of the estimates. We
then introduced ACE—a generalization of A∗—and showed
that it is optimal in case each action cost can ultimately be
estimated exactly (and also in other cases). To improve upon
it when it fails to meet the target, we introduced a post-
search procedure that increases ACE’s success ratio. Exten-
sive experiments show the algorithms are very effective.

ACE is the first attempt to solve P-MACE problems as in-
troduced here. We plan to focus future algorithmic improve-

ments on general B-optimality. Another important future di-
rection is to improve the selection of estimators so as to min-
imize their use, by considering meta-information, such as
predicted values for cmin, cmax and/or run-time prior to the
actual application of an estimator.

Appendix: Experiment Details and Results
Domains and Problems Used in the Experiments
For the empirical evaluation based on IPC problem domains,
we used domains and problems that appeared in the inter-
national planning competitions of 2008, 2011, 2014 and
2018. For each domain we chose two problems (ranging
from small to large scale), and for each of them we tested
all configurations reported in the paper (resulting in many
different variants per original problem file). The full list of
domains (problems) follows below, and the files can be re-
trieved from (Seipp et al. 2016).
• elevators-opt08-strips (p04, p06)
• barman-opt11-strips (pfile01-003, pfile01-004)
• floortile-opt11-strips (opt-p05-009, opt-p06-011)
• sokoban-opt11-strips (p04, p07)
• transport-opt11-strips (p02, p04)
• woodworking-opt11-strips (p06, p12)
• tetris-opt14-strips (p03-4, p04-6)
• agricola-opt18-strips (p08, p10)
• caldera-split-opt18-adl (p05, p10)
• data-network-opt18-strips (p17, p20)

Costs and Estimators
We generally used the original cost depicted in the PDDL
domain and problem files, denoted as cPDDL(e). However,
PlanDEM supports solely positive integer action costs, as
it extends FD and thus inherits its main software architec-
ture and data structures. As a result, for problems that have
c(e) = 1, it is not possible to bound an estimate from below.
In these cases we changed the original cost so as to be able to
experiment with estimators that provide a bound lower than
the original cost.

Thus, in order to obtain the desired uncertainty ratios for
each edge e, we used cPDDL(e) as a basis for the following
transformation.
• If the edge cost was to be estimated (i.e., with proba-

bility p1 as described in the experiment section of the
paper), then the list of estimators is given by Θ(e) =
{θe1, θe2, θe3}, where the estimators respectively return

c1min(e) = 1× cPDDL(e), c
1
max(e) = 4× cPDDL(e),

c2min(e) = 2× cPDDL(e), c
2
max(e) = 4× cPDDL(e),

c3min(e) = 2× cPDDL(e), c
3
max(e) = 2× cPDDL(e).

In this case, the true cost is taken to be c(e) = 2 ×
cPDDL(e).

• Otherwise (true cost known and not estimated): Θ(e) =
{θe1}, where θe1 returns

c1max(e) = c1min(e) = cPDDL(e).

Hence, in this case c(e) = cPDDL(e).

Ontario Transportation Logistics Example
We describe the details of the experiment with real-world
data. The road system considers 9 cities with 30 road seg-
ments connecting them, where each road length is specified
using a 100 meter resolution, where the data is taken from
Google Maps. The cost function per action a depends on
the distance traveled d and on time duration t, and is given
by c(a) = c1 × d + c2 × t, where c1 = 0.56 [USD/km]
and c2 = 0.5 [USD/minute] are the cost-per-km and cost-
per-minute coefficients. c1 was taken from (Vincentric 2022)
and is based on data tailored to a specific set of assumptions:
Ford Transit 150, 2021 model, with base crew medium sized
roof slide 148WB AWD trim, commuting 30000 km annu-
ally, in Ontario province. It calculates an average total cost-
per-km based on the above specifications, considering cur-
rent fuel prices, depreciation and maintenance costs, license
and registration fees, insurance costs and even financing. c2
is based on an estimate of a truck driver employer’s cost in
Canada (see e.g., data from Glassdor).

The domain file is similar to the aforementioned ”Trans-
port Sequential”, having three action templates: drive, pick-
up and drop, where the prices of the two latter actions are
assumed to be exact and are based on a 20 minutes time du-
ration. Each drive action has two estimators: the first, which
doesn’t incur additional run-time, assumes nothing about the
specific road segment and thus uses conservative estimates
of 20 km/hour and 100 km/hour for unfavorable and fa-
vorable road conditions, respectively; and the second uses
pessimistic and optimistic travel time estimates taken from
Google Maps by manual queries for a specific day and hour
(Friday, 10 AM) and the fastest route. All the required data
for reproducing the experiment is contained in 3 files, corre-
sponding to the domain, problem and estimators, that appear
in (Weiss and Kaminka 2023).

We evaluated ACE on the problem for B ∈
{1, 1.1..., 2.4}, and the results are summarized in Ta-
ble 2. As can be seen, the results are in full correspondence
with those obtained by experimenting with the modified
IPC benchmarks.

We highlight several interesting conclusions from the ex-
periment:
• ACE saved between 60% and ∼100% costly estima-

tions compared to estimation-indifferent planning, while
maintaining a 100% success rate on feasible require-
ments (as B = 1, 1.1 turned out to be out of reach).

• The best attainable estimates had uncertainty ratios rang-
ing from 8.5% to 53.8%, demonstrating that cost uncer-
tainty is oftentimes unavoidable. In these cases standard
planning would generate inferior plans.

• Assuming a 1ms query time for travel time prediction
(representing access time to a local database), and even in
the worst result of only 60% savings, planning time is 43
minutes instead of 107 minutes for estimation-indifferent
planning. For query times of 10ms (representing a very
fast access to an online database), this translates to 7
hours of planning time instead of 18 hours.

We point out that this experiment was based on a pre-
compiled file containing the required estimation data, so

B Is η θ2 Used θ2 Saved θ2 Usage (%) T0[s] T1[s] Saved T1[s] T10[s] Saved T10[s]
1 0 1.18 2537169 3858085 39.67 54.12 2591.29 3858.09 25425.81 38580.85

1.1 0 1.18 2537169 3858085 39.67 61.89 2599.06 3858.09 25433.58 38580.85
1.2 1 1.18 2565641 4254910 37.62 66.16 2631.80 4254.91 25722.57 42549.10
1.3 1 1.28 2653524 7091775 27.23 93.93 2747.46 7091.78 26629.17 70917.75
1.4 1 1.39 2469987 8222062 23.10 101.26 2571.25 8222.06 24801.13 82220.62
1.5 1 1.47 2253078 8587468 20.78 102.10 2355.18 8587.47 22632.88 85874.68
1.6 1 1.58 2047551 8909325 18.69 106.90 2154.45 8909.33 20582.41 89093.25
1.7 1 1.66 1809278 8843618 16.98 105.22 1914.50 8843.62 18198.00 88436.18
1.8 1 1.76 1508847 9375424 13.86 94.54 1603.39 9375.42 15183.01 93754.24
1.9 1 1.88 1149769 8486273 11.93 72.78 1222.55 8486.27 11570.47 84862.73

2 1 1.96 722353 8102761 8.19 84.37 806.72 8102.76 7307.90 81027.61
2.1 1 2.03 237430 6863791 3.34 69.62 307.05 6863.79 2443.92 68637.91
2.2 1 2.05 733 6349392 0.01 60.23 60.96 6349.39 67.56 63493.92
2.3 1 2.16 31 6350040 5× 10−4 61.55 61.58 6350.04 61.86 63500.40
2.4 1 2.24 7 6350479 10−4 60.59 60.59 6350.48 60.66 63504.79

Table 2: Summarized data of ACE experiments with the Ontario Transportation Logistics problem. Notations: Is is a success
indicator, namely Is = 1 if η ≤ B and 0 otherwise, θ2 denotes the costly estimations, and T0, T1, T10 correspond to planning
times using τ2 = 0, 1, 10 ms, respectively. Usage and savings are w.r.t. to the results of estimation-indifferent planning.

that during planning cost estimates were obtained by re-
peated access to the file, with many ground actions having
the same cost estimates. In such cases where multiple ac-
tions (or edges) have the same estimate, using a cache mech-
anism, in order to reduce calls to external modules, should
significantly improve the results. The design and implemen-
tation of an effective cache is left for future research.

Appendix: Proofs of Theoretical Results
In order to prove Lemma 1 we require another auxiliary re-
sult, which demonstrates that heuristic consistency is pre-
served when using lower bounds of edge costs for its cal-
culation (instead of the true edge costs). Note that often the
term heuristic function, in the context of graph search (or
AI planning), is an abuse of notation used to refer to a more
general computational procedure, that is parameterized by
the edge costs of the graph (or by the action costs in the plan-
ning problem), so that only after fixing the costs, a standard
heuristic is obtained. Further note that it is typical to attribute
a theoretical property, such as consistency, to such a com-
putational procedure, if the property holds for any heuristic
obtained from the procedure after fixing the costs, regardless
of their specific values. For stating our result, we need to dif-
ferentiate between the two. Hence, we call the more general
computational procedure a parameterized heuristic and de-
note it as usual by h, and we denote a standard heuristic
obtained by it using a subscript, e.g., hc, where c is a cost
function defining the costs of the problem.
Lemma 2 (Consistency Preservation). Given a digraph G =
(V, E) and two edge cost functions α : E → [0,∞), β :
E → [0,∞) that satisfy α(e) ≤ β(e) for every edge e ∈ E ,
we obtain the weighted digraphs Gα = (V, E , α), Gβ =
(V, E , β). If h is a consistent parameterized heuristic, then
hα is consistent w.r.t. Gβ .

Proof of Lemma 2. Due to the fact that h is a consistent
parameterized heuristic, it immediately follows that hα is

consistent w.r.t. Gα. From the definition of consistency, this
means that hα(n) ≤ α((n, s)) + hα(s) and hα(G) = 0 is
satisfied for every node n and every descendant s of n, and
every goal node G in Gα. Using α(e) ≤ β(e) we obtain
hα(n) ≤ β((n, s)) + hα(s), where again, this holds for ev-
ery node n and every descendant s of n. Additionally, every
goal node G in Gα is also a goal node in Gβ , so hα(G) = 0
is also satisfied for every goal node in Gβ . Thus, hα satisfies
the definition of consistency w.r.t. Gβ .

We can now prove Lemma 1.

Proof of Lemma 1. As mentioned before, ACE uses heuris-
tic values that are computed by h (which is a consistent
parameterized heuristic) and based on the lower bound es-
timate given for each relevant edge e by the first estimator
returned by GetEstimator(e). We obtain a (standard) consis-
tent heuristic hα, with α defined to be an edge cost function,
where the cost of each edge e is taken to be the lower bound
estimate of the first estimator returned by GetEstimator(e).
During the search ACE potentially utilizes additional estima-
tions (as it tries to meet the target B). Denote by Φ ⊆ ΘΣ the
set that includes exclusively all estimators invoked by ACE
during the search, and further denote β as an edge cost func-
tion, where the cost of each edge e is taken to be the tightest
(highest) lower bound estimate of all the estimators returned
by GetEstimator(e) during the search. Since α(e) ≤ β(e)
for every edge e, Lemma 2 assures that hα is consistent w.r.t.
Gβ (where its nodes and edges are defined by the digraph
that corresponds to the planning problem P). Then, follow-
ing the main proof arguments of A∗’s optimality, consis-
tency of hα implies non-decreasing f -values along any path,
thus whenever ACE selects a node for expansion, an optimal
path (w.r.t. β) to that node has been found. Hence, the first
plan π found by ACE has plan lower bound cΦmin(π) equal
to the optimal plan lower bound w.r.t. Φ, i.e., cΦmin(π) = c∗Φ,
implying that π is an optimal optimistic plan w.r.t. Φ.

Acknowledgements
The authors thank Alexander Shleyfman for his constructive
feedback. The research was partially funded by ISF Grant
#2306/18 and BSF-NSF grant 2017764. Thanks to K. Ushi.
Eyal Weiss is supported by the Adams Fellowship Program
of the Israel Academy of Sciences and Humanities and by
Bar-Ilan University’s President Scholarship.

References
Allen, C.; Katz, M.; Klinger, T.; Konidaris, G.; Riemer, M.;
and Tesauro, G. 2021. Efficient Black-Box Planning Using
Macro-Actions with Focused Effects. In Proceedings of the
Thirtieth International Joint Conference on Artificial Intel-
ligence.
Bonet, B.; and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence, 129(1-2): 5–33.
Coles, A.; Coles, A.; Olaya, A. G.; Jiménez, S.; López, C. L.;
Sanner, S.; and Yoon, S. 2012. A survey of the seventh inter-
national planning competition. AI Magazine, 33(1): 83–88.
Dellin, C.; and Srinivasa, S. 2016. A unifying formalism
for shortest path problems with expensive edge evaluations
via lazy best-first search over paths with edge selectors. In
Proceedings of the International Conference on Automated
Planning and Scheduling, volume 26, 459–467.
Dornhege, C.; Eyerich, P.; Keller, T.; Trüg, S.; Brenner, M.;
and Nebel, B. 2009. Semantic attachments for domain-
independent planning systems. In Nineteenth International
Conference on Automated Planning and Scheduling.
Fox, M.; and Long, D. 2003. PDDL 2.1: An extension to
PDDL for expressing temporal planning domains. Journal
of Artificial Intelligence Research, 20: 61–124.
Francès, G.; Ramiŕez, M.; Lipovetzky, N.; and Geffner, H.
2017. Purely Declarative Action Descriptions are Overrated:
Classical Planning with Simulators. In Proceedings of the
Twenty-Sixth International Joint Conference on Artificial In-
telligence.
Garrett, C. R.; Chitnis, R.; Holladay, R.; Kim, B.; Silver, T.;
Kaelbling, L. P.; and Lozano-Pérez, T. 2021. Integrated task
and motion planning. Annual review of control, robotics,
and autonomous systems, 4: 265–293.
Ghallab, M.; Nau, D.; and Traverso, P. 2016. Automated
planning and acting. Cambridge University Press.
Gregory, P.; Long, D.; Fox, M.; and Beck, J. C. 2012. Plan-
ning Modulo Theories: Extending the Planning Paradigm. In
Proceedings of the International Conference on Automated
Planning and Scheduling.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE transactions on Systems Science and Cybernet-
ics, 4(2): 100–107.
Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research, 26: 191–246.
Karpas, E.; Betzalel, O.; Shimony, S. E.; Tolpin, D.; and Fel-
ner, A. 2018. Rational deployment of multiple heuristics in
optimal state-space search. Artificial Intelligence, 256: 181–
210.

Koenig, S.; Likhachev, M.; and Furcy, D. 2004. Lifelong
Planning A∗. Artificial Intelligence, 155(1–2): 93–146.
Kwon, C.; Lee, T.; and Berglund, P. 2013. Robust shortest
path problems with two uncertain multiplicative cost coeffi-
cients. Naval Research Logistics (NRL), 60(5): 375–394.
LaValle, S. M. 2006. Planning Algorithms. Cambridge Uni-
verity Press.
Mandalika, A.; Choudhury, S.; Salzman, O.; and Srinivasa,
S. 2019. Generalized lazy search for robot motion planning:
Interleaving search and edge evaluation via event-based tog-
gles. In Proceedings of the International Conference on Au-
tomated Planning and Scheduling, 745–753.
McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL-
the planning domain definition language. Technical Report
CVC TR-98-003/DCS TR-1165, Yale Center for Computa-
tional Vision and Control.
Narayanan, V.; and Likhachev, M. 2017. Heuristic search
on graphs with existence priors for expensive-to-evaluate
edges. In Twenty-Seventh International Conference on Au-
tomated Planning and Scheduling.
Seipp, J.; Pommerening, F.; Sievers, S.; and Francès, G.
2016. Fast Downward benchmark collection. https://github.
com/aibasel/downward-benchmarks. Accessed: 2023-03-
14.
Shahabi, M.; Unnikrishnan, A.; and Boyles, S. D. 2015. Ro-
bust optimization strategy for the shortest path problem un-
der uncertain link travel cost distribution. Computer-Aided
Civil and Infrastructure Engineering, 30(6): 433–448.
Stentz, A. 1994. Optimal and Efficient Path Planning for
Partially-Known Environments. In Proceedings of IEEE In-
ternational Conference on Robotics and Automation, 3310–
3317.
TruckNet. 2021. Trucknet Enterprise: Revolution-
ising the World of Freight Management. Logis-
tics Tech Outlooks: https://www.trucknet.io/wp-
content/uploads/2021/10/629764 418641774086freight-
management-europe-cover774086418641.pdf. Accessed:
2021-12-15.
Vincentric. 2022. Driving Costs Calculator. https://carcosts.
caa.ca/. Accessed: 2023-03-14.
Weiss, E. 2022. A Generalization of Automated Planning
Using Dynamically Estimated Action Models–Dissertation
Abstract. In 32nd International Conference on Automated
Planning and Scheduling, 1–3.
Weiss, E.; and Kaminka, G. A. 2022. Position Paper: On-
line Modeling for Offline Planning. In Proceedings of the
1st ICAPS Workshop on Reliable Data-Driven Planning and
Scheduling.
Weiss, E.; and Kaminka, G. A. 2023. PlanDEM. https:
//github.com/eyal-weiss/plandem-public. Accessed: 2023-
03-14.

