
Supporting Collaborative Activity
Master Thesis

By: Gilad Armon-Kest
Advisers: Prof. Sarit Kraus,

Dr. Gal A. Kaminka

Submitted in partial fulfillment of the requirements for the Masters degree in the
Department of Computer Science Bar-Ilan University

Ramat Gan, Israel
2007

1

Abstract

This thesis has two parts. The first part presents SharedActivity, a model for
collaborative agents acting in a group. The model suggests mental attitudes for
agents with different levels of cooperation and allows modelling of groups in
which members are motivated to increase individual benefits. Unlike previous
models, SharedActivity is suitable also for groups that do not have a joint goal.
The model defines key components of loosely cooperative activity and provides
a platform for developing tools to support such activity. We have studied the
behavior of the model in a simulation environment. Results show how the ben-
efit attained by cooperation is influenced by the complexity of the environment,
the number of group members as well as the social dependencies between the
members. The results demonstrate that the model covers social behavior both in
settings previously addressed, as well as novel settings.

The second part presents an algorithm for solving the problem of iterative
search in a closed group. Our solution takes into account the load on agents and
the agents’ willingness to help other agents. It also manages reciprocity between
agents. The proposed algorithm supports limited-resource platforms. We evaluate
the behavior of our algorithm in a simulation environment and compare it to the
random walk algorithm. Results show an advantage for our algorithm regarding
the random walk algorithm in most environmental settings. These advantages are
expressed in retrieving times of wanted objects and fairness in task distribution.

Acknowledgments

This dissertation could not have been initiated, conducted and completed without
the invaluable guidance, inspiration, and support of my wonderful advisors, Sarit
Kraus, Gal Kaminka and Meirav Hadad. Incessantly, they were patient and open
towards all my Ideas and were willing to engage in them. By working with them,
I accumulated vast knowledge, ideas, techniques and how to do a research.

I would like to mention the great support of everyone at the MAVERICK group
who kept me company in my frequent visits there. I enjoyed many hours dis-
cussing research problems with a large group of people, in particular: Natalie
Fridman ,Nirom Cohen-Nov-Slapak ,Ari Yakir, Efi Merdler, Victor Shafran, Meir
Kalech ,Yehuda Elmaliach, Sarah Simani, Tom Shpigelman, Yael Termin, Avi
Rosenfeld. These discussions often produced new ideas and helped clarify var-
ious technical points. I gratefully acknowledge Claudia Goldman-Shenhar and
Vlad Luzin for their assistance in developing, debugging and executing the basic
simulation software provided by STRI. Lastly and most importantly, I am forever
indebted to my family who has been my source of strength throughout my life:
my brother Shahar, my sisters Enat and Ayelet, my parents Shlomit and Uzi for
always being there.

Last but not least, I thank my wife for always being there and for her help
behind the curtains.

This research was supported in part by a research grant from Samsung Telecom-
munications Research, Israel (STRI), and by research grant #1357/07 from the
Israel Science Foundation (ISF).

The views and conclusions contained in this document are those of the author
and should not be interpreted as representing the official policies or endorsements,
either expressed or implied, of Bar-Ilan University.

1

Contents

I The SharedActivity Model of Group Activity 9

1 Introduction 10

2 Background 12

3 The SharedActivities Model 15
3.1 An Example of a Collaborative Activity 15
3.2 Overview of the Model . 16
3.3 The Model Formulation . 17
3.4 Axioms . 18

4 Experimental Design and Analysis 21
4.1 Influence of Time . 25
4.2 Influence of Message Cost . 26
4.3 Influence of Similarity and Uncertainty 27
4.4 Influence of Group Size . 31
4.5 Influence on Maximum and Minimum Benefit 32
4.6 Influence of Steps’ Cost . 34
4.7 Discussion and Summary . 34

5 Conclusions 36

II Iterative Search in Cooperative Closed Groups 37

6 Introduction 38

7 Related Work 40

8 Basic Search Algorithm 43
8.1 The Request Process . 44
8.2 The Response Process . 47

2

8.3 A Complete Run through the Search Process 49
8.4 Two variant algorithms . 50

9 Experimental Design and Analysis 51
9.1 Experiment Design . 51
9.2 Results and Analysis . 54

9.2.1 Influence of Group Size 54
9.2.2 Influence of Pictures Size 60
9.2.3 Influence of Picture Availability 70
9.2.4 Offline Agents . 76

10 Discussion and summary 82

3

List of Algorithms

1 REQUEST OBJECT
(input: agent Ai, search S constant K

output: boolean end) . 46
2 PROCESS ANSWER

(input: agent Ai message) . 46
3 ANALYZE REQUEST

(input: agent Ai, request) . 48

4

List of Tables

2.1 Differences between groups . 13

9.1 Differences between Average Std.Dev of Sending Pictures 79
9.2 Differences between Average Retrieve Time 80
9.3 Differences between Average Num of Check Msg’s 80
9.4 Differences between Total Num of unnecessary Check Msg’s . . . 80

5

List of Figures

3.1 Key components of collaborative activity. 17
3.2 Shared Activity . 18

4.1 The average number of the changes as a function of time duration(Time =
[60, 600], Cs = 1, Cm = 0.5, AgentN = 6, UncerL = 1) 25

4.2 The average utility as a function of the messages’ cost(Time =
360, Cs = 1, Cm = [0, 1.5], AgentN = 6, UncerL = 1) 26

4.3 The average utility of groups, for agents that were similar, as a
function of the uncertainty(Time = 360, Cs = 1, Cm = 0.5, AgentN =
6, UncerL = [0, 5]) . 27

4.4 The average utility of groups, for agents that were very different,
as a function of the uncertainty(Time = 360, Cs = 1, Cm =
0.5, AgentN = 6, UncerL = [0, 5]) 29

4.5 The average utility of groups, for agents that their profile splits
uniformly, as a function of the uncertainty(Time = 360, Cs =
1, Cm = 0.5, AgentN = 6, UncerL = [0, 5]) 30

4.6 The average utility as a function of the agents’ number (Time =
360, Cs = 1, Cm = 0.5, AgentN = [2, 8], UncerL = 1) 31

4.7 The average utility of the maximal utility agent as a function of the
uncertainty(Time = 360, Cs = 1, Cm = 1, AgentN = 6, UncerL =
[0, 5]) . 32

4.8 The average utility of the minimal utility agent as a function of the
uncertainty(Time = 360, Cs = 1, Cm = 1, AgentN = 6, UncerL =
[0, 5]) . 33

4.9 The average utility of the last as a function of the uncertainty(Time =
360, Cs = 1, Cm = 0.5, AgentN = 6, UncerL = [0, 5]) 34

8.1 Search process time-lines. 49

9.1 A comparison between the average number of check messages as
a function of group size . 55

6

9.2 A comparison between the average maximum number of check
messages as a function of group size 55

9.3 A comparison between the average standard deviation of querying
as a function of group size . 56

9.4 A comparison between the average standard deviation of sending
pictures as a function of group size. Lower standard deviation
implies greater fairness. 57

9.5 A comparison between the average retrieval time as a function of
group size . 58

9.6 A comparison between the average maximum retrieval time as a
function of group size . 58

9.7 A comparison between the average standard deviation of retrieval
time as a function of group size 59

9.8 A comparison between the average number of check messages as
a function of pictures size in big group 61

9.9 A comparison between the average maximum number of check
messages as a function of pictures size in big group 61

9.10 A comparison between the average standard deviation of querying
as a function of pictures size in big group 62

9.11 A comparison between the average standard deviation of sending
pictures as a function of pictures size in big group 62

9.12 A comparison between the average retrieval time as a function of
pictures size in big group . 63

9.13 A comparison between the average maximum retrieval time as a
function of pictures size in big group 63

9.14 A comparison between the average standard deviation of retrieval
time as a function of pictures size in big group 64

9.15 A comparison between the average number of check messages as
a function of pictures size in small group 65

9.16 A comparison between the average maximum number of check
messages as a function of pictures size in small group 66

9.17 A comparison between the average standard deviation of querying
as a function of pictures size in small group 66

9.18 A comparison between the average standard deviation of sending
pictures as a function of pictures size in small group 67

9.19 A comparison between the average retrieval time as a function of
pictures size in small group . 68

9.20 A comparison between the average maximum retrieval time as a
function of pictures size in small group 68

9.21 A comparison between the average standard deviation of retrieval
time as a function of pictures size in small group 69

7

9.22 A comparison between the average number of check messages as
a function of percentage in big group 71

9.23 A comparison between the average maximum number of check
messages as a function of percentage in big group 71

9.24 A comparison between the average standard deviation of querying
as a function of percentage in big group 72

9.25 A comparison between the average standard deviation of sending
pictures as a function of percentage in big group 72

9.26 A comparison between the average retrieval time as a function of
percentage in big group . 73

9.27 A comparison between the average maximum retrieval time as a
function of percentage in big group 73

9.28 A comparison between the average standard deviation of retrieval
time as a function of percentage in big group 74

9.29 A comparison between the average number of check messages as
a function percentage in small group 75

9.30 A comparison between the average maximum number of check
messages as a function of percentage in small group 76

9.31 A comparison between the average standard deviation of querying
as a function of percentage in small group 77

9.32 A comparison between the average standard deviation of sending
Pictures as a function of percentage in small group 77

9.33 A comparison between the average retrieval time as a function of
percentage in small group . 78

9.34 A comparison between the average maximum retrieval time as a
function of percentage in small group 78

9.35 A comparison between the average standard deviation of retrieval
time as a function of percentage in small group 79

8

Part I

The SharedActivity Model of Group
Activity

9

Chapter 1

Introduction

Psychologists often classify groups according to the goals for which the groups are
formed. Two common types are [22] task groups, and treatment groups. A task
group is formed to accomplish a joint goal and thus the benefit of each member is
immediately linked to the success of the joint task. In contrast, a treatment group
is formed where the purpose of the members is to meet individual needs, but some
cooperation is helpful. A treatment group is formed as a result of sharing common
resources, situations, experiences, etc. Examples include: Students sharing the
same lab, partners sharing the same apartment, researchers of the same research
field, and a group who shares the same experience on a tour.

Previous work [13, 11, 6] has proposed well-grounded and explicit models of
problem solving by distributed systems that work together in task groups. These
models address essential characteristics of cooperative work and support the de-
sign and construction of collaborative systems. Using such models for multi-agent
systems enhances the cooperation capabilities of the individual actors working on
a joint goal (e.g., [9, 20, 16, 10].) A collaborative problem, in those models, is
one in which various participants work jointly with each other, performing a task
together or carrying out the activities needed to satisfy a joint goal.

Hence, previous models, concerning only task groups, are not applicable to
support collaborative work in treatment groups, in which members are motivated
to increase their own benefits, yet may still benefit from working with others.
Consider, for example, an agent searching for information for its own goals, and
during the searching process discovers information which interests another agent.
By notifying the other agent about this information, it reduces the other’s search
costs. Repeated and mutual interactions of this type will increase both parties’
utilities. Yet existing collaborative models (e.g. [6]) do not provide guidelines for
the agents, since they do not have a common goal. Thus a new model is needed to
support the development of agents capable of participating in treatment groups.

In this part, we will present the SharedActivity model to support both task

10

and treatment groups. The goal of the development is to provide a new and better
platform for building tools with a high degree of flexibility to support collaborative
activity. This model is novel and is able to contribute to group behavior which has
not been previously modeled.

We investigated the behavior of our model empirically by applying it in a sim-
ulation of a small group visiting a museum. Our experiments test two points. One
is how various environmental settings influence the agents’ benefits when they are
engaged in task group or a treatment group, and when they are not active in a
group. The second is how the level of cooperation among members is influenced
by environmental settings.

11

Chapter 2

Background

The SharedActivity definition in the next section, is based on studies of human
groups. Toseland and Rivas [22] compare features of treatment and task groups.
The comparison is presented in Table 1. As shown in this table, members of
the treatment groups are bonded by their common needs and common situations,
while members of the task group create a common bond by working together to
accomplish tasks. In treatment groups, roles are developed through interaction
among members. In task groups, roles are also frequently assigned by the group.
Communication patterns in treatment groups are open and the members are usu-
ally encouraged to interact with one another. The communication patterns of task
groups are focused on a particular task. Treatment groups are often composed of
members with similar concerns. Task groups are frequently composed of mem-
bers with the necessary resources and expertise to achieve the group’s joint goal.
Finally, the criteria to evaluate success differs between treatment and task groups.
Treatment groups are successful to the extent that they help members meet their
individual goals. Task groups are successful when they accomplish group goals
such as generating solutions to problems. The SharedActivity model covers, in
difference’s levels, all of these features.

12

Task groups Treatment groups
Bond a joint task common needs

or goal or situations
Communication patterns focused on the flexible

particular task
Roles frequently assigned by evolve through

the group interaction
Composed of members the necessary resources and similar concerns

with: expertise to achieve
the group’s joint goal

Evaluating success achieving group goals the extent that they help
members meet their

individual goals

Table 2.1: Differences between groups

Previous models for supporting groups have been based on features of task
groups, in particular for supporting teamwork. Levesque et al. [13] suggest
concepts of joint commitment and joint intentions and study the ways in which
they relate to individual commitments of group members. They address the need
for agents to inform each other whenever they drop a joint commitment. These
types of commitments are essential when satisfying a joint goal which determines
a group’s success.

The SharedPlan model [6] take the advantage of a group commitment to pro-
vide collaborative planning processes for achieving the joint goal. These include
processes for how to perform activities and allocate tasks, as well as processes for
coordination. However, the focus of the process is on the team goal, not individual
goals.

Kinny et al [11] proposed explicit model of problem solving by distributed
systems which work together in task groups. This model addresses essential char-
acteristics of joint plans for teams of agents. Nevertheless in this model there is
one plan that common to all team members that typical to task group.

An additional example of model that support task group is Joint Responsi-
bility model of Jennings [9]. This model based on joint intentions. Group of
agents in this model must satisfy certain conditions to achieve success. Yet, in
ShardActivityt there is not requirement for such obligation.

BITE [10] architecture for multi-robot teamwork provides services for auto-
mated collaboration. This approach for flexible teamwork focuses on synchro-
nization and task allocation. It enhances the cooperation capabilities of the indi-
vidual actors working on a joint goal and therefore suitable only for task groups.

13

Recent work [19] has proposed model in which agents are allowed to change
their level of cooperation over time as a function of their environment. In these
model, the agent’s cooperation measure depends on its personality and past ex-
periences, as well as on the cost of helping. These work investigated the tradeoff
between selfishness and helpfulness in environments in which agents are uncer-
tain about the cooperative nature of others in the system. Nonetheless, it dose not
provide a model to support a group formation by such agents. The model pro-
posed in this paper deals with agents who act in a group but are able to adjust their
cooperation level to the environment over time.

14

Chapter 3

The SharedActivities Model

The SharedActivities model is intended to be used in guiding the design of agents,
by providing a specification of the capabilities and mental attitudes that an agent
must have when it works as a part of a group. To motivate the discussion, we
start with an informal example of a small group visiting a museum. The model
was tested in a simulation of this task (see experiments section). We refer to this
example throughout the paper.

3.1 An Example of a Collaborative Activity
Our example is motivated by the PEACH technology for museum visits. PEACH [8]
offers adaptive multimedia presentations as the visitor moves around in a museum.
One specific challenge in this project is to develop technology that supports group
visits to the museum. In particular, to support a visit by groups that do not have a
joint goal (like a class) but instead have common bond, e.g., a family, or friends
that visit together. The idea is that technology may help integrate their experi-
ence [18]. For that purpose we aim at developing the formal model of the col-
laborative activity of the visitors. The SharedActivity model could potentially
support:

• role-based presentation by taking into consideration the role of the visitor
in the group and provide him/her with information according to his/her role.
For example, in the case of a family visiting a museum, the system will be
able to explain to a parent about the objects that fascinate his/her child.

• coordinate presentations by updating the visitor about the objects which
interest his/her group members. For instance, the system will be able to
show a visitor what is of interest to her husband. On the other hand, if
the visitor discovers an object that her husband has not yet seen, but may
interest him, she will be able to send him relevant information.

15

• generate group summaries by sensing and interpreting what happens to each
individual in the environment the system will be able to support members’
interactions during and after the visit. For instance, it will be able to inte-
grate presentations among the group’s members and to support group sum-
maries at the end of the visit.

• helpful behavior capabilities by reasoning ’what could help’ the others in
their visit. For example, if a team member detects an interesting activity in
the museum that other members may like, but this area is too crowded, the
system will be able to inform the others about this problem.

As described in chapter 4, we have tested our formal model on a limited simulation
of a small group visiting a museum. We describe how we implement the above
helpful behavior capabilities and coordinate presentations.

3.2 Overview of the Model
Figure 3.1 lists key components of mental states of members when they have a col-
laborative activity. First, cooperation implies the ability of the agents to identify
themselves as members of a group (Item 1). Second, when the members engage
in interaction, they may exchange information through verbal and nonverbal com-
munication process. This maintains the group. The belief that members intend
to be a part of the group gives the motivation to interact (Item 2). Third, each
individual in the group is characterized by life histories, development patterns,
needs, goals, and behavior patterns. These characterizes should be known by the
other members during the collaborative activity and are represented in each of the
member’s profile. Thus, the members must have belief about the profile of others
(Item 3). The profile may be given explicitly or implicitly (e.g., learning the pro-
file by observation, overhearing, etc.). Fourth, dependence refers to the relation
in which the utility that one member obtains from its own behaviors is affected at
least partly by the activities of another party. Mutual dependence means that the
utilities of all the parties are determined by their collective behavior [4] (Item 4).

Note that the key components are suitable for both treatment and task groups
as these components do not consider the purpose for which the group is organized.
Furthermore, in former models for supporting task groups (e.g., [6]), the agents
hold the above mental states implicitly: First, they have joint intentions to achieve
a joint goal which entails their beliefs about the members of the group and their
intention to maintain the group during the performance of the task. In addition,
the agents hold beliefs about intentions of other agents, their capabilities and their
situations which can be considered as the profile. Since the members have a joint
goal and their utility is attained by satisfying this goal together, their utilities are

16

To have a collaborative activity, a group of agents must have

1. mutual belief that all group’s members are part of the group

2. mutual belief that all group’s members have intention that
the group be maintained

3. belief about the (partial) profile of other members

4. mutual dependence

Figure 3.1: Key components of collaborative activity.

determined by their collective behavior (i.e., they are mutually dependent). Thus,
a task group is a special case of SharedActivity.

In the museum example visitors act in cooperation if they enjoy sharing their
experience. In such a case, they must identify the group members who enjoy
sharing the experience (clause 1 in Figure 3.1). Their intention to maintain a group
and beliefs about the others’ profiles entails exchanging information (clauses 2–
3 in Figure 3.1). They believe that by sharing the experience they enhance the
experience of each individual as well as of the group (clause 4 in Figure 3.1).

3.3 The Model Formulation
We use standard operators for intention and belief [6]. The operator
Int.To(Ai, α, Tn, Tα, C) represents Ai’s intentions at time Tn to do an action α at
time Tα in the context of C. Int.Th(Ai, prop, Tn, Tprop, C) represents an agent Ai’s
intention at time Tn that a certain proposition prop holds at time Tprop in the con-
text of C. The potential intention operators, Pot.Int.To(. . .) and Pot.Int.Th(. . .),
are used to represent the mental state when an agent considering to adopt an inten-
tion but has not deliberated about the interaction of the other intentions it holds.
The operator Bel(Ai, f, Tf) represents that an agent Ai believes the statement ex-
pressed by formula f at the time Tf . Note that we abused the notation, and the
formula f is not really the argument, but its name is ′f ′. MB(. . .) represents Mu-
tual Belief. In addition, the operator Do(Ai, α, Tα) holds when Ai does action α
over a time interval Tα.

The formal definition of SharedActivity (SA) is given in Figure 3.2 (clauses
1–4 are equivalent to the cases 1–4 of Figure 3.1). It specifies those conditions
under which group A can be said to have a collaborative activity C, at time TC .
The activity C represents a set of actions which have been carried out by the group
members during the collaborative activity. The collaborative activity may be asso-
ciated with several properties such as constraints. Doing an action in the context

17

of the collaborative C must consider these constraints. For example, a parent and
child visiting a museum consists of the actions of looking at objects, but may have
the constraint that the parent and the child cannot move away from each other. We
use the notation P to represent the profiles of the members and we denote by P j

i

the Ai’s beliefs about Aj’s profile. The operator member(Ai,A) in the definition
holds if Ai is a member of A. In the fourth clause, the mutual dependence is
specified by the utility of Ai from being a member of A.

SA(C,A,P, TC)

1. A has MB that all members are part of A:
MB(A, (∀Ai ∈ A)member(Ai,A), TC)

2. A has MB that the group be maintained:
MB(A, (∀Ai ∈ A)Int.Th(Ai, member(Ai,A), TC , Tmem, C))

3. Members of A have Bel about the profile:
(∀Ai ∈ A)Bel(Ai, (∀Aj ∈ A)(∃P j

i ⊆ P), TC)

4. A has MB that being a member obtains better utility:
MB(A, (∀Ai ∈ A)utility(Ai,member(Ai,A)) ≥

utility(Ai,¬member(Ai,A)), TC)

Figure 3.2: Shared Activity

3.4 Axioms
In this section we present three axioms. These axioms further constrain the de-
sign of computer agents for shared activity. The axioms describe the behavior of
the agents acting according to the model and guide programmers how to use the
model.

As agent Ai may decide to adopt an intention to do an action α as a part of the
SA. The agent’s decision must take into consideration the benefit and the cost of
performing α. Because of the mutual dependence between the members, when Ai

performs the action α, Aj ∈ Amay obtain reward from action α being taken. The
mutual dependence between the agents is attained by the benefit function, bj

i (α),
and the cost function, cj

i (α), where i denotes the agent Ai who is the performer,
and j denotes the agent Aj .

A1. Cooperative act axiom. An agent Ai is cooperative when its activities do
not contribute only to its own utility but also to the utilities of the other members.
This axiom deals with two cases of a cooperative agent. The first case states that if

18

Ai believes that Aj is damaged from performing α by itself then Ai considers do-
ing α. In the second case both agents, Ai and Aj , obtain benefit from performing
and there are three options: First, Ai may consider doing α by itself. Second Aj

adapts a potential intention that α will be done by Aj . Third, α will be performed
by Ai and Aj jointly.
(∀α ∈ C, (∀Ai, Aj ∈ A), Tn)

[Bel(Ai, b
i
i(α)− ci

i(α) > 0, Tn)∧
Bel(Ai, b

j
i (α)− cj

i (α) > 0, Tn) ⇒
[Bel(Ai, b

j
j(α)− cj

j(α) ≤ 0, Tn) ⇒
Pot.Int.To(Ai, α, Tn, Tα, C)]⊗

[Bel(Ai, b
j
j(α)− cj

j(α) > 0, Tn) ⇒
(Pot.Int.To(Ai, α, Tn, Tα, C)∨
Pot.Int.Th(Ai, Do(Aj, α, Tα), Tn, Tα, C)∨
Pot.Int.Th(Ai, Do({Ai, Aj}, α, Tα), Tn, Tα, C))]]

Note that the above axiom may lead to the formation of a task group which
is handled by previous models. Such an opportunity for forming a task group
occurs when Ai and Aj mutually believe that they have utility from performing α
by themselves and both of them adopt intentions as given in the third option of the
second case. However, we leave the discussion of how agents can recognize and
take advantage of such opportunities for future work.

In the museum example, coordinated presentations are a type of cooperative
activity. If Ai looks at an object which is of interest to both Ai and Aj , both of
them obtain a benefit, as they may share their experience. In the case that Aj is far
from the object and her cost to arrive to the object is too high then Ai may look at
the object for both of them and notify Aj about information which is interesting
for Aj .

A2. Helpful-behavior act axiom. An agent Ai may help another member
Aj , even if Ai does not obtain any benefit from the performance of α. The
following axiom states that an agent Ai will consider taking action α which may
decrease its utility, if it believes that its cost is bounded by some lower bound
(LB). Also, Ai believes that, by performing α, Aj obtains significant benefit
(i.e, Aj’s greater from f1 on Ai Utility.) In addition, Ai believes that its loss
from performing α is significantly smaller than Aj’s loss when Aj performs α.
(∀α ∈ C, (∀Ai, Aj ∈ A), Tn)

[Bel(Ai, LB < bi
i(α)− ci

i(α) ≤ 0, Tn)∧
Bel(Ai, b

j
i (α)− cj

i (α) > f1(b
i
i(α)− ci

i(α)), Tn)∧
Bel(Ai, b

j
j(α)− cj

j(α) < bi
i(α)− ci

i(α) + ε, Tn) ⇒
Pot.Int.To(Ai, α, Tn, Tα, C)]

The role-based presentation, in the museum example, is a type of helpful-
behavior act. In such a case, Ai looks at objects which are of no interest to her but

19

interest Aj , she does it in order to increase the experience of Ai.
A3. Selfish act axiom. The following axiom states that an agent Ai will

consider taking an action α when Ai believes that it obtains some benefit from α’s
performance but Aj does not obtain any benefit. Also, as a member of the group,
Ai cares that Aj will not be damaged from the performance of α (i.e., the loss of
Aj is greater from f3 on Ai Utility)
(∀α ∈ C, (∀Ai, Aj ∈ A), Tn)

[Bel(Ai, b
i
i(α)− ci

i(α) > 0, Tn)∧
Bel(Ai, f3(b

i
i(α)− ci

i(α)) < bj
i (α)− cj

i (α) 6 0, Tn) ⇒
Pot.Int.To(Ai, α, Tn, Tα, C)]

In the museum domain, looking on an object which is not of interest for other
members in the group is a selfish act. The values of εk (k = 1, 2, 3) and LB in the
above axioms are influenced by several parameters [4] such as moral principals,
the relationship between the members, the members reputation, etc.

20

Chapter 4

Experimental Design and Analysis

To explore the behavior of the SharedActivities model we developed a simulated
museum test-bed, in which we could vary different factors influencing the behav-
ior of the agents. The museum was represented by a weighted connected graph.
Each vertex in the graph denoted a picture. Vertices were organized into small
cliques. Each clique simulated a room. Common vertices between cliques sim-
ulated doorways. In the experiments below, we used museums with 10 rooms,
and 8 pictures in each room. Each agent had a profile that indicated the agent’s
estimation of the value of each picture.

For each profile, the museum was organized so that each room contained pic-
tures with similar estimated values; since the variance between the values of the
pictures was defined by a small value, the simulated museum had rooms with cer-
tain topics for each room. Also, each room had at least one neighbor’s room with
a similar estimation, simulating a connection between the topics of the two rooms.

We simulated agents which could tour the graph. The duration of the tour was
limited to a fixed amount of time. Each agent was able to perform four actions:
(a) ”looking at a picture” denoted Look; (b) ”going one step in the museum”
denoted Move; (c) ”sending a broadcast message” denoted SendMsgs; and (d)
”exchanging information” denoted Exchang. The goal of each agent was to maxi-
mize its total utility which was composed from benefit and cost. The actions Look
and Exchang yielded some benefit and the actions Move and SendMsgs yielded a
cost. The agents were obligated to get into the museum and to get out.

Prior to the tour, the agent estimated the rooms that maximize its total utility
(with some level of uncertainty which we vary in the experiments) and based
on a heuristic function it built a plan of tour. During the tour the agent could
receive more accurate information about rooms (from other agents) and change
its original plan based on this information. A change happens if the agent receives
information on at least half of the pictures in the room from another agent saying
that there is a variance between the estimations of the pictures. If the grade of

21

the room changes, it might change the original room tour plan. When an agent
arrives in a new room, it decides which series of actions will maximizes its utility
according to a greedy heuristic function.

We simulated five types of groups ranging from fully cooperative to inde-
pendent. In all the groups, members were acquainted with their profiles. Each
member could know its location within the graph. The heuristic function for esti-
mating the value of a picture to a profile, could be different between the groups;
the difference between the heuristic functions represents the different evaluations
of the pictures. Each group had a different commitment level, ranging from a high
to a low level.

1. Task group denoted TA, acted as a group with a joint goal of maximizing
the total group benefit, used the Cooperative act axiom because the agents
are cooperating all the time. Each member visited pictures that maximized
the utility of the group. Each agent was committed to notify the others about
its location so they would calculate the group benefit from these pictures.
The rank of the rooms is according to the utility of the group.

2. Treatment group acted according to the axioms of the SharedActivity model
and used all of them. In this case, each member tried to maximize its own
benefit, and cooperated with others according to its individual decisions
which were based on its situation and its beliefs about the others. Each
member could know the room location of the other members within the
museum by getting this information from the others. Cooperative activities
took the form of visiting pictures that were beneficial for other members and
also to themselves. Helpful activities took the form of visiting pictures that
would help for other members. Sharing information reduced the uncertainty
of the other members on the utility of visiting rooms, and thus affected their
planned paths. The agents shared all the relevant information at the end of
the tour. We examined two levels of cooperation:

(a) Strong treatment group (more helpful) denoted S−TR. Each member
could know also which picture no one has yet seen. Helpful activities
took the form of visiting pictures that would complete information
on the room for other members, so they will be able to re-evaluate.
Another helpful activity was to visit pictures that no one has seen that
could contribute to other agents.

(b) Weak treatment group (less helpful) denoted W −TR. Helpful activi-
ties took the form of visiting pictures that would complete the informa-
tion on more than half of the pictures in the room for other members,
so they would be able to re-evaluate.

22

3. Group of purely individuals agents denoted as G − IN . The member did
not hold the mental states of the SharedActivity model, but they cooperated
at the end of the tour. The cooperation was expressed by sharing all the
relevant information at the end of the tour. The information’s handout was
egoistic and only for retrieving knowledge from the other. Beside that, they
always maximized individual utility.

4. Group of purely solitary agents denoted SO. The members did not hold
the mental states of the SharedActivity model. They weren’t aware of the
other agents. Therefore they could not cooperate in maximizing their own
utilities. They always maximized individual utility.

We ran extensive experiments to measure the difference between the groups
using this environment1, varying:

1. The agents’ number (AgentN).

2. The duration of the agents’ stay in the museum (Time).

3. The level of uncertainty (UncerL) regarding the expected benefit of visiting
pictures (given as a range around the actual interest level).

4. The similarity measure between the member profile.

5. Cost of sending one broadcast message ci
i(SendMsgs) denoted Cm.

6. Cost of going one step ci
i(Move) denoted Cs.

We measured the total utility which was composed of three elements:

1. Independent benefit - bi
i(Look) Ai’s benefit from actions that it does by it-

self. The agent obtains a benefit when it arrives at a picture. Each agent has
a profile that matches its interests with pictures. Looking at a picture yields
a utility in the interval [-3, 7]. For each time-unit that the agent stayed at
the picture, the profit decreased (i.e. if the value of the picture is 6 and it
stayed there two time-units, at the first time-unit it will get 6, at the sec-
ond it will get 5 and the next time it comes to this picture, it will get 4).
Prior to arrival at the picture, the agent could only estimate the utility that
could be generated by the visit, with some uncertainty (which we vary in
the experiments).

1The total number of combinations we tested exceeded 30,000. For each such combination,
we generated 36 trials, for a total of just over a million runs. We report on a small subset of these
results, highlighting key lessons below.

23

2. Dependent benefit - bj
i (Exchang) Ai’s benefit from actions that Aj did for it.

At the end of the tour the agents exchanged information about the pictures
that interested the other agents in the group. If some agent Ai looked on a
picture that interested an agent Aj then when Ai informed Aj of this picture,
Aj obtained some benefit from this information (in our simulation, it was
1/3 of the original benefit value bj

i (Look) = 1/3× bj
j(Look)). If more than

one agent informed Aj about this picture it increased the benefit only by 1
point (but it was bounded up to four agents).

3. Cost - We distinguished between two types of cost for analyzing the group’s
behavior:

(a) Cost of all messages - the number of messages multiplied by Cm

(i.e.,
∑

ci
i(SendMsgs)).

(b) Cost of all steps - the distance that passed multiplied by Cs

(i.e.,
∑

ci
i(Move)).

Each element directly influence On the other elements. Therefor we present their
combination only.

24

4.1 Influence of Time
The average number of the changes that were done in the plan of the agents during
their tour as a function of time duration is given in Figure 4.1. We measured the
average number of the changes that were done in the plan of the S-TR group only.
In lower time duration, we found that the agents did not have enough time to
implement changes in their plans. On the other hand, at higher time duration, they
did not have reasons to make changes because they had enough time to tour all
over the museum. We will report on experiments with duration of 360 (Time =
360) units since in these settings the cooperation significance.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

60 120 180 240 300 360 420 480 540 600

Time duration

A
ve

ra
g

e
n

u
m

b
er

 o
f

ch
an

g
es

Figure 4.1: The average number of the changes as a function of time
duration(Time = [60, 600], Cs = 1, Cm = 0.5, AgentN = 6, UncerL = 1)

25

4.2 Influence of Message Cost

320

330

340

350

360

370

380

390

400

0 0.25 0.5 0.75 1 1.25 1.5

 Cost of sending a message(Cm)

U
ti

lit
y

G-IN

TA

W-TR

S-TR

SO

Figure 4.2: The average utility as a function of the messages’ cost(Time =
360, Cs = 1, Cm = [0, 1.5], AgentN = 6, UncerL = 1)

The benefit obtained by the agents as a function of a message cost is given in
Figure 4.2. When the message’s cost is very low, it is better to be in the TA or in
the S-TR since they use messages heavily. As the messages’ cost rises it is better
to be selfish, since selfish agents hardly use messages.

When the message’s cost value is 0.5, the differences between all the groups
are significant. Moreover, 0.5 is the value in which the differences are maximized.
Therefore, in the rest of the experiment, we will report on results where the mes-
sage cost value is 0.5.

The SO group do not use messages at all, therefore the message’s cost do not
influence them at all. The benefit of the SO group is very low, since the agents
don’t replace relevant information at the end of the tour, and therefore we have
not show the SO utility in the others figures.

26

4.3 Influence of Similarity and Uncertainty
We also checked the influence of different rates of similarity between the profile of
the group’s member under the same environment setting. We compared between
three similarity setting:

1. When the profile of all the agents was similar.

2. When the profile of all the agents was very different.

3. When the profile of all the agents splits uniformly.

Similar profile means that the agent will get the same benefit from each picture.
Different profile means that the agent will get benefit with difference of 4 in aver-
age from each picture. Splits uniformly means that the benefit of each agent from
a picture splits uniformly.

We checked the influence of different setting of the profile similarity under
different levels of uncertainty.

330

340

350

360

370

380

390

400

410

0 1 2 3 4Uncertainly

U
ti

lit
y

G-IN
TA
W-TR
S-TR

Figure 4.3: The average utility of groups, for agents that were similar, as a function
of the uncertainty(Time = 360, Cs = 1, Cm = 0.5, AgentN = 6, UncerL =
[0, 5])

When we examine the figures which presents the influence of the uncertainty
(Figures 4.3 – 4.5) we can see that as the uncertainty rises the agents earn less.

27

When the agents cooperate they reduce the uncertainty, but this depends on profile
similarity.

In Figure 4.3, the benefit that similar agents get is higher compared to non-
similar agents in the other figures. The reason is, all of them go to pictures that
are interesting for all of them and therefore increase the benefit of all the agents. In
contrast, in Figure 4.4, the benefit that very different agents get is lower compared
to all other figures.

In Figure 4.3 when the agents have similar profiles it appears that when the
uncertainty is low, it is better to be in G-IN. When the uncertainty is high it is
more profitable for an agent to be in the TA group. When they cooperate they
reduce the uncertainty but because they are similar, they go to similar rooms so
the overall uncertainty reduction is limited (there are a lot of places nobody goes,
so nobody reduces the uncertainty of those places). Therefore the cooperation is
limited. In this case, the only essential difference between W-TR and S-TR is that
agents in S-TR send more messages but they do not go to see pictures that are
good for other agents because those picture that are good for them are good for all
the other agents, due to the similarity between the agents. Therefore, S-TR groups
gain less from the cooperation relative to the W-TR groups. The TA groups do not
act according to the rule of ’helpful’ but according to the group’s profit, so they
pass all the groups as the uncertainty rises. On the other hand, the G-IN groups do
not cooperate so as the uncertainty rises, they earn less relative to the cooperators.

In Figure 4.4 when the agents have different profiles it is more profitable for
the agents to be an S-TR group. The reason for the advantage of the S-TR is the
difficulty to find a profitable picture that will be profitable for the other agents as
well. The S-TR agents do not look only for those pictures that benefit themselves,
they also look for pictures that may only benefit other group members. Because
of the large differences between the agents, the uncertainty does not influence
the relationship between the cooperative groups in any significant way. This is
because all of the agents go to pictures that do not interest the others and therefore
barely decrease the uncertainty for the others. Regardless, there is some mutual
help and therefore as the uncertainty rises the G-IN earn less, to the cooperative
groups.

In Figure 4.5 when the agents have profiles that are split uniformly, it is more
profitable for agents under these circumstances to be an S-TR group (paired t-test,
p < 0.0003). Where the price of each step is 1 and the price of each message is 0.5,
medium investment in a group is sufficient to get more profit then the other groups.
TA agents invest to much in the group while W-TR agents do not invest enough.
More specifically, as the uncertainty decreases, the W-TR benefit less relative to
other groups (the help is less significant). In the TA the trend is that there is a
very high overhead regardless of the uncertainty. Therefore, when the uncertainty
is low, there is a high loss for little gain. However, at high uncertainties, the cost

28

270

280

290

300

310

320

330

0 1 2 3 4
Uncertainly

U
ti

lit
y

G-IN
TA
W-TR
S-TR

Figure 4.4: The average utility of groups, for agents that were very different,
as a function of the uncertainty(Time = 360, Cs = 1, Cm = 0.5, AgentN =
6, UncerL = [0, 5])

does rise significantly, and therefore there is a large gain; it is possible to see
the beneficial results of the cooperation by the increase in the gap relative to the
G-IN group that does not cooperate. When the uncertainty is high there is no
difference in the trend between the groups because all of them manage to help at
high uncertainties.

When the agents have similar or different profiles we measure two indexes that
are preferable to the agents that have profiles that split uniformly:

1. There is at least 40% less helpful behavior.

2. Information’s cooperation cause between 30% to 50% less changes in the
tour.

Situations with more consumes to cooperation are more interesting and therefore
in the rest of the report we concentrate on agents with profiles that are split uni-
formly.

29

315

325

335

345

355

365

375

385

0 1 2 3 4

Uncertainly

U
ti

lit
y

G-IN

TA

W-TR

S-TR

Figure 4.5: The average utility of groups, for agents that their profile splits
uniformly, as a function of the uncertainty(Time = 360, Cs = 1, Cm =
0.5, AgentN = 6, UncerL = [0, 5])

30

4.4 Influence of Group Size

280

300

320

340

360

380

400

420

2 3 4 5 6 7 8
Agents #

U
ti

lit
y

G-IN

TA

W-TR

S-TR

Figure 4.6: The average utility as a function of the agents’ number (Time =
360, Cs = 1, Cm = 0.5, AgentN = [2, 8], UncerL = 1)

In Figure 4.6 we turned to study the effect of the number of the agents in the
group on the benefits gained. We anticipated that increasing the number of the
agents in the groups will increase the benefit, since they get more help with reduc-
tion of uncertainty and more information, essentially an increase in the Depending
benefit, and this indeed did happened. When the groups are small, the accompany-
ing addition from the cooperative is high relatively to a profit and therefore groups
that are less cooperative earn more(paired t-test, p < 0.0001). The groups TA and
S-TR are more cooperative and therefore as the amount of agents rise, the gap
between them and the other groups is reduced. The W-TR agent’s investment in
the group is sufficient in order to get more profit than the other groups. TA agents
invest to much in the group while W-TR do not invest enough and that is why it is
more profitable for an agent under these circumstances to be in a S-TR group.

31

4.5 Influence on Maximum and Minimum Benefit

700

720

740

760

780

800

820

840

860

880

900

0 1 2 3 4

Uncertainly

M
A

X
 in

d
iv

id
u

al
 u

ti
lit

y

G-IN TA
W-TR S-TR

Figure 4.7: The average utility of the maximal utility agent as a function of the
uncertainty(Time = 360, Cs = 1, Cm = 1, AgentN = 6, UncerL = [0, 5])

Figure 4.7 and Figure 4.8 show the influence of the groups on the average
benefit of the agents who earned the maximum (or the minimum, respectively)
utility in each museum. The value of each point in the graphs is equal to the
average of all the agents who get the maximum (or the minimum) utility in each
museum, over 36 trial.

In Figure 4.7 we assumed that as the uncertainty increases, the utility de-
creases. To our surprise, we discovered that it did not happen when the agents
cooperated. And indeed as the uncertainty becomes larger, more cooperation is
necessary (i.e., the sharing of the information between the group members help
to increase the utility). As a result, the graph in Figure 4.7 is increased when the
uncertainty increased. Yet, the utility start to decrease when the uncertainty be-
comes too high (above 2). The reason for this fact is that when the uncertainty is
smaller than 2 it is easier to decide about the activities that may help to the other
members in the group and more help is given, in particular to the member that
obtains the highest utility in the group (as there are more pictures that contribute
to its utility). As a consequence, when the uncertainty is too high it is hard to find
out the activities that help to others. In more cooperative groups, the agent that
obtains the highest utility in each group, earns more.

32

-140

-120

-100

-80

-60

-40

-20

0

20

0 1 2 3 4
Uncertainly

M
IN

 in
d

iv
id

u
al

 u
ti

lit
y

G-IN TA
W-TR S-TR

Figure 4.8: The average utility of the minimal utility agent as a function of the
uncertainty(Time = 360, Cs = 1, Cm = 1, AgentN = 6, UncerL = [0, 5])

In Figure 4.8 we can see that the only group in which poor agents never have
negative utility is the individual’s group. In the rest of the groups, self-sacrifice
is required sometimes, and as the uncertainty increases the utility decreases. The
more they cooperate, they sacrifice more. However, as we saw in previous figures,
in the long run it is worthwhile.

33

4.6 Influence of Steps’ Cost

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6

Steps' price

U
til

ity

G-IN
TA
W-TR
S-TR

Figure 4.9: The average utility of the last as a function of the uncertainty(Time =
360, Cs = 1, Cm = 0.5, AgentN = 6, UncerL = [0, 5])

When we checked the influence of the steps’ cost we discovered (Figure 4.9)
that when the cost value is more then 2 it is significantly better to be a TA group
(paired t-test, p < 0.001). When the steps’ prices were low (less then 2) the TA
group got less than the S-TR group.When the steps’ price was high (more then
2), assistance from others becomes much more valuable. The TA agents were the
only agents that were committed to such assistance, and therefore earned more.

4.7 Discussion and Summary
The results represent only the group’s behavior in our simulation but it is possible
to extrapolate from these conclusions to other environments. It is better to be in
the selfish group that shares information at the end of the tour in these situations:

1. There are fewer agents.

2. Small uncertainty.

3. The messages’ price is high.

34

It is better to act according to our model in these situations:

1. There are more agents.

2. There is uncertainty.

3. The messages’ price and the steps’ price are not high.

It is better to be in a task group only if the step’s price is very high; indeed, it is
more expensive to cooperate in this case, but a commitment to the group is the
best way to deal with this situation. This scenario simulates a situation where we
must be obligated to cooperate if we want to succeed, and therefore this is the case
where we will act as a task group.

Most often its better to be at a medium level of cooperation, so as to not pay
too much for the group and to not earn too little.

35

Chapter 5

Conclusions

We presented a model of collaborative activity for supporting cooperation between
group members consisting of humans and computer systems. Based on studies
from psychology, the model suggests key components and mental states for agents
who act in cooperation. In contrast to former models it deals with both treatment
and task groups and allows different levels of cooperation.

We investigated the behavior of the model in a simulation environment and
compared between benefits attained by being members in treatment and task group
as well as acting as being a selfish motivate. Results show that the benefit is influ-
enced from different parameter settings, in case of sufficient resources to achieve
the individual goals the treatment group attains the best benefit. However, when
the resources are limited it is better to act as a task group.

As future work, we suggest to develop a formal model of collaborative activity
for a dynamic group. and to find a formula that will help an agents to decide
the level of cooperation that will provide them the best benefit in the future. In
addition we want to find how agents can recognize and take advantage of situation
where Ai and Aj mutually believe that they have utility from performing α by
themselves and both of them adopt intentions to perform it.

36

Part II

Iterative Search in Cooperative
Closed Groups

37

Chapter 6

Introduction

To be in shared activity in our era, there is no obligation to be in close proximity.
Shared activity can be through cellular devices. In the cellular era it has double
meaning. First, relationship through communication, and second helping with
the assistance of sending objects like MMS (mobile multimedia messaging). For
example, Battarbee [1] defines ”Co-experience” as the user experience, which is
created in social interaction. She describes shared activity of people that shared
MMS.

In a virtual album application in a closed group, the group members share
pictures stored in their cellular phones. Often, the group members would like to
look at pictures that are not stored on his own cellular phone. The group members
are cooperative, know each other, willing to share their pictures and to spend
resources in helping others obtaining pictures even though no payment is given in
exchange for such help. When a user is looking for a picture, he or she will specify
keywords that characterize the required picture, locate the picture and download
it to their own cellular phone.

This is an example of an iterative search in cooperative closed groups. The
agent receives from the user a request to search for a resource(picture) charac-
terized using a few keywords. The user’s agent that controls the virtual album
application should find and display the requested picture as quickly as possible.
The Album agent should obtain the picture at the shortest time and the lowest
price. Additionally, if the agent is approached by another agent with a request for
a picture, the agent will make an effort to respond to such a request.

This virtual album application is an example of a shared activity [7]. The
group has a mutual interest to keep the group maintained. Each member has
beliefs about the profiles of the others. All the members have a mutual belief
that being a member leads to higher utility, and are willing to help each other.
However, there are limits on their willingness and capabilities to spend resources
when helping others.

38

Thus, it is important to provide protocols and strategies that are efficient in
distributing the load among the members in a fair manner. In this application, there
are two sources for such a load: First, in responding to search queries, and second,
in actually transmitting the pictures. Load of the first type is usually incurred in
locally examining the picture database for pictures matching the query. Load of
the second type is incurred because of the transmission delay and transmission
costs (in some payment models).

Taking advantage of the fact that we are addressing a closed-group, we can—
in principle—use a full-graph topology to conduct searches, while limiting the
number of messages, and reducing the waiting time for the user. One naive way
of doing this would be to conduct brute-force search. Here, the searching agent
contacts all other agents in order to locate a picture. However, such a search is too
costly in bandwidth use. Seemingly it finds who has the object in the faster way
but it yields a high load for the group. In particular, many unnecessary messages
are exchanged. Furthermore, if it waits for the answer from all group members
to identify the one that is not loaded, than this type of search may also increase
the time of obtaining the picture. Thus a key issue is the uncertainty of the other’s
state and willingness to respond.

Our objective would therefore be to (1) decrease the number of query mes-
sages that are sent to any one individual agent; and (2) reduce the number of
picture transmissions from any single agent. This, while (3) keeping the time it
takes to acquire a picture to a minimum.

39

Chapter 7

Related Work

In an effort to curb uncertainty about the load on another agent, one may theoret-
ically attempt to use any of the different methods for computing optimal policies
in the context of uncertainty. MDP (Markov Decision Processes) is a method to
model stochastically-changing environments and for identifying optimal policies
for actions. However, it does not deal with partial observation which is the main
challenge in our problem.

The POMDP (Partially-Observable Markov Decision Processes) model ac-
counts for partial observations. In particular, Communication-Decentralized-
POMDP [5] should be considered. However, while the virtual album group mem-
bers have some joint goal of maintaining the group, each of them also has per-
sonal goals that usually have higher priority than the joint one. So, adjusting
Communication-Decentralized-POMDP to our application is problematic. Fur-
thermore, our actions’ results are without uncertainty (we assume reliable com-
munication). The system’s uncertainty is derived from the partial observation, not
knowing which of the pictures are stored by other agents nor the actions they have
taken. Moreover, we do not have the reward function of the other agents but an
estimation of their reward. Finally, because of the huge number of states in our ap-
plication, the complexity of finding an optimal policy, even if we will relax some
of the uncertainty, is too high [2] and we will not be able to calculate the optimal
policy in advance given the limitation of CPU and memory of the cellular devices.

Due to the missing knowledge on the agents’ rewards and settings, one could
consider applying classical reinforcement learning (RL) model which deals with
learning of value-functions or searching for efficient policies [21]. However, the
agent’s state is changing over time and the situation is too complex as to apply
reinforcement learning directly. However, we do apply a method that tries to esti-
mate the load and the willingness to help the other agents and update it repeatedly
based on the responses of the other agents, as well as their explicit messages.
If users will be provided with a feature to determine their level of helpfulness,

40

reinforcement learning may be applied to learn this value.
Classification of the data that each agent holds will help to reduce the size and

the amount of the transferred messages. Müller et al [15] suggest to determine
a certain number of clusters for the whole data collection. Under this assumption
each agent distributes the information about the number of data in each cluster to
all other agents. In this way the agents spread their profiles with less messages.
Noervaag et al [17] improve this attitude and suggest taxonomy caching approach.
According to their approach they assume that files are classified as belonging to
one or more categories of a taxonomy. While focusing especially on the feature
of a taxonomy, which is when an object belongs to a category, it also belongs to
its ancestors in the taxonomy tree. Agents can send or ask for data according to
these attitudes.

A different approach to modeling our problem is as a form of routing, using
routing protocols for sharing data in wireless networks [12, 23]. There are two key
differences between routing and our model: First, they deal with the network layer
and we consider the application layer. Second, the network topology is different.
The routing- works consider networks in which devices can communicate only
with their direct neighboring devices. We, on the other hand, take advantage of
the closed group and allow communication between all the devices.

Many search protocols for distributed systems have been developed for P2P
systems. It is important to clarify the differences between our environment and
classical P2P environments:

Group openness. We consider closed, and typically small, groups. All agents
know all others. P2P systems, on the other hand, are open, and thus agents
do not know all of their group members. Moreover, P2P systems typically
deal with thousands of peers.

Network structure. Our agents are deployed on a full graph topology, and each
P2P agent has a limited number of neighbors.

there are two different kinds of P2P networks, structured and unstructured. We
focus on unstructured systems [24] for the following reasons:

1. The limitation of the memory.

2. The cost of messages that are needed for initializing the system (we consider
relatively small groups).

3. The number of needed messages for updating the system after each change.

A popular approach for P2P unstructured systems is random walk [14]. In our
case, we are using a more sophisticated choice algorithm which includes some

41

randomization. Nevertheless, random-walk search algorithms is effective for lo-
calization of resources, and their subsequent sharing. Thus such algorithms might
be useful here as well. Other issues that concerned the P2P system is fairness
(dealing with free-riding) [3]. Our proposed method provides a high level of Fair-
ness; however, we are looking at it from a different perspective. For example, if
two agents have the same picture and one of them has another unique picture, we
will prefer to ask for the joint picture from the one who does not have the unique
picture.

Random-walk procedures take a different take on searching. We can still take
advantage of the fact that we have access to all agents, but instead of approaching
all agents (as in brute-force search), we select only k agents and send them the
query. We then wait for their responses: If one or more has the picture, we ran-
domly select an agent to request the picture from; otherwise, we approach a new
set of k randomly-picked agents.

The randomization procedure is meant to even the load on the agents. In the
limit, there would be a uniform distribution of queries and transmission requests,
which would balance the load on the agents. However, it may be slow since it does
not take the load of the other agents into consideration. It may thus wait for a re-
sponse, or wait for picture downloading, from an overloaded agent. Indeed, as we
shall show in the experiments, random-walk searching has proven less effective
than the algorithms we develop in the next section.

42

Chapter 8

Basic Search Algorithm

We developed a solution based on distributed decision-making within the
SharedActivity model. We follow the general skeletal procedure for random-walk
searching, and acquisition of the pictures: Query k agents, choose among suc-
cessful responses those to contact for the picture. However, in our procedures, the
decision of an agent on whom to contact is based on estimated load of others and
an estimation of others willingness to help it (e.g., based on their own load). Sim-
ilarly, an agent decides how to react according to its current load and according
to its willingness to help the requester. The proposed algorithm supports limited-
resource platforms, is fast, and fair.

We now describe this algorithm. Let us begin by defining the entities of the
system. A closed group G is a set of n agents G = {A1 . . . An}, where all agents
mutually believe in G, and can contact any member of G. An agent Ai ∈ G
is a tuple 〈O, ld,WT,EOWT 〉, where O is a set of m objects’ identifiers O =
{o1...om}, ld is the normalized load of the agent depends on the communication
load, battery and other features. WT is a set of n willingness thresholds WT =
{wti,1...wti,n}, where wti,j is the willingness threshold of agent Ai in respect
to agent Aj . EOWT is a set of n thresholds EOWT = {eowt1,i...eowtn,i},
where eowtj,i is the estimation of agent Ai about the willingness threshold of Aj

in respect to agent Ai.
The willingness value and the estimation about other willingness value is ini-

tialized to initial and during runtime is affected by the number of times Ai assists
and is assisted by Aj .

In order to treat the requests of the users to search for objects, the agent should
provide the value of specific parameters, which define the search. A search S is a
tuple 〈obj,maxt, maxc, PR, end〉, where obj is the requested object’s identifier,
maxt is the maximum run-time that the agent allows the search application to
run, maxc is the maximum number of messages that the agent allows the search
application to send, PR is a set of n probabilities PR = {pr1 . . . prn}. This set

43

represents the probabilities that other agents in the group (agents A1 . . . An) have
the object, where pri represents the searching agent’s view of the likelihood that
agent Ai has the object obj. end is a boolean variable which is true if the search
is completed, and false if the search is not completed. A search is completed if
one or more of the following conditions are satisfied:

• The object is found.

• maxt is reachd.

• maxc messages were sent.

• Provably, no agent in G has the object.

The search agents executes two processes in parallel:

A Request process that treats the requests of its user to search for objects.

A Response process that responds to requests of other agents to receive objects
from its user (or decides not to).

8.1 The Request Process
In the request process the agent assists the user to find objects in the
group. This process includes two sub-processes in parallel. The first sub-
process is responsible for requesting the object from other agents (described
in Algorithm 1, REQUEST OBJECT). The other sub-process is respon-
sible to collect the responses from the agents (described in Algorithm 2,
ANALY ZE RESPONSE).

The search agent estimates the likelihood that the other agents in the group
have the object, their current load and their willingness to send the object. It
first queries agents with a high likelihood of having the object, high likelihood of
willingness and a low estimated load. If there is not enough information on these
parameters then it asks agents with unknown probability to send it information
about their current load, willingness towards the agent, and whether they have the
object. This information enables the search agent, in the next iteration, to request
the object from agents with high likelihood to send it.

This procedure is presented in Algorithm 1, REQUEST OBJECT . The
main loop in the algorithm continues to run unless the requested object is found
or alternatively it is not found through all the agents or it is terminated by the
max time (maxt) or max communication (maxc) thresholds (line 3). In line 4 the
agent estimates the maximum number of agents to ask for the object based on the

44

max time (maxt) and max communication (maxc) thresholds received from the
user. The function return max agents to request decides on how many agents can
be approached, at a maximum, to request an object once it is found. This would
be set based on the preferences of the user for the thresholds maxt and maxc, and
the possibility of utilizing multiple sources. In the experiments, it always returns
1. This value is to be changed if multiple download sources are possible.

In line 6 the agent calculates which agents have the object with probability
higher than the constant K, estimated high willingness, and estimated low load.
This is done in the function return high probability agents, which receives the
probability set (PR ∈ S), the willingness estimation set (EOWT ∈ Ai), the max-
imum time threshold (maxt), the maximum communication threshold (maxc),
and the constant K (which is application-dependent). In the experiments, We ar-
bitrarily set the probabilities of PR to their extreme values (0 or 1), to evaluate
the boundaries of the technique, and maxt and maxc were ignored, as their use is
user-dependent.

Lines 9–12 begin the query process of the high probability agents. If the agent
does not have information about agents with probability higher than constant K
or its estimate of their willingness is too low or not up-to-date, it will continue
to the exploration phase (line 14–17). In the exploration phase it will select a
subset of the agents (the function return unknown probability agents returns the
four agents with unknown probability but with the highest willingness) among
the agents with a probability lower than constant K, to send it if they have the
object and are willing to send it. The agent updates its estimate of the willingness
of the agents in the team to help it in lines 10 and 16. If it requests an object
(line 10), then the estimated willingness is reduced by C. If it sends a message in
line 16, then the estimated willingness is reduced by c. These constants will need
fine-tuning depending on the application context.

With every cycle of the Algorithm REQUEST OBJECT (Algorithm 1), the
agent updates its estimates of the load of the other agents. With time, the estimates
decrease, to allow for changes occurring with the passage of time.

The second sub-process that the request process executes, collects the re-
sponses of the agents in the group to the query. It analyzes these responses in
order to update the probability that they have the object and its estimates of their
willingness to send it. This sub-process is responsible for terminating the search
once the object is found. This process is described in Algorithm 2). Note that
typically, the responses of the agents are either 0 (does not have the object) or 1
(has the object). Even if the responding agent does not have the object, it must
still respond, so that the requester knows not to ask it in the future (as opposed to
an agent that may have been too overloaded to respond).

We now turn to the PROCESS ANSWER algorithm (Algorithm 2). The agent
analyzes the received message. First it associates the message with a query that

45

Algorithm 1 REQUEST OBJECT
(input: agent Ai, search S constant K
output: boolean end)

1: high probability agents = {}
2: unknown probability agents = {}
3: while end ∈ S = false do
4: max agents to request ← return max agents to request(maxt ∈ S, maxc ∈ S)
5: while max agents to request > 0 do
6: high probability agents ← return high probability agents(K, PR ∈

S,EOWT ∈ Ai, maxt ∈ S, maxc ∈ S)
7: if |high probability agents| = 0 then
8: break
9: for all high probability agentsj ∈ high probability agents do

10: update estimation willing load(eowtj,i,−C)
11: ask obj ∈ S from high probability agentsj

12: wait CONSTANT
13: max agents to request ← max agents to request −

|high probability agents|
14: unknown probability agents ← return unknown probability agents(PR ∈

S, EOWT ∈ Ai, maxt ∈ S,maxc ∈ S)
15: for all unknown probability agentsj ∈ unknown probability agents do
16: update estimation willing load(eowtj,i,−c)
17: ask unknown probability agentsj if has obj ∈ S
18: return end ∈ S

Algorithm 2 PROCESS ANSWER
(input: agent Ai message)

1: search S ← get search(message)
2: responder ← get responder(message)
3: prresponder ∈ PR ← get response(message)
4: eowtresponder,i ← get estimation of willingness of responder(message)
5: if get obj(message) = true then
6: end ∈ S ← true
7: update willing(wti,responder,+C)
8: else
9: update willing(wti,responder,+c)

46

is sent (line 1), and determines the agent that sent the message (line 2). It then
updates the probability that the responder has the requested object and its estimate
of its willingness to send it (line 3–4). In line 5 it checks whether the object is
received. If so it terminates the search by setting end to true. Finally, the agent
updates its own willingness with respect to the responder. If the responder sent
the object it increases its willingness by C, and if the response is a message then
it increases the willingness by c. This process is executed in a thread, where the
responder gets from the agents the information about the probability that they have
the picture (line 3), so it knows which agent has the picture.

8.2 The Response Process
Once a request message for an object is received by an agent it should decide how
to respond to it. This decision is in the core of this process. The agent will take
into consideration two parameters: The current load of the agent (ld ∈ Ai), and
its willingness to assist the requester agent (WT ∈ Ai). These parameters will
determine whether to respond to the request at all, and what kind of response to
send.

Algorithm 3, ANALYZE REQUEST describes the response process. It is trig-
gered with a request message received by the agent. In line 1 the agent extracts the
requester agent from the request. It computes its regular load/willingness value in
respect to the requester (load willing for requester; line 2). Given an agent i, this
computation depends on i’s current load (ld ∈ Ai) and its willingness to assist
the requester (wti,requester). In the experiments, we used wti,requester − ld) as the
computation for load willing for requester.

If the load willing for requester value is greater than 0 , the agent checks that
the request is for an object, that it indeed has the object, and that its current value
of the load willing for requester is greater than the estimated cost to send the
object (line 5)1. If this condition is satisfied then it sends the objects (line 6),
otherwise it sends the requester a message that it has the object and also the
load willing for requester value in order to let the requester update its estimate
of the willingness of the agent to send the object (line 8).

However, if the value is smaller than or equal to 0 then the agent sends neither
the object nor any message that it has the object (line 13–14), i.e.., it does nothing.
Indeed, we would recommend reversing the test condition to in optimized versions
of the code. We are explicitly noting the choice to do nothing in the pseudo-code.

Finally, Ai updates its willingness in respect to the requester, if it sent an
object it reduces its willingness by C, and if it sent a message then it reduces the

1In the experiments, the cost was computed as the size of the object.

47

willingness by c. It also updates the estimation of the willingness of the requester
to send it objects in the future as follow: If it sent the requester an object then it
increases its estimation about the willingness of the requester by C, and if it sent
a message then it increases it by c.

Algorithm 3 ANALYZE REQUEST
(input: agent Ai, request)

1: requester ← get requester(request)
2: load willing for requester ← return load willing for requester(wti,requester, ld ∈

Ai)
3: if load willing for requester > 0 then
4: object ← get object(request)
5: if request = request for object ∧ have(object) ∧ load for requester ≥

return cost of sending(object) then
6: send(load willing for requester,object)
7: update willing(wti,requester,−C)
8: update estimation willing load(eowtrequester,i, +C)
9: else

10: send(load willing for requester,have(object))
11: update willing(wti,requester,−c)
12: update estimation willing load(eowtrequester,i, +c)
13: else
14: do nothing

The willingness thresholds are determined by the user (i.e., by the application
using the search processes). The update function for thresholds can also be deter-
mined by the user, i.e., the formula of how fast the willingness decreases/increases
(as well as the load) could be changed. For example, linearly or polynomially in
the number of requests, changing with time, etc. However this formula should
be known by all members of the group. The estimation thresholds of the others
are set according to initial value. The agent updates the estimation thresholds in
several ways:

1. Based on the data in the messages that the agent receives, when querying
for their state.

2. Based on expected decrease in load, as time passes.

3. Based on requests sent to other agents. For each request, we expect the load
to go up, and the willingness to go down.

48

8.3 A Complete Run through the Search Process
In Figure 8.1 we show the parallel time-lines illustrating a complete run of the
processes, for a single search. The search begins with specific query from the user.
The agent starts a new search process, by deciding on candidates who are likely
to respond; this is done based on their current willingness to respond (referred to
as EOWT, associated with each agent), which is inversely proportional to their
estimated load. Before it sends the message, it decreases the EOWT of the other
agents, as they are now estimated to be loaded with the query (and thus their
willingness to respond again will be lower). The other agent analyzes the request
according to its true willingness to help the agent (WT) and then it checks that it
has the object, updates the willingness and sends a response that it has the object
and its new state. The agent analyzes the response, updates its estimate of the
other agent and that it has the object. After that, the search process recognizes
that the other agent has the object and that it is able to send the object, it updates
the estimation (reduces it, because it is going to ask it for the object) and asks
the other agent to send him the object. The other agent analyzes the request and
according to the willingness, it decides to reduce the willingness and to send the
object and the state. The agent analyzes the response object and state, displays it
to the user, updates the estimate and terminates the search.

Figure 8.1: Search process time-lines.

49

8.4 Two variant algorithms
The following parameters can be set by the user, or using default values.

maxt determines the time limit place on the search. Smaller values will force
speedier search times.

maxc determines the maximum cost incurred by the search process through mes-
sages. Smaller values will force fewer messages (and thus lower costs).

By tweaking these two thresholds, one can create variants of the algorithm that
would be faster and fairer (lower maxt values), but try to send a greater number
of messages; or variants that would be cheaper in terms of messages sent (lower
maxc) values, but may therefore take longer to complete the search.

We distinguish these two parameters to allow fine control over the behav-
ior of the agent. The two parameters determine which agents will get into the
less probability agents and high probability agents lists. Setting both of the
thresholds to low values will yield the qualitative behavior of an agent easily giv-
ing up on searching, while refusing to send many messages out. Setting up both
of the thresholds to high values will yield behavior similar (in the limit) to brute-
force searching.

We will explore two qualitative variants of the algorithm:

Fast Walk (FAST). This variant has low maxt and high maxc. It thus prefers
cutting down search time, even at the cost of additional messages.

Cheap Walk (CHEAP.) This variant has higher maxt, and lower maxc. It thus
prefers sending fewer messages.

50

Chapter 9

Experimental Design and Analysis

9.1 Experiment Design
To evaluate the capabilities of our algorithm we used a simulation of a cellular
network. The basis for the simulation is provided by STRI. We have modified it
to account for the passage of time during transmissions. In addition, we simulate
users in closed groups (e.g., family or group of friends). Each user can have
different willingness thresholds, associated with different peers. Each user has a
database of pictures, and its estimates of others’ willingness.

The agent represents the user, and its goal is therefore to save search time
and communication costs. The agent has access to the picture database of the
user. We assume that the agent knows which pictures are approved for sharing
by the user. The agent knows all the other agents in the user’s closed group. We
additionally allow the agent access to the device itself, so it can know the load of
the communication and the level of the battery.

We contrast three algorithms: The FAST and CHEAP algorithms described
above, and the classic random walk (RAND) algorithm, which serves as a base-
line. In this implementation of RAND, the search agent queries four randomly-
chosen agents for the picture. It waits a fixed time duration for responses before
continuing to the next four random agents. The first agent that sends a positive
response is requested to transmit the picture. The search agent does not wait to
get the picture: It continues the query process until it receives an announcement
that the picture is being sent.

For the evaluation of the FAST and CHEAP algorithms, we set the initial
value to 10 (initialize the willingness thresholds and the estimation thresholds to
10). Updating the willingness as a result of sending a picture was set to +/- 1 (the
constant C):

1. Minus one (-1) for the sender.

51

2. Plus one (+1) for the receiver.

This means that the receiver will have more willingness to help the sender next
time and the sender will have less willingness to help the receiver next time. How-
ever, a request for information affects the willingness of the receiver, only at a
tenth of the effect of sending a picture, i.e., by +/- 0.1 (the constant c). In addi-
tion, each request for information increases the estimation about the load of the
receiver by one and each request for a picture increases by the average size of
the pictures. Assume eowtj,i is Ai’s estimation of agent Aj willingness threshold
(composed of its willingness and load), with respect to agent Ai. Assume that Ai

sends a request for information to Aj , then eowtj,i ← eowtj,i − 1, and if Ai sends
a request for a certain picture to Aj , then eowtj,i ← eowtj,i − Cpic, where Cpic is
an application-dependent constant. In the experiments, Cpic was set to the picture
size used. In practice, the value of Cpic should be determined experimentally, for
instance by setting it to the expected average picture size or to other values.

Other Independent Variables. We simulated requests for pictures of various
sizes, in various group sizes. The duplication of pictures within the group was
controlled as well.

Thus the independent variables included:

1. Number of agents in a group: 30, 50, 70, 100.

2. Size of pictures: 2, 4, 8 MB.

3. The probability that any one agent (independent of others) will have a cer-
tain picture from one general pool: 0.05, 0.1, 0.2, 0.4, where all the pictures
have the same probability. Note that due to the independence assumption,
these rates are uniform for the population of users. So setting up a rate of
0.4 probability of having a picture, implies that this picture will be present
in 40% of agents in the group.

We did not test all combinations, but instead always fixed one or two of the
values, while varying the others. The default fixed values were 30 and 70 for
the group size, 4MB for the message size, and 0.2 for the probability of having a
picture. See below for details. In order to simulate load requests in the network,
every user searches for four pictures in average per experiment. Each search is
conducted for one picture, and then in sequence another search can be performed.
Every configuration is repeated 30 times. This is done to control for confounding
effects due to simulation randomness.

52

Dependent Variables. We recorded the values for the following variables:

1. The time that it takes to retrieve a requested picture (in seconds).

2. The number of sent messages to retrieve a requested picture.

3. The agents that sent pictures.

By analyzing this data we could evaluate our algorithm in terms of efficiency
and fairness. The efficiency of the algorithm is measured by the time and the load
to acquire a picture. The fairness is measured by the distribution of sent pictures
among the group’s members. The more uniform the distribution is the more fair
the algorithm is.

We analyze experimental data to evaluate efficiency and fairness. The effi-
ciency of the algorithm is measured by the runtime and the load to achieve a
picture. The fairness is measured by the distribution of sent pictures among the
group’s members. The more uniform the distribution is, the fairer the algorithm
is.

The time to acquire a picture is measured from the moment the agent asks
for it, until the moment that it receives it in full (retrieve time). We compute the
average case, the average worst case and the average standard deviation, which is
here taken to be the average of the standard deviation of all the experiment in a
configuration. As agents send pictures one after the other, the standard deviation
is high relative to the average. Average maximum retrieve time is computed as the
average over the maximum time measured for each experiment in a configuration.

The load of acquiring a picture is measured as the number of messages sent
until finding an agent that has the picture and will transmit it. The load is marked
number of checking (number of queries) in the graphs below. We similarly com-
pute the average load, the average maximum load, and the average load standard
deviation.

Fairness is measured by average standard deviation of sending pictures (stan-
dard deviation of sending Pictures).It represents the distribution of sent pictures
among the group’s members. Low standard deviation of sending Pictures means
high fairness, as the transmission load across agents is closer to the average.

In general, the results show that the FAST and CHEAP algorithms are fairer
than the random walk (RAND) algorithm and often faster. The FAST algorithm is
always faster, but is also more expensive in terms of query messages. The CHEAP
algorithm is less fair than FAST, but still has better retrieval time than RAND in
most cases, and often uses less messages than RAND. The exceptions take place
in environments with few agents and with rare pictures. Here, RAND uses less
messages, but it will always take more time to retrieve them, in comparison to
CHEAP or FAST.

53

9.2 Results and Analysis

9.2.1 Influence of Group Size
We first discuss experiments addressing the influence of group size on the perfor-
mance of the algorithms. In all configurations here, the probability an agent will
have a certain picture from one general pool is 0.2, and the picture size was set to
4MB.

Figure 9.1 shows that in all group sizes, the FAST algorithm used more mes-
sages for retrieving pictures. The difference between the FAST algorithm and the
other algorithms is significant (paired t-test, p < 0.0001) and pronounced (more
then 53%). The FAST algorithm used many messages to evaluate the state of the
others. Up until 70 agents the amounts of messages increase because there are
more agents to evaluate, with the goal of finding an available agent, where the
meaning of available here is an agent that has the picture with high willingness to
send it. Above 70 agents this mission is easier for two reasons: (1) there are more
available agents; and (2) more agents per every query can help a querying agent
evaluate their state.

For larger groups (70 and above), there is no significant difference between
the algorithms. For small groups (less then 70 agents) the CHEAP algorithm
used more messages than RAND. But the difference between the CHEAP and
the RAND algorithms is significant (paired t-test, p < 0.003) but not pronounced
(less then 6%).

Figure 9.3 and 9.2 also demonstrate that the FAST algorithm significantly used
(paired t-test, p < 0.001) more messages to retrieve a requested picture. Figure 9.2
presents the average worst case (maximum time) for retrieving one picture over 30
trials. In the worst case there is no significant different between the CHEAP and
the RAND algorithms. The difference between 70 agents and 100 agents in the
FAST algorithm is not significant, which means that as the number of agents in
the group increases, the worst case also increases. In figure 9.3 there is significant
difference (paired t-test, p < 0.02) between CHEAP and the RAND algorithms
only for a group of 30.

Figure 9.4 contrasts the fairness of the algorithms. As the standard deviation is
lower, the distribution of the load of sending pictures is more uniform, and there-
fore fairer. There is significant difference (paired t-test, p < 0.0001) between all
the algorithms, with FAST being fairer than CHEAP, which is fairer than RAND.
Indeed, the fairness of the RAND algorithm does not change in a significant way
up until 70 agents. The reduction between 70 to 100 agents in the RAND algo-
rithm is significant (paired t-test, p < 0.0001). It shows that in larger groups,
randomizing works better than in small groups. There is also significant (paired
t-test, p < 0.004) reduction in standard deviation (i.e., an increase in fairness)

54

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 28

 30 40 50 60 70 80 90 100

N
um

 o
f C

he
ck

 M
sg

’s

Group Size

RAND
FAST

CHEAP

Figure 9.1: A comparison between the average number of check messages as a
function of group size

 20

 30

 40

 50

 60

 70

 80

 90

 30 40 50 60 70 80 90 100

M
A

X
 C

he
ck

 M
sg

’s

Group Size

RAND
FAST

CHEAP

Figure 9.2: A comparison between the average maximum number of check mes-
sages as a function of group size

55

 0

 5

 10

 15

 20

 25

 30

 30 40 50 60 70 80 90 100

S
td

.D
ev

 o
f C

he
ck

 M
sg

’s

Group Size

RAND
FAST

CHEAP

Figure 9.3: A comparison between the average standard deviation of querying as
a function of group size

between 30 to 50 agents in the FAST algorithm. For these group sizes, FAST can
easily find agents that (1) have the picture and that (2) are not utilized unfairly. In
contrast, the CHEAP algorithm increases its standard deviation, because it places
heavier emphasis on minimizing the amount of messages, than on fairness.

A comparison of Figure 9.4 to Figure 9.5 reveals that algorithms that are fairer
retrieve pictures faster. Figure 9.5 validates the hypothesis that as the number of
agents in group increase it takes more time in average to retrieve pictures, because
there are more cases where one agent sent many pictures and therefore delivered
them slower. This explains the correlation between fairness and retrieval time.
Fairness means that each agent sent lees pictures and therefore the retrieval is
faster (less pictures that the sender sent in parallel). In Figure 9.7 and 9.6 the
significant difference between the algorithms shows that in the worst case and in
all the range of deviation, the relationship between algorithms remains invariant.

56

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 30 40 50 60 70 80 90 100

S
td

.D
ev

 o
f S

en
di

ng
 P

ic
tu

re
s

Group Size

RAND
FAST

CHEAP

Figure 9.4: A comparison between the average standard deviation of sending pic-
tures as a function of group size. Lower standard deviation implies greater fair-
ness.

57

 40

 45

 50

 55

 60

 65

 70

 75

 30 40 50 60 70 80 90 100

R
et

rie
ve

 T
im

e

Group Size

RAND
FAST

CHEAP

Figure 9.5: A comparison between the average retrieval time as a function of
group size

 100

 150

 200

 250

 300

 350

 30 40 50 60 70 80 90 100

M
A

X
 R

et
rie

ve
 T

im
e

Group Size

RAND
FAST

CHEAP

Figure 9.6: A comparison between the average maximum retrieval time as a func-
tion of group size

58

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 30 40 50 60 70 80 90 100

S
td

.D
ev

 o
f R

et
rie

ve
 T

im
e

Group Size

RAND
FAST

CHEAP

Figure 9.7: A comparison between the average standard deviation of retrieval time
as a function of group size

59

9.2.2 Influence of Pictures Size
We now turn to examine the influence of the picture size. In all the configuration
reported in this section, the probability of having a picture was 0.2. We examine
two settings for the group size: Large groups (70 agents), and small groups (30
agents). Both are evaluated with picture sizes of 2, 4, and 8MB.

The size of the picture is not supposed to influence the number of messages
that it takes to retrieve it. However, in our algorithm we used messages to also
evaluate the state of other agents. Therefore we might use more messages, as
larger pictures cause the FAST algorithm to more carefully consider whom to
download from, as explained below.

Large Groups

Figure 9.8 shows that the the RAND and CHEAP algorithms essentially maintain
constant (and equal) numbers of queries across picture sizes. The reason for the
similarity is that both stop searching once they find an agent that has the picture.
The CHEAP algorithm may sometimes continue querying looking for an agent
that is also available, but in larger groups this is easier to find, and thus there are
no difference in performance between the two algorithms.

In contrast, the FAST algorithm does not stop the search until it finds an avail-
able agent that has the picture and that can transmit it quickly (i.e., is not already
engaged in transmission). As the size of pictures increases, the agents that send
them are busier, and therefore it takes more time to find an available agent. Fig-
ures 9.9 and 9.10 describe the average maximum number of queries sent, and the
average standard deviation, of the number of messages sent to retrieve a requested
picture.

The size of the picture influences the fairness, and therefore the the retrieval
time. As the size of the pictures increases, the difference between the number of
the pictures that each agent sends is more significant. Figure 9.11 shows a slight,
but significant (paired t-test, p < 0.04) increase in the average standard deviation
of the picture transmission in the FAST and CHEAP algorithms. The RAND
algorithm is not influenced in a significant way, from different sizes of pictures.

The significant influence of the picture sizes on the retrieval time is obvious,
as larger pictures take longer to transmit. As the size increases it takes more
time to transmit (retrieve) the pictures. However, the increased fairness makes our
algorithms (FAST and CHEAP) faster than the RAND algorithm. In figures 9.12
, 9.13 and 9.14 it seems that the gap between the algorithms increase as the size
of the pictures increase. The FAST algorithm is faster than the CHEAP algorithm
because the requesting agent uses more messages in order to find the agents that
are most willingness to transmit pictures, and so it receives the object faster.

60

 5

 10

 15

 20

 25

 30

 35

 40

 2 3 4 5 6 7 8

N
um

 o
f C

he
ck

 M
sg

’s

Pictures Size

RAND
FAST

CHEAP

Figure 9.8: A comparison between the average number of check messages as a
function of pictures size in big group

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 2 3 4 5 6 7 8

M
A

X
 C

he
ck

 M
sg

’s

Pictures Size

RAND
FAST

CHEAP

Figure 9.9: A comparison between the average maximum number of check mes-
sages as a function of pictures size in big group

61

 0

 5

 10

 15

 20

 25

 30

 35

 2 3 4 5 6 7 8

S
td

.D
ev

 o
f C

he
ck

 M
sg

’s

Pictures Size

RAND
FAST

CHEAP

Figure 9.10: A comparison between the average standard deviation of querying as
a function of pictures size in big group

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 2 3 4 5 6 7 8

S
td

.D
ev

 o
f S

en
di

ng
 P

ic
tu

re
s

Pictures Size

RAND
FAST

CHEAP

Figure 9.11: A comparison between the average standard deviation of sending
pictures as a function of pictures size in big group

62

 20

 40

 60

 80

 100

 120

 140

 160

 2 3 4 5 6 7 8

R
et

rie
ve

 T
im

e

Pictures Size

RAND
FAST

CHEAP

Figure 9.12: A comparison between the average retrieval time as a function of
pictures size in big group

 0

 100

 200

 300

 400

 500

 600

 700

 2 3 4 5 6 7 8

M
A

X
 R

et
rie

ve
 T

im
e

Pictures Size

RAND
FAST

CHEAP

Figure 9.13: A comparison between the average maximum retrieval time as a
function of pictures size in big group

63

 0

 20

 40

 60

 80

 100

 120

 2 3 4 5 6 7 8

S
td

.D
ev

 o
f R

et
rie

ve
 T

im
e

Pictures Size

RAND
FAST

CHEAP

Figure 9.14: A comparison between the average standard deviation of retrieval
time as a function of pictures size in big group

64

Small Groups.

The results in small groups are similar to those with large groups, but with a few
notable differences, due to the size of the group.

First, while the number of queries remains low (and almost constant) for the
CHEAP and RAND algorithms, there is still a difference between CHEAP and
RAND, unlike in the case of bigger groups. The cause for this is that it is more
difficult to find an available agent in a smaller group (even by the more relaxed
criteria used by CHEAP). Thus CHEAP no longer stops querying after finding any
agent that has the picture. Instead, it needs to continue querying a bit longer—and
the difference with RAND becomes more pronounced (Figure 9.15). Above the
size of 4MB, there is a significant (paired t-test, p < 0.04) difference between
the RAND and the CHEAP algorithms. As the size increases, the difference also
increases. Figures 9.16 and 9.17 describe the average maximum and the average
standard deviation of queries sent until a picture was retrieved.

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 2 3 4 5 6 7 8

N
um

 o
f C

he
ck

 M
sg

’s

Pictures Size

RAND
FAST

CHEAP

Figure 9.15: A comparison between the average number of check messages as a
function of pictures size in small group

The results for fairness (Figure 9.18) are similar to the results for the large
groups. However, the RAND algorithm shows a slight increase in standard devi-
ation (reduced fairness), as compared to the larger groups. It does not reach the
level of fairness achieved in the large groups because there are simply less agents
to choose from.

65

 20

 25

 30

 35

 40

 45

 50

 55

 60

 2 3 4 5 6 7 8

M
A

X
 C

he
ck

 M
sg

’s

Pictures Size

RAND
FAST

CHEAP

Figure 9.16: A comparison between the average maximum number of check mes-
sages as a function of pictures size in small group

 4

 6

 8

 10

 12

 14

 16

 18

 2 3 4 5 6 7 8

S
td

.D
ev

 o
f C

he
ck

 M
sg

’s

Pictures Size

RAND
FAST

CHEAP

Figure 9.17: A comparison between the average standard deviation of querying as
a function of pictures size in small group

66

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 2 3 4 5 6 7 8

S
td

.D
ev

 o
f S

en
di

ng
 P

ic
tu

re
s

Pictures Size

RAND
FAST

CHEAP

Figure 9.18: A comparison between the average standard deviation of sending
pictures as a function of pictures size in small group

The results for the retrieval time are similar to the results in the large groups.
See Figures 9.19, 9.20 and 9.21.

67

 20

 40

 60

 80

 100

 120

 140

 2 3 4 5 6 7 8

R
et

rie
ve

 T
im

e

Pictures Size

RAND
FAST

CHEAP

Figure 9.19: A comparison between the average retrieval time as a function of
pictures size in small group

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 2 3 4 5 6 7 8

M
A

X
 R

et
rie

ve
 T

im
e

Pictures Size

RAND
FAST

CHEAP

Figure 9.20: A comparison between the average maximum retrieval time as a
function of pictures size in small group

68

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 2 3 4 5 6 7 8

S
td

.D
ev

 o
f R

et
rie

ve
 T

im
e

Pictures Size

RAND
FAST

CHEAP

Figure 9.21: A comparison between the average standard deviation of retrieval
time as a function of pictures size in small group

69

9.2.3 Influence of Picture Availability
We now turn to examine the influence of the picture availability. In all the configu-
ration reported in this section, the size of the pictures is fixed at 4MB. We examine
two settings for the group size: Large groups (70 agents), and small groups (30
agents). Both are evaluated with probability of 0.05 – 0.4 for having a picture.

Large Groups

Figure 9.22 shows how the percentage of agents that had a certain picture influence
the average number of needed messages to retrieve the picture. As the percentage
increases, more agents have each wanted picture and therefore it less messages
are needed to find a source for the picture.

The FAST algorithm used significantly (paired t-test, p < 0.001) more mes-
sages to achieve fairness, but it is faster. Up until availability of 20%, the CHEAP
algorithm used significantly (paired t-test, p < 0.001) more messages than the
RAND algorithm. The reason for this inequality is that when availability is low,
many agents are requesting a few pictures, that only a few agents have. The agents
that owned these rare pictures are therefore busier, and their willingness to con-
tribute is low. Since the CHEAP algorithm estimates this decrease (though not to
the same degree as FAST), it only contacts these agents as a last resort. Figures
9.23 and 9.24 support this explanation.

Availability influences fairness significantly (Figure 9.25). There is significant
difference (paired t-test, p < 0.0001) between all the algorithms, where FAST is
fairer than CHEAP, and CHEAP is fairer than RAND. As availability increases,
there are more agents that want a picture, therefore more sources to choose from,
and thus it is possible to get fairer decisions. Above a probability of 20%, there
is high probability to find agents that have the picture among the first four agents
that are queried, and thus the fairness of the RAND algorithm remains constant.
Note, however, that the performance of FAST and CHEAP is still superior.

Figures 9.26, 9.27 and 9.28 show similar relationship between the algorithms
in the retrieval time. FAST is faster than CHEAP, which is faster than RAND.

70

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 5 10 15 20 25 30 35 40

N
um

 o
f C

he
ck

 M
sg

’s

Picture Existence Percentage

RAND
FAST

CHEAP

Figure 9.22: A comparison between the average number of check messages as a
function of percentage in big group

 10

 20

 30

 40

 50

 60

 70

 80

 90

 5 10 15 20 25 30 35 40

M
A

X
 C

he
ck

 M
sg

’s

Picture Existence Percentage

RAND
FAST

CHEAP

Figure 9.23: A comparison between the average maximum number of check mes-
sages as a function of percentage in big group

71

 0

 5

 10

 15

 20

 25

 30

 5 10 15 20 25 30 35 40

S
td

.D
ev

 o
f C

he
ck

 M
sg

’s

Picture Existence Percentage

RAND
FAST

CHEAP

Figure 9.24: A comparison between the average standard deviation of querying as
a function of percentage in big group

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5 10 15 20 25 30 35 40

S
td

.D
ev

 o
f S

en
di

ng
 P

ic
tu

re
s

Picture Existence Percentageage

RAND
FAST

CHEAP

Figure 9.25: A comparison between the average standard deviation of sending
pictures as a function of percentage in big group

72

 40

 50

 60

 70

 80

 90

 100

 110

 5 10 15 20 25 30 35 40

R
et

rie
ve

 T
im

e

Picture Existence Percentageage

RAND
FAST

CHEAP

Figure 9.26: A comparison between the average retrieval time as a function of
percentage in big group

 50

 100

 150

 200

 250

 300

 350

 400

 450

 5 10 15 20 25 30 35 40

M
A

X
 R

et
rie

ve
 T

im
e

Picture Existence Percentage

RAND
FAST

CHEAP

Figure 9.27: A comparison between the average maximum retrieval time as a
function of percentage in big group

73

 10

 20

 30

 40

 50

 60

 70

 80

 90

 5 10 15 20 25 30 35 40

S
td

.D
ev

 o
f R

et
rie

ve
 T

im
e

Picture Existence Percentage

RAND
FAST

CHEAP

Figure 9.28: A comparison between the average standard deviation of retrieval
time as a function of percentage in big group

74

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 5 10 15 20 25 30 35 40

N
um

 o
f C

he
ck

 M
sg

’s

Picture Existence Percentage

RAND
FAST

CHEAP

Figure 9.29: A comparison between the average number of check messages as a
function percentage in small group

Small Groups

Figure 9.29 shows how the percentage of agents that had a certain picture influ-
ences the average number of needed messages to retrieve the picture. As the
percentage increases, more agents have the requested picture, and therefore it
takes less messages to find an available agent. The FAST algorithm used sig-
nificantly (paired t-test, p < 0.001) more messages, but it is faster and fairer. Up
until an availability of 40% the CHEAP algorithm used significantly (paired t-test,
p < 0.03) more messages than the RAND algorithm, as is the case in the larger
groups.

The difference between the influences of availability in small and large groups
is due to the fact that in small groups, there is need of fewer messages to find
who has a given picture. In contrast, in large groups the influence of one agent on
the load of the others is less pronounced, because there are more agents that can
query for pictures at parallel. The same reasoning accounts for the differences in
retrieval times between large and small groups.

Figures 9.30 and 9.31 show that the RAND and CHEAP algorithms maintain
a consistent relationship (compare to Figure 9.29). Surprisingly, the behavior of
the FAST algorithm is seemingly in some discrepancy with its behavior in Figure
9.29 (in the large group experiments, there was no discrepancy). The maximum

75

 10

 15

 20

 25

 30

 35

 40

 45

 50

 5 10 15 20 25 30 35 40

M
A

X
 C

he
ck

 M
sg

’s

Picture Existence Percentage

RAND
FAST

CHEAP

Figure 9.30: A comparison between the average maximum number of check mes-
sages as a function of percentage in small group

and the standard deviation rise while the average numbers of messages decrease.
The reason for this is that with increased availability, there are more agents to
query. For the average case, this helps finding good candidates faster. However,
in the worst case, the number of candidates to be contacted is larger.

Figure 9.32 shows that influence of availability on fairness is significant. There
is significant difference (paired t-test, p < 0.0001) between all the algorithms,
where the FAST is fairer than CHEAP and RAND. As availability increases, the
number of potential available sources increases, and thus greater opportunity for
fair decision. Under percentages of 10%, there is low probability to find agents
that have the pictures in a small group, and the RAND algorithm’s fairness re-
mains essentially constant. FAST and CHEAP are fairer still, however.

Similar relationship is found for the influence of availability on retrieval time.
See Figures 9.33, 9.34 and 9.35. Also contrast with similar findings for the large
groups.

9.2.4 Offline Agents
Up to this point, we have dealt with classic closed groups, where all agents are
online and available for communications. In this section we explore the perfor-
mance of the different algorithms when some of the agents are offline, and are not

76

 0

 2

 4

 6

 8

 10

 12

 14

 5 10 15 20 25 30 35 40

S
td

.D
ev

 o
f C

he
ck

 M
sg

’s

Picture Existence Percentage

RAND
FAST

CHEAP

Figure 9.31: A comparison between the average standard deviation of querying as
a function of percentage in small group

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 5 10 15 20 25 30 35 40

S
td

.D
ev

 o
f S

en
di

ng
 P

ic
tu

re
s

Picture Existence Percentage

RAND
FAST

CHEAP

Figure 9.32: A comparison between the average standard deviation of sending
Pictures as a function of percentage in small group

77

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 5 10 15 20 25 30 35 40

R
et

rie
ve

 T
im

e

Picture Existence Percentageage

RAND
FAST

CHEAP

Figure 9.33: A comparison between the average retrieval time as a function of
percentage in small group

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

 5 10 15 20 25 30 35 40

M
A

X
 R

et
rie

ve
 T

im
e

Picture Existence Percentage

RAND
FAST

CHEAP

Figure 9.34: A comparison between the average maximum retrieval time as a
function of percentage in small group

78

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 5 10 15 20 25 30 35 40

S
td

.D
ev

 o
f R

et
rie

ve
 T

im
e

Picture Existence Percentage

RAND
FAST

CHEAP

Figure 9.35: A comparison between the average standard deviation of retrieval
time as a function of percentage in small group

available (though without the knowledge of their peers).
To do this, we arbitrarily disabled 20% of the agents, such that they were part

of the groups, but were offline (could not communicate with their peers). We
fixed the size of the pictures to 4MB, the size of the group to 30 agents, and the
availability to 20%. This configuration was repeated 30 times. We compared the
results to the same group but without offline agents.

RAND FAST CHEAP
Average Std.Dev of Sending Pictures 3.06 1.23 1.8

Online
Average Std.Dev of Sending Pictures 3.4 2.02 2.34

20% Offline
Ratio Between Them 0.9 0.6 0.76

Table 9.1: Differences between Average Std.Dev of Sending Pictures

Table 9.1 shows the fairness results for the different algorithms, under both
settings. FAST and CHEAP were always fairer. However, the ratio shows that
their fairness decreased in the offline settings.

The average retrieval time (Table 9.2) is always faster in our algorithms, con-

79

RAND FAST CHEAP
Average Retrieve Time 66.67 47.38 52.89

Online
Average Retrieve Time 72.57 47.75 52.08

20% Offline
Ratio Between Them 0.91 0.99 1.01

Table 9.2: Differences between Average Retrieve Time

sistently with their being fairer. Surprisingly, it can be seen from the ratio that
the retrieval time did not change when less agents could help in each search. The
reason for this is that while less agents could respond to queries, less agents sent
out queries.

RAND FAST CHEAP
Average Num of Check Msg’s 6.9 19.56 7.8

Online
Average Num of Check Msg’s 8 37.02 13.9

20% Offline
Ratio Between Them 0.86 0.52 0.56

Table 9.3: Differences between Average Num of Check Msg’s

The average number of queries sent (Table 9.3) is always higher in our algo-
rithms, as expected. It can be seen from the ratio that the number of queries is
influenced drastically when 20% of the agents are offline. Indeed, the number
of queries is doubled. Figure 9.3 supports this: It shows that as the group size
decreases, the gap between our algorithms to RAND increases. In this case our
algorithms detect that less agents are online and behave like a smaller group.

RAND FAST CHEAP
Total Num of unnecessary Check Msg’s 787.9 1930 877.4

Online
Total Num of unnecessary Check Msg’s 712.8 1582.1 811.5

20% Offline
Ratio Between Them 1.1 1.21 1.08

Table 9.4: Differences between Total Num of unnecessary Check Msg’s

Finally, in Table 9.4 we measured the messages that were sent to the offline
agents, in the two settings. The difference shown is due to two factors: The fact
that the offline agents did not send messages to themselves, and the fact that they

80

did not respond to the online agents’ queries. It seems that a pronounced reduction
in ratio is similar for all three algorithms.

As can be seen in Table 9.3, our algorithms send more messages (twice) in
general, but Table 9.4 shows that they do not send them to the offline agents. So
in fact, CHEAP and FAST send more messages but not to the offline agents, i.e.,
they recognize them as unavailable (though they classify them as too busy, not as
offline).

81

Chapter 10

Discussion and summary

We describe a solution to iterative search problems, using an example of virtual
album application. The environment of our problem assumes there are others
that will agree to help. And that we will agree to help others. This environment
is a classic example for shared activity. We propose a solution for the general
problem, and demonstrate it for the virtual album problem. We suggest a solution
of distributed decision-making. The decision of an agent on whom to contact is
based on the estimated load of others and on the other’s willingness to help it.
Similarly, an agent decides how to react according to load and willingness to the
requester.

We evaluate the behavior of our algorithm in a simulation environment and
compare it to the random walk algorithm. Results show an advantage for our
algorithm regarding the random walk algorithm in most various environmental
settings. These advantages are expressed in: retrieving speed of wanted objects
and fairness task’s distribution. Our algorithm is always fairer than the random
walk algorithm and therefore faster. If the user would try to get the picture fast
through our algorithm it would always cost him more messages. If the user wants
to retrieve in a cheap way but still to keep on fairness, in most cases it would use
less or an equal number of messages regardless of the random walk algorithm.

As future work, we suggest to apply additional methodology of Preliminary
work. Preliminary work is a heuristic way to reduce uncertainty. Agents evaluate
probability according to the model which according to it it acts, the work that
agents will do before they will know the expectations (which information they
will want to get or to contribute).

There are a few approaches that agents can adopt for Preliminary work. These
approaches are depend on the environment and on the group members commit-
ment. The main idea of this stage is to spread the agents profiles and to collect
data on other agents’ profiles. Basically, there are only two actions that agents can
do to spread their profiles before they know their task:

82

• Send data on your profile to other agents.

• Ask about missing information on other agents profile.

In any case, there is always an option to combine between those actions. The
decision which kind of message to send depends on the environment.

Additional future research extensions concern forecasting of what other users
would like to receive in the further. There are two options, send them it before
they ask for it or send them it before that they even know about it.

83

Bibliography

[1] K. Battarbee. Defining co-experience. In DPPI ’03: Proceedings of the 2003
international conference on Designing pleasurable products and interfaces,
pages 109–113, New York, NY, USA, 2003. ACM Press.

[2] D. S. Bernstein, R. Givany, N. Immerman, and S. Zilberstein. The complex-
ity of decentralized control of markov decision processes. MOR: Mathemat-
ics of Operations Research, 27, 2002.

[3] G. de Veciana and X. Y. Fairness. Fairness, incentives and performance in
peer-to-peer networks. Forty-first Annual Allerton Conference on Commu-
nication, Control and Computing, Monticello, IL,, 2003.

[4] V. J. Derlega and J. Grzelak. Cooperation and Helping Behavior Theoreis
and Research. Academic press, 1982.

[5] C. V. Goldman and S. Zilberstein. Optimizing information exchange in co-
operative multi-agent systems. In AAMAS, pages 137–144. ACM, 2003.

[6] B. J. Grosz and S. Kraus. Collaborative plans for complex group action. AIJ,
86(2):269–357, 1996.

[7] M. Hadad, G. Armon-Kest, G. A. Kaminka, and S. Kraus. Supporting col-
laborative activity. In AAAI-05, 2005.

[8] IRST. Personal Experience with Active Cultural Heritage Home Page.
http://peach.itc.it/home.html, 2005.

[9] N. R. Jennings. Controlling cooperative problem solving in industrial multi-
agent systems using joint intentions. Artificial Intelligence, 75(2):1–46,
1995.

[10] G. A. Kaminka and I. Frenkel. Integration of coordination mechanisms in
the BITE multi-robot architecture. pages 2859–2866, 2007.

84

[11] D. Kinny, M. Ljungberg, A. S. Rao, E. Sonenberg, G. Tidhar, and E. Werner.
Planned team activity. In C. Castelfranchi and E. Werner, editors, Artificial
Social Systems, Lecture Notes in Artificial Intelligence (LNAI-830), Amster-
dam, The Netherlands, 1992. Springer Verlag.

[12] A. K. H. Leung and Y.-K. Kwok. On topology control of wireless peer-
to-peer file sharing networks: Energy efficiency, fairness and incentive. In
WOWMOM, pages 318–323. IEEE Computer Society, 2005.

[13] H. Levesque, P. Cohen, and J. Nunes. On acting together. In Proceedings of
the National Conference on Artificial Intelligence (AAAI-90), pages 94–99,
Boston, MA, 1990.

[14] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and replication in
unstructured peer-to-peer networks. Proceedings of the 16th International
Conference on Supercomputing (ICS-02), pages 84–95, June 22–26 2002.

[15] W. Müller and A. Henrich. Fast retrieval of high-dimensional feature vectors
in p2p networks using compact peer data summaries. In MIR ’03: Proceed-
ings of the 5th ACM SIGMM international workshop on Multimedia infor-
mation retrieval, pages 79–86, New York, NY, USA, 2003. ACM Press.

[16] R. Nair and M. Tambe. Hybrid bdi-pomdp framework for multiagent team-
ing. Journal of AI Research (JAIR), 23:367–420, 2005.

[17] K. Noervaag, C. Doulkeridis, and M. Vazirgiannis. Taxonomy caching: A
scalable low-cost mechanism for indexing remote contents in peer-to-peer
systems. In ICPS’06: Proceedings of IEEE International Conference on
Pervasive Services, 2006.

[18] O. Stock, C. Rocchi, M. Zancanaro, and T. Kuflik. Discussing groups in a
mobile technology environment. In Proceedings of the Multiusers Intelligent
Interactive Interfaces Workshop, 2005.

[19] S. Talman, M. Hadad, Y. Gal, and S. Kraus. Adapting to agents’ personalities
in negotiation. In AAMAS ’05: Proceedings of the fourth international joint
conference on Autonomous agents and multiagent systems, pages 383–389,
New York, NY, USA, 2005. ACM Press.

[20] M. Tambe. Toward flexible teamwork. Journal of AI Research, 7:83–124,
1997.

[21] M. Tan. Multi-agent reinforcement learning: Independent vs. cooperative
agents. In Proceedings of the Tenth International Conference on Machine
Learning, pages 330–337, June 1993.

85

[22] R. W. Toseland and R. F. Rivas. An Introduction to Group Work Practice.
Allyn and Bacon, 2001.

[23] E. Woodrow and W. R. Heinzelman. Spin-it: a data centric routing protocol
for image retrieval in wireless networks. In ICIP (3), pages 913–916, 2002.

[24] Y. Yang, R. Dunlap, M. Rexroad, and B. F. Cooper. Performance of full
text search in structured and unstructured peer-to-peer systems. IEEE IN-
FOCOM, Barcelona, 2006.

86

