
Gamebots: A 3D Virtual World Test-Bed
For Multi-Agent Research

Rogelio Adobbati, Andrew N. Marshall,
Andrew Scholer, Sheila Tejada

Information Sciences Institute
University of Southern California

4676 Admiralty Way
Marina del Rey, CA 90292

{rogelio, amarshal, ascholer, tejada} @isi.edu

Gal Kaminka, Steven Schaffer, Chris Sollitto
Computer Science Department

Carnegie Mellon University

 Pittsburgh, PA 15213

galk@cs.cmu.edu
{srs3, cs3} @andrew.cmu.edu

ABSTRACT
This paper describes Gamebots, a multi-agent system
infrastructure derived from an Internet-based multi-player video
game called Unreal Tournament. The game allows characters to
be controlled over client-server network connections by feeding
sensory information to client players (humans and agents). Unlike
other standard test-beds, the Gamebots domain allows both human
players and agents, or bots, to play simultaneously; thus providing
the opportunity to study human team behavior and to construct
agents that play collaboratively with humans. The Gamebots
system provides a built-in scripting language giving interested
researchers the ability to create their own multi-agent tasks and
environments for the simulation.

Keywords
Multiple Agent Systems, Agent Infrastructure, Multi-Agent
Teamwork, Human-Agent Interaction, Virtual World Simulation,
Video Game Bot.

1. INTRODUCTION
Standard AI test-beds have often been successfully used in the
past to promote research, as they facilitate controlled empirical
experimentation, comparative evaluations, and quantitative
measurements. Problems like chess, and test environments like
Phoenix [2] and RoboCup [6], have resulted in significant
improvements to the sciences of artificial intelligence and multi-
agent systems. Indeed, the usefulness of having a complex,
dynamic multi-agent environment as a research infrastructure has
been pointed out explicitly in [5] and [3].

However, most complex, dynamic, multi-agent research
environments require considerable efforts to build and maintain,
and therefore, there is a general scarcity of such infrastructures
available for research use. Most existing infrastructures are
designed to support specific tasks under a single environment, and
rarely support human testing and comparison.

To address these difficulties, we have been developing a new type
of research infrastructure. Gamebots is a project started at the
University of Southern California’s Information Sciences
Institute, and jointly developed by Carnegie Mellon University.
The project seeks to turn a fast-paced multi-agent interactive
computer game into a domain for research in artificial intelligence
(AI) and multi-agent systems (MAS). It consists of a
commercially developed, complex, and dynamic game engine,
which is extended and enhanced to provide the important
capabilities required for research.

Gamebots provides several unique opportunities for multi-agent
and artificial intelligence research previously unavailable with
other proposed test-beds:

• It supports multiple tasks. The system is currently distributed
with a series of multi-agent competitive tasks including
Capture the Flag and King of the Hill derivatives.

• It can be extended with a built-in scripting language so
agents can be faced with multiple, ever-changing tasks, to
support continuous long-term research.

• It allows for the creation of multiple environments. In order
to appeal to a wider user community we have developed a
new environment that has a magical wizards theme (see
figure 1).

• It supports humans-as-agents, thus allowing multi-agent
researchers to study human problem solving, and investigate
scenarios involving human-AI competitions and human-AI
collaboration.

• It is publicly available both in the U.S. and overseas.
http://www.planetunreal.com/Gamebots

This paper is organized as follows. Section 2 provides background
and motivation for Gamebots. Section 3 describes the main design
and implementation concepts in Gamebots. Section 4 describes
several of our existing clients, and Section 5 concludes.

2. BACKGROUND AND MOTIVATION
Some of the earlier work on MAS infrastructures lead to ModSAF
[1], a system for military training based on distributed simulations
using computer generated military forces. The software agents, in
addition to human participants, made up these forces (fixed or
rotary wing pilots, tank drivers, etc.) and had to act in a
coordinated fashion that involved team play, mission planning,
and reactive behavior. Although commercially developed, this

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Agents ’01, May-June, 2001, Montreal, Canada.
Copyright 2001 ACM 1-58113-000-0/00/0000…$5.00.

system is not broadly available which has prevented a larger
participation by the research community.

More recently, the RoboCup initiative [7] has served as a growing
software infrastructure for a wide variety of research in multi-
agent systems. The main component of this framework is the
RoboCup Soccer Server, a multi-agent environment that supports
two teams of simulated soccer agents playing against each other in
real time (with each agent running a client connected to the
server) [6]. The rules of the game and the main task (score more
goals than the opponent) cannot be changed, which can lead to the
development of soccer-specific techniques that may not be
reusable for other tasks or environments.

The agent “Quakebot” [9] is designed to play the popular first-
person shooter video game Quake against human players. This
agent (or “bot”) is based on Soar [10], and uses dynamical
hierarchical task decomposition to organize its knowledge and
actions. It incorporates predictive capabilities and learning [8].
The Quakebot agent is currently limited to single agent tasks.

Figure 1: A screenshot of Gamebots’
wizards and bubble wands.

At the Gamebots project, we are seeking to turn an interactive
multi-player video game into a domain for a variety of research in
artificial intelligence. The project aims to construct a new
standard test-bed for research in multi-agent systems. When
deciding on what particular video game implementation to use for
the multi-agent framework, we required that the game be
client/server based (allowing users be able to connect remotely)
and that it support several players (either human or agent) playing
individually or in teams. We needed the game to be easily
modifiable in order to add different types of tasks or change the
API, and that it have already a large user base. Our choice was a
commercial game engine, Epic’s Unreal Tournament (UT):

• UT consists of a fast, dynamic, and complex 3D simulation
engine, widely available at little or no cost (a stand-alone
server -- http://www.unrealtournament.com/downloads), and
with a large user base.

• It is a robust environment, stress tested by thousands of
people everyday, and under continued support at Epic. It is
not uncommon for servers to stay online for extended periods
(weeks or even months).

• It includes a broad set of game tasks, such as Domination
and Capture the Flag, as well as 35 different world maps
varied both in size and semblance [4]. Additionally, the
active online gaming community has constantly added to this
library with new maps and new game types. This gives
researchers a wealth of environments for testing their agents.

• It provides a variety of ways for developing new game types
and world objects, primarily through its integrated scripting
environment UnrealScript. Agent developers can take
advantage of this in order to create new and varied tasks for
their agents.

• Unreal Tournament’s wide popularity provides a familiar
environment for students to explore agents and artificial
intelligence research.

3. THE GAMEBOTS SYSTEM
The core of the Gamebots project is a module for UT that allows
characters in the game to be controlled via network sockets
connected to bot clients (see figure 2). The Gamebots server feeds
sensory information for the characters over the network
connections. Based on this information, the client (bot or human
player) can decide what actions the character should take and
issues commands back over the network to the game to have the
character move, shoot, or talk. Agents must display advanced AI
and MAS capabilities to play successfully, such as planning paths,
learning a map of their 3D environment, using resources available
to them, coordinating with their teammates, and engaging in
strategic planning which takes their adversaries into account.
Unlike other standard test-beds, the Gamebots system allows
human players to play with the agents, thus providing opportunity
to study human team behavior, and to construct agents that play
collaboratively with humans.

UT
Client

socket

socket

socket

Unreal
Tournament

Server

Gamebots
Module

socket

socket

1

2

3

4

16

..

.

Gamebots Server

Bot
Client

UT
Client

Bot
Client

Bot
Clientbot

player
alone

human
and bot
players

Network

human
player
alone

Figure 2: Gamebots architecture (note that human players
connect directly to the UT server, and bots connect through

the Gamebots Module).

3.1 Unreal Tournament System
Unreal Tournament falls into a category of video games known as
first-person shooters, where all real time players (currently a
maximum of 32) exist in a 3D virtual world with simulated
physics and a variety of tools that give the players additional
abilities. As implied by ‘first person’ in the genre’s name, every

player’s senses are limited by their location, bearings, and
occlusion within the virtual world.

Unreal Tournament comes with three core tasks, or game types.
The simplest format is a free-for-all or team based game called
Deathmatch where every players attempts to accumulate the
highest points via ‘kills’ (bringing opponents health down to zero
and thus resetting the player) up to a maximum score or within a
time limit. In the game of Domination, players attempt to
accumulate time controlling ‘domination points’ in a king-of-the-
hill fashion. Capture the Flag mimics the game by the same name
where two or more teams attempt to grab and carry an opponents
flag back to the home base. Gamebots includes implementations
for all three core game types.

Developers can extend the existing game types, or implement new
ones using UnrealScript. UnrealScript is a C++ based scripting
language that handles all game logic and object interaction under
Unreal Tournament while the main game engine handles the
hardcore work like rending scenes and simulating physics.
UnrealScript can also be used to build small mutator scripts that
implement small tweaks, such as adding or replacing world items,
adjusting physics parameters, or changing item effects. Such
mutators can be added at runtime to any existing game type,
including those for Gamebots. While the inherent networked
nature of Gamebots does not provide us with perfect repeatability,
the built-in scripting language gives very precise control for
potential experiment building.

The Unreal Tournament server implementations exist for
Windows, Linux, and Macintosh. Additionally, the use of an
open network protocol means that bot implementations are not
bounded by platform and can often integrate easily with existing
intelligence engines.

3.2 Bot Interaction Protocol
The Gamebots interaction protocol is a simple text based protocol
of single-line messages sent over the network between the server
and bots. The gamebots server sends sensory information
messages to the bots containing the current state of the virtual
world. The bots interact in the environment by sending action
commands or player communication messages back to the server.

3.2.1 Sensory information
The server message loop is composed of three stages, the initial
handshake, synchronous messages, and asynchronous messages.
During the connection handshake, the server announces the game
type and conditions for a win. Once connected, the server will
alternate between the synchronous and asynchronous messaging
modes. By default, synchronous message blocks are sent roughly
ten times per second. This continues until the game ends and/or
the connection is dropped.

Messages are composed of the message type with a list of attribute
value pairs. Synchronous messages are bounded by one BEG
(“begin”) and one END message and represent the state of the
world for that moment. Included in this block is the current game
state such as the score, the game time, and any game specific
attributes such as who has a flag. It also includes sensory
information, a complete list of everything (items or players)
within the agent’s view at that moment, as well as the agent’s own
state (e.g. health and location).

Asynchronous messages occur as events happen between the
synchronous messages. These can include immediate sensor
updates, such as bumping into a wall, hearing a noise, or
beginning to fall after reaching a ledge. Additionally, agents may
receive messages for some dynamic and game critical items such
as other players and flying projectiles.

Due to the underlying bot implementation in Unreal Tournament,
all vision messages simplify a world object down to a set of
location and rotation coordinates called a navigation point. All
bots do not have a direct sense of the map architecture, such as
walls and floors. Instead, the map architecture is conveyed
implicitly through the set of navigation points. Navigation points
have a “reachable” attribute on all vision messages. A bot may
walk directly to any item marked as reachable. Items or points
that are occluded to the bot are considered not reachable. Unreal
Tournament maps often include no-item navigation points to
assist bots in navigating the full extent of a map.

Preliminary tests with our Javabot implementation show that this
minimal data is sufficient for navigating the rooms of most maps.
Using one of Unreal Tournament’s pre-built maps, we have been
able to map a majority of the level using cached reachable data.

3.2.2 Bot action commands
Gamebots bots send commands in the same named attribute list
format as server messages. Example action commands include:

STOP: stops all bot movement and rotation.

JUMP: causes the bot to jump.

RUNTO: turns towards and move directly to a destination that
may be specified via either target or location argument. Target
provides the unique id of a player, object, or navigation point (it
must be visible when the command is received or the bot will do
nothing), whereas location provides an (x,y,z) absolute position.

CHANGEWEAPON: switches to weapon specified as argument
(if “best” is sent as argument, the server will pick the bot’s best
weapon that still has ammunition.)

In order to simplify the network protocol and decision-making,
several messages allow attributes to be specified as named objects
or targets, such as players, in the world. In these cases, the server
handles the action command, like RUNTO, using the objects’
location and a simple prediction algorithm for target movement, in
order to minimize network latency issues.

3.2.3 Player communication
Players (humans and bots) can communicate with each other by
having messages posted to either a global or team specific chat
channel. Posting a message results in the server sending an
asynchronous message to all appropriate listening players. Bots
can also take advantage of a few enumerated messages sent by
human players, such as “Defend the base”, “Hold your position”,
and “Cover me”.

3.3 Research Extensions
In order to turn this fast-paced multi-agent interactive computer
game into an infrastructure for research in artificial intelligence
(AI) and multi-agent systems (MAS), we have developed several
extensions to facilitate research, such as, visualization tools, data
collection tools, and standard tasks and environments.

3.3.1 Visualization tools
The Gamebots system provides three types of visualization tools
for observing and analyzing multi-agent behavior. The first tool
is the 3D virtual world itself. Playing as a character in the virtual
world with the bots is an effective method for researchers to
evaluate, diagnose and test their bots’ behaviors. Players can also
connect to the virtual world as spectators that can follow the
movements of the characters throughout the environment (figure
1). This is another method for observing the bots’ behavior
without affecting the state of the environment or the behaviors of
the players. In this 3D virtual environment, the game can be
paused at any point and the simulation speed setting that can be
changed.

The two other visualization tools are available from the Gamebots
website -- the global and bot VizClients. Both VizClients offer a
bird’s eye view of the map and display the real-time movements
of the bots. The global VizClient (figure 3) shows the activity of
all the bots in the environment, as well as the team and individual
bots scores and the location of all objects. It also includes
graphics for the Stalwart series of world maps.

Figure 3: Global VizClient tool

While the global VizClient is used to observe team behavior and
strategy, the bot VizClient aids in analyzing the behavior of
individual bots. The bot VizClient displays the real-time
movement of an individual bot. It draws the path of the bot as it
moves in the environment as shown in figure 4, and displays the
log of the bot’s messages.

3.3.2 Data collection tools
Gamebots offers three built-in data collection tools that generate
parsable text logs. First, the server-side has a configuration option
for outputting all internal events to a log file. In this manner,
researchers gain access to every detail of the system. From the bot
side, there are two collection tools that log the global or localized
views of the world by capturing redirected VizClient messages
(figure 5). In addition, the VizClients can be used in conjunction
with these logs to replay the bots actions in the game for further
evaluation of their behavior.

Figure 4: Bot VizClient tool

Besides collecting the sensory and action messages, a few task
specific statistics are also collected, such as the teams’ and bots’
individual game scores. We are working on analysis tools for
calculating further statistics from the log, like bot aiming accuracy
or average bot speed, to aid in the evaluation of bot and team
behavior.

Additionally, Unreal Tournament has support to save demo reels,
or in-game video files, of the 3D environment for later replay and
demonstration. We are currently developing a tool for Gamebots
to take advantage of this feature. We would like the tool to
actually be an agent that would explore the virtual world to
capture the interesting actions and events.

Figure 5: Log generated for SoarBot

3.3.3 Multiple tasks and environments
The three game types included in a minimal Gamebots installation
provide a natural progression of tasks of increasing difficulty, to
facilitate the development of robust and complex agents.
Beginning with Deathmatch, agents only need to worry about low
level issues such as resource management and enough spatial

reasoning to track or avoid someone as necessary. These skills
form a basis for the required skills in Domination, where
mapping, path planning, and simple teamwork such as
coordinating offensive and defensive roles, become important.
And lastly, successful teams in Capture the Flag games will
require coordinated maneuvers such as providing cover for a
friendly flag carrier and managing efficient searches for an enemy
flag carrier.

In addition to supporting the original Unreal Tournament
environment, we have also developed a magical wizards
environment (figure 1). The environment was created not only to
demonstrate that the Gamebots system is able to support multiple
environments, but also to appeal to a wider user/research
community because the magical wizards environment does not
include the graphic violence of the original UT environment.
Also, since the gaming community is very active in creating new
environments, more environments may be added in the future.

3.3.4 Uncertainty in the environment
We have modified the environment to include some noise, or
uncertainty, in the bots’ weapon aiming accuracy. In the original
environment, bots had perfect aiming accuracy. The aiming
accuracy is currently a function of the skill level setting for the
bot. The bots designated as expert have better aim than the ones
that are novices; furthermore, this setting can be changed at run-
time. We have future plans for adding similar noise level
controls for other bots sensors and actions.

3.3.5 Availability and support
Gamebots is publicly available both in the U.S. and overseas. The
research extensions are provided in open-source format over the
web at http://www.planetunreal.com/Gamebots. It is supported by
an active and growing community of agent developers from
around the world. Central to the community is a public mailing
list where issues such as agent design and platform development
are discussed.

4. EXAMPLE BOT IMPLEMENTATIONS
We have developed sample bots (Javabot and Soarbot) for the
Gamebots project. Most of them are currently simple and their
functionality is limited; nevertheless, they illustrate how more
complex and intelligent agents can be built to communicate with
the Gamebots server.

The Javabot includes a bot API, visualization client API, and an
application for launching and managing the running clients
written to those APIs. Both APIs abstract the network and
protocol into a simple message object queue, simplifying the task
for agent developers. Both the example bot and example
visualization client make use of a top-down mapping library,
providing developers with rudimentary feedback.

SoarBot is built with TCL/TK and Soar (figure 5). Soar provides a
general cognitive architecture for developing systems that exhibit
intelligent behavior [10]. SoarBot is an example of how
Gamebots can integrate with existing AI systems for its bot
implementations.

In addition to these bots, new bots are in the works both with our
group and abroad. There is a TclBot, which is a very simple bot
built in TCL. While it does not attempt to show intelligent
behavior, it is a well-documented minimal example of a Gamebots

agent. The CMU Gamebots team is implementing a new C/C++
based bot; once they have a solid skeletal example, it will be
added to the collection of existing bot examples. Moreover, there
is a group in England working on a Delphi/C++ bot, and another
group working on a PHP-based bot.

5. CONCLUSIONS AND FUTURE WORK
We have described the Gamebots project, an infrastructure for
multi-agent systems research that supports different platforms and
is widely available. It is built as an environment separate from the
agents that allows agents to sense and act in the environment. This
supports the common convention of thinking about agents as
situated in an environment. Gamebots also allows for human-AI
competitions and collaboration, and unlike other complex MAS
infrastructures (e.g., RoboCup), it supports multiple tasks and
environments.

For future work on the Gamebots project, we are currently
developing analysis tools for the server and client logs. In
addition, we are continuing to develop our skeletal bot clients and
associated libraries, as well as exploring how to scale beyond our
current limit of 16 players in the world, to the 32 players
supported by UT. Another important future extension is
expanding the use of uncertainty in the environment to add
different levels and types of noise to the agents’ sensory
information and actions.

ACKNOWLEDGMENTS
We would like to express our gratitude to Yigal Arens and Paul
Rosembloom for their continued support of Gamebots and the use
of ISI facilities. We also thank Manuela M. Veloso for her
generous support of this project, and key insights on its uses for
research. In addition, we are very grateful to Patrick F. Riley and
Lauren Lamonica for their creative design contributions. Finally,
we would like to thank Epic Software, the authors of Unreal
Tournament, for their help and for kindly sharing their expertise
with our group.

REFERENCES
[1] Calder, R. B., Smith, J.E., Courtemarche, A.J., Mar, J.M.F.,

Ceranowicz, A.Z.. ModSAF Behavior Simulation and
Control. Proceedings of the Second Conference on Computer
Generated Forces and Behavioral Representation,
STRICOM-DMSO, July 1993.

[2] Cohen, P.R., Greenberg, M.L., Hart, D.M., and Howe, A.E.
Trial by Fire: Understanding the design requirements for
agents in complex environments. AI Magazine, 10(3):32-48.

[3] Gasser, L. MAS Infrastructure Definitions, Needs, and
Prospects. Working Paper LG-2000-07, 5/12/2000, in
Proceedings of the Workshop on Scalable MAS
Infrastructure, Barcelona, Spain, 2000.

[4] Gerstmann, J. Unreal Tournament: Action Game of the Year,
1999, GameSpot.
http://www.gamespot.com/features/1999/p3_01a.html

[5] Hanks, S., Pollack, M. E., Cohen, P., Benchmarks, Test
Beds, Controlled Experimentation, and the Design of Agent
Architectures, AI Magazine vol.14, p17-42, 1993

[6] Kitano, H., Tambe, M., Stone, P., Veloso, M., Coradeschi,
S., Osawa, E., Matsubara, H., Noda, I., and Asada, M. The
RoboCup Synthetic Agent Challenge 97. Fifteenth
International Joint Conference on Artificial Intelligence,
Nagoya, Japan, 1997.

[7] Kitano H., Asada M., Kuniyoshi Y., Noda I., Osawa E.
Robocup: The Robot World Cup Initiative, Proceeding of the
first International Conference on Autonomous Agents,
Marina del Rey, CA, 1997, 340-347.

[8] Laird, J. E. It Knows What You're Going to Do: Adding
Anticipation to a Quakebot. AAAI 2000 Spring Symposium
Series: Artificial Intelligence and Interactive Entertainment,
March 2000: AAAI Technical Report SS00 -02.

[9] Laird, J.E. and van Lent, M. Human-level AI’s Killer
Application: Interactive Computer Games. AAAI Fall
Symposium Technical Report, North Falmouth,
Massachusetts, 2000, 80-97.

[10] Rosenbloom, P., Laird, J.E., and Newell, A. The Soar
Papers: Readings on Integrated Intelligence, MIT Press,
1993.

