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Introduction

The field of Fuzzy Control have enjoyed tremendous
success in the last decade, with both theoretical and
industrial developments being introduced at an increasing
rate1. However, fuzzy control is just one application of
Soft Computing methods in general, and Fuzzy Sets
theory in particular. This principled approach to
approximate reasoning is not limited only to control
problems, but is useful also in closely related fields, such
as Artificial Intelligence (AI) in its various forms and
guises, Decision Sciences, Quantitative and Qualitative
Decision Theory, theoretical studies of Uncertainty,
Information and Knowledge, etc. As we seek to expand
the success of fuzzy control to these fields, it is very
tempting to attempt use of known methods in a familiar
way to solve problems in these new domains. However, a
principled analysis of the goals and assumptions
underlying different fields may reveal important
differences from the field of control which may make
current methods insufficient.

We take the position that as we look at real-world
decision problems and domains, the familiar techniques of
fuzzy control will be insufficient to provide adequate
solutions, because these techniques are designed with the
assumptions of the field of control in mind -- assumptions
which do not hold in such domains. The techniques are
not incorrect, but simply insufficient, and can be
augmented to provide the necessary theoretical and
practical infrastructure for the new domains. This short
abstract will attempt to point out our initial approach to
such necessary augmentations of fuzzy control techniques.

We will motivate the discussion with a very small scale
decision problem, which despite its size, captures some of
the underlying problems with current techniques and
points the way at the necessary directions for development
that will bridge the gap between fuzzy control techniques
and the required technology.

Motivating Examples

We motivate our discussion by a brief presentation of
experiments in fuzzy control use for a small scale problem
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in the domain of mobile robot navigation, described in
(Kaminka 1997). A fuzzy controller based on the SAM
additive fuzzy system model (Kosko 1997) was built to
provide goal-directed navigation for a mobile robot using
sonar range sensors. The controller directly controlled the
velocity and heading of the robot based on the sensor
readings. The design employed two sets of rules which
attempt to balance two opposing “forces” competing for
control of the robot: “pulling” the robot towards the goal,
and “pushing” it away from obstacles on route. Although
varying in many details, this type of robot navigation is
not unlike others reported on in the literature (e.g.,
Saffioti et al. 1993, Yen and Pfluger 1995, Baxter and
Bumby 1995). The mission of such a controller is
typically to be used as the low-level navigation layer of a
more elaborate system, often employing a map-based
planner which can take care of problems with blocked
paths as they occur. So while the controller supplies only
local optimization solutions (i.e., may get stuck in place if
obstacle is directly in front of goal, because contradicting
output sets will result), this is sufficient in the context of
the overall robot system.

However, a close examination of the behavior of the
controller without the complementary support of such a
planner raises two issues: The need for negative rules
(negative responses), and the detection for imperfect
knowledge, which we term “fuzzy impasse” (after
Newell’s related definition in (Newell 1990)).

Negative Rules. Conventional rules are written such
that they map inputs to outputs - perceptions to actions.
But in writing rules that attempt to prevent the robot from
colliding into obstacles, the designer is attempting to
describe to the controller what its response should not be.
Rather than telling the robot “if the goal is in location X,
head towards X”, the designer is attempting to express the
rule “If an obstacle is in location X, do not head towards
X”. These types of rules are needed not only for mobile
robot navigation, but also in other domains - for instance
to rule out diagnosis conclusions once better ones are
found.

From an engineering point of view, this type of rules
are necessary not only to enhance the expressiveness of
the systems we can design, but also to increase their
modularity. If we are forced to design obstacle avoidance
rules such that they cannot express what direction is
forbidden, but instead are forced to deal in positive terms
(what direction is correct, given that an obstacle is



detected at a certain location), it would be very hard to
now reuse these rules in a different context, which does
not necessarily attempt to head towards a specific
location. Yen and Pfluger (1995), Baxter and Bumby
(1995) and others describe different methods of
expressing and dealing with such rules. But the issue here
is not a particular solution in a specific domain, but a
demonstration that the need for such rules arises even in a
very small-scale constrained problem.

Imperfection of Knowledge. Regardless of whether the
system is additive or non-additive, and regardless of the
defuzzification method used, basically all of the works
describing controllers of the type mentioned above report
on the problem of having a “two-peak” output set as a
result of rule firings. This output set is one in which two
or more different values have the maximum membership
degree, but are separated by values which have a
considerably lower membership degree. Saffioti et al.
(1993) call this type of response “contradictory” and
suggest careful design of the rules such that this situation
never arises. But as we tackle bigger and more complex
problems, it becomes very difficult, if not impossible, to
prevent this state from happening. We claim that although
from a control point of view such an output set is
problematic, from an intelligent decision system point of
view this output set is very interesting, and in some sense
even desired. This will be treated in the next section.

Fuzzy Impasses

An examination of the field of control in general, and
fuzzy controllers especially, will reveal the following
assumptions underlying the techniques:
 1. Controllers have “perfect knowledge”. In Fuzzy

Systems’ terms, a fuzzy controller has a perfect set of
rules: All the necessary rules, and only the necessary
rules. This assumption also implies that a controller is
always positive: It always responds with the correct
output, which is the response.

 2. Controllers are designed by a “perfect designer”
(human or machine) that is able to predict and design
such a set of rules which encode perfect knowledge.
This perfect designer is implied if we assume having
perfect knowledge.

 3. Controllers have infinite space and computation
resources. They allow for infinite number of fuzzy
inference rules to be stored and matched with the
inputs instantaneously, resulting in an instantaneous
output.

The decision problems which we intend to solve using
Soft Computing techniques, and the domains in which we
intend to use these techniques clearly fail to satisfy some
or all of these assumptions, due to the bounded rationality
of any practical system operating in such a domain, and
the dynamic changes to the domain. We will focus here
only on the bounded rationality problem.

Bounded Rationality. Complex, dynamic environments
that are rich in detail are (at least to some degree)
unpredictable, and have infinite states in which the system
may be able to find itself. It would take infinitely many
rules to describe all the possible states (internal and
external) that the (fuzzy) system could find itself in.
Obviously we cannot assume the ability to store,
manipulate, and process infinite number of rules in any
practical system. We therefore must assume that: (a) our
system will not have all the necessary rules, nor will it
have (b) only necessary rules. We also cannot assume a
perfect designer, since no human or machine designer will
be able to supply us with all needed rules.

Of course, the rule-explosion problem in fuzzy systems
is well known, but approaches to alleviating it in the
domain of fuzzy control (e.g., hierarchical systems (Raju
and Zhou 1993), optimal rules (Kosko 1997)) have so far
focused on structuring the system or modifying the rules
in such away that the same knowledge is represented in
fewer rules. However, an altogether different method is
used in AI systems.  In general, a planner generates
actions on-line. Rather than pre-computing rules, a
planning system is capable of generating the right
responses  to an unfamiliar state after a process of
reasoning. In a very real sense, these systems are
intelligent, as they are able to use existing knowledge to
generate new knowledge which they previously did not
have. To duplicate this capability, our soft computing
techniques require methods of detecting when the need for
new rules arise, and for computing these rules when they
are needed.

The need for new rules is really a need for new
knowledge. A system capable of generating such new
knowledge on demand is intelligent according to Allan
Newell’s definition in his seminal work “Unified Theories
of Cognition” (Newell 1990). It is a system that can detect
when its knowledge is not sufficient to solve a problem
(generate a coherent response), and can use existing
knowledge to generate what is required. Newell
introduces the notion of “impasses” to describe situations
in which a system can at the very least detect
imperfections in its own knowledge, and potentially start
a reasoning process which will lead to a resolution.

The two-peak output set clearly shows that the
controller  for the robot does not have perfect knowledge,
as no clear ideal response was generated by the rules. This
is one type of an impasse - it can happen when two or
more correct solutions exist (which is imperfection in the
sense that no one coherent response exists), when there
exists a contradiction such that both responses are
incorrect by themselves, or  when one response (one peak)
is essentially a correct response and the other is not.  It
could also mean that there exists a feature in the
environment which can distinguish between the two
responses, but which is un-modeled by the system (i.e.,
there exists no variable for that feature, so while the
system is responding to essentially two different
situations, it cannot tell the difference).  Another type of



impasse pointed to by Newell is the situation when no
rules fire - no rules match the inputs. This implies
imperfection in the rules in terms of coverage, as clearly
the system is incapable of handing a situation that is
encountered. Negative rules also raise an interesting
related type of impasse--an output set that is all negative--
where all possible responses are forbidden.

Impasse points are the basic building block of any
intelligent system, as intelligence begins where directly
applicable knowledge ends, and imperfections in the
knowledge are found. Impasse states are exactly those in
which the system requires decision making and reasoning
capabilities to be able to provide a coherent response, and
cannot rely on its rule base to provide it with a directly
applicable answer.

Impasse points are also decision points. They are
exactly the points in which the bounded rationality and
resources of the system forces making a decision; e.g.,
between one of the two peaks in a “contradictory” output
set, how to choose between all-forbidden responses (if a
response is required), etc.

The capability to detect impasses and respond to them
is thus required in any system which wishes to deal with
decisions. Understanding impasses, their classification
and the responses to them are critical to any designer of a
decision-making or decision-support system if it is to be
more than just a database of rules, which is a storage of
knowledge.

References

Baxter, J. W. and Bumby, J. R.  1995,  Fuzzy control of a
mobile robotic vehicle. In Proceedings of the Institution of
Mechanical Engineers, Vol 209, pp. 79-91.

Kaminka, G. A. 1997. Real-World Robot Navigation Using
Fuzzy Reaction and Deliberation. In Proceedings of the
International Conference on Fuzzy Logic and Applications
(Fuzzy-97), pp. 331-337. Zichron-Yaakov, Israel.

Kosko, B.   1997.  Fuzzy Engineering.  Prentice-Hall, Inc.

Newell, A. 1990. Unified Theories of Cognition. Harvard
University Press.

Raju G. V. S. and Zhou J.  1993.  Adaptive Hierarchical Fuzzy
Controller”, IEEE Transactions on Systems, Man, and
Cybernetics, Vol. 23(4) pp. 973-980.

Saffioti A.; Ruspini E. H; and Konolige, K.  1993.  Blending
Reactivity and Goal Directedness in a Fuzzy Controller.  IEEE
Neural Nets and Fuzzy Control, San Francisco.

Yen, J. and Pfluger, N.  1995.  A Fuzzy Logic Based Extension
to Payton and Rosenblatt’s Command Fusion Method for
Mobile Robot Navigation. In IEEE Transactions on Systems,
Man, and Cybernetics, Vol. 25(6), pp. 971-978.


