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Abstract

In the research area of multi-robot systems, several reseatthezgeported
on consistent success in using heuristic measures to improve loosénediomn in
teams, by minimizing coordination costs using various heuristic technitj\eite
these heuristic methods has proven successful in several domaipbatre never
been formalized, nor have they been put in context of existing worldaptation
and learning. As a result, the conditions for their use remain unknownpdak
that in fact all of these different heuristic methods are instances dbreement
learning in a one-stage MDP game, with the specific heuristic functionsassed
rewards. We show that a specific reward function—which we Eti#ictiveness
Index(El)—is an appropriate reward function for learning to select between-c
dination methods. El estimates thesource-spending velocityy a coordination
algorithm, and allows minimization of this velocity using familiar reinforcement
learning algorithms (in our case, Q-learning in one-stage MDP). Therpap
alytically and empirically argues for the use of El by proving that undetace
conditions, maximizing this reward leads to greater utility in the task. We report
on initial experiments that demonstrate that El indeed overcomes limitations in
previous work, and outperforms it in different cases.

1 Introduction

This paper begins with a puzzle. In the research area of smoldtit systems, several
researchers have reported on consistent success in usingtitemeasures—which
for the moment we caltoordination cosmeasures—to improve loose coordination in
teams. Specifically, Goldberg et al. [4], Zuluaga and Vanghi#&], and Rosenfeld et
al. [12] all report that minimizing their respective coardtion cost measures lead to
improved performance.



However, while these heuristic methods has proven suadeasfeveral domains,
they have never been formalized to a degree that allowed aosom with other meth-
ods. Nor have they been put in context of existing work on tategm and learning.
As a result, their optimality and the appropriate condgidor their use remain open
guestions.

We posit that in fact all of these different heuristic meth@de instances of rein-
forcement learning in a one-stage MDP game [7], with the ifipdeuristic functions
used as rewards. We further argue that the different coatidim cost measures are all
variations on central theme: Reducing the time and/or megsispent on coordination.
These variations can be recast as reward functions witkiibP game.

We show that a specific reward function—which we &dfkectiveness Indefel)—
is an appropriate reward function for learning to seleciieen coordination methods.
El estimates theesource-spending velocityy a coordination algorithm, and allows
minimization of this velocity using familiar reinforcemiglearning algorithms (in our
case, Q-learning in one-stage MDP game).

The paper analytically and empirically argues for the usé&loby proving that
under certain conditions, maximizing this reward leads&ater utility in the task. We
report on initial experiments that demonstrate that El @ttlevercomes limitations in
previous work, and outperforms it in different cases.

2 Reated Work

Most closely related to our work is earlier work on measuresomrdination effort.
Rosenfeld et al. [12], presented a method that adapts teetel of coordination
methods by multi-robot teams, to the dynamic settings inctviiéam-members find
themselves. The method relies on a measuring the resoutpeaded on coordina-
tion, using a measure called Combined Coordination GO§d). The adaptation is
stateless, i.e., has no mapping from world state to acticetblods. Instead, the CCC
is estimated at any given point, and once it passes predddaffline learning) thresh-
olds, it causes dynamic re-selection of the coordinatiothous by each individual
robot, attempting to minimize the CCC.

Interference [4] is a closely related measure to CCC, ancbeaseen as a special
case of it; It measures the amount of time spent on coordimaduluaga and Vaughan
[16] presented an method calledggressionfor reducing interference in distributed
robot teams, to improve their efficiency. During movement|tiple robots frequently
interfere with each other. When such interference occurd) efithe robots demon-
strate its own level of aggression such that the robot withiighest level becomes
the winner, while the loser concedes its place. Zuluaga audjvan have shown that
choosing aggression level proportional to the robot’s tagkstment can produce bet-
ter overall system performance compared to aggressiorenratgandom. This result
is compatible with Rosenfeld et al.’s conclusions that oéuiyi total resource spending
in coordination is highly beneficial.

We formulate and generalize Rosenfeld et al.'s work in teahseinforcement
learning in single-state MDP game (MDG). Based on this gaimad formulation,
we are able to explain the empirically-observed successoseRfeld et al.'s method



(as a special case), and suggest novel learning methoddamatt require an off-line
learning phase.

Indeed, the contribution of our work lies in the introductiof a general reward
function for coordination (and only for coordination). Shieward function minimizes
the velocity of resource expendituta contrast, most investigations of reinforcement
learning in multi-robot settings have focused on other rma@ms (e.g., modifying the
basic Q-learning algorithm), and utilized task-specifiward functions. We briefly
discuss these below. Two recent surveys are provided ir6[15,

Balch [1] discusses considerations for task-oriented réfeanctions for reinforce-
ment learning in multi-robot settings. He shows that theiahof reward function
influences the behavioral diversity, and group performance variety of tasks, in-
cluding foraging and soccer. Kok and Vlassis [9] discuschri&ue for propagating
rewards among cooperative robots, based on the structuhe alependence between
the robots. However, they too assume that the reward funiigiven as part of the
task.

Mataric[10] discusses three techniques for using rewarduilti-robot Q-learning:
A local performance-based reward (each robot receivingar@vfor its own perfor-
mance, and per its own goals), a global performance-baseatadall robots receive
reward based on achievement of team goals), and a heutisttegy referred to as
shaped reinforcement. Shaped reinforcement, which waalajged by Mataric, pro-
vides a heuristic function that combines rewards based cal lewards, global re-
wards and coordination interference of the robots. in @sttto these investigations,
we explore general reward functions, based on minimizeuresause, and use them in
selecting between coordination behaviors, rather thamicheal behaviors.

Kapetanakis and Kudenko [7] present the FMQ learning algori This algorithm
is intended for coordination learning in one-stage MDP ganfeMQ is a modified
regular Q-Learning method for one-stage games and thisfivatitbn is based on the
Boltzman'’s strategy. They then examine how an robot thas &84Q learning tech-
nique may influence other robot’s effectiveness of learniviten the latter uses a sim-
ple Q-learning algorithm [8]. This method does not use comigation or monitoring
of other robot’s action, but based on the assumption thaifahe robots are getting
the same rewards.

The Q-learning algorithm used in these works has no statadady to the pro-
posed method, but Kapetanakis and Kudenko'’s works are otmatieg on improving
effectiveness of the learning algorithm and assume thandswvere pre-defined be-
fore and thus, the robot just has to discover them. In opposit concentrate on
the method of reward determination by the robot. In the remlldvwe do not have
predefined rewards and especially when distinguishing éatwewards from behav-
iors with the same goal is needed. Therefore, Kapetanakikadenko’s work, like
a many other works of Reinforcement Learning is concerdrate Q-learning algo-
rithm modification and assume pre-definition of the rewastiould be considered as
a complimentary work instead of an alternative to ours.



3 Maximizing Social Utility by Limiting Coordination
Costs

We first cast the problem of selecting coordination algaongtas a reinforcement learn-
ing problem (Section 3.1). We then introduce the effectidek (El) in Section 3.2.

We then discuss the conditions underwhich maximizing ii$eto improved task per-
formance, and provide a proof in Section 3.3.

3.1 Coordination Algorithm Selection asan RL Problem

Multilateral coordination prevents and resolves confliat®ong robots in a multi-robot
system (MRS). Such conflicts can emerge as results for shesedrce (e.g., space),
or as a result of violation of joint decisions by team-mensbeMany coordination
algorithms (protocols) have been proposed and explored B vesearchers [3, 4,
11, 13, 14]. Not one method is good for all cases and grouys §iz2). However,
deciding on a coordination method for use is not a triviakt@s the effectiveness of
coordination methods in a given context is not known in adean

We focus here on loosely-coupled application scenariosevb@ordination is trig-
gered by conflict situations, identified through some meigmar{we assume the ex-
istence of such mechanism exists, though it may differ betwgomains; most re-
searchers simply use a pending collision as a trigger). Theimormal routine of an
robot’s operation is to carry out its primary task, untilgtinterrupted by an occurring
or potentially-occurring conflict with another robot, whimust be resolved by a coor-
dination algorithm. Each such interruption is calkedonflict eventThe event triggers
a coordination algorithm to handle the conflict. Once it &sstully finishes, the robots
involved go back to their primary task. Such scenarios melmulti-robot foraging,
formation maintenance (coordinated movement), and dglive

LetA={...,q,...},1 <i< N be agroup ofV robots, cooperating on a group
task that started at time (arbitrarily) lasts upto tim&" (A starts working and stops
working on the task together). We denote By = {¢; ;},0 < j < K; the set of
conflict events for robot, wherec; ; marks the time of the beginning of each conflict.
Note that each robatmay have been interrupted a different number of time, ig.,
may be different for different robots. For notational umifoty, ¢; x,+1 = 7, andc; o
is defined as time.

The time between the beginning of a conflict evgnand up until the next event,
the intervall; ; = [¢; 5, ¢; j+1), can be broken into two conceptual periods: Bledve
interval];jj = [ci j,t:,;) (for somec; ; < t; ; < ¢; ;4+1) inwhich the robot was actively
investing resources in coordination, and thessiveinterval Iffj = [tij,Cij+1) IN
which the robot no longer requires investing in coordinatifsom its perspective the
conflict event has been successfully handled, and it is lmachrtying out its task. By
definition 7; ; = If; + I ;. We define theotal active timeas/® = 3, >~ I*; and
thetotal passive times/? = >, 5> I} .

Our research focuses on a case where the robot has a nonehpfyas coordi-
nation algorithms to select from. The choice of a specifiodation methodv € M

for a given conflict event; ; may effect the active and passive intervafs, I;‘jj. To



denote this dependency we ukg (), If'; (), I} ; () as total, active and passive in-
tervals (respectively), due to using coordination mettod

Using this notation, we can phrase the selection of cootidinalgorithms as de-
termining a policy for selecting between different cooation methods among those
in M. We denote a robats selection at conflict event; ; asll; ;. A sequence of
these selections, for all evenis< Kj;, is denoted byl1;; this defines an individual
coordination policy. The set of individual policies of adlots inA is markedlI.

Formally, we define the problem of coordination algorithieston as a one-stage
Markov Decision Process (MDP) game, with a limited set ofcat (selectable al-
gorithms), and an individual reward for each robot (playj@t) Each robot tries to
maximize its own reward. Typically, reward functions areegi, and indeed most pre-
vious work focuses on learning algorithms that use the révitarctions as efficiently
as possible. Instead, we assume a very basic learning thigofa simple Q-Learning
variant), and instead focus on defining a reward functione [Blarning algorithm we
use is stateless:

Qi(a) = Qr-1(a) + p(Ri(a) = 1Qi-1(a))

Wherep is the learning speed factor, ands a factor of discounting.

3.2 Effectiveness|ndex

We call the proposed general reward for coordinatifiectiveness IndefEl). Its do-
main independence is based on its using three intrinsibgrahan extrinsic) factors
in its computation; these factors depend only internal agiaifipn or measurement,
rather than environment responses.

Thetime spent coordinating. The main goal of a coordination algorithm is to reach
a (joint) decision that allows all involved robots to comtintheir primary activity.
Therefore, the sooner the robot returns to its main tasklebetime is spent on co-
ordination, and likely, the robot can finish its task morecfjty. Thus, smallet is
better.

The frequency of coordinating. If there are frequent interruptions—even if short-
lived—to the robot’s task, in order to coordinate, this wodklay the robot. We as-
sume (and the preliminary results show) that good cooridinatecisions lead to long
durations of non-interrupted work by the robot. Therefdine,frequency of coordina-
tion method’s use is not less important, than the time spebaflict resolving. Thus,
larger I} ; is better.

The cost of coordinating. Finally, in addition to speed of conflict resolution and
frequency of calling, careful resource spending is a venyartant factor for behavior
selection. Short-lived, infrequent calls to an expensa@rdination method will not be
preferable to somewhat more frequent calls to very cheapdowdion method. It is
thus important to consider the internal resources usedégltbsen method. We argue
that such internal estimate of resource usage is feasible.



First, some resource usage is directly measurable. F@mniost energy consump-
tion during coordinated movement (e.g., when getting owt pbssible collision) or
communications (when communicating to avoid a collisiendlirectly measurable in
robots, by accessing the battery device before and aftag ibe coordination algo-
rithm.

Second, resource usage may sometimes be analytically ¢echp&or instance,
given a the basic resource cost of a unit of transmissiongaisé of using a specific
protocol may often be analytically computed (as it is tiegdily to its communication
complexity in bits).

Finally, the most general way is in using of a resources managh capability to
monitor resource usage by components of the robot system.d&bcription of such
manager is beyond of this work, though we note in passingsiheth managers exist
already for general operating systems.

Rosenfeld et al. [12] have defingdC'C' as the total cost of resources spent on
resolving conflicts (re-establishing coordination) befoduring, and after a conflict
occurs. Their definition of the cost consisted of a weighted sef the costs of different
resources. We denote By the utility of coordination, of robot, of which the cost
of coordination, denoted¢ is components. By definitiorGCC = CE. It can be
broken into the costs spent on resolving all conflEt,sCC Z CCCCl e

Let us use a cost functiatwst, («, t) to represent the costs "due to using coordina-
tion methodo € M at any timet during the lifetime of the robot. The function is not
necessarily known to us a-priori (and indeed, in this redeas not).

Using the functiorrost;(a, t) we redefine th@fj of a particular event of robat
attimec; ; to be:

Ci,j+1
c —
Cii(a) = /C costi(a,t) dt 1)
(2%
We remind the reader théILC is defined as the costs of applying the coordination
algorithm during the active mtervqibu, t;;) and the passive intervat; ;,c; jy1).
However, the coordination costs during the passive int@nezero by definition.

Coia) = fti"" cost;(a, t) dt + fcl I costi (o, t) dt

= f cost;( ) dt @

We define théActive Coordlnatlon CooACC) function for roboti and methody
at timec; ;, that considers thactive timein the calculation of coordination resources
cost: ,

id
ACC; j(a) = / 1+ cost;(a, t) dt (3)
Cij

We finally define Effectiveness Index of a particular evenobiot: at timec; ; due

to using coordination methad € M:

B1, (@) = ACCus(@) _ Jo9 1+ costi(a, ) dt “
T Ly It + I

That is, the effectiveness index (EI) of an algorithrduring this event is the veloc-
ity by which it spends resources during its execution, aimedtby how long a period



in which no conflict occurs. Since greater El signifies greatssts, we typically put
a negation sign in front of the El, to signify that greaterogity is worse; we seek to
minimize resource spending velocity.

In this proposal we present the simple single-state Q-legmigorithm (see Algo-
rithm 3.2) which uses the El to select between coordinatiethods.

Algorithm 1 Stateless El-Based Adaption

Input: C'BO, a set of coordination algorithms
Input: RES, a set of resources available for coordination

Require: g, rate of exploration vs exploitation
Require: p learning speed factor
Require: + learning discount factor
1: for all b € CBO do
22 Q)0
{We assume the robot starts with a conflict situation}
3: whilerobot is activedo
4. r «— random([0,1])
5. if r < Gthen
6: best «— random(b € CBO)
7. dse
8 best «— argmazpecpo(Q(D))
9:  startyime «— CurrentTime()
10:  Executebest {RecordCC Chpest}
11 t, « CurrentTime() — startiime
12:  startiime — CurrentTime()
13:  WAIT FOR CONFLICT EVENT
14:  t, « CurrentTime() — startiime

b
Jei ] 14costi(a,t) di
15:  Elpest — — =2 .

16 Qbest) — Q(best) + p(Elpest — 1Q(best))

3.3 An Analytical Look at El

We now turn to discuss the conditions underwhich an El-miziimy policy IT will lead
to greater team performance on its group task.

Preliminaries. We use the following notations in addition to those alreadgubsed.
First, we denote byJ; is the individual utility of roboti. U marks its utility due to
executing the taskdgsk utility), andUS marks its utility due to being coordinated with
others at a conflict situatiorcgordination utility): U; = Ul 4+ UL. Each such utility
value can be broken into gaitisand costs”: Ul = GT — CT andUf = GS — CF .
The social utilityU is the sum of all individual utilities of the robot&f = SV | U;.



To maximize this sum, the robot can invest effort in maximigthe utility from
the task, and/or the utility from coordination. In the sanaywo maximize the social
utility of the team, each robot can invest effort in maximigithe its own utility and/or
the teammates’ utility. We are interested in task-indepehdeward functions, and
thus focus our attention on maximizing utility from coordiion (social utility).

Let us use a functiomgain;(a,t) to denote the coordination gain at any time
during the lifetime of the robot that uses method. When a robot is handling a
conflict event, it is not gaining anything from coordinati@mfact, it is investing effort
in re-establishing coordination). Thus, theuin;(«,t) function can be defined as a
step function

) 0 robot: in a conflict situation
cgain;(a,t) = 1 other (5)

Using this function, we redefine ti@] ; of a particular event of robatat timec; ;
to be:

Ci,j4+1 ti,j Cij+1
GLCJ(O() = / cgain;(a,t) dt = / cgain;(a,t) dt —|—/ cgaing(a,t) dt
c c t

(2% (2% 2%

Ci,j+1 Ci,j+1 Cij+1
=0+ / cgain;(a,t) di = / cgain;(a,t) di = / Ldt =17 ()

t'hj tl,] tl,]
(6)
Now, we can define two evaluation functions of coordinatiofiqy.

e Social Utility of team by using policyl
N K; N K;
UM) => > Ui (M) =Y > UL ) +G () — CF (T ;) (7)
i 7 i 7

e Social ACCof team by using policyI

N K;

ACC(H) = Z Z ACCCid (Hi,j) (8)

? J

Based on the above, we would ideally want to show that (1) miizihg EI with
each event leads to improved coordination utility for thante and that (2) this, in
turn, leads to improved overall task performance of the tégimater social utility).
The first part is in some sense already given, when we use th@ ffddnework. As
long as its conditions hold, we can expect individual rewabe maximized (i.e.,
the coordination utility will be greater individually). Keever, the second part is more
challenging.

Itis possible to show, that if the coordination costs fortéem are minimized (i.e.,
the sum of coordination costs for all robots is minimizedgrt the coordination utility
of the team is greater (Lemma 1).



Lemma 1. TheCoordination Utilityfor policy IT’ is better thanCoordination Utility
for policy IT” if Social ACCfor II' is lower thanSocial ACCfor IT".

ACC(IT) < AcC("y = U°(IT') > U“1m”)

Proof. Let us consider the two policid$’ andII”. The ratio of Social ACC after time
T (when the task is completed) with both policies is

ACC(IT) < ACC(H”) 9)

ZZ 1+cost IT; ;, dt<ZZ 1+cost (I ;,t)dt  (10)

(.7j ('7J

For both S|des of equation (10), the foIIowmg holds:

tij ti,j tij
/ 1+ cost;(I1; ;,t) dt = / 1dt+ / cost;(I1; j,t) dt
C C. c

= I7;(I; ;) + CF (I ) (11)
So, we can rewrite equation (10) by using equality (11)

ZZ S +CSan ) < ZZ (7 5) + C5, 1y ) (12)

By using definitions of *(IT) andC' (11)

Z Z =T — (1)

N K;
=22 cm
i g
we can represent equation (12) as
T4(IT) + CO (1) < I1*(1") 4+ C¢(11")
[*(I') - cC(I) > —1*(1") — c¢(1")
T-1°Ir) - co() > T - 1*(") — ¢ (")
() — o) > e’y — cor”) (13)
From definition (6) ofG%(a) for this research and equation (13)
GEIr) — co(r) > g (") — ce )
ueary > vear) (14)
O
Social (overall) utility is defined a&/ (1) = UT(IT) + U (). The question
therefore becomes under what conditions does an improwadioation utility policy

leads to improved social utility; i.e., when do&%'(IT') > UC(I1") = U(II') >
U(I1")? We consider several cases.



Casel UI(IU') > UX(11"). Here, the conflict solving methods do not affect indi-
vidual task utility (or make it better), faall robots. In this case it is easy to see that
the accumulated task utility is greater, and the greatérdas coordination utilities,

combined, result in greater overall utility. From equat{t4) and the case assumption

N N
(Z Uf(H’)) +Uc(r) > (Z ur (H”)) + UM’

vty +ucary > vtar’y + v’ (15)
v’y > uar’) (16)
Suppose, however, that one robot’s task utility under tHieypdl’ is actually made
worse than other the competing policy. Does that autormbtiogean that the overall
utility for the team is worse when usirdd’? The answer is no; the robot might in fact
be sacrificing its own task utility to maximize the team'’s ¢aflaborating robots might

be expected to do [5]). The question is whether its sacrificeompensated for by
greater rewards to others.

Case 2. UI(I") < Ul (11", but UT(I') > UT(11"). For all reduction in task
utility made by the choice of conflict solving method existenber of compensations
in other conflicts of other robots in the team.

From equation (14) and the case assumption

vty + vy > vty + u¢m”) (17)
U’y > v’ (18)
Finally, it might still be possible for the team to performttee with policyIl’ even

when task performance is made worse.

Case3. UT(I") < UT (11", but UT(I1") — UT(IT") < UC(IT") — UC(I1"). Inthe
case where the loss in team task utility from using poliéyis smaller than benefit in
team coordination utility that policil’ provides, it is still true that/ ™ (I1")+U© (IT") >
UT(H//) + UC(H”).
From the case assumption
0<UTa) —-ut(r) (19)
and given the premisg” (I1") — UT(I") < UC (1) — UC(I1"),
uTary+ucary > vrar”y + vcar’) (20)
and therefore,
UIr) > oI’ (21)

Tying these three cases above together, we now state theidmgctheorem:



Theorem 2. El is a good individual reward for total social utilityf (i) either case 1,
2, or 3 above hold; and (ii) EI minimization policy leads toxiraal ACC;

Proof. Given the use of the FMQ framework, repeated selection ohatkt that min-
imizes the El will lead to minimizingACC;. Based on Lemma 1, this will maximize
the individual coordination utility/¢. And given that one of the cases above holds,
this guarantees that the utility of the team will be maxirdize

Vi,j EIZ-’j(H;J-) < EIi,j(H;”j) = UIl') > U11")

4 Experiments

We now turn to briefly survey a subset of empiric results sujipg the use of El and

the stateless Q-learning algorithm in multi-robot teamagpng. Here, robots locate
target items (pucks) within the work area, and deliver themgoal region. As was the
case in Rosenfeld’s work [12], we used the TeamBots simujaido run experiments.

Teambots simulated the activity of groups of Nomad N150 el a foraging area
that measured approximately 5 by 5 meters. We used a totd tdirget pucks, 20

of which where stationary within the search area, and 20 shoaadomly. For each
group, we measured how many pucks were delivered to the ggar by groups of

3,5,15,25,35,39 robots within 10 and 20 minutes. We average results of 16—-30
trials in each group-size configuration with the robots begitaced at random initial

positions for each run. Thus, each experiment simulateeédch method a total of
about 100 trials of 10 and 20 minute intervals. We compardethaethod with three

types of coordination methods appearing also in [12]: Néiggach essentially allows

the robots to collide in their motion uncertainty does ne@vent collision), Aggression
[14], and Repel, in which robots move away (variable distne avoid an impending
collision. We compare all of these to random coordinatigoathm selection (RND),

and to the method of Rosenfeld et al. (ACIM).

Figures 1(a)-1(d) show a subset of results. In all, the X apdsks the group size,
and the Y axis marks the number of pucks collected. Figurgsk{ews that given no
resource limitations, the El method is just as good as ACRdugh it has not used
prior off-line learning. When resource limitations are apgl(Figure 1(b)), the El
method is still the best among all the different variatioNghen resource limits are
known a-priori the ACIM method provides the same result (ighsly superior) as El
(Figure 1(c). But when these resource limits are unknowd, rapthods spend more
than advertised, the EI method leads to significantly impdoesults (Figure 1(d)).

5 Summary

This paper examined in depth the success of previouslyrdpuiristic methods in
improving loose coordination in teams, by selecting betwd#ferent coordination
methods. We have shown that these methods can be cast asgsalwulti-agent
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reinforcement learning problem (specifically, a one-std@¢ game), and that existing
heuristics can be viewed as rudimentary reward functions.

We have argued for a more principled investigation of appate reward functions
for this framework, and presented a novel reward functiaied Effectiveness Index,
which essentially measures the velocity in which resouacespent when reestablish-
ing conflicts. We analytically examine the cases underwltighuse of this reward
function leads to improved performance, and then emplyicgiown that indeed it
leads to better performance then existing methods of atiaptaVe plan to extend our
analysis and empiric investigation to examine additiomathdins and team tasks.
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