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Abstract. Personalized medication plans determine the selection,
dosage, and administration schedule of medications, to achieve med-
ical goals that are specific to the patient and to its individual health
constraints. This paper introduces medication planning as a novel do-
main for artificial intelligence planning, using PDDL+. We evaluate
the suggested representation via experiments based on data collected
from medical studies conducted on mice and rats.

1 Introduction
Personalized medication planning is the process of generating a plan
of drug administrations that meets a given set of medical goals that
are specific to the individual patient. The planning process must take
into account general health safety constraints, helpful or harmful in-
teractions between drugs, and individual physiological differences
in responses to medications. The resulting personalized medication
plan defines what drugs are administered, when, and at what dosage:
too little is ineffective; too much is toxic.

The behaviour of medicine administrations in the patient’s body
can be estimated by combining pharmacokinetic and pharmacody-
namic models. Pharmacokinetic models [17, 21] describe the time-
changing biodistribution (concentration) of the medicine in the pa-
tient’s body. Pharmacodynamic models [15, 45] describe the ef-
fect of the drug on various biochemical properties in the body. In
other words, pharmacokinetic models assess how much of the drug
is present at a certain time point in across the body, while pharmaco-
dynamic models describe what the medicine does to the body.

Medication planning is a complex process, manually carried out
by healthcare professionals. Its complexity is often encountered in
mitigating harmful drug interactions in patients with multiple dis-
eases [12], or in combination therapy, where multiple medications
are used to synergistically improve therapeutic effects while mini-
mizing side effects [39, 41]. Indeed, a combination of drugs can re-
sult in effects no drug can achieve alone [42].

Alaboud and Coles [3] introduced a restricted case of medication
planning, where the goal is to maintain a level of a single medication
in the body of a patient. Their work uses PDDL+ [16] to model the
non-linear effects of the drug by assuming it follows an exponential
decay curve, parameterized by the drug half-life (a common pharma-
cokinetic model in medicine). Recently, Alon et al. [4] described a
more general case, whereby the planning process considers multiple
drugs, arbitrary non-linear effects, and the interacting bio-chemical
properties of drugs and the body; these are considered with respect to
patient safety and the achievement of medical goals. However, they
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did not report on a representation approach, nor on any planners ca-
pable of carrying out such planning.

We present a general comprehensive approach for general medi-
cation planning (GMP), using PDDL+ [16]. In contrast to previous
work, the approach accommodates the administration of multiple
medications, even repeatedly. In addition, it facilitates a represen-
tation of pharmacokinetic-pharmacodynamic models and the consid-
eration of multi-drug effects. It supports the differentiation of medi-
cations with respect to various biological sites, which we collectively
refer to as bio-sites. Consequently, goals can be articulated in terms
of whole-body effects or tailored to target a particular target area,
using targeted medications.

Through experiments conducted on problem sets using real-world
data, we examine the challenges presented by the suggested repre-
sentation. Additionally, we evaluate the interaction between the rep-
resentation and various search algorithms and heuristics utilized in
numerical planning, analyzing their effectiveness and potential limi-
tations.

2 Medication Planning: Background
Our work falls within a general trend of using artificial intelligence
(AI) tools to assist and personalize medical care. We focus on med-
ication planning, which is concerned with selecting drugs to be ad-
ministered, as well as determining the dosage and schedule of the
chosen medications. Below, we discuss medication planning in de-
tail; the broader context in AI and medicine is discussed separately
at the end of the paper.

2.1 Pharmacokinetics and Pharmacodynamics

Once a drug is introduced into the body, it is generally carried by the
bloodstream circulating throughout the body. The drug reaches tis-
sues in various bio-sites—including organs and tumors—and may
accumulate for some time, before it is eventually cleared out of
the body. The concentration of a drug in various bio-sites, known
as its biodistribution, undergoes changes over time, which can be
described by pharmacokinetic (PK) models of varying complexity.
These models range from simple 1-3 compartment exponential decay
models [21, 40] to more advanced models that account separately for
multiple kinetic processes (see [17]). Alternatively, biodistribution
trajectories can also be represented by explicit curves [1, 24], ob-
tained from clinical trials.

For example, in Figure 1, we see the biodistribution trajectories of
a specific drug administered to a mouse (nanoparticle #11, in [24]).
Drug concentrations (percentage of initial dosage per gram of tissue)



were measured in four bio-sites (kidney, lung, spleen, liver), at sev-
eral time points (measured in hours since the administration at time
t0 = 0). Such trajectories change between medicines, but may also
change between patients. The horizontal axis shows the time since
administration. The vertical axis shows the concentration per gram
of tissue as a percentage of the injection dosage. Each line shows the
PK trajectory at a different bio-site.
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Figure 1: Biodistribution trajectories of drug #11 in mice (from [24]).

When the drug reaches a target bio-site, it may affect the properties
of that bio-site. These effects can be characterized using pharmaco-
dynamic (PD) models [45]. PD models describe the relationship be-
tween the drug concentration at any given bio-site, or the body as a
whole (in simple models), and the resulting therapeutic effect.

PK and PD models are combined to form PKPD models [45],
which predict the expected magnitude of drug therapeutic effect over
time. Figure 2 illustrates the connection between PK and PD mod-
els. The PK model yields the concentration of the administrated drug
in the body at a specific time post-administration. Subsequently, the
PD model utilizes this data to calculate the biochemical effect of
that drug on the patient’s body. PKPD models (and their component
models) have been and continue to be an active area of research in
medicine and pharmacology, with entire journals devoted to their in-
vestigation.

Figure 2: Illustration of the connection between pharmacokinetic
models and pharmacodynamic models. Scheme was taken from [45].

2.2 Medication Planning

Medication planning involves medical goals that are specified in
terms of properties of different bio-sites (or the body taken as a
whole), taking into account temporal pharmaceutical dynamics and
kinematics. It combines information about the rate of accumulation
and clearance of drugs in different bio-sites with information about
toxicity and personal health constraints and patient activities to meet
target levels of the drug or its biological effects.

The process involves selecting, determining dosage, and schedul-
ing medication administrations to a patient. It is therefore a gen-
eralization of dosing regimen planning [38], which assumes drugs
have already been selected, and deals with administration dosages
and schedules.

A good example of medication planning in mice is presented in a
study dealing with a new approach to cancer treatment conducted by

von Maltzahn et al. [42]. It consists of two steps, each using a differ-
ent drug type. In the first step, a targeted drug that attaches to tumors
and induces coagulation is administered. Seventy-two hours later, the
drug naturally clears from the body, leaving the tumor bio-sites with
elevated coagulation. Subsequently, a second drug is administered,
which exhibits an affinity to accumulate in bio-sites with elevated
levels of coagulation. This approach utilizes two different drug types,
which can provide targeted treatment only in combination. The first
medicine type can target tumors, but cannot be used for treatment.
The second drug cannot target tumors on its own, but can selectively
accumulate in the coagulated tumor sites.

Alaboud and Coles [3] and Alaboud [2] introduced an early at-
tempt at automating medication planning, using AI planning to solve
problems involving a single medication, whose target levels in the
patient’s body (single bio-site) must be maintained in face of the pa-
tient’s daily activities, influencing the desired drug levels.

Alon et al. [6] suggested several PDDL+ representations for the
personalized medication planning problem where multiple medicines
may be administered. Additionally, they consider multiple bio-sites
in their representations. However, their representations support only
PK models.

We present general personalized medication planning as a domain
for planning. The approach we take utilizes PKPD models to predict
drug concentration and effects that vary across an arbitrary number
of bio-sites, over time (Fig. 1). It allows for an arbitrary number of
medicines, each may be administered repeatedly if needed. The in-
teractions of the drugs are modeled, so that the planner can avoid
harmful interactions, and replace one drug with another (or with a
combination of drugs).

3 The Medication Planning Problem
In this section, we present the representation of the general medi-
cation planning problem (GMP) in PDDL+. We begin with a brief
reminder of PDDL+, before continuing by describing how a pa-
tient’s medical state (and drug distribution within it) is represented
(Sec. 3.1). We then show how pharamacokinetic models and mea-
surements may be represented (Sec. 3.2), and used together with a
pharmacodynamic model to represent drug administrations and (per-
sonalized) medical goals, under safety constraints (Sec. 3.3).

We follow the common definition of a PDDL+ planning prob-
lem [16]. A tuple ⟨V,S, s0, C,G,A, Ê , P̂⟩ where V is a set of state
variables either propositional or numeric, S is a set of states, where
each state is a complete assignment of values to all variables v ∈ V ,
s0 ∈ S is an initial state, C is a set of constraints on possible assign-
ments of values, and G is a goal description (a set of conditions over
variables). A is a set of instantaneous actions that change the values
of variables when selected by the agent, and Ê , P̂ sets of events and
processes (resp.) that change the values of variables instantaneously
or overtime, outside of the control of the agent.

Every action a ∈ A has a set of preconditions prea and a set of
effects effa. The precondition prea is a set of propositional and arith-
metic (in)equalities that are defined over the variables in V .1 If a state
s ∈ S satisfies the preconditions of an action a ∈ A, i.e., s |= prea,
then the action a is applicable in state s, and the planner may con-
sider adding it to the plan. When an applicable action a is executed
in state s, the state variables are updated according to the effect for-
mulas effa, where propositional variables are set to specific values,
and numeric variables are assigned values determined by arithmetic

1 An arithmetic formula is defined as an application of operators
{+,−,×,÷} to state variables and constants.



formulas instantiated in the given state. In contrast, if a state s satis-
fies the precondition of an event in Ê or a process in P̂ , it is always
executed; it is not subject to the planners choice. Syntactically, the
preconditions and effects of events and processes are similar to the
ones of actions, the only difference is the specific variable #t that
represents the individual time of the process, it is used to calculate
continuous effects and intermediate values of some numeric fluents.

A valid solution (a plan) is an ordered set of consecutively appli-
cable actions that starts at the initial state s0, transforms fluent values
with each ordered action, and reaches a goal state, i.e., a state com-
patible with G, such that no state in the state trajectory violates any
of the constraints in C. Typically, an optimal plan minimizes an ob-
jective such as number of actions, or their accumulating costs.

3.1 Biochemical Properties: Variables and States

From a medical perspective, a patient’s body can be viewed as a set B
of bio-sites, such as organs and blood. Basic pharmacological models
often depict the entire body as a single bio-site (|B| = 1), but in more
complex models multiple bio-sites are represented. The approach we
take here follows the more general view.

Each bio-site is represented as a set of P biochemical properties.
Their values indicate concentration levels or other measures of in-
terest and generally vary between bio-sites. Here, we represent each
property of a given bio-site as a numeric fluent, whose value at any
given time is measured in relevant standard units such as nanograms
per gram of tissue, for example. These measurements are familiar to
anyone who had a blood test.

The variables in V encompass various elements, including but not
limited to the fluents describing all properties across all bio-sites.
Therefore, we divide V based on bio-sites and their respective prop-
erties, where b[j] denotes property j ∈ P in bio-site b ∈ B. Ad-
ditionally, V contains auxiliary variables that handle the tracking of
different events and processes, e.g., monitoring medicine administra-
tion, violated constraints, etc.

A state is a complete assignment of values to all variables in V .
Table 1 shows an example of 12 property variables, used in the ex-
periments. The property m11 (first row) measures the concentration
of drug #11 (Fig. 1) in six different bio-sites, at a specific time (e.g.,
liver[m11] = 2.97, and kidney[m11] = 9.2). A second property,
measuring the level of mu-opioid receptor (MOR) activity, is shown
in the second row. Its values in this case are derived from PKPD
model parameters reported elsewhere [33]. The initial state s0 of a
patient’s body may be represented by setting the values of proper-
ties, in each bio-site, to current values. For properties measuring drug
concentration, initial values in all bio-sites are zero.

Properties P
Organs B Blood Heart Liver Spleen Lung Kidney

m11 1.6 0.73 2.97 2.34 1.81 9.2
MOR activity 26.4 20.28 30.003 28.79 27.27 33.55

Table 1: Illustration of the state of a patient’s body 24 hours post-
administration. Columns represent bio-sites. Rows represent prop-
erty values.

3.2 Pharmacokinetics: Actions and Events

When a drug is administered, it directly affects the corresponding
properties tracking the levels of the drug itself in different bio-sites.
These drug accumulation effects are highly non-linear (as discussed
in the previous section). Every administration affects multiple bio-
sites, continuously, over time, until the drug clears the body.

We use PDDL+ action templates adm(m, d) to represent adminis-
tering dosage d of a drug m. We record its dosage as d(m). The time

within the plan, t, is constantly tracked by a dedicated process. Each
administration instance is associated with a fluent that represents the
time of administration, t0(m). This fluent is initialized on the admin-
istration action to the current time in the system at the administration
moment. Thus, t − t0(m), the difference between the current time
in the system (being tracked by the process) and the time of that in-
stance administration, gives the time that has passed since m was
administered. For simplicity, we omit the representation of the time-
tracking process in the discussion.

The selection of an administration action triggers a PDDL+ event
computing its pharmacokinetic effects over time. For every medicine
m, there is at least a single property m in every bio-site b, i.e.,
b[m] ∈ V , which represents the concentration level of medicine m
in bio-site b. These levels can be computed by parametric PK models
(see, e.g., [3, 21]), or estimated directly from explicitly-represented
trajectories (e.g., Fig. 1). We follow this latter approach as it is more
general, and explicitly represents biodistribution trajectories in the
problemm description in PDDL+.

We begin with the simpler case, where a drug is administered at
most once. In this case, the event computes the grounded direct ef-
fects of an action adm(m, d) as a function of the initial dosage d(m)
and the time since injection t− t0(m), which yields a percentage in
the associate biodistribution trajectory. We follow common practices
and assume that the biodistribution trajectories are given in percent-
ages of the initial dosage, for a standard mass unit.

For every bio-site b ∈ B, the value of property b[m] for any time
t ≥ t0(m) is given as:

b[m] := g(b,m, t− t0(m)) · d(m), (1)

where d(m) is the dosage selected for the administration of m, and
g(b,m, t− t0(m)) is the sampled value of the biodistribution trajec-
tory of medicine type m for bio-site b, relative to the time of admin-
istering m. Both t and t0(m) are given in absolute time (since the
beginning of the plan). For drugs that directly affect more than a sin-
gle property, the event may be used to compute the direct effects in P
properties. Different medicines may be administered simultaneously,
and their effects will be computed by different events.

Repeating Administrations We can allow for repeating adminis-
trations of the same medication type, at different times. This may be
useful for achieving medical goals while not violating safety con-
straints (discussed later).

When more than a single administration of the same drug are
present in the patient’s body, the change in the medicine level due
to the administrations cannot be simply overwritten (as is done in
Eq. 1). Let us denote by mi the ith repeating administration of drug
m. Then, the total concentration level for a drug m should be com-
puted by adding the relative contribution of each administered in-
stance mi. Naïvely, the property value should be computed as:

b[m] :=
∑
i

[g(b,mi, t− t0(mi)) · d(mi)]. (2)

There are a number of difficulties with Eq. 2. First, PDDL+ does
not allow the generation of new mi as needed. Instead, we permit up
to N administrations of the same type of medicine (m1, . . . ,mN ),
where N is finite and known in advance (in the problem description).
Second, every administration action triggers its own event for com-
puting the effect. This event cannot assign a value to b[m] (using the
PDDL+ assignment keyword), as it will overwrite values from other
events. To correctly sum the concentration levels, we must differenti-
ate between events triggered by distinct administrations of the same



medicine, and sum their contributions. We expand the representation
to address these issues.

First, the administration action of instance mi has two additional
pre-conditions: (i) instance mi has not been administered yet, and (ii)
the state has not administered another instance of the same medicine
type in the current time step. To prevent symmetries between iden-
tical administration instances, we keep a counter for each medicine
type. An administration action may consider administering instance
mi only if all instances mj where j < i have already been adminis-
tered. After administrating a medicine instance, the action increases
the counter value of this medicine to allow the administration of the
next instance, if any.

To keep track of which medicine type was administered in a time
step, the state holds a predicate for each medicine type. At the ini-
tial state, all these predicates are initialized to False. When an in-
stance i of medicine m is administered, the corresponding predicate
is marked as True. An event resets these predicates to enable the ad-
ministration of instances of these medicine types in the next time
step. For further discussion see supplementary materials.

To correctly sum the concentration levels from repeating instances,
we change the computation of b[m] by each event triggered by an ac-
tion. Below, we show the representation of one such events. Each PK
event, even for the same medication type, has its own set of separate
variables. The only shared variables b[m] are medicine dependent.
They represent the total concentration level of m, regardless of the
number of repeating administrations.

For each administered instance mi, the event calculates the differ-
ence between the current property level (that is, d(mi) · g(b,m, t−
t(mi))) and the previous property level created by this medicine in-
stance, i.e., prev(b,mi), and adds it to the current medicine level
value. This way, the event considers only the change from the previ-
ous effect by this specific instance, without overwriting the PK effect
by other instances. That allows multiple medicine instances to affect
the level of the medicine in a bio-site simultaneously.

The PDDL+-like pseudo-code of the event is as follows (for read-
ability, we avoid the Lisp-like syntax),

b[m] += g(b,m, t− t(mi)) · d(mi)− prev(b,mi) (3)

prev(b,mi) := g(b,m, t− t(mi)) · d(mi) (4)

Eqs. 3–4, triggered by events for each administered instance mi,
collectively carry out the computation outlined in Eq. 2.

3.3 Pharmacodynamics: Events, Safety, and Goals

As a drug is accumulated in a bio-site (measured by its concentra-
tion level), it causes changes in other biochemical properties within
the same bio-site. These changes can be predicted using PD models.
The combination of the PK and PD model types, known as a PKPD
model, allows for the estimation of how the accumulation and clear-
ance of a drug change in biochemical properties influence various
bio-sites over time [21, 45, 15].

A common PKPD model in medical literature is the direct action
(direct effect) model [45, 15]. This model describes the relationship
between the time-dependent drug concentration, and its effects, mea-
sured in relevant units that vary between drugs. The model relies on
two parameters, Emax (the maximal effect achieved by the drug),
and EC50 (the drug concentration level needed to achieve 50% of
Emax). These parameters, defined by the drug’s PD model, remain
constant over time.

Following the computation of b[m]—the total concentration level
of drug m at bio-site b at time t—separate events compute the effect

of the drug on the value of the effect property p (at time t), using
direct effect formula [45, 15]:

b[p] += Emax(m, b, p) · b[m]

b[m] + EC50(m, b, p)
, (5)

where Emax(m, b, p) and EC50(m, b, p) are given by the PD
model for the drug m, when active in bio-site b, affecting property p.
As a reminder, b[m] measures the total concentration level of m in
bio-site b, even when resulting from repeating administrations of m.
Unlike in the PK event, we do not need to model each administration
instance of the same medicine type with separate events. That is due
to the fact that a PKPD event considers the total level of the medica-
tion currently in the bio-site, instead of considering the relative value
of each instance by itself.

Note that Eq. 5 recomputes the drug effects for each new t. At the
beginning of each time step, events nullify the values of all properties
that do not represent medicine levels. This allows the simple summa-
tion of the PKPD effect. For simplicity, we omit the representation
of this event in the discussion.

Different drugs may affect the same property simultaneously. As
these will be handled by different events, their effects will increase
the value of the property according to the PKPD effect of the associ-
ated medicine type. This naturally follows the Loewe additive drug
interaction model [10, 45], whereby drugs can affect the same prop-
erty, but at different “strength”. Contra-indicated drugs (may not be
taken together) are handled by constraints (see below).

Goals G and Safety Constraints C Given the definitions of states
and actions above, it seems a simple matter to define goal states in
terms of target levels for properties of interest, at a specific set of
bio-sites (therapeutic sites). However, medically, we must also ensure
that the levels of all properties are maintained at safe levels, before
the target levels are reached, as well as after.

We use events to impose limits on the maximal and/or minimal val-
ues of a property at any moment. These limits can come from medical
defaults, or they may be personalized for specific health conditions
of a patient. For example, if a patient has diabetes, the glucose level
must stay below a given threshold h at all times. Such a constraint
on the property j of bio-site b can be expressed as b[j] ▷◁ h, where
▷◁∈ {>,≥,=,≤, <}.

Constraints can be placed to prevent interactions between drugs.
For example, we may represent a constraint that if a property value
i in a bio-site b is greater than a given threshold hi, the value of
property j in the same bio-site must be less than a threshold hj , i.e.,
b[i] > hi ⇒ b[j] < hj .

The goal description G has two components in the PDDL+ repre-
sentation of GMP. The first involves specifying target levels for prop-
erties in the set of therapeutic sites. These target levels can be person-
alized and differ between patients. The second component ensures
that constraints are maintained after these target levels are achieved.

Once the goal conditions are first satisfied at time tg , safety con-
straints should be upheld not only in the interval [0, tg] but also in the
extended interval [tg,∞), bearing in mind that action effects have
finite durations. Thus, a second subgoal introduced using PDDL+
checks that all administered medication had been eliminated from
the patient’s body after the first component has been achieved.

Personalization Patients, who seek treatment for the same goal,
vary in their medical history (e.g., background medical conditions
leading to differences in safety constraints) and treatment preferences
(e.g., due to age, sex, levels of activity). Two patients with the same
medical goal may still require different treatment plans due to dif-



ferences in background medical conditions, such as diabetes, preg-
nancy, etc. Patient diversity may cause differences in their PKPD
responses, both in biodistribution trajectories, as well as Emax and
EC50 parameters.

4 Experiments
We empirically evaluate the use of PDDL+ planning for medication
planning using medical PK and PD data from mice and rats. Specif-
ically, PK data was taken from an extensive database reporting on
the biodistribution trajectories of more than 200 nanoparticle-based
drugs in up to 15 different bio-sites in mice [24]. In principle, such
nanoparticles can be used to carry many different kinds of therapeu-
tic drugs, and as such the database does not report on PD (therapeutic
effects, other than concentration). We therefore used PD parameters
(Emax, EC50) for various medications in mice and rats [33, 25, 31].
All experiments were run using the ENHSP-20 planner [37], which
supports PDDL+, including non-linear conditions and effects.

We evaluated the representation under various planning algorithms
and heuristics, on 261 medication planning problems. Each was at-
tempted by up to six different planning algorithms/heuristic combi-
nations (described below), for a total of more than 1500 trials.2

Personalized Medication Planning Example To demonstrate the
difficulty of solving GMP problems, let us examine a relatively sim-
ple instance. Suppose the planner is to consider only two types of
medicine reported in [33], Nalbuphine and Buprenorphine, each al-
lowed to be given at most once. Suppose the clearance time for
Nalbuphine is 25 hours, while for Buprenorphine it is 49 hours.
The biodistribution trajectories were taken from [24]. Five different
dosages are available for each medicine. The medical objective is to
have the mu-opioid receptor selectivity reach a level of at least 51 in
the spleen, but not exceed 53.8.

While this problem seems small, solving it could be challenging
due to the many possible administration times (25 · 49) and dosage
options (5 · 5) resulting in over 30, 500 combinations. However, The
ENHSP planner solved this problem in under 3 seconds using A∗

and the hmax heuristic (see below on the various algorithms and
heuristics used in the experiments). It recommended administering
Buprenorphine with a dosage of 30, waiting 24 hours, then admin-
istering Nalbuphine with the same dosage, and waiting until both
medicines clear the body, totaling 49 hours.

We examined the ability to personalize the treatment to a pa-
tient’s individual responses. Román et al. [31] reports that the same
medicine (Dantrolene) affects rats with two different medical condi-
tions, in a different manner. The PD parameters for the drug’s effects
on 5-HT (a particular property) were Emax = 0.67, EC50 = 8.43
for one type of rat. For the other type, the PD parameters were:
Emax = 0.82, EC50 = 20.39 in the same bio-site. The differ-
ent behaviour also occurs with a different drug, Nimodipine: its PD
parameters for 5-HT were Emax = 0.42, EC50 = 7.49 for the first
type of rat, and Emax = 0.35, EC50 = 12.4 for the second.

We gave the planner the task of reaching a 5-HT value above 0.3.
All other parameters, including safety constraints, were identical, ex-
cept for PKPD responses. Using the same settings, ENHSP suggests
different plans for the two rat types. It advised Dantrolene for the first
type and Nimodipine for the second.

Parameters affecting computation: Baseline experiments We
now turn to evaluating the representation proposed in computational
terms. Obviously, the search algorithm and heuristics used affect

2 For all instances, see https://bitbucket.org/lee-ora/ecai24-supplementary/.

the results. We used the following ENHSP-implemented numeric
heuristics: blind (1 for non-goal states, 0 for goals), the admissible
heuristics hmax and hrmax, and inadmissible hadd and hradd are
all due to [36]. Their treatment of processes and events is based on
the inadmissible AIBR heuristic that is due to [34]. The search algo-
rithms used are the A∗ search [19] and the Greedy Best First Search
(GBFS) [13]. Planners, therefore, are a combination of a search al-
gorithm and a heuristic, where opt-blind is A∗ + blind, opt-hmax
is A∗ + hmax, opt-hrmax is A∗ + hrmax, sat-aibr is A∗ + AIBR,
sat-hadd is GBFS + hadd, and sat-hradd is GBFS + hradd.

We created 37 problem instances, using the data from [24, 25,
33]. The experiments differ in the number of medicine types M
(1,2,4,6,7), potential repetitive administrations of each type N (1–
4), the number of bio-sites B (1–3) and properties of interest P (1 or
2). Medications vary in their biodistributions and clearance time, i.e.,
the duration of the biodiversity trajectory curves (25 or 49 hours);
longer clearance times require the planner to maintain its associated
processes over more states. Medications also vary in their Emax and
EC50 parameters between bio-site properties. The desired values in
the goal may differ between problem instances.

We tested every problem with each of the different planners (al-
gorithm+heuristic combination). Runtime was measured in CPU-
seconds, using the Linux time command. If no solution was found
after 10 CPU minutes, the planning process was stopped. We limited
the memory consumption to 16GB RAM. In both scenarios, the in-
ability of the planner to find a solution was considered a failure. The
experiments were performed on a machine with Intel(R) Xeon(R)
CPU E5-2630 v4 @ 2.20GHz CPU and 258GB RAM. Tests were
conducted in parallel using 20 hyperthreaded cores (a total of 40 log-
ical cores). No more than 20 tests were run in parallel.

The initial experiment set served as our baseline. These problems
were devoid of any medical safety constraints, rendering them rela-
tively simpler. By utilizing this experiment set, we were not only able
to establish a baseline for subsequent experiments but also isolate the
individual effects of each parameter on planner runtime.

A comparison of the results from planners in this experiment are
summarized in Table 2 in the first row (marked baseline). We see
that opt-blind was practically unable to solve the medication plan-
ning problems used in the evaluation (it solved only three out of 37),
though opt-hmax and opt-hrmax were able to solve all and most of
the problems, respectively. Perhaps surprisingly, the satisficing plan-
ners, sat-∗, performed very badly, in comparison: sat-aibr solved
three problems; sat-hadd and sat-hradd solved none.

Fig. 3 shows the effect of various parameters on opt-hmax and opt-
hrmax runtimes, in the baseline experiment. The vertical axis shows
the runtime in CPU seconds. Each marker in the graph represents a
single run. Unsuccessful runs are marked as a runtime of 600 seconds
for spacing. Goal difficulty was determined by sampling reachable
goal values in a few problem instances and comparing their runtimes.

Computational effects of medical safety constraints A second
set of experiments sought to establish the role of the safety con-
straints on the difficulty of the problems. We created two more sets
of 37 problems each, where each problem from the baseline was du-
plicated and modified, such that it now contained a set of loose (set
1), or tight constraints (set 2). Loose constraints were picked such
that their threshold values were far above the target property values
in a valid solution, so a wider range of dosages and schedules could
achieve the goal. Tight constraints were close to the target property
values, and thus the number of valid solutions is much reduced, i.e.,
harder to find a plan.

Rows 2 and 3 in Table 2 show the results from this second set of
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Figure 3: Runtimes of opt-hmax and opt-hrmax in various baseline
settings: (a) 2–6 medicine types, (b) 1–4 possible repetitive admin-
istrations of each medicine type, (c) 1–3 bio-site to consider in the
plan, (d) 1–2 bio-site properties to consider, (e) 1–10 available pos-
sible dosages for each medicine type, and (f) the goal difficulty.

experiments. opt-hmax continues to maintain its advantage over opt-
hrmax. However, we see that both planners suffer in performance as
constraints become tighter.

Computational effects of the PK clearance times A final set of
experiments tests the impact of PK duration, i.e., the time from ad-
ministering a drug to until it is cleared. For these experiments, we
had to synthesize PK curves, by shrinking and stretching the real PK
data, compared to the original baseline. To shrink a problem (shorten
the PK duration), we divide the time of each sample point in the
biodistribution by shrinkage factor, and then remove redundant sam-
pling points that have the same time after this division. Similarly,
for stretching duration by a stretching factor, we added time points
between the original samples and evaluated the values at these new
points using linear interpolation. We used factors of 2 and 4 for both
shrinking and stretching. By exploring these different experimental
settings, we aimed to understand the impact of each such parameter
on the coverage of the problem instances and later on their runtimes.

The results are shown in Table 2, in the last four rows. We see
that the longer the duration of the PK modeled process (the longer
the drug stays in the body), the harder it is for the planner to solve
medication planning problems containing the drug in question.

For the two planners with the highest coverage, opt-hmax and opt-
hrmax, we also report on the geometric means of runtime in seconds
(T), the expanded nodes (N), and the evaluated states (E). Means
were calculated on the problems both opt-hmax and opt-hrmax suc-
cessfully solved in each row.

While the means of the expanded nodes and evaluated states are
the same for both planners in each row, the runtimes for opt-hmax are
always lower than those of opt-hrmax. This might indicate that the
redundant constraints of hrmax did not help solve the GMP problems
faster. Instead, the additional computation required for these redun-
dant constraints made opt-hrmax run slower compared to opt-hmax.

sat-aibr opt-blind opt-hmax opt-hrmax
Experiment

Setting C C C T C T N E
Baseline

(No Const.) 3 3 37 30.96 34 65.83 289.1 8212.17
Constraints

(Loose) 3 3 37 32.17 33 67.62 338.49 9303.06
Constraints

(Tight) 1 2 19 33.06 14 70.14 245.56 8810.45
Time Shrinkage

(X4) 16 13 37 12.84 37 19.48 117.73 3447.51
Time Shrinkage

(X2) 8 3 37 20.64 37 37.37 210.98 6266.07
Time Stretching

(X2) 0 3 34 33.2 20 73.17 357.47 7013.89
Time Stretching

(X4) 0 0 21 44.67 13 127.3 672.95 8971.08

Table 2: Comparison of planners in different experiment settings
(rows). Coverage (C) is measured by number of problems solved (out
of 37). Planners sat-hadd and sat-hradd did not solve any problem
(columns omitted). Columns marked (T), (E) and (N) denote the ge-
ometric means of the run-time, expanded nodes and evaluated states,
respectively, for opt-hmax and opt-hrmax by row. Means were cal-
culated on the problems both opt-hmax and opt-hrmax successfully
solved in each row. Best values in each row are in bold.

Focusing on the leading planners, Fig. 4 contrasts the runtime of
opt-hmax and opt-hrmax on all problems from all experiment sets.
The two axes measure the runtime for each problem on a logarith-
mic scale. Each marker represents a single problem. A marker below
the main diagonal indicates that opt-hrmax ran faster than opt-hmax
on the specific problem. A marker above the main diagonal indicates
that opt-hmax had a lower runtime. When a run was unsuccessful for
a planner, it is given a runtime of 600 sec., denoted by the red lines.
Multiple markers can be hidden by another marker if they share the
same runtime. For example, by the marker at the top right corner at
(600,600), which indicates all the unsuccessful runs by both plan-
ners. Generally, opt-hmax performed better in comparison to opt-
hrmax in both terms of coverage and runtime.
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Figure 4: The runtimes of opt-hmax compared to opt-hrmax runtimes,
measured on logarithmic scale axes. Each marker represents a single
problem instance. Unsuccessful runs are marked as a runtime of 600
seconds for spacing. All problems where both opt-hmax and opt-
hrmax failed are located at the upper right corner of the graph.



5 Discussion

Heuristic planners face significant increases in runtime when dealing
with scenarios involving a greater number of medicine types, higher
repetitions of each drug, consideration of additional bio-sites, or al-
lowance for more dosage options. Additionally, tighter constraints
around the goal and the utilization of PK biodistribution trajectories
spanning longer periods also increase planner runtimes.

However, runtime is not solely determined by the number
of parameters, such as the number of medicines, but also by
their pharmacokinetic-pharmacodynamic (PKPD) responses. For in-
stance, Morphine, a potent pain-relief drug, consistently shortened
runtime for both opt-hmax and opt-hrmax planners. Despite increas-
ing the number of optional plans, the inclusion of Morphine reduced
runtime by almost half in various instances. To illustrate, in a prob-
lem with a six-drug set but without Morphine, opt-hmax and opt-
hrmax solved it in 55.68 sec. and 169.71 sec., respectively. Yet, when
Morphine was added to the drug set, the runtimes decreased to 19.52
sec. for opt-hmax and 37.23 sec. for opt-hrmax.

The planner chooses Morphine whenever possible, because the
representation presented here currently lacks the means to repre-
sent its long-term health complications, which would prohibit doc-
tors from prescribing it unless absolutely necessary: It is an opioid
drug; frequent usage may cause the patient to become addicted. This
type of information is very much relevant to the medication plan, and
in future work, we will address means to represent it.

The experiments presented in Table 2 show that opt-hmax yielded
the best results in terms of coverage, while sat-hadd and sat-hradd
performed the worst among the tested planners. This disparity in
performance may be due to the fact that the representation is not
of a simple numeric planning (SNP) form. In SNP, effects can only
increase/decrease a variable by a constant. However, the GMP repre-
sentation does not adhere to this restriction. For non-SNP representa-
tions like the GMP, sat-hadd and sat-hradd use a blind heuristic [35].

In this representation, we used biodistribution trajectories and the
direct-effect model to assess the time-changing effect of the drug
across various bio-sites. However, we did not model the impact of
other biochemical properties that can affect drug distribution and ef-
fect. The von Maltzahn [42] example previously discussed serves
to illustrate: The baseline behavior of the second medicine changes
in response to coagulation presence, which is why the first drug is
used initially to increase coagulation in tumors. To describe the PK
changes of the second drug, we could naively use conditional ef-
fect, stating that the drug’s biodistribution changes in the presence
of coagulation. Yet, to prevent conflicting effects from overlapping
conditions, we would have to explicitly consider all possible combi-
nations of the conditions. Given r conditions, this means specifying
2r condition combinations. We are currently investigating paramet-
ric PKPD models that consider the impact of additional properties on
drug behavior, without the need for explicit conditions.

6 Related Work

Personalized medication planning is a recent area of research within
the more general area of personalized treatment planning, tailoring
therapeutic interventions to individual patient and medical needs.

A prime example of treatment planning is radiation therapy plan-
ning, whereby motion planning and machine learning methods aid in
the design of radiation treatments by simulating precise configura-
tions, such as visualizing affected tissues, and suggesting treatment
parameters that align with medical objectives. This contributes sig-

nificantly to the continuum of patient care, as highlighted in recent
reviews by [43], [11], and [22]. Due to significant variations in tumor
morphology, position, and other patient-specific factors, personalized
radiotherapy plans must be formulated in order to minimize damage
to normal tissue while persevering sufficient tumor control.

Another example of this general treatment plan is in planning
treatments for patients with multiple diseases, by merging available
multiple single-disease clinical guidelines. This intricate process in-
cludes substituting drugs when adverse or redundant interactions oc-
cur, adjusting and scheduling tests to monitor for such interactions,
and other related tasks. Techniques for automating this process utilize
constraint satisfaction [44, 29], model-based reasoning [30, 28], and
planning [32, 14, 26]. While these investigations touch on medicine
choices, they do not provide personalized dosage or hourly medica-
tion schedule. Instead, they produce plans that span weeks or months,
rather than hours. Similarly, the use of HTN planning to schedule
chemo-therapy treatments over weeks, considering doctor availabil-
ity [18], differs from GMP.

A final example area of treatment planning is discussed by Amir
et al. [7, 8]. They use teamwork theory to enhance and improve col-
laboration between patients and various caregivers: family, medical
professionals, and support organizations; the improvements allow the
caregivers to better coordinate their human decision-making.

7 Conclusion
We introduced general medication planning (GMP), a relatively new
and underexplored area in personalized medical treatment planning.
This domain requires planning for actions whose effects are durative,
multi-dimensional and non-linear, which may overlap in time. We
present a PDDL+ representation for GMP problems, using events to
describe the behaviour of drugs in the patient’s body.

Experiments with clinical data from rodents demonstrate that the
suggested representation is capable of modeling GMP scenarios.
However, they also reveal a rapid increase in planning runtime with
various problem parameters. Consequently, even seemingly simple
problems from a medical perspective remain impractical for applica-
tion. In addition to the challenges outlined in Section 5, a key objec-
tive for future work is the development of heuristics and representa-
tion changes to facilitate solving medically-relevant problems. Fur-
thermore, it is pertinent to evaluate the performance of other planners
such as Metric-FF [20] and OPTIC [9]. This necessitates the trans-
lation of the suggested representation from PDDL+ using dedicated
translators, such as the one proposed by Percassi et al. [27].

GMP presents an exciting and promising opportunity, albeit with
significant challenges. Ideally, GMP planning involves the consider-
ation of dozens or even hundreds of drugs, some of which exhibit
effects that accumulate over days and weeks due to frequent admin-
istrations. This is particularly true for many psychiatric drugs, which
pose unique complexities to the planning process.
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move biases that may pre-exist in data or general medication plans.
Creating treatment plans from scratch using personalized data en-
sures that we do not apply (possibly biased) general treatment plans.
This paper focuses on using AI planning to carry out such personal-
ization. While the data we use is taken from published sources, the
system has not been evaluated clinically, even with rodents. Actual
clinical use would require mitigating automation bias by the user,
consideration of execution robustness (e.g., actual timing of medica-
tion), reasoning about long term effects, and other factors influencing
the safe use of automated medication planning. In addition, we fore-
see the need for enhancing clinicians’ understanding of the proposed
plans and easing their workload, such as visualization and explain-
ability [23, 5]. All of these challenges we leave for future work.
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