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Abstract. One key issue facing robotic teams is effective coordi-
nation mechanisms. Many robotic groups operate within domains
where restrictions such as limiting areas of operation are liable to
cause spatial conflicts between robots. Our previous work proposed
a measure of coordination, interference, that measured the total time
robots dealt with resolving such conflicts. We found that a robotic
group’s productivity was negatively correlated with interference:
Effective coordination techniques minimized interference and thus
achieved higher productivity. This paper uses this result to create
adaptive coordination techniques that are able to dynamically adjust
the efforts spent on coordination to match the number of perceived
coordination conflicts in a group. Our robots independently calculate
a projected level of interference they will encounter. By using this
metric as a guide, we are able to create adaptive coordination meth-
ods that can quickly and effectively adjust to changing conditions
within their environment. We present an adaptation heuristic that
is completely distributed and requires no communication between
robots. Using thousands of simulated trials, we found that groups us-
ing this approach achieved a statistically significant improvement in
productivity over non-adaptive coordination methods.

1 Introduction

Groups of robots are likely to accomplish certain tasks more quickly
and robustly than single robots [3, 5]. However, the physical envi-
ronment where such teams operate often pose a challenge for the
robots to perform properly. For example, domains such as robotic
search and rescue, vacuuming, and waste cleanup are all character-
ized by limited operating spaces where the robots are likely to col-
lide. Improved coordination methods in such domains result in more
productive groups.

Our previous work [9] defined a measure called interference to
facilitate comparison between various coordination methods. Inter-
ference is defined as the total time each robot spends in resolving
conflicts with other robots. This not only includes the time robots
collide, but also the time robots spend preventing such collisions and
the time they engage in resolution behaviors after such an event. It
was found that a strong negative correlation exists between interfer-
ence in a group and its productivity. However, this does not mean
that robots should avoid the coordination activities which constitute
interference, as such behaviors are often critical for achieving cohe-
sive team behavior. Rather, the coordination method of choice needs
to appropriately match the needs of the domain. As such, interference
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should be kept to a minimum, while still sufficiently high to meet the
coordination requirements of the environment.

This paper builds on this idea by presenting a method for dynam-
ically adapting coordination efforts to minimize interference by tak-
ing into account fluctuations in spatial conflicts that are common in
robotic domains. The idea is to spend more efforts on coordination
as the possibility of collisions become frequent, and to reduce such
efforts if such events are rare. In order to quickly adapt to a changing
environment, we use a weight-based heuristic by which every robot
in the group is capable of quickly tweaking its resolution methods to
match its estimates of resource conflicts. Our approach is completely
distributed, and requires no communications between robots.

To evaluate this approach, we modified two different basic robot
coordination mechanisms to use this adaptation heuristic. We ran ex-
tensive simulated trials comparing the adaptive methods to a vari-
ety of non-adaptive versions. We show that the adaptive methods re-
sult in statistically significant higher average productivity than that
of non-adaptive methods. While a specific non-adaptive method may
work well in small groups, but not in large groups, the adaptive ap-
proach we use results in improved performance regardless of the
robotic group size.

The remainder of this paper is organized as follows. The next sec-
tion presents the correlation between interference and a group’s pro-
ductivity. We discuss the problem of matching the best coordination
method to a given domain. Section 3 develops our adaptive coordina-
tion algorithm, and introduces our hypothesis that such an approach
can effective adapt to the dynamic nature of many robotic domains.
Such a method will be able to overcome the shortcoming in static
methods. In section 4 we present and evaluate our experiments with
dynamic groups to confirm this hypothesis. We discuss related work
in section 5. Section 6 concludes and describes possible future direc-
tions.

2 Interference versus Productivity

A strong inverse relationship seems to exist between a robotic
group’s productivity and the amount of time these robots engage in
coordination behaviors. We previously found [9] a strong negative
correlation between the total amount of time robots spend in reso-
lution behaviors, a concept referred to as interference, and the pro-
ductivity of the group. While adding robots may speed up the time
to complete certain tasks, and can even be necessary for completing
other tasks, these robots can trigger collisions which detract from the
group’s performance.

Our previous work [9], contrasted various coordination algorithms
within the foraging domain. The foraging domain has been exten-



sively studied, and is formally defined as locating target items from a
search region S, and delivering them to a goal region G [4]. Various
coordination methods have been developed that could work within
this domain [10, 3, 11, 8]. We compared algorithms including the
concepts of Aggression [11], a dynamic Bucket Brigade [8], and the
use of a repulsion schema mechanism (Noise group) [1]. Among oth-
ers, we compared three additional groups called Gothru, Repel Fix
and Timeout. Gothru represents idealized group behavior without any
possibility for interference and can only exist in simulation. These
robots were never affected by obstacles, and were allowed to simply
pass through teammates. Repel Fix resolved collisions by moving
away from a teammate for a fixed period of 50 seconds once a team-
mate was sensed within one robot width (approximately 45 cm). The
Timeout method only reacted once a robot detected it had not suffi-
ciently moved for 5 seconds. After this point, it attempted to become
unstuck by entering a random walk for 7.5 seconds.

Figure 1. Comparing Foraging Coordination Methods

Figure 1 graphically presents the results that motivate this work.
The X-axis represents the number of robots in the group, and the
Y-axis corresponds to the number of foraging pucks that the group
brought to the goal region. Notice how Gothru is the only group to
achieve positive gains in productivity over all group sizes. The lev-
els of interference that existed in all other groups eventually caused
the group’s productivity to decrease with the addition of robots. We
found a very high negative correlation between the total time groups
spent reasoning about and reacting to collisions, and the correspond-
ing productivity. However, no one group was successful in minimiz-
ing this level of interference across all group sizes. Our conclusion
was that static coordination methods are often not equally suited for
minimizing interference over all conditions.

Our work is motivated by these results. Our goal is to create adapt-
able coordination methods that are able to react to the dynamic con-
ditions within robotic domains. We present a method of adaptation
that is based on the robot’s internal estimate of interference. For ex-
ample, the Noise group in this domain had simple coordination meth-
ods that were effective in small groups. However, these methods were
not capable of resolving collisions in larger groups – resulting in high
interference levels and low productivity. Other methods, such as the
Aggression and Repel Fix groups spent more time in coordination
behaviors. These more aggressive coordination methods were capa-
ble of reducing interference at higher levels, and thus approximate
Gothru’s theoretical performance in larger group sizes. However, the
high overhead of these coordination methods itself constituted inter-
ference and resulted in lower productivity than simpler coordination

methods in small groups. We believe that by using a robot’s internal
measure of interference, we can create one coordination method that
adapts to the domain conditions as needed.

3 Adaptive Coordination

The dynamic nature of robotic environments makes the challenge
of creating adaptive coordination formidable. While traditional rein-
forcement learning methods may be useful, the number of iterations
such algorithms require make them unproductive without a signifi-
cant training period [7]. In the previous example, each team’s produc-
tivity result was averaged over 100 trials for statistical significance.
While 100 trials may be sufficient for reinforcement learning, the re-
sult would likely be optimal for specific environment settings. Once
that environment is slightly modified, as would occur if one robot
ceased functioning, the result would no longer be relevant. As pro-
ductivity of robotic groups is often time critical, a tradeoff between
finding an optimal solution and speed is likely to be worthwhile. We
therefore instead focus on an adaptive method which uses a weight-
ing heuristic to dynamically modify the coordination algorithms to
match perceived environmental changes. We present the advantage
of this method compared to static methods.

3.1 The Dynamic Coordination Algorithm

We begin by analyzing the Repel and Timeout coordination meth-
ods previously mentioned. As our next section demonstrates, the best
length of time to spend in Repel and Timeout behaviors depends on
the nature of the domain. Once again, a strong correlation between
interference and productivity emerges — the longer a robot engages
in interference resolution behaviors the lower its productivity will
be. For example, if a Repel robot repels for too long after a poten-
tial collision, it will take longer to complete its task. However, in
situations where collisions are likely to occur, too short a repulsion
period results in the robot not resolving its projected collision and
quickly re-triggering its resolution behavior for the same event. A
similar problem exists in the Timeout group. If the timeout thresh-
old is set too low, the robots will consider themselves inactive even
while performing necessary tasks such as slowing down to attempt to
take a target puck. Too long a timeout threshold results in the robots
wasting time before attempting to resolve a legitimate problem.

We resolve this problem by basing the strength of the coordination
method to match an approximation of the interference level, V , each
robot senses within the domain. Specifically, our algorithm works as
follows: We first initialize a base value that represents the supposed
interference level the domain will contain Vinit. For each cycle that
passes where no impending collisions are detected the value of V

is decreased by a certain amount Wdown. For each cycle where the
robots sense a collision is likely, the value of V is increased by a cer-
tain amount Wup. Thus, the value V is constantly in flux based on the
robot’s perception of its environment. We use this value to dictate the
repel length and timeout threshold in our Repel and Timeout groups.
Thus, our groups adapt their coordination methods to the likelihood
of collisions within their environment.

3.2 Shortcomings of Static Methods

In order to demonstrate the shortcomings within static methods, we
studied 5 variations of the Repel and Timeout groups. We chose val-
ues of 10, 50, 100, 200, and 500 cycles for the length of time the
Repel group would repel after nearing a collision. We also used these



same values as various threshold values for the Timeout group. After
these times the random walk behavior would attempt to resolve the
collisions between various groups of Timeout robots. As was the case
in the previous work, we used the robotic simulator, Teambots [2], to
collect data for these groups. We left other details of our setup iden-
tical to the implementation previously used. Teambots [2] simulated
the activity of groups of Nomad N150 robots in a foraging area that
measured approximately 5 by 5 meters. We used a total of 40 such
target pucks, 20 of which where stationary within the search area,
and 20 moved randomly. For each group, we measured how many
pucks were delivered to the goal region by groups of 1 – 30 robots
within 9 minutes. For statistical significance, we averaged the results
of 50 trials with the robots being placed at random initial positions
for each run. Thus, this experiment simulated a total of 15,000 trials
of 9 minute intervals.

In both groups, the best coordination method depended on the size
of the group. The larger the group, the more aggressive the coordi-
nation method required to fight collisions. Among the Repel groups,
Repel50 had the highest productivity in the groups up to 10 robots.
Between 10 and 15 robots the Repel100 group did best. The Re-
pel200 group fared better over the next 5 robots, and the Repel500
group had the highest productivity between 20 – 30 robots. Overall,
the Repel200 fared the best with an average productivity of 23.00
pucks. However, this group only had the highest productivity over a
range of 5 robots. Our algorithm will need to adjust the repel value
based on the values of V perceived by each robot.

Figure 2 graphically depicts the results of the equivalent timeout
experiment. The X-axis represents the size of the group, and the Y-
axis corresponds to the average number of pucks the group collected.
In this example, the group with the highest timeout threshold fared
the best with small groups. Essentially, such a high value rendered
the timeout behavior dormant. As the group size grew, more aggres-
sive treatment of interference issues was needed, and the best reso-
lution method had a lower interference threshold. For groups of up
to three robots the 500 cycle threshold worked best. Between 4 – 7
robots the Timeout200 group had the highest productivity. The Time-
out100 group did best with groups of 8 and 9 robots. The Timeout50
group had the highest productivity between 10 – 20 robots, and the
Timeout10 group did best with 21 – 30 robots. On average, the Time-
out50 group had the best productivity with 17.60 robots. However,
this group did not fare as well with smaller group sizes. Our adaptive
algorithm will need to use the robots’ value of V to facilitate this
adaptation.

Figure 2. Static Timeout Group Productivity

4 Creating and Evaluating Dynamic Methods

In this section we discuss the process by which we set the weights
used in our dynamic approach. We present details of our experiments
used to create these groups. We found that this approach did indeed
outperform the static methods we studied in a statistically significant
fashion.

4.1 Setting the Weight Values

We experimented with various values of Vinit, Wup, and Wdown

within our adaptive Repel and Timeout groups. We found many
nearly optimal combinations for the values of Vinit, Wup, and
Wdown. Our adaptive approach was flexible in that there were multi-
ple weight values that resulted in similar group productivity. A value
of Vinit being originally set too high was soon corrected by the
weights in Wdown. Conversely an initial value set too low can be
quickly rectified by the weights in Wup. Figure 3 depicts the produc-
tivity of three dynamic groups whose value of Vinit ranged from 300
to 600 cycles. All groups used identical values for Wup and Wdown,
implying this level of flexibility within the system.

Figure 3. Three Dynamic Repelling Groups

One simple way of improving on any static method is to choose
the value of Vinit to be equal to that of the static value. For exam-
ple, if trying to improve on the Repel200 method, simply set Vinit to
this amount. However, while improved results are not hard to create
with this algorithm, approximating optimal results can be more diffi-
cult. We found that using a range of weights for Wdown and Wup was
beneficial in achieving better results. As such, Wdown and Wup were
modified to reflect a map of weights based on the proximity of other
robots. We used different values for Wup when robots were actually
colliding, nearly touching, and approaching but not yet within a cer-
tain distance. Optimal values, if achievable through this method, are
possibly domain specific and based on the exact coordination method
being used.

Within the dynamic Repel groups we studied, we found that a
value of Vinit = 350 seemed to work best. We used values for Wdown

ranging from 200 to 0 based on how quickly the repel mechanism
was triggered. Our values for Wup ranged from 550 to 0 based on
how soon the robot found itself nearing a collision. This led to a
heuristic that took a graduated approach—it would adjust the amount
it would repel in the case of a collision fairly quickly up or down
based on how frequently collisions occurred within the domain.

Similarly we experimented with the weights the Timeout group
used. Initially, Vinit was set to 500. During every cycle that passed,
all robots checked if a teammate or other obstacle was nearby and



adjusted its weights for Wdown and Wup accordingly. The values
for Wdown ranged from 15 down to zero based on the location of
another robot. Values for Wup were between 2 and 0. This set of
weights assumed little interference existed in the domain, but quickly
lowered its threshold value as necessary.

4.2 Evaluation of Results

As figure 4 demonstrates, our heuristics did adapt their coordination
measurements as the likelihood of collisions grew with the addition
of robots to the group. In this graph, the X-axis represents the group
size and the Y-axis marks the value of V (measured in cycles) av-
eraged between the distinct values of all members in the group. In
the Repel group this value constituted the length it moved backwards
once it neared a collision. Every 10 cycles of V constituted one sec-
ond of time the robot would repel once it approached a teammate.
Similarly in the Timeout group, every 10 cycles of V translated into
one second added to its inactivity threshold. Notice how the Time-
out group originally used a very high timeout value and proceeded
to lower this threshold. As the group size grew, it became necessary
to react to inactivity more aggressively. Similarly, the Repel group
needed to increase the length of time it moved away from another
robot as its group size grows. The use of more aggressive coordina-
tion methods was justified as collisions in the domain became more
frequent.

Figure 4. Dynamic Coordination Threshold Values (V )

We found that our dynamic coordination group produced statisti-
cally significant higher levels of performance than that of even the
best static method we studied. Once again for statistical significance
we ran our dynamic Repel and Timeout groups for 50 trials over a
range of 1 - 30 robots. The dynamic Repel team on average collected
24.5 pucks, better than the average of 23.0 pucks the Repel200 group
produced. Nearly half of the time (13 out of 30 instances) this group
even collected more pucks than the best of the 5 static options we
tested. Figure 5 graphically depicts the success of this group.

In order to evaluate the statistical significance of these results, we
conducted the two tailed paired t-test on our data. We first compared
the averaged productivity values of our adaptive Repel group to all
of the non-adaptive methods over the range of 30 robots. All scores
were far below the needed 0.05 for significance with the highest p-
value for the Null hypothesis being only 0.00013 (between our dy-
namic group and the Repel100 group). This strongly supports our
hypothesis that our dynamic method improved results from the dy-
namic methods in a statistically significant fashion.

Figure 6 demonstrates the success of the dynamic Repel group
in minimizing interference. The X-axis in this graph represents the

Figure 5. Adapting Productivity in Repel Group

group size, and the Y-axis corresponds to the cycles of interference
that groups registered. The dynamic group consistently registered the
lowest level of interference from among the static groups which it
was based upon. This substantiates the argument that high produc-
tivity and low interference are correlated.

Figure 6. Interference Levels in Dynamic and Static Repel Groups

The dynamic Timeout group also performed better than the static
methods. As figure 7 shows, the dynamic coordination method was
able to achieve the best performance, or nearly the best, from among
the various static amounts. On average, this group collected 19.2
pucks, more than the 17.6 average pucks the best static group (Time-
out50) we studied. For over half of the group sizes (18 out of 30) the
dynamic group even outperformed the best static method.

The t-test scores comparing our adaptive Timeout group with the
static methods also confirm the statistical significance of our find-
ings. All scores were well below the needed 0.05 needed for signifi-
cance with the highest p-value of 0.0014 found between our adaptive
Timeout group and the Timeout50 method (the group that performed
the best of the static Timeout methods). A very high p-value of 0.98
also exists between our dynamic group and the maximum productiv-
ity value taken from among all the static Timeout methods over each
of the 30 group sizes. This statistically confirms that this adaptive
method very closely approximates the best performance among all
static methods. We conclude that using dynamic methods is effec-
tive in achieving higher productivity by adapting their coordination
method to the needs of their environment.



Figure 7. Adapting Productivity in Timeout Group

5 Related Work

The robots used in our algorithms work with no communication
and are not preprogrammed to operate only within certain zones.
Many coordination methods share this similarity such as those de-
veloped by Arkin and Balch [1], Vaughan et al. [11], and Ostergaard
et al. [8]. Other algorithms such as those within the work of Fontan
and Matarić [10] and the territorial arbitration scheme in Goldberg
and Matarić [3] prevent collisions by limiting robots to specific ar-
eas within foraging domains. Jäger and Nebel [5] present an algo-
rithm that can dynamically create these areas in a vacuuming do-
main, but require the robots to communicate locally. Another group
of algorithms preassign values so that certain robots inherently have
a greater priority to resources than others. Vaughan et al.’s fixed hi-
erarchy system [11] and Goldberg and Matarić’s caste arbitration al-
gorithm [3] implement variations of this idea on foraging robots. We
leave the study of adaptation within these other classes of coordina-
tion, including coordination methods for heterogeneous groups, for
future work.

The concept of attempting to have robots learn from their envi-
ronment has been extensively studied. Previous work by [6] found
reinforcement learning based on Q Learning to be quite effective for
a box pushing robot. While they concede that behavior based learn-
ing is especially slow to converge within robotic domains, using a
behavior based approach did speed the process. Matarić [7] studied
various reinforcement learning approaches on foraging robots and
stressed that the time to learn can be quite long if certain events (such
as collisions in our domain) occur sporadically. However, the time to
learn certain tasks could be diminished by using behaviors that use
implicit knowledge of their domain. Both of these approaches high-
light the difficulty in exclusively using traditional learning methods
within robotic domains.

Our approach attempts to quickly fit a coordination method to its
environment by using heuristics. The advantage of this approach over
reinforcement learning lies in its speed and simplicity. Factors such
as collisions in a robotic domain are often quite in flux and robots
need to be able to react quickly to changing conditions. In tasks such
as interference resolution where robots must react quickly and near-
optimal results are sufficient, our method is likely to be of an ad-
vantage. Indeed our dynamic coordination method did successfully
adapt to deal with changes in their environment. One main disadvan-
tage of our approach lies in the manual initial work in setting the
weights within our heuristic. Before our adaptive coordination meth-
ods could begin, work was needed to set the weights in our methods.

We also cannot guarantee any converge on an optimal solution as re-
inforcement methods do through maximization of reward. We leave
for future work how the process of initially setting these weights can
be simplified. One possible method would be to pass information
based on previous trials and use a combination of classical reinforce-
ment learning in addition to our heuristic based approach. The use of
learning would likely also lead towards an eventual convergence of
optimal weight values.

6 Conclusion and Future Work

In this paper we presented a method for dynamically adjusting co-
ordination methods based on the conditions robots sense in its op-
erating domain. Our use of interference metrics allowed us to create
these powerful adaptive heuristics. We studied two basic coordina-
tion methods, Repel and Timeout, and empirically demonstrated how
group performance within our foraging robots was significantly im-
proved by using our algorithm. The spatial constrictions which cause
interference in the foraging domain are common to many areas such
as waste cleanup, area coverage in vacuuming, search and rescue do-
mains, and planning collision-free trajectories in restricted spaces.
We believe our approach of dynamic coordination methods will ben-
efit designers of robotic groups in these domains as well.

For future work, several directions are possible. This paper uses
interference metrics to achieve better productivity within one type of
coordination method. The best productivity level this type of adap-
tation can reach is to attain productivity levels equivalent to that of
the best theoretical static group. Further work is required to use in-
terference metrics to dynamically select between different coordina-
tion methods. Such a system may achieve better results than those
where adaptation is used only within one coordination method. Fur-
thermore, the addition of communication may speed the adaption
process within coordination groups. Additional research is required
to evaluate the impact communication has on interference and group
productivity.
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[3] D. Goldberg and M. Matarić, ‘Interference as a tool for designing and

evaluating multi-robot controllers’, in AAAI/IAAI, pp. 637–642, (1997).
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