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Abstract

Adversarial plan recognition is the use of plan recognition in settings where the ob-
served agent is an adversary, having plans or goals that oppose those of the observer.
It is one of the key application areas of plan recognition techniques. There are two
approaches to adversarial plan recognition. The first is suspicious activity recognition,
i.e., directly recognizing plans, activities and behaviors that are known to be suspect
(e.g., carrying a suitcase, then leaving it behind in a crowded area). The second is
anomalous activity recognition, in which we indirectly recognize suspect behavior, by
first ruling out normal, non-suspect, behaviors as explanations for the observations.
Different challenges are raised in pursuing these two approaches. In this work we
discuss a set of efficient plan recognition algorithms that are capable of handling the
variety of challenges required of realistic adversarial plan recognition tasks. We de-
scribe an efficient hybrid adversarial plan recognition system that is composed of two
processes: a plan recognizer capable of efficiently detecting anomalous behavior, and
a utility-based plan recognizer incorporating the observer’s own biases—in the form
of a utility function—into the plan recognition process. This allows choosing recogni-
tion hypotheses based on their expected cost to the observer. These two components
form a highly efficient adversarial plan recognizer capable of recognizing abnormal and
potentially dangerous activities. We evaluate the system with extensive experiments,
using real-world and simulated activity data, from a variety of sources.

1 Introduction

Adversarial plan recognition is the use of plan recognition in settings where
the observed agent is considered a potential adversary, having plans or goals
that oppose those of the observer. The objective of adversarial plan recogni-
tion is to identify behavior that is potentially harmful, differentiating it from
non-adversarial behavior, in time for the observer to decide on a reaction. Appli-
cations of adversarial plan recognition include computer intrusion detection [22],
virtual training environments [55], in-office visual surveillance [9], and detection
of anomalous activities [16,44, 58].
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Adversarial plan recognition faces several inherent challenges:

e First, often there are limited data from which to construct a plan library of
the adversary’s behavior. Unlike most plan recognition settings, we cannot
assume knowledge of the complete set of plans an adversary may pursue.
Thus an adversarial plan recognition system has to recognize anomalous
plans—plans that are characterized simply by the fact that they are not
known to the observing agent.

e Second, most non-adversarial plan recognition systems ignore the expected
impact of the explanations they generate, on the observer. They gener-
ate a list of recognition hypotheses (typically ranked by decreasing likeli-
hood). It is up to the observer’s decision-making component to examine
the hypotheses and draw a conclusion leading to taking action. But often
adversarial plan hypotheses have low likelihoods, because of their rarity.
Thus they must either be ignored for being too unlikely, or they must
be considered together with many other low-likelihood hypotheses (which
may lead to many false positives).

For instance, suppose we observe a rare sequence of Unix commands that
can be explained by for some plan I or for a more common plan L. Most
plan recognition systems will prefer the most likely hypothesis L, and
ignore I. Yet, if the risk of I for the observer is high (e.g., if I is a plan to
take down the computer system), then that hypothesis should be preferred
when trying to recognize suspicious behavior. If I implies low risk (even
if the observed sequence is malicious), or if the goal is not to recognize
suspicious behavior, then L may be a better hypothesis.

In this chapter, we describe a comprehensive system for adversarial plan
recognition. The system is composed of a hybrid plan recognizer: A symbolic
recognition system, SBR (Symbolic Behavior Recognition) [3,5], is used to detect
anomalous plans. Recognized non-anomalous plans are fed into an efficient
utility-based plan recognition system [4], which reasons about the expected cost
of hypotheses, recognizing suspicious plans even if their probability is low.

We evaluate the two components in extensive experiments, using real-world
and simulated activity data, from a variety of sources. We show that the tech-
niques are able to detect both anomalous and suspicious behavior, while pro-
viding high levels of precision and recall (i.e., small numbers of false positives
and false negatives).

2 Background: Adversarial Plan Recognition

Plan recognition is the task of inferring the intentions, plans, and/or goals of an
agent based on observations of its actions and observable features. Other parts
of this book provide an extensive survey of past and current approaches to plan
recognition. We focus here on adversarial settings, in which plan recognition is
used to recognize plans, activities, or intentions of an adversary.
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Applications of plan recognition to surveillance in particular, and adversarial
plan recognition in general, began to appear shortly after the introduction of
the basic probabilistic recognition methods (e.g., [25]), and continue to this day
(e.g., [9,14,16,22,37,39,44,58]). We survey recent efforts below.

We limit ourselves to keyhole recognition, where the assumption is that the
adversary is either not aware that it is being observed, or does not care. To-
wards the end of the section, we discuss relaxing this assumption (i.e., allowing
intended recognition, where the observed adversary possibly modifies its behav-
ior because it knows it is being observed).

One key approach to adversarial plan recognition is anomalous plan recogni-
tion, based on anomaly detection, i.e., recognition of that which is not normal.
Here, the plan library is used in an inverse fashion. The plan library is limited
to accounting only for normal behavior. When a plan-recognizer is unable to
match observations against the library (or generates hypotheses with very low
likelihood), an anomaly is announced.

The second key approach to adversarial plan recognition is suspicious plan
recognition, based on directly detecting threatening plans or behavior. It op-
erates under the assumption that a plan library is available that accounts for
adversarial behavior, and thus recognition of hypotheses implying such behavior
is treated no differently from recognition of hypotheses implying normal activity.

In both approaches, there is an assumption that the plan library is complete,
in that it accounts for the full repertoire of expected normal behavior (in anoma-
lous plan recognition) or adversarial behavior (in suspicious plan recognition).
Likewise, a full set of observable features can be used for either approach: not
just the type of observed action, but also its duration and its effects; not just the
identity of the agent being observed, but also observable features which mark it
in the environment (its velocity and heading, its visual appearance, etc).

Superficially, therefore, a plan recognition system intended for one approach
is just as capable of being used for the other, as long as an appropriate plan
library is used. However, this is not true in practice, as different approaches
raise different challenges:

Different Queries. Fundamentally, the two approaches answer different queries
about the observed agent’s behavior.

The main query that an anomalous behavior recognition system has to
answer is a set membership query: Is the observed behavior explained
by the plan library? If so, then no anomaly is declared. If not, then
an anomaly is found. Thus the relative likelihood of the hypothesized
recognized plan, with respect to other hypotheses, is unimportant!.

In contrast, the main query that a suspicious behavior recognition system
has to answer is the current state query: What is the preferred explana-
tion to the observations at this point? We use the term preferred because
there are different ways of ranking plan recognition hypotheses. The most

I Note that multiple levels of anomaly are built by using multiple plan libraries, where the
membership query is applied to all, separately.
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popular one relies on probability theory to rank hypotheses based on their
likelihood. But as we discuss below, this is only one way to rank hypothe-
ses.

Origins of the plan library. The construction of plan library for the two approaches,
presumably by human experts or automated means, is based on knowledge
sources which have different characteristics.

In many adversarial settings, knowledge of the adversarial behavior is
clearly available. For instance, in applications of plan recognition in rec-
ognizing a fight between a small number of people, it is possible to imagine
a specific set of recognition rules (e.g., accelerated limb motions, breaking
of personal distance, etc.). If such knowledge exists, suspicious behavior
recognition is more easily used.

However, in some settings, knowledge of specific adversarial plans is very
lacking, and examples are rare. For instance, in surveillance for terrorist
attacks in airport terminals, there are very few recorded examples, and
certainly we cannot easily enumerate all possible ways in which the ad-
versary might act prior to an attack. Here, the use of anomalous behavior
recognition is more natural.

The outcome from the decision-making perspective. A challenge related to that
of the different queries is the use of the output from the plan recognition
module, as a basis for decision making. In suspicious plan recognition, the
greater the match between the observations and the plan library (as mea-
sured by likelihood or other means), the greater confidence in categorizing
the behavior as suspicious. This can be utilized by a decision-making
module to respond appropriately to different levels of suspiciousness, e.g.,
by actively taking actions to differentiate hypotheses, or directly counter
the implied threat.

But in the anomalous behavior recognition case, the opposite is true.
The weaker the match between the observations and the plan library, the
greater implied confidence in the anomaly. However, because in this case
a sequence of observations is considered anomalous when it does not exist
in the plan library, there is no universally accepted method for assessing
confidence in the outcome. In other words, there is no universally correct
method for measuring the degree to which the observations do not match
the plan library.

We first discuss existing work utilizing anomalous plan recognition. This ap-
proach has connections to machine learning (e.g., one-class learning for security)
and monitoring (e.g., fault detection and diagnosis). The literature on anomaly
detection within these areas is vast. However, much of it is only superficially
related, in the sense that the overall goals may be the same, but the application
domains give rise to methods that are very data-oriented, yet require little or
no treatment of hierarchical states, interleaved activities, or future intentions.
For instance, fingerprinting users from their characteristic behavior (e.g., [36])
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is a related task, but the focus is on supervised machine learning of mouse and
keyboard events. Similarly, we will not address here related work on anomaly
detection in data signals (e.g., [1,15,34]).

Within plan recognition literature, Xiang and Gong [59] adopted dynamic
Bayesian networks to model normal patterns of activity captured on video. An
activity is identified as abnormal if the likelihood of being generated by normal
models is less then a threshold. Duong et al. [16] use Switching Semi-Markov
Models to represent user activities that have known duration (so an anomaly is
detected if actions’ durations deviate from normal). Marhasev et al. [42] look
at low-likelihood hypotheses based both on duration and state, in the context
of a clinical diagnosis task. Yin et al. [61] present a two phase approach to
detect anomalous behavior based on wireless sensors attached to the human
body. This approach first uses Support Vector Machines (SVMs) which filter
out the activities with a high probability of being normal, then derives from
these an anomalous activity model. Here also the model is learned based on
normal activities.

One key issue with all of these investigations is that they spend compu-
tational time on probabilistic reasoning which might not be necessary for a
membership query. In contrast, we advocate an approach that utilizes sym-
bolic behavior recognition, which can answer the membership query much more
efficiently.

In particular, the SBR (Symbolic Behavior Recognition) algorithms [3,5], ad-
vocated in this chapter, provide extremely efficient membership query response,
at the expense of recognition accuracy (since they cannot rank hypotheses based
on likelihood). The SBR algorithms are most related to symbolic plan recog-
nition algorithms used to identify failures in teamwork. RESL [33], and later
YOYO [29], are symbolic recognition algorithms for detecting disagreements
among team members. Both RESL and YOYO exploit knowledge of the social
structures of the team (called team hierarchy) to efficiently recognize splits in
teams, where an agent is executing a different plan than agreed upon with the
rest of its team. Disagreements are therefore treated as recognition failures.
Both algorithms ignore observation history in the current state hypotheses, in
contrast to SBR. Moreover, these algorithms do not account for complex tem-
poral reasoning (duration and interleaving), while SBR algorithms do.

We now turn to discussing work in suspicious behavior recognition. It oper-
ates under the assumption that the plan library directly covers the adversarial
behavior to be recognized. Thus recognition of hypotheses implying such be-
havior is treated no differently from recognition of hypotheses implying normal
activity. Examples include systems that encode possible attacks in an intrusion
detection system, trying to predict whether an attack is performed [22]; systems
that focus on recognizing specific suspicious behaviors in train stations [14], such
as fighting; systems with an a priori set of attack templates [28] that are com-
pared against observations to infer whether a particular terrorist attack matches
one or more templates; and models with representation of human activities based
on tracked trajectories e.g., [44].

Most suspicious behavior recognition systems utilize probabilistic plan recog-
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nition approaches. These focus on determining the most likely hypothesis, or set
of hypotheses, as to the current and/or past states of the agent. Previous work
in this area has focused on utilizing specialized structures and techniques that
allow more efficient recognition, or more expressive forms of plan recognition.

Some of the early work applying plan recognition to visual surveillance ap-
plied belief (Bayesian) networks (e.g., [25,26]). However, given the known com-
putational hardness of exact and approximate reasoning in general belief net-
works [13], and general dynamic belief networks [7, 35], more efficient models
were needed. These typically trade expressiveness for run-time, e.g., by intro-
ducing a Markov assumption into the models.

Indeed, Hidden Markov Models (HMMs) and extensions have been explored
extensively for plan recognition. These are special cases of dynamic belief
networks, with much improved inference run-time (typically, polynomial), at
the cost of introducing a Markovian assumption and restricting the the set of
variables. HMMs are widely used in activity recognition of simple activities
(e.g., [51,60]). However, they do not allow for complex activities (e.g., inter-
acting agents, hierarchical decomposition of the activities, or explicit temporal
dependencies). Coupled HMMs [8] and Factorial HMM [24] are extensions of the
HMM with multiple hidden interacting chains, e.g., for modeling interactions
between observed agents. AHMM [10], HHMM [17] and Layered HMM [46]
are capable of handling activities that have hierarchical structure. These mod-
els are used in activity recognition applications such as learning and detecting
activities from movement trajectories [43] and inferring user’s daily movements
from raw GPS sensor data [37]. Hidden Semi-Markov Models (HSMMs) allow
probabilistic constraints over the duration of plans [16]. Extensions to these can
model dependencies on state durations [42]. More recent work has continued de-
veloping methods for greater expressiveness without sacrificing tractability. For
example, Blaylock and Allen [6] provided a novel HMM-based model that al-
lows efficient exact reasoning about hierarchical goals. Hu and Yang [27] model
interacting and concurrent goals.

Recent work has moved beyond dynamic belief networks and Markov models
to use Conditional Random Fields [56] which allow for greater expressiveness.
Bui et al. [11] introduce a Hidden Permutation model that can learn the partial
ordering constraints in location-based activity recognition. There are also ap-
proaches to plan recognition based on parsing, in particular utilizing probabilistic
grammars, which allow for efficient exact inference (e.g., [18-20,49,50]).

The key challenge to the use of probabilistic recognizers in suspicious behav-
ior recognition is that most often, adversarial behavior is not likely, typically
because it is rare. Given a specific sequence of observations, if the adversarial
hypothesis is the only explanation, then of course it would be selected. But
in general in plan recognition, there would be multiple hypotheses that match
the observations, and have to be ranked in some fashion. In this general case,
preferring the most likely hypothesis often means preferring the more common
explanation, rather than the rare explanation signifying adversarial intent.

In other words, the posterior likelihood of an hypothesis signifying adver-
sarial behavior is very often low, given the observations. In the general case,
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it would be one hypothesis out of many. This leads to either of two cases: Ei-
ther the observer has to always consider low-likelihood hypotheses (leading to
many false alarms, i.e., false positives), or the observer sets a high threshold for
likelihood, in which cases she risks disregarding a suspicious behavior.

To address this, we posit that a system for suspicious plan recognition needs
to reason about the expected cost to the observer, given that a hypothesis is
correct. In other words, we argue that the observer ranks hypotheses based on
their expected cost to itself, rather than just based on their likelihood. This
way, a low-likelihood hypothesis which, if true, would signify large costs, may
be preferred over a more likely hypothesis, which implies no risk. Put more
generally, our work differs significantly from probabilistic approaches, as we
advocate reasoning about the expected utility of hypotheses, rather than simply
their likelihoods.

Essentially every probabilistic plan recognition system can be used as the
basis for expected cost computations. This can be done by taking the entire
(ranked) set of hypotheses from the probabilistic recognizers, and then exter-
nally associating each with costs, to compute expected costs. Computationally,
this can be very expensive, as in addition to the plan recognition computation,
there would be additional external computation of the expected costs. Note that
the entire set of hypotheses must be processed, as a low-likelihood hypothesis
(ranked low by the probabilistic recognizer) may end up implying high expected
utility.

The key to efficient computation of plan recognition hypotheses, ranked by
their expected costs, is the folding of the expected cost computation into the
plan recognizer itself. The hypotheses would then be ranked directly, without
the need for external computation.

We call this approach UPR (Utility-based Plan Recognition), and describe
it fully in [2,4], and more briefly in this chapter. The origins of this approach
come from a worst-case reasoning heuristic, applied in Tambe and Rosenbloom’s
RESC algorithm [55]. RESC is a reactive plan recognition system, applied in
simulated air-combat domains. Here, the observing agent may face ambiguous
observations, where some hypotheses imply extreme danger (a missile being
fired towards the observer), and other hypotheses imply gains (the opponent
running away). RESC takes a heuristic approach that prefers hypotheses that
imply significant costs to the observer (e.g., potential destruction). However, the
relative likelihood of such hypotheses was ignored, as RESC was a symbolic plan
recognizer. While we are inspired by this work, we take a principled, decision-
theoretic approach. In the algorithms we present, the likelihood of hypotheses is
combined with their utilities, to calculate the expected impact on the observer.
We show later that this subsumes the earlier, heuristic work.

The UPR techniques described in this chapter utilize a technique for gain-
ing the efficiency of symbolic plan recognition for recognizing anomalous plans,
with a Markovian utility-based plan recognizer [4]. The Markovian assumption,
which allows for efficient reasoning, comes at a cost of expressiveness. A more
general UPR method, based on influence diagrams, is described in [2]. It pro-
vides one way of extending the expressiveness of UPR, but comes at a significant
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computational cost.

Recently, UPR has been extended in [52] to allow dynamic changes to the
cost function, a specific extension which maintains the computational tractabil-
ity, while increasing the expressiveness of the original Markovian technique de-
scribed in [4] and in this chapter. This allows, for instance, expressing non-
linearly increasing costs for observing repeated occurrences of a suspicious event
(e.g., repeatedly trying to avoid a cop whenever one passes by).

There have been related investigations of the use of utility and cost in plan
recognition. However, these focused on modeling the expected utility of the
observed agent, not of the observer. They thus do not address the same challenge
we do in recognizing suspicious plans. Indeed, it is arguable that modeling the
utility of different plans to the observed agent is redundant, since a rational
observed agent would be pursuing the plan with highest expected utility, and this
would be reflected in the likelihood of the plan, as observed. Nevertheless, there
are investigations of explicit modeling utilities of the observed agent. These
include Mao and Gratch [40,41], Suzic [54], Pynadath and Marsella [47,48], and
Sukthankar and Sycara [53].

The techniques described in this chapter utilize a technique for gaining the
efficiency of symbolic plan recognition for recognizing anomalous plans, with
a Markovian utility-based plan recognizer [4]. Here, an underlying symbolic
recognizer (SBR, described in [3,5]) is used to efficiently filter inconsistent hy-
potheses, passing them to a probabilistic inference engine, which focuses on
ranking recognition hypotheses using UPR principles.

There have been a number of other plan recognizers which use a hybrid ap-
proach, though of a different nature. Geib and Harp [23] developed PHATT,
a hybrid symbolic/probabilistic recognizer, where a symbolic algorithm filters
inconsistent hypotheses before they are considered probabilistically. PHATT
assumes instantaneous, atomic actions. It takes the following approach: With
each observation, the symbolic algorithm generates a pending set of possible ex-
pected observations, which are matched against the next observation to maintain
correct state history hypotheses. The size of the pending set may grow expo-
nentially [21]. In contrast, SBR decouples the current state and state history
queries, and incrementally maintains hypotheses implicitly, without predicting
pending observations. The hypotheses are thus computed only when needed
(when hopefully, many of them have been ruled out). PHATT does allow recog-
nition of interleaved plans as well as some partial observability. However, the
expected costs of plans are ignored.

YOYO* [32] is a hybrid symbolic/probabilistic plan recognition algorithm for
multi-agent overhearing (recognition based on observed communication acts).
The plan library used by YOYO* included information about the average du-
ration of plan steps, which is used to calculate the likelihood of an agent termi-
nating one step and selecting another without being observed to do so. In this,
YOYO* addressed missing observations (though their likelihood of becoming
lost is assumed to be provided a priori). However, in contrast to our work,
YOYO* did not address matching multi-feature observations (where some fea-
tures may be intermittently lost), nor did it allow for interleaved plans.
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Quite recently, Lisy et al. have examined the problem of intended adversarial
plan recognition [38], where the observed agent is actively attempting to prevent
its plans from being recognized. They define the problem using game-theory,
where the observer and observed play a game of selecting plans, and actions for
recognizing these plans. While the game tree grows very large for even moderate-
size problems, Lisy et al. show that its specialized structure lends itself to highly-
scalable algorithms for determining the Nash equilibrium solution. However, in
contrast to the work described in this chapter and elsewhere in this book, the
algorithms avoid any details of matching observations to plans, which is, from
a computational standpoint, a key challenge in plan recognition.

3 An Efficient Hybrid System for Adversarial Plan
Recognition

We present here a hybrid anomalous and suspicious adversarial plan recognition
system that uses efficient plan recognition algorithms for detecting anomalous
and suspicious behaviors. The system is composed from two modules: SBR
(Symbolic Behavior Recognition), initially presented in [3,5], and UPR (Utility
Based Plan Recognition), presented in [2,4].

The system uses a plan library, which encodes normal behavior, including
plans, that may or may not indicate a threat (i.e., may be suspicious). The SBR
module extracts coherent hypotheses from the observation sequence. If the set
of hypotheses is empty, it declares the observation sequence as anomalous. If
the set is not empty, then the hypotheses are passed to the UPR module that
computes the highest expected cost hypotheses. When the expected cost of
the top-ranked hypothesis reaches a given threshold, the system declares that
the observation sequence is suspicious. Figure 1 presents the hybrid system.
The input to the system is an observation sequence and the output is whether
anomalous or suspicious behavior is detected.

We begin by considering recognition of anomalous behavior using the sym-
bolic plan recognition algorithm (Section 3.1). Here, the plan library represents
normal behavior; any activity which does not match the plan library is consid-
ered abnormal. This approach can be effective in applications where we have
few or no examples of suspicious behavior (which the system is to detect), but
many examples for normal behavior (which the system should ignore). This
is the case, for instance, in many vision-based surveillance systems, in public
places.

A symbolic plan recognition system is useful in recognition of abnormal pat-
terns, such as walking in the wrong direction, taking more than usual amount
of time to get to the security check, etc. The symbolic recognizer can efficiently
match activities to the plan library and rule out hypotheses that do not match.
When the resulting set of matching hypotheses is empty, the sequence of obser-
vations is flagged as anomalous. The symbolic algorithm is very fast, since it
rejects or passes hypotheses without ranking them.

However, detection of abnormal behavior is not sufficient. There are cases
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Fig. 1. A hybrid adversarial plan recognition system. Inputs and outputs for the
system are in dashed arrows.
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where a normal behavior should be treated as suspicious. In these cases, we
cannot remove the behavior from the plan library (so as to make its detection
possible using the anomalous behavior detection scheme outlined above), and
yet we expect the system to detect it and flag it.

In Section 4.2, we present the use of UPR for recognizing suspicious behavior.
Here the plan library explicitly encodes behavior to be recognized, alongside
any costs associated with the recognition of this behavior. This allows the UPR
system to rank hypotheses based on their expected cost to the observing agent.
As we shall see, this leads to being able to recognize potentially dangerous
situations, despite their low likelihood.

3.1 Efficient Symbolic Plan Recognition

We propose an anomalous behavior recognition system, the input of the sys-
tem is an observation sequence. The system is composed of an SBR (Symbolic
Behavior Recognition) module, which extracts coherent hypotheses from the ob-
servation sequence. If the set of hypotheses is empty, it declares the observation
sequence as anomalous.

The symbolic plan recognition algorithm, briefly described below, is use-
ful in recognition of abnormal behavior, since it is very fast (no need to rank
hypotheses), and can handle key capabilities required by modern surveillance
applications. The reader is referred to [3,5] for details.

SBR’s plan library is a single-root directed graph, where vertices denote
plan steps, and edges can be of two types: Decomposition edges decompose
plan steps into sub-steps, and sequential edges specify the temporal order of
execution. The graph is acyclic along decomposition transitions.

Fach plan has an associated set of conditions on observable features of the
agent and its actions. When these conditions hold, the observations are said
to match the plan. At any given time, the observed agent is assumed to be
executing a plan decomposition path, root-to-leaf through decomposition edges.
An observed agent is assumed to change its internal state in two ways. First, it
may follow a sequential edge to the next plan step. Second, it may reactively
interrupt plan execution at any time, and select a new (first) plan.

The recognizer operates as follow: First, it matches observations to specific
plan steps in the library according to the plan step’s conditions. Then, after
matching plan steps are found, they are tagged by the time-stamp of the obser-
vation. These tags are then propagated up the plan library, so that complete
plan-paths (root to leaf) are tagged to indicate they constitute hypotheses as
to the internal state of the observed agent when the observations were made.
The propagation process tags paths along decomposition edges. However, the
propagation process is not a simple matter of following from child to parent. A
plan may match the current observation, yet be temporally inconsistent, when
a history of observations is considered. SBR is able to quickly determine the
temporal consistency of a hypothesized recognized plan [3].

At the end of the SBR process we are left with a set of current-state hy-
potheses, i.e., a set of paths through the hierarchy, that the observed agent may
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have executed at the time of the last observation.

The overall worst-case run-time complexity of this process is O(LD) [3].
Here, L is the number of plan-steps that directly match the observations; D is
the maximum depth of the plan library. L is typically very small, the number
of specific actions that can match a particular observation.

We presented above the basics of the symbolic plan recognition model. Ex-
tensions to this model address several challenges: (a) reducing space complexity
of matching complex multi-featured observations to the plan library; (b) dealing
with plan execution duration constraints; (¢) handling lossy observations (where
an observation is intermittently lost); and (d) handling interleaved plans (where
an agent interrupts a plan for another, only to return to the first later). These
are discussed in [2,5].

3.2 UPR: Efficient Utility-based Plan Recognition

This section presents an efficient hybrid technique that is used for recognizing
suspicious behavior. UPR (Utility-based Plan Recognition) allows the observer
to incorporate a utility function into the plan recognition process. With every
potential plan recognition hypothesis, we associate a utility to the observer,
should the hypothesis be correct. In adversarial UPR, this utility is the cost
incurred by the observer. This allows choosing recognition hypotheses based on
their expected cost to the observer, even if their likelihood is low.

The highly efficient symbolic plan recognizer that was introduced in 3.1 is
used to filter hypotheses, maintaining only those that are consistent with the
observations (but not ranking the hypotheses in any way). We then add an
expected utility aggregation layer, which is run on top of the symbolic recognizer.

We briefly describe the basics of UPR recognizer in this section. Avrahami-
Zilberbrand [2] presents a general UPR framework, using influence diagrams
as the basis for reasoning. Unfortunately, such reasoning is computationally
expensive. Relying on a Markovian assumption, a less expressive (but much
more efficient) UPR technique is used here. For its details, consult [2,4].

After getting all current state hypotheses from the symbolic recognizer, the
next step is to compute the expected utility of each hypothesis. This is done
by multiplying the posterior probability of a hypothesis, by its utility to the
observer.

We follow in the footsteps of—and then extend— Hierarchical Hidden Markov

Model (HHMM) [17] in representing probabilistic information in the plan library.
We denote plan-steps in the plan library by ¢, where i is the plan-step index
and d is its hierarchy depth, 1 < d < D. For each plan step, there are three
probabilities:
Sequential transition. For each internal state g, there is a state transi-
tion probability matrix denoted by A" = (a%), where a;?; = P(qf|q) is the
probability of making a sequential transition from the i** plan-step to the j**
plan-step. Note that self-cycle transitions are also included in A% .

d
q
i,en

Interruption. We denote by a;_,, a transition to a special plan step end?
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which signifies an interruption of the sequence of current plan step qf, and
immediate return of control to its parent, ¢¢—!.

Decomposition transition. When the observed agent first selects a decom-
posable plan step qfl7 it must select between its (first) children for execution. The

decomposition transition probability is denoted me’ = qu(qd“) = P(q,‘f+1|qfl),

the probability that plan-step ¢¢ will initially activate the plan-step qZH.

Observation Probabilities. Each leaf has an output emission probability
vector BT' = (qu (0)). This is the probability of observing o when the ob-
served agent is in plan-step ¢?. For presentation clarity, we treat observations
as children of leaves, and use the decomposition transition 17" for the leaves as
B,

In addition to transition and interruption probabilities, we add utility infor-
mation on the edges in the plan library. The utilities on the edges represent the
cost or gains to the observer, given that the observed agent selects the edge.
For the remainder of the work, we use the term cost to refer to a positive value
associated with an edge or node. As in the probabilistic reasoning process, for
each node we have three kinds of utilities: (a) F9" is the sequential transition
utility (cost) to the observer, conditioned on the observed agent transitioning
qd

i ena 18 the interruption utility; and

to the next plan-step, paralleling Aqd; (b) e

(c) 4" is the decomposition utility to the observer, paralleling e’

Figure 2 shows a portion of the plan library of an agent walking with or
without a suitcase in the airport, occasionally putting it down and picking it up
again, an example discussed below. Note the end plan step at each level, and
the transition from each plan-step to this end plan step. This edge represents
the probability to interrupt. The utilities are shown in diamonds (we omitted
zero utilities, for clarity). The transitions allowing an agent to leave a suitcase
without picking it up are associated with large positive costs, since they signify
danger to the observer.

We use these probabilities and utilities to rank the hypotheses selected by the
SBR. First, we determine all paths from each hypothesized leaf in time-stamp
t — 1, to the leaf of each of the current state hypotheses in time stamp ¢. Then,
we traverse these paths multiplying the transition probabilities on edges by the
transition utilities, and accumulating the utilities along the paths. If there is
more than one way to get from the leaf of the previous hypothesis to the leaf
of the current hypothesis, then it should be accounted for in the accumulation.
Finally, we can determine the most costly current plan-step (the current-state
hypothesis with maximum expected cost). Identically, we can also find the most
likely current plan-step, for comparison.

Formally, let us denote hypotheses at time t—1 (each a path from root to leaf)
as W = {W;y, Ws, ..., W,.}, and the hypotheses at time t as X = {X1, X5, ..., X;}.
To calculate the maximum expected-utility (most costly) hypothesis, we need
to calculate for each current hypothesis X; its expected cost to the observer,
U(X;]O), where O is the sequence of observations thus far. Due to the use of
SBR to filter hypotheses, we know that the ¢ — 1 observations in O have resulted
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Fig. 2: An example plan library. Recognition time-stamps (example in text) appear
in circles. Costs appear in diamonds.

in hypotheses W, and that observation ¢ results in new hypotheses X. Therefore,
under assumption of Markovian plan-step selection, U(X;|0) = U(X;|W).

The most costly hypothesis is computed in Equation 1. We use P(Wy),
calculated in the previous time-stamp, and multiply it by the probability and
the cost to the observer of taking this step from W to X;. This is done for all
i,k.

X; = argmax Y P(Wi) - P(X;|Wi) - U(X;|Wy) (1)
X weew

To calculate the expected utility E(X;|Wy) = P(X;|[Wy) - U(X;|Wy), let X;
be composed of plan steps {z;,...,27"} and W) be composed of {w},...,w}
(the upper index denotes depth). There are two ways in which the observed
agent could have gone from executing the leaf w™ € Wy to executing the leaf
2™ € X;: First, there may exist w € Wy, x € X; such that x and w have a
common parent, and x is a direct decomposition of this common parent. Then,
the expected utility is accumulated by climbing up vertices in Wy, (by taking
interrupt edges) until we hit the common parent, and then climbing down (by
taking first child decomposition edges) to ™. Or, in the second case, ™ is
reached by following a sequential edge from a vertex w to a vertex x.

In both cases, the probability of climbing up from a leaf w™ at depth n, to
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a parent w’ (where j < n) is given by

azu" H ailu,cnd (2)
d=n
and the utility is given by
J
’qu" - Z eﬁ),end' (3)
d=n

The probability of climbing down from a parent 27 to a leaf ™ is given by
Bl Hw )
and the utility is given by
5., Z o (29 (5)

Note that we omitted the plan-step index, and left only the depth index, for
presentation clarity.

Using o, 52, 2 and 62, and summing over all possible j’s, we can calculate
the expected utility (Equation 6) for the two cases in which a move from w, to
ZTm is possible .

= D [(ad, - B)) x (7 + &3) x Ea(a?, w?)

1
+ Y [l -ad,, B x (v, + el , + 60)

j=n—1

The first term covers the first case (transition via interruption to a common
parent). Let Eq(z7,w?) return 1 if 2/ = w’, and 0 otherwise. The summation
over j accumulates the probability multiplying the utility of all ways of inter-
rupting a plan w", climbing up from w™ to the common parent =/ = w’, and
following decompositions down to =™

The second term covers the second case, where a sequential transition is
taken. af, . is the probability of taking a sequential edge from w? to 27, given
that such an edge exists (aJ, , > 0), and that the observed agent is done in w.
To calculate the expected utility, we first multiply the probability of climbing
up to a plan-step that has a sequential transition to a parent of x™, then we
multiply in the probability of taking the transition, and then we multiply in
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the probability of climbing down again to ™. Then, we multiply in the utility
summation along this path.

A naive algorithm for computing the expected costs of hypotheses at time ¢
can be expensive to run. It would go over all leaves of the paths in ¢ — 1 and
for each of these, traverse the plan library until getting to all leaves of paths
we got in time-stamp t. The worst-case complexity of this process is O(N?T),
where N is the plan library size, and T is the number of observations.

In [2] we presented a set of efficient algorithms that calculates the expected
utilities of hypotheses (Equation 1) in worst-case runtime complexity O(NDT),
where D is the depth of the plan library (N, are as above). The reader is
referred to [2] for details.

4 Detecting Anomalous and Suspicious Behavior:
Experiments

In this section we evaluate the system that was described in Section 3 in re-
alistic problems of recognizing both types of adversarial plans: anomalous and
suspicious behaviors. We first discuss recognition of anomalous behavior (Sec-
tion 4.1). In Section 4.2, we turn to the use of UPR for recognizing suspicious
behavior.

4.1 Detecting Anomalous Behavior

We evaluate the use of SBR for anomalous behavior recognition, using real-world
data from machine vision trackers, which track movements of people, and report
on their coordinate positions. We conduct our experiments in the context of
a vision-based surveillance application. The plan library consists of discretized
trajectories which correspond to trajectories that are known to be valid. We use
a specialized learning algorithm, described briefly in Section 4.1.1, to construct
this plan library.

Section 4.1.2 describes in detail the experiments we conducted, along with
their results on video clips and data from the CAVIAR project [12]. Section
4.1.3 presents results from data sets gathered as part of our participation in
a commercial R&D Consortium (AVNET), which developed technologies for
detection of criminal or otherwise suspicious objects and suspects.

To evaluate the results of the SBR algorithms we distinguish between two
classes of observed trajectories: anomalous and non-anomalous. The true posi-
tives are the anomalous trajectories that were classified correctly. True negatives
are, similarly, non-anomalous trajectories that were classified correctly. The
false positives are the non-anomalous trajectories that were mistakenly classi-
fied as anomalous. The false negatives are the number of anomalous trajectories
that were not classified as anomalous.

We use the precision and recall measures that are widely used in statistical
classification. A perfect precision score of 1 means that every anomalous trajec-
tory that was labeled as such was indeed anomalous (but this says nothing about
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Fig. 3: Result of running naive learning algorithm on one trajectory

anomalous trajectories that were classified as non-anomalous). A perfect recall
score of 1 means that all anomalous trajectories were found (but says nothing
about how many non-anomalous trajectories were also classified as anomalous).
The reader is referred to [57] for a detailed description.

4.1.1 The Learning Algorithm

We use a simple learning algorithm that was developed for the purpose of build-
ing plan recognition libraries based on examples of positive (valid) trajectories
only. The learning algorithm is fully described in [2, 30, 31]. We provide a
description below of its inputs and outputs, as those are of interest here.

The learning algorithm L receives a training set that contains observation
sequences, S. FEach observation sequence s € S is one trajectory of an indi-
vidual target that is composed of all observations (samples) o;, where i is an
ordering index within s. Each observation o; is a tuple (z;,y;,t;), where x;,y;
are Cartesian coordinates of points within W, and ¢ is a time index.

The learning algorithm divides the work area W using a regular square-based
grid. Each observation (x;,y;,t;) is assigned a square that contains this point.
For each trajectory of an individual target (s) in the training set, it creates a
sequence of squares that represents that trajectory.

The output of the algorithm is a set K of discretized trajectories, each a
sequence of grid cells, that are used together as the plan library for the recog-
nition algorithm. Figure 3 shows a work area that is divided into nine squares,
with one trajectory. The output of the algorithm is the sequence of squares that
defines that trajectory (on the right of the figure).

The grid’s square cell size is an input for the learning algorithm. By adjusting
the size of the square we can influence the relaxation of the model. By decreasing
the size of the square the learned library is more strict (there is less generaliza-
tion); and in contrast, too large a value would cause over-generalization. Small
square size may result in over-fitting; a trajectory that is very similar to an
already seen trajectory, but differs slightly will not fit the model. By increasing
the size of the square, the model is more general and it is less sensitive to noise,
but trajectories that are not similar might fit.

People are rarely twice in the exact same position. As a result, the training
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Fig. 4. Demonstrating position overlap. Added position overlap for square number
5.

set may contain many sample trajectories that differ by very small distance.
Part of the challenge in addressing this lies in adjusting the square size, as
described above. However, often a part of a trajectory would fall just outside
the cell that contains the other examples of the same trajectories.

To solve this, the learning algorithm has another input parameter, called
Position Overlap Size. The position overlap prevents over-fitting to the training
data, by expanding each square such that it overlaps with those around it (see
Figure 4, where the position overlap is shown for square number 5). Any point
in a trajectory that lies in an overlapping area is defined to match both the
overlapping square, as well as the square within which it falls. Thus, for instance,
a point within cell 3 in Figure 4, at its bottom left corner (within the darkened
overlapping area of cell 5) would match cell 3 and 5, as well as 6 and 2 (since
these cells also have their own overlapping areas). Essentially, this is analogous
to having non-zero observation emitting probabilities for the same observation
from different states in a Hidden Markov Model.

4.1.2 Evaluation using CAVIAR Data

We utilize two sets of real-world data to evaluate SBR’s performance as an
anomalous behavior recognizer. Experiments with the first set are described in
this section. The second set is described in Section 4.1.3.

The first set of experiments were conducted on video clips and data from
the CAVIAR Project? [12]. The CAVIAR project contains a number of video

2EC Funded CAVIAR project/IST 2001 37540, found at URL:
http://homepages.inf.ed.ac.uk/rbf/CAVIAR /
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Fig. 5: A typical frame of image sequence in CAVIAR Project

clips with different scenarios of interest: People walking alone, standing in one
place and browsing, etc. The videos are 384 x288 pixels, 25 frames per second.
Figure 5 shows a typical frame. Originally, the CAVIAR data was gathered to
allow comparative evaluations of machine vision tracking systems. To do this,
the maintainers of the CAVIAR data set determined the ground truth positions
of subjects, in pixel coordinates, by hand-labeling the images.

We use the ground-truth data to simulate the output of realistic trackers, at
different levels of accuracy. To do this, each ground-truth position of a subject,
in pixel coordinates, is converted by homography (a geometric transformation
commonly used in machine vision) to a position, in the 2D plane on which the
subjects move (in centimeters). Then we add noise with normal distribution
to simulate tracking errors. Higher variance simulates less accurate trackers,
and low variance simulates more accurate trackers. In the experiments reported
on below, we use a standard deviation of 1lcm diagonal (8cm vertical and
horizontal). The choice of noise model and parameters is based on information
about state-of-the-art trackers (e.g., [45]).

To create a large set of data for the experiments (representing different
tracking instances, i.e., the tracking results from many different video clips), we
simulated multiple trajectories of different scenarios, and trained the learning
system on them, to construct a plan library. This plan library was then used
with different trajectories to test the ability of the algorithms to detect abnormal
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behavior.
In the first experiment we tested simple abnormal behavior. We simulated
three kinds of trajectories:

1. Curved path A. Taken from the first set in CAVIAR, titled One person
walking straight line and return. In this video, a subject is shown walking
along a path, and then turning back. We took the first part, up to the
turn back, as the basis for normal behavior in this trajectory.

2. U-Turn. As above, but then including also the movement back.

3. Curved path B. Taken from the CAVIAR set titled One person walking
straight, which is similar to the above, but curves differently towards the
end. We use this to evaluate the system’s ability to detect abnormal
behavior (e.g., in comparison to Curved path A above).

Figure 6 shows the three kind of trajectories. The arrow shows the starting
position of the trajectories. The end-points lie at the other end (movement right
to left).

We created 100 simulated trajectories of each type, for a total of 300 trajec-
tories. We trained a model on 100 noisy trajectories from Curved path A, using
the learning system described in Section 4.1.1. In this experiment we fixed the
grid cell size to 55cm, and we vary the plan library relaxation parameter (called
Position Overlap Size in Section 4.1.1). The cell size was chosen such that it
covered the largest distance between two consecutive points in the training set
trajectories.

Figure 7 shows the true positives versus false positives. The x axis is the
plan library relaxation, and the y axis is the number of trajectories (subjects).
We can see that the system starts stabilizing in plan library relaxation of 11
(the number of false positives is zero), and after a plan library relaxation of
15 the system is too relaxed; the number of abnormal trajectories that are not
detected slowly increases.

Figure 8 shows the precision and recall of the system. The x axis is the plan
library relaxation, and the y axis is the number of trajectories (subjects). The
precision increases till perfect score of 1 from relaxation 11. The recall starts
with perfect score of 1 and decreases slowly from relaxation 16. As in figure
7, we can see that for values of plan library relaxation of 11-15, we get perfect
precision and perfect recall of 1.

Despite the optimistic picture that the results above portray, it is impor-
tant to remember that these results ignore the time for detection. However, in
practice the time for detection matters.

Figure 9 shows the time for detecting the abnormal behavior with standard
deviation bars. The X axis measures the plan library relaxation parameter
range, and the Y axis measures the time (in seconds) passed until the detection
of abnormal behavior. In this figure we can see that until a relaxation of 12cm,
the time for detection is negative, since we detect too early—before the abnormal
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Fig. 6: Three Trajectories: Legal path (Curved Path A), suspicious path (Curved
Path B), and return path (U-Turn) from CAVIAR data. The thick arrow

points at the starting point.
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behavior is taking place. Two seconds is the maximum of the graph, since this
is the time that the scene was over, therefore detecting at 2 seconds is too late.

Figure 10 shows the trade-off between detecting too late and detecting too
early as a function of the plan library relaxation (where too early is before the
split and too late is the end of the abnormal path). The x axis is the plan library
relaxation, and the y axis is the percentage of subjects that were detected too
early or too late. We can see that relaxation of 16 gives the best results of 1%
too early and 1% too late. After relaxation of 16, the percentage of trajectories
that we detect too late is slowly increases.
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Fig. 10: Too early detection and too late detection on CAVIAR data.

The recognition algorithm also capable of detecting anomalous behavior in
the direction, and not only in the position. The following experiment demon-
strates this capability; here, we evaluate the use of the system in identifying the
u-turn trajectories in the data set. We sampled 100 instances of the U-Turn
trajectory with Gaussian noise and checked the time for detection. We trained
a model on the same 100 noisy trajectories from Curved path A that we used in
the first experiment.

We first examine the time to detect a u-turn as an abnormal behavior. Fig-
ure 11 shows the time for detecting abnormal behavior versus the plan library
relaxation. The x axis is the plan library relaxation, and the y axis is the time
(sec) passed until detecting the u-turn. We can see that until plan library re-
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laxation of about 10, the time for detection is negative, since we detect too
early before the u-turn behavior is taking place, and the standard deviation is
high. The maximum detection time is 2.5 seconds after the turn is taking place.
Figure 12 demonstrates the position on the trajectory 1 second after the turn,
2 second after the turn and 10 seconds after the turn.
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Fig. 11: Time for detecting U Turn on CAVIAR data.

Figure 13 shows the precision and recall for the u-turn experiment as func-
tion of the time. The plan library relaxation was set to 15, which is the best
relaxation according to the first experiment. The precision has the perfect score
of 1, for plan relaxation of 15 (every suspect that was labeled as suspect was
indeed a suspect). The recall starts from score zero and gradually increases, and
after about 2.5 seconds it gets the perfect score of 1 (all suspects were found 2.5
seconds after the turn).

4.1.3 AVNET Consortium Data

Parts of our work were funded through the AVNET consortium, a government-
funded project including multiple industrial and academic partners, for devel-
opment of suspicious activity detection capabilities. As part of this project, we
were given the tracking results from a commercial vision-based tracker, devel-
oped by consortium partners.
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We used the consortium data sets in order to evaluate our algorithm. In the
first experiment, we got 164 trajectories, all with normal behavior. We ran a
10-fold cross validation test on the data set in order to test the performance.
We divided the whole set to 10 data sets, each contained 148 trajectories for
training, and 16 trajectories for test (except the last test that contained 20
trajectories for test and 144 for training). We learned a model with square size
fixed to be the size of the maximum step in the data (31), and the position
overlap to be 10.

We checked the number of false positives (the number of non-suspects that
were mistakenly classified as suspects). Table 4.1.3 shows the results. We can
see that the maximum number of false positives is 1 out of 16 (6.25%). On
average (across the trials) the percentage of the false positives is 2.375%.

Test Number | Percentage of False Positives

0

0

0

0
6.25%
6.25%

0

0
6.25%

5%

© 00 O Ui W N+

—
o

Tab. 1: Percentage of false positives in AVNET data.

The next two experiments evaluate the recognition of anomalous behavior
using the AVNET data set. In the first experiment, we were given a data set
that consisted of 18 trajectories (432 single points). We learned from this data a
model, with grid size of 31 and position overlap of 10 (as in the first experiment).
We tested it against a single trajectory with a u-turn pattern. Figure 14 shows
all of the 18 trajectories, the turn pattern which was found suspicious marked
in bold by the recognition system. The arrows point to the start position and
the turn position.

In the second experiment of evaluating anomalous behavior, we show that
detecting abnormal behavior based on spatial motion is not enough. There is a
need also to recognize abnormal behavior in time. For instance, we would like
to recognize as abnormal someone that stays in one place an excessive amount
of time, or who moves too slowly or too quickly.

We were given a data set consisting of 151 trajectories (a total of 4908 single
points). In this experiment, we learned on this data a model, with grid size of
31 and position overlap of 10 (as in the first experiment). We tested it against
a single trajectory of standing in place for a long duration. Figure 15 shows all
of the 151 trajectories. The trajectory that was detected as anomalous by the
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recognition system marked in bold. The arrows point at the start position and
the standing position.
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Fig. 15: Detecting standing for long time on AVNET data

4.2 Detecting Suspicious Behavior

To demonstrate the capabilities of UPR, and its efficient implementation, as
described in Section 3, we tested the capabilities of our system in three different
recognition tasks. The domain for the first task consisted of recognizing passen-
gers that leave articles unattended, as in the example above. In the second task
we will show how our algorithms can catch a dangerous driver that cuts between
two lanes repeatedly. The last experiment intends to show how previous work,
which has used costs heuristically [55], can now be recast in a principled manner.
All of these examples show that we should not ignore the observer biases, since
the most probable hypothesis sometimes masks hypotheses that are important
for the observer.

4.2.1 Leaving Unattended Articles

It is important to track a person that leaves her articles unattended in the
airport. It is difficult, if not impossible, to catch this behavior using only
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probabilistically-ranked hypotheses. We examine the instantaneous recognition
of costly hypotheses.

We demonstrate the process using the plan library in Figure 2. This plan
library is used to track simulated passengers in an airport that walk about
carrying articles, which they may put down and pick up again. The recognizer’s
task is to recognize passengers that put something down, and then continue
to walk without it. Note that the task is difficult because the plan-steps are
hidden (e.g., we see a passenger bending, but cannot decide whether she picks
something up, puts something down, or neither; we cannot decide whether a
person has an article when they walk).

For the purposes of a short example, suppose that in time ¢t = 2 (Figure 2),
the SBR had returned that the two plan-steps marked walk match the observa-
tions (walkN means walking with no article, walkW signifies walking with an
article); in time ¢ = 3 the two stop plan steps match (stopN and stopW), and
in time ¢t = 4 the plan step pickN and plan step putW, match (e.g., we saw
that the observed agent was bending).

The probability in ¢ = 4 will be P(putW|stopW) = 0.5 x 0.2 = 0.1 (the
probability of stopW in previous time-stamp is 0.5, then following sequential
link to putW), and in the same way P(pickN|stopN) = 0.5 x 0.3 = 0.15. Nor-
malizing the probabilities for the current time t = 4, P(putW|stopWW) = 0.4 and
P(pickN|stopN) = 0.6. The expected utility in time t = 4 is U (putW|stopW) =
P(putW|stopW) x E(putW|stopW) = 0.4 x 10 = 4. The expected utility of
pickN is zero. The expected costs, rather than likelihoods, raise suspicions of a
passenger putting down an article (perhaps not picking it up).

Let us examine a more detailed example. We generated the following ob-
servations based on the plan library shown in Figure 2: Suppose that in time
stamps t = {1—5} the passenger walks in an airport, but we cannot tell whether
she has a dangerous article in her possession. In time-stamps t = {6 — 7} she
stops, then at time ¢t = {8} we see her bending but can not tell whether to put
down or to pick up something. In time-stamps ¢t = {10 — 12}, she walks again.

Figure 16 shows the results from the recognition process for these observa-
tions. The X-axis measures the sequence of observations in time. The proba-
bility of different leaves (corresponding to hypotheses) is shown on the Y-axis
in the upper graph. The expected costs are shown in the lower graph. In both,
the top-ranking hypothesis (after each observation), is the one whose value on
the Y-axis is maximal for the observation.

In the probabilistic version (upper graph), we can see that the probabilities,
in time ¢ = {1 — 5}, are 0.5 since we have two possible hypotheses of walking.
with or without an article (walkW and walkN). Later when the person stops
there are again two hypotheses stopWW and stopN. Then, in t = {7} two plan
steps match the observations: pickW and putN, where the prior probability
of pickN is greater than putN (after all, most passengers do not leave items
unattended). As a result, the most likely hypothesis for the remainder of the
sequence is that the passenger is currently walking with her article in hand
walkW.

In the lower graph we can see a plot of the hypotheses, ranked by expected
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Fig. 16: Leaving unattended articles: Probabilities and Costs

cost. At time ¢t = 8 when the agent picks or puts something, the cost is high
(equal to 5), then in time stamp ¢t = {9—12} the top-ranking hypothesis is walkN,
signifying that the passenger might have left an article unattended. Note that
the prior probabilities on the behavior of the passenger have not changed. What
is different here is the importance (cost) we attribute to observed actions.

4.2.2 Catching a Dangerous Driver

Some behavior becomes increasingly costly, or increasingly gainful, if repeated.
For example, a driver switching a lane once or twice is not necessarily acting
suspiciously. But a driver zigzagging across two lanes is dangerous. We demon-
strate here the ability to accumulate costs of the most costly hypotheses, in
order to capture behavior whose expected costs are prohibitive over time.

Figure 4.2.2 shows two lanes left and right in a continuous area, divided by
a grid. There are 2 straight trajectories and one zigzag trajectory from left to
right lane. From each position, the driver can begin moving to the next cell in
the row (straight), or to one of the diagonal cells. We emphasize that the area
and movements are continuous—the grid is only used to create a discrete state
space for the plan library. Moreover, the state space is hidden: A car in the
left lane may be mistakenly observed (with small probability) to be in the right
lane, and vice versa.
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Fig. 17: Simulated trajectories for drivers.

FEach grid-cell is a plan-step in the plan library. The associated probabilities
and utilities are as follows: The probability for remaining in a plan-step (for
all nodes) is 0.4. The probability of continuing in the same lane is 0.4. The
probability of moving to either diagonal is 0.2. All costs are zero, except when
moving diagonally, where the cost is 10. Observations are uncertain; with 0.1
probability, an observation would incorrectly report on the driver being in a
given lane.

We generated 100 observation sequences (each of 20 observations) of a zigzag-
ging driver, and 100 sequences of a safe driver. The observations were sampled
(with noise) from the trajectories (i.e., with observation uncertainty). For each
sequence of observations we accumulated the cost of the most costly hypothesis,
along the 20 observations. We now have 100 samples of the accumulated costs
for a dangerous driver, and 100 samples of the costs for a safe driver. Depend-
ing on a chosen threshold value, a safe driver may be declared dangerous (if its
accumulated cost is greater than the threshold), and a dangerous driver might
be declared safe (if its accumulated cost is smaller than the threshold).

Figure 18 shows the confusion error rate as a function of the threshold. The
error rate measures the percentage of cases (out of 100) incorrectly identified.
The figure shows that a trade-off exists in setting the threshold, in order to
improve accuracy. Choosing a cost threshold at 50 will result in high accuracy,
in this particular case: All dangerous drivers will be identified as dangerous,
and yet 99 percent of safe drivers will be correctly identified as safe.

4.2.3 Air-Combat Environment

Tambe and Rosenbloom [55] used an example of agents in a simulated air-
combat environment to demonstrate the RESC plan recognition algorithm.
RESC heuristically prefers a single worst-case hypothesis, since an opponent is
likely to engage in the most harmful maneuver in an hostile environment. Tambe
and Rosenbloom [55] showed this heuristic in action in a simulated air-combat,
where the turning actions of the opponent could be interpreted as either leading
to it running away, or to its shooting a missile. RESC prefers the hypothesis
that the opponent is shooting. However, unlike UPR, RESC will always prefer
this hypothesis, regardless of its likelihood, and this has proven problematic [55].
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Fig. 18: Confusion error rates for different thresholds for dangerous and safe drivers.

Moreover, given several worst-case hypotheses, RESC will arbitrarily choose a
single hypothesis to commit to, again regardless of its likelihood. Additional
heuristics were therefore devised to control RESC’s worst-case strategy [55].

We generalize this example to show UPR subsumes RESC’s heuristic in a
principled manner. Suppose instead of shooting a missile (which has infinite
cost) vs. running away, we consider hypotheses of invading air-space vs. run-
away, where invading the observer’s air-space is costly for it, but not fatal.
Figure 19 shows models of two types of opponents: An aggressive opponent
(left sub-figure) that is more likely to shoot (0.8 a-priori probability) than to
run away (0.2), and a cowardly opponent (right sub-figure) that is more likely to
run away. Note that these models are structurally the same; the assigned prob-
abilities reflect the a-priori preferences of the different opponent types. Thus an
observation matching both hypotheses will simply lead to both of them being
possible, with different likelihoods. The maximum posterior hypothesis in the
aggressive case will be that the opponent is trying to invade our airspace. In the
cowardly case, it would be that the opponent is running away. RESC’s heuristic
would lead it to always selecting the aggressive case, regardless of the likelihood.

In contrast, UPR incorporates the biases of an observing pilot much more
cleanly. Because it takes the likelihood of hypotheses into account in computing
the expected cost, it can ignore sufficiently improbable (but still possible) worst-
case hypotheses, in a principled manner. Moreover, UPR also allows modeling
optimistic observers, who prefer best-case hypotheses.

Table 2 presents three cost models. In the first case, the runaway plan-step
will get zero cost, and invade a high cost (10). This is an observer who is
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Aggressive Opponent Coward Opponent
0.2 0.8 0.7 0.3
Runaway ‘ ‘ Missile ‘ Runaway ‘ ‘ Missile ‘

Fig. 19: Air-Combat Environment. Two types of opponents.

Runaway | Missile
Case A 0 10
Case B —10 10
Case C 10 10

Tab. 2: Three cases of utilities for Figure 19.

worried that its airspace being invaded, but not gaining anything from scaring
the opponent away. In the second case the runaway plan-step will get negative
cost (i.e., a gain for the observer). In the third case there are the same costs.
Tables 3 and 4 show the recognition results. The first row shows the results of
following only the probabilistic reasoning in each model. The next three rows
show the hypothesis costs for each hypothesis, in each of the three cases in Table
2.

In the cases of the aggressive opponent, both the most costly or the most
probable hypothesis is the invade hypothesis. However, in the cowardly oppo-
nent case, the answer depends on the utility model. In cases A and B, where
we gave high cost for missile, the most probable hypothesis stays runaway but
the costly hypothesis is missile. In the third case, C, since we gave neutral costs
(same for the two plan-steps), we got a result as in the probability model, mean-
ing runaway. The conclusion is that the probabilistic model is not enough in
case we want to incorporate biases of the observer, in this case that the missile
plan-step is harmful for the observer.

This generalization of the original example in [55] demonstrates that the
heuristic worst-case preference of RESC is subsumed by the principled use of
decision-theoretic reasoning in our algorithms. And the complexity analysis in
earlier sections shows that such reasoning does not necessarily entail significant
computational costs. RESC’s run-time complexity is linear in the size of plan
library. UPR’s is polynomial.
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Runaway | Missile
Probabilistic 0.2 0.8
Cost A 0 8
Cost B -2 8
Cost C 2 8

Tab. 3: Aggressive opponent: the result utilities for Figure 19.

Runaway | Missile
Probabilistic 0.3 0.7
Cost A 0 3
Cost B =7 3
Cost C 7 3

Tab. 4: Cowardly opponent: the result utilities for figure 19.

5 Future Directions and Final Remarks

In this chapter we concentrated on efficient hybrid adversarial plan recognition
algorithms (Section 3) and their contribution to the domain of detecting anoma-
lous and suspicious behavior (section 4). The two main contributions of this
chapter are as follows:

e First, we presented an anomalous behavior recognition model using the
Symbolic Behavior Recognizer (SBR) that is capable of answering the plan
library membership query highly efficiently [3,5]. Here, the plan library
represents normal behavior; any activity which does not match the plan
library is flagged as anomalous. We demonstrated its use in two sets of
experiments with trajectories created by machine vision systems.

e Second, we present a suspicious behavior recognition model using Utility
based Plan Recognition (UPR) [2,4]. This is a general model of plan-
recognition that allows the observer to incorporate her own biases and
preferences—in the form of a utility function—into the plan recognition
process. Here, the plan library explicitly represents suspicious behavior;
any activity that matches the model will be assumed to be suspicious.
We demonstrate the capabilities of the suspicious behavior recognition
model in three different domains, and also its principled generalization of
previous (heuristic) adversarial plan recognition work [55].

The hybrid system presented is an instantiation of a more general approach
to keyhole adversarial plan recognition, combining two approaches: one de-
tecting anomalous behavior, and the other detecting suspicious behavior. This
approach leaves open many challenges, including:
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e Formally define multi-agent plan recognition queries in adversarial set-
tings, and explore methods for anomalous and suspicious plan recognition
in multi-agent settings.

e Following up on [52], continue to explore methods for UPR for suspi-
cious plan recognition, which maintain computational tractability, but
with greater expressiveness.

e Most plan recognition literature—and this chapter is no different—ignore
intended recognition (where the adversary knows it is being observed, and
acts accordingly; see [38] for a recent exception). In adversarial settings,
assuming the adversary knows that it is being observed can cause a com-
putational blow up, because even when an another agent appears to be
not suspicious, the system must necessarily assume it is only acting as
such, because it is being observed. Thus pruning hypotheses is necessarily
difficult.
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