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Abstract. Collective motion is a widespread natural phenomenon in
which individuals move in an ordered fashion, without centralized con-
trol. Such movement is often considered to be robust to individual fail-
ures, but common models of collective motion fail to display this trait.
Inspired by observations of locusts, we introduce intermittent pauses in
individual motion, where pause duration is tied to perception of neigh-
bours’ movements. Realistic physics-based simulations of swarm robots
demonstrate that this leads to significant improvements in the resilience
of the swarm, without sacrificing its functionality or coherence.
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1 Introduction
Swarm collective motion is a widespread phenomenon in nature, found in many
organisms, such as schools of fish [15], flocking of birds [10], marching of lo-
custs [2, 3], and others. In these, ordered collective behavior emerges without
centralized control; individuals act solely based on local information, through
simple repeated interactions. Over the years, numerous models have been de-
veloped that replicate this phenomenon [9, 11, 14, 17, 19, 22, 28, 34]. Two pop-
ular modeling approaches are Heading-Alignment (e.g., [34]) where an agent
tries to align speed and heading with its surrounding neighbors, and Avoid-
Attract (e.g., [5, 11, 26]), where agents try to keep neighbors within preferred
distances. These models demonstrated that group leadership, hierarchical con-
trol and global information are not necessary for collective behavior [9].

While the inspiration for collective motion is drawn from nature, many of the
models are simplified for the sake of analysis. More often than not, these models
assume agents are a dimensionless particle, moving with constant speed and in
a convex-bounded environment free of obstacles. These unrealistic assumptions
do not hold in nature, nor are they relevant to robots; animals and robots may
be slowed down or even stop due to failures. Some swarm robotics applications
require the robots to be low-cost by design, which exacerbates the rate of failure.
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While swarms are often considered to be robust to individual motion failures,
Winfield and Nembrini [35], and Bjerknes and Winfield [5] show otherwise: even
a small portion of faulty agents in a swarm can break the desired collective
behavior. Moreover, the identification of failing robots is a challenge in itself. In
principle, ego-motion estimation of its own heading and speed allows a robot to
estimate the velocity of its neighbors, and thus recognize robots that stop or are
too slow to be considered. Such computation is also used in heading-alignment
models [9, 28, 34]. However, robotic ego-motion estimation is highly susceptible
to errors [6] and cannot be relied on without occasional calibration vis-a-vis
the environment. Moreover, collective motion models that avoid relying on ego-
motion estimation, such as avoid-attract models [11,26], lack this mechanism for
detecting failing neighbors, and thus face even greater difficulty.

Fig. 1. Our hybrid swarm:
A group of gregarious lo-
cust nymphs interacting with
nymbot robots, in our lab.

In this paper, we present a simple method al-
lowing agents to recognize their failing neighbors,
without ego-motion estimation. Working with a
hybrid locust-robot swarm [4] (Fig. 1), we were
inspired by locust marching behavior; individual
locusts intermittently change between moving and
standing (so-called, pause-and-go or intermittent
locomotion) [2, 3]. The pauses serve as decision
points, and are affected by the complexity of the
sensory input [1,27]. The same type of motions are
also evident in other swarming animals [18,21,24].

We apply the intermittent locomotion mecha-
nism in a simulated swarm of our robots, in the
ARGoS 3 simulator [25], using an avoid-attract
model [11, 26]. Each robot individually alternates
between pauses and movement states. During a
pause, the robot observes its neighbors and marks
robots who are moving too slowly or stopping as
faulty. It then moves, applying collective motion
control selectively, only using robots it considers to be functioning. The cycle
begins again (without memory of previous faulty robots).

The decision on movement and pause duration is not trivial, as robots that
are pausing may be perceived by others to be failing, and thus the swarm co-
herence may deteriorate. We evaluate several pause termination criteria, tied to
the perception of motion in neighbours, to compensate for this false detection
of failing neighbors. Experiments demonstrate that applying pause-and-go using
these criteria can maintain swarm coherence, despite significant percentage of
failing members.

2 Related Work

Models of collective motion determine the motion of a robot, given its locally-
perceived neighbors, without centralized control. Various types of failures in
individuals can have catastrophic effects [5, 8, 33, 35], but the most devastating
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failure is of a robot who stops permanently, while its active neighbors do not
recognize it [5, 35], as its perceived velocity significantly affects their decisions.
Christensen et al. [8] suggest a method inspired by fire-flies, where a blinking light
is used as a heartbeat signal (keepalive) to signal an active robot. When a robot
fails catastrophically, the signal stops and its neighbors ignore it. However, this
mechanism is of little use in the case where motors fail, but the signal continues.
Moreover, the mechanism assumes visual signaling and perception capabilities,
potentially at greater energy expense. A more elaborate scheme is presented by
Tarapore et al. [33], requiring communication between robots.

We focus on passive detection approaches, requiring no cooperation by the
failing robot. We distinguish two families of collective motion models, based
on their making (or not making) an assumption that each robot knows its own
velocity vector (ego-motion). Both families exhibit poor performance when some
individuals stop, but their potential for detecting failing robots is different.

Heading Alignment [9, 23, 28, 29, 34] models decide on the robots heading by
aligning with the average orientation of surrounding neighbors. This requires
either knowing self- and neighbors- global orientation (not available in local-
perception simple robots), or the ability to calculate the relative heading based
on estimated ego-motion (which is highly erroneous [6]). That said, having access
to the ego-motion velocity vector allows detecting of robots that have stopped
or slowed down, as their velocity can be computed from the relative velocity and
the ego-motion velocity (see Sect. 3.2 for details).

The second type of models avoids ego-motion estimation, achieving ordered
movement without explicit alignment [5,11,26,30–32]. This removes the reliance
on noisy ego-motion estimation. However, without it, these models cannot detect
robots that have stopped or slowed down, as they can no longer compute relative
velocity while moving. Among these, a few Avoid-Attract models have been
implemented and tested on robots [5, 11], and serve as a basis for our work.
In Bjerknes et al. [5] the short-range repulsion is manifested by moving away
from too close neighbors. While, for long-range attraction, each robot times the
duration since its last repel and if the value surpasses a threshold, the robot turns
towards the group’s center position. In Ferrante et al. [11] the avoid-attract uses
a potential function that corresponds to a preferred distance to keep.

Detecting stopped robots is more easily done when the observer is itself mo-
tionless, as moving neighbors can be considered functioning. We therefore seek
to adopt intermittent pausing (pause-and-go locomotion, P&G) as an approach
to detecting stopped faulty robots. P&G regimes are found in locust marching
bands [3], though the relation to ego-motion estimation in locust is unknown.
Burst and Coast is a related natural phenomenon in fish locomotion [7, 16, 21].
Rimer et al. [29] applied a P&G locomotion in a Vicsek heading-alignment
model [34]. Their work did not have any method of fault handling.

3 Collective Motion with Intermittent Pauses
We begin by presenting an avoid-attract model governing collective motion
(Sect. 3.1). We then discuss how faulty robots affect it, and how they may be
detected, and their effects nullified (Sect. 3.2).



4 Shefi et al.

3.1 Avoid-Attract Collective Motion: Naive Model
N robots of rectangular shape are each represented by a position vector pt

i .
Their own ego-motion velocity vector vt

i is unknown to them; their controls are
open-loop and their global orientation and speed is not known. Each robot senses
all robots around it, within a distance Rsense, and calculates its own force vector
f . It then translates this into desired linear and angular velocity. The vector vt

i

is updated using magnitude-dependent motion control (MDMC) [11]. Time is
discretized into ticks, each a tenth of a second.

d

r ij
βij

Focal agent

Fig. 2. Focal robot.

Avoid-Attract Force f. The avoid-attract
model encodes the idea of robots preferring to
keep a distance d from all robots they perceive.
Figure 2 shows the focal rectangular robot cen-
tered and heading towards the top of the page.
The inner circle shows the Avoid zone, limited
by the desired distance d. The Attract zone is
marked by the outer ring, limited by the sens-
ing radius Rsense. Dark rectangles show robots
outside the sensing range. Also shown: sensed
robots (light gray) scattered in both zones, rij
(distance to neighbor j) and the bearing angle.

The focal robot avoids neighbors closer than the preferred range d, and moves
towards neighbors that are farther. To do this, the robot uses Eq. 1 (inspired by
Qi et al. [26]) to compute f .

f =

Ns∑
j=1

γ
rij − d

r2ij
βij (1)

There are Ns local neighbors, rij is the distance between the focal robot i and
its j-th neighbor, while βij is the unit vector in the direction of neighbor j and
γ is a gain parameter (see [26]). Like most previous studies [12], we assume
the focal agent can differentiate between neighbors and calculate their distance.
The decision to avoid or attract is handled by the fractional part (

rij−d

r2ij
): if the

fraction is positive the force is applied in the direction of robot j; if the fraction
is negative, then rij is smaller than d, and the force is applied in the opposite
direction of neighbor j.

Motion Control. The force vector is broken into linear and angular speeds,
using the magnitude-dependent motion control (MDMC) method of Ferrante et
al. [11]. Let fx, fy be the projections of force f on the x and y axes of the focal
robot body coordinate system (x axis along the length of the body), and Umax

be the maximal speed. Then, the linear speed u and the angular speed ω of the
robot are derived from f using Equation 2:

u = K1fx + U, ω = K2fy (2)

Here, K1,K2 are constants, and U is a forward-moving speed bias, set at
half of Umax (see [11] for details of how these are set, and Table 1 for nomencla-
ture). This leads the robot to move faster as the fx is larger, while a larger fy
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leads to a quicker turn. To allow for real-world kinematic constraints on robot
motion, u, ω may be truncated. In the experiments reported below, u was al-
lowed in the range [0, Umax] (i.e., no reverse motion); ω was allowed within the
range [−ωmax, ωmax], where ωmax is the maximal turn rate. Then, the robot’s
differential-drive controller converts u, ω into linear speeds for each wheel.

3.2 Detecting and Handling Faulty Agents
We now turn to examine faulty robots, which stop moving and remain in their
last position and heading. Faulty robots do not indicate their status, and thus the
naive model cannot distinguish faulty robots from others. As a result, applying
the naive model when faulty robots are part of the swarm causes a breakdown
in the coherence of the collective motion, as well as in its overall motion (as
moving robots remain in the vicinity of the faulty robots). This breakdown is
also evident in the experimental results (next section).

Detection of Faulty Agents. Since the robot’s own velocity is unknown, it
can not distinguish static faulty robots from functioning neighbor robots, other
than by noting their motion (|vneighbor| > 0). To do this, normally the focal
robot can compute the velocity vector of a neighbor by adding the focal robot’s
own velocity vector (its ego-motion vector), to the perceived relative velocity
vector (Eq. 4).

vrel = vneighbor − vown, (3)

and therefore,
vrel + vown = vneighbor. (4)

As discussed, heading-alignment models assume that vown is known, but
this is a problematic assumption [6]. For the model we presented earlier (and
variants which avoid the problematic assumption), vown is not known, with the
exception of one case, where vown is set to 0, i.e., the focal robot stops. Then,
any observed relative velocity vector (|vrel| > 0) is necessarily caused by the
motion of the neighbor, which indicates that it is functioning.

Intermittent Pause and Go Locomotion. Inspired by the observed be-
havior of individual nymphs in locust marching bands, we require robots to
intermittently select between go (moving) and pause (stopping) states. When a
functioning robot is in the go state, it moves according to Eq. 5, which is a mod-
ified version of the force computation described earlier, which takes into account
active moving robots (Nsm) and faulty robots (No). The duration of this state
is randomly chosen from a uniform distribution.

f =

Nsm∑
j=1

γ
rij − d

r2ij
βij +

No∑
j=1

fobj, (5)

where

fobj = γ
rij − d

r2ij
θ(d− rij)βij. (6)
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The first summation in Eq. 5 is over all sensed functioning neighbors (i.e.,
all but thought to be faulty neighbors). The second summation is of all the
neighbors whom are considered faulty and induce a repel force. In Eq. 6 the
θ(d− rij) is a Heaviside step function (1 for 0 or positive, 0 otherwise), ensuring
that only repulsion force is applied.

When the robot is in a pause state, it does not move. Instead, it continues
to sense its surrounding neighbors, and notes those that are moving as active.
Tracking active neighbors to detect movement requires short term memory, a
requirement feasible both in robots and in nature [13].

The selection of states is done individually, and for a duration determined by
a mechanism which we describe below. It is designed so that stochastically, at
any given time, some of the N robots are in a pause state, while the rest are in
a go state. Figure 3 illustrates the timeline for a small swarm, where one robot
is failing. Others may be mistakenly believed to be failing, because they are in
an intermittent pause state when they are being observed by others.

robot0
robot1
robot2
robot3
robot4
robot5

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

Fig. 3. Example timeline. Each row is a the timeline of a swarm member. Grayed out
cells are pause state time-steps, while white cells are go state time-steps. robot1 and
robot3 will consider each other faulty after the pause state in t4–t5 as they overlap.
robot4 is faulty (marked dark gray), hence will be detected correctly as faulty by all.

Misclassification of faulty robots. Naively, one may consider the pause-and-
go mechanism to be a simple and elegant solution to the problem of detecting
(and avoiding) faulty robots. However, as Fig. 3 demonstrates, deciding on mo-
tion and pause duration is critical to its success, and is not trivial. Longer dura-
tion of the go state allow the robots to move farther, and more opportunities for
others in pause state to correctly identify moving robots as functioning. How-
ever, as faulty robots are not detected during movement, their negative effects
are exacerbated during movements of longer duration. In contrast, longer pauses
allow more opportunities for robots to identify others as faulty or functioning
(giving them a higher chance to switch from a pause to a go), but also causes
others to misidentify the pausing robot as faulty.

We therefore require a mechanism for determining the length of pauses. At
minimum, the pause is at least two (2) ticks long, so that there is an opportunity
to indicate a change in two subsequent sensor readings, indicating motion. Also,
if all observed robots move, then obviously the pause can be terminated. But
given that not all robots may be moving, any early termination of the pause
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state may risk misclassifying a functioning robot as a faulty, which may disrupt
the collective motion, as it will be avoided in the subsequent go state.

Aidan et al. [1] report that in locust, pause duration is affected by the com-
plexity of the sensorial input. Inspired by this observation, we proposed a major-
ity rule for early termination of the pause state. Thus the pause state terminates
either when a parameterized duration has been reached, or when at least X per-
cent of observed robots are moving. Next, we report experiments with different
pause termination rules.

4 Experiments and Results

We first introduce the experimental environment and settings (Sect. 4.1). Then
we report on the results and their implications (Sect. 4.2).

4.1 Experimental setup

To evaluate the P&G model, we use the ARGoS 3 platform [25], a physics-
based robot simulator, to simulate the Nymbots of our hybrid swarm. These are
rectangular two-wheeled differential-drive robots; their size, maximum speed,
and turn kinematics are designed to approximate locust nymphs.

We compare the naive model (Sect. 3.1) with different variants on of the
model with P&G motions (Sect. 3.2). Table 1 shows the model parameters and
their values. Rows with multiple values show all values used in the experiments;
values in bold denote defaults. The sensing range approximates locust visual
range, and d is set based on the recommendation in [11]. The robots are deployed
in a 0.5 × 0.5 m2 area in random position and random headings. The duration
of the experiment is 8000 ticks (equivalent to 800 seconds).

The expectation is that the collective motion model achieves ordered (aligned
headings), as quickly as possible. We use the Order metric presented in Vicsek
et al. [34] and used in many collective motion studies (Eq. 7). It is the absolute
value of the average normalized velocity, measuring the global alignment: when
the group is completely aligned the order will be 1 while for a disordered group
the value will near 0. The calculation ignores faulty robots.

ψ =
1

N

∣∣∣∣∣
N∑
i=1

vi

∣∣∣∣∣ (7)

We typically show the evolution of the order metric with time. In all the
graphs below, the solid lines show means over 25 trials, and the lightly-shaded
envelope around it marks the standard error of the mean. All model variations
were tested in 7 different swarm densities (by changing the swarm size, see N
values in table 1). For each model and swarm density, five proportions of faulty
robots (see Nf values in table 1) were tested with ( 1

N is always one faulty robot).
Faulty agents remain faulty for the entire experiment, starting from tick 0.

We additionally utilize the steady-state value (SSV) metric, presented in Fer-
rante et al. [11], and defined as the average value of the order metric in the last
10% frames (800 ticks in our case).
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Parameter Explanation Values tested [units]

Body length Robots length 0.05 [m]
Body width Robots width 0.02 [m]

K1 MDMC linear gain 0.5
K2 MDMC angular gain 0.06
N Number of robots {25, 30, 35, 40, 45, 50, 55}
Np Proportion of initial pause robots 1

3

Nf Proportion of failed robots {0, 1
N
, 1

10
, 1

5
}

Rsense Sensing radius 0.19 [m]
d Wanted distance 0.11 [m]
γ force gain 1.3

Umax Maximum speed 0.035 [m/s]
ωlim Maximum turn rate 30 [Deg/s]

Pause duration Pause state duration {0.2, 0.5, 0.7} [s]
Go duration Go state duration range {2-12, 2-22, 12-22}[ticks]

T Experiment duration 800 [s]
Tick Tick duration 1

10
[s]

Trials Number of runs per setting 25

Table 1. Nomenclature and robot parameters, and values. Defaults in bold.

4.2 Results

We first experimented with the naive avoid-attract model with different swarm
sizes and proportions of faulty robots. In Fig. 4 the SSV and evolving order of the
naive model are plotted. In Fig. 4(a) there is a comparison of the SSV of different
swarm sizes with changing faulty proportions. As seen it drops dramatically
with the growth of swarm size and faulty robots. The faulty robots trap active
(functioning) robots, that stay in their vicinity, circling around them. As the
number of failing robots grow in number, their “gravitational pull” increases
until the swarm is anchored and unable to escape.

(a) SSV of different swarm sizes, at differ-
ent faulty robot proportions.

(b) Evolution of order over time, with 1
10

of its robots being faulty

Fig. 4. The steady state value (a) and evolving order (b) of the naive model.

Interestingly, different swarm densities break down (become trapped) with
different proportion of faulty robots. At the lower density of 25 robots in the
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area, the swarm can slowly escape even from 1
5 of faulty robots, while the higher

density of 55 is already affected by 1 faulty robot. This is seen in Fig. 4(b)
showing different swarm sizes, all with 1

10 faulty robots. As the swarm gets
larger (and hence denser) the swarm clearly does not converge to an ordered
motion within the experiment duration.

To combat the deterioration in the swarm coherence, we evaluate several
P&G variants, each with a different pause and go regime. In each regime, the
pause duration is fix and the go duration is uniformly chosen from a specific
range: high variance (P: 5 ticks, G: 2-22 ticks), short pause (P: 3 ticks, G: 2-22
ticks), long pause (P: 7 ticks, G: 2-22 ticks), short go (P: 5 ticks, G: 2-12 ticks)
and long go (P: 5 ticks, G: 10-12 ticks). Figure 5(a) shows promising results. All
P&G variants manage to converge to some order, though a fifth of the robots are
faulty. In comparison, the naive model clearly fails to synthesize ordered motion.
However, this comes at a cost. Figure 5(b) shows that compared to the naive
model, P&G variants clearly under-perform when no faulty robots exist. The
rate of misclassification is sufficiently high to cause noticeable decline in order
and convergence rate, compared to the naive model.

(a) 1
5
Faulty, avoiding faulty (b) 0 Faulty, avoiding faulty

(c) 1
5
Faulty, not avoiding faulty (d) 0 Faulty, not avoiding faulty

Fig. 5. The plots illustrate the evolving order of a swarm consisting of 40 robots under
0 and 1

5
faulty robots. The first row shows the results when faulty robots are avoided.

The second row shows what happens when they are not avoided.

This raises the question of the cause of the decline in the P&G performance in
the 0-fault scenario. Is it due to the intermittent motion itself, or is it influenced
by the rule regarding the exclusion of static robots (Eqs. 5–6)? To answer this
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question, we examine the results from swarms employing a nullified P&G variant,
where robots intermittently pause, but they do not ignore others. Figures 5(c)–
5(d) show that this nullified model is practically indistinguishable from the naive
model. In other words, the exclusion of misclassified faulty robots is the cause
for the subpar performance of the P&G in the case of no faulty robots.

We therefore turn to focus on reducing the misclassification rate, using the
parameterized pause termination rule discussed above. Figure 6 shows the re-
sults for a swarm of 40 robots, of which different proportions of robots are faulty.
The figure contrasts the naive model, with three variants of the P&G mecha-
nism: Early stoppage (2-tick minimal pause, 70% majority for terminating a
pause), Early stoppage 100% (same, but 100% of observed robots must move
to cause early termination of the pause), fixed pause (without the option for
early termination—this is the best-performing variant of the previous experi-
ment). The results show the 70% majority persistently outperforms competing
alternatives in both order and convergence time.

(a) 0 Faulty (b) 1
N

Faulty

(c) 1
10
Faulty (d) 1

5
Faulty

Fig. 6. Plots show the order parameter of the naive model (dark blue line) and different
variants of the P&G model. The swarm has 40 robots, and each plot has a different
number of faulty robots. The chosen model is the light orange line.

Next, we evaluated the P&G-70 mechanism (2-tick minimal pause, 70% ma-
jority) in all fault proportions, in all swarm densities. The results are shown
in Figure 7. They demonstrate that P&G-70 is able to escape from all tested
proportions of faulty robots in all the swarm densities. Comparing Fig. 7(a) to
the corresponding figure for the naive model (Fig. 4(a)), we see that P&G-70
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degrades much more gracefully. Fig. 7(b) shows a simulation screenshot from
one of the trials.

Despite the clear improvement over the naive model, the SSV variance is
considerable. Preliminary analysis of the causes yielded an interesting observa-
tion: The P&G allows exclusion of failing members, but causes fragmentation,
splitting the swarm into ordered sub-swarms that head in different directions
(see screenshot in Fig. 8(a)). This behavior occurs as the connectivity graph of
the robots is broken by the faulty robots. A possible solution is to have a larger
Rsense, allowing the robot to consider farther active robots. However, as reported
by Ferrante et al. [11], this leads to either a form of milling or a collapse of the
swarm (which we have witnessed).

We were surprised to discover that a larger Rsense seems to work well, when
sensor occlusions are taken into account. Such occlusions have been reported
to sometimes interfere with collective motion [20], but here they seem to com-
pensate for the negative effects of the larger Rsense radius. Adding occlusions
changes the process of neighbor selection [12], which has a dramatic effect. Con-
trast Fig. 8(a), with the corresponding screenshot where P&G-70 is used with
a larger Rsense of 0.25 (before: 0.19), and a simple occlusion rule, whereby a
robot can perceive a neighbor (active or faulty) if there is a direct line of sight
between body centers. The effects can also be seen in Fig. 8(c) and Fig. 8(d).
The results for the naive model had not changed because of the larger Rsense,
but P&G-70 performance clearly improved (Fig. 8(d)). We caution that these
promising results are preliminary.

5 Summary

Taking a step towards considering physical robot constraints and properties in
swarming, we focus on the challenging problem of making collective motion
resilient to failing agents that stop permanently, but cannot be identified as
such by any means other than measuring their velocity. This is a serious open
challenge [5,8,33,35]. Inspired by the behavior of desert locusts, we modified the

(a) SSV of different swarm sizes, at different
faulty robot proportions.

(b) Simulation screenshot. Failed
robots left behind.

Fig. 7. Results P&G (70% majority).
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(a) P&G-70 - 1
5
Faulty (b) P&G-70 w. occlusions - 1

5

Faulty

(c) 0 Faulty (d) 1
5
Faulty

Fig. 8. Simulation screenshots of a fragmented swarm without occlusions (a) and a
coherent swarm with larger Rsense with occlusions (b). In both, green labels mark a
go state, red labels mark a pause state and gray labels mark faulty robots. Second row
figures (c), (d) show the evolving order parameter of the original P&G-70 and naive
models, and same with increased Rsense and occlusions.

individual locomotion from continuous to intermittent pausing (pause and go).
By carefully considering the pause termination conditions, resilient swarming
is achievable, as the pauses allow exclusion of stopped robots (even in large
numbers), but maintain the coherence when no faults occur. The method was
tested in hundreds of simulation trials, with different swarm sizes and portions
of faulty robots.

A negative side effect of the P&G mechanism is that it may cause the swarm
to split into smaller (ordered) groups. We plan to investigate this in depth.
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