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Summary. Designers of robotic groups are faced with the formidable task of creating effec-
tive coordination architectures that can deal with changing environment conditions and hard-
ware failures. Communication between robots is one mechanism that can at times be helpful
in such systems, but can also create a time and energy overhead that reduces performance.
In dealing with this issue, various communication schemes have been proposed ranging from
centralized and localized algorithms, to non-communicative methods. In this paper we argue
that using a coordination cost measure can be useful for selecting the appropriate level of
communication within such groups. We show that this measure can be used to create adaptive
communication methods that switch between various communication schemes. In extensive
experiments in the foraging domain, multi-robot teams that used these adaptive methods were
able to significantly increase their productivity, compared to teams that used only one type of
communication scheme.

1 Introduction

Groups of robots are likely to accomplish certain tasks more quickly and robustly
than single robots [3, 5, 7]. Many robotic domains such as robotic search and res-
cue, demining, vacuuming, and waste cleanup are characterized by limited operating
spaces where robots are likely to collide. In order to maintain group cohesion under
such conditions, some type of information transfer is likely to be helpful in facil-
itating coherent behavior in robotic group tasks and thus better achieve their task.
This is especially true as robotic domains are typically fraught with dynamics and
uncertainty such as hardware failures, changing environmental conditions, and noisy
sensors.

Questions such as what to communicate and to whom have been the subject of re-
cent study [7, 11, 12]. In theory, communication should always be advantageous–the
more information a robot has, the better. However, assuming communication has a
cost, one must also consider the resources consumed in communication, and whether
the cost of communication appropriately matches the needs of the domain. We be-
lieve that different communication schemes are best suited for different environmen-
tal conditions. Because no one communication method is always most effective, one
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way to improve the use of communications in coordination is to find a mechanism
for switching between different communication protocols so as to match the given
environment.

This paper provides such an adaptive communications framework using a coordi-
nation cost measure that quantifies all resources spent on coordination activities. Our
model explicitly includes resources such as the time and energy spent communicat-
ing. In situations where conflicts between group members are common, more robust
means of communication, such as centralized models, are most effective. When col-
lisions are rare, coordination methods that do not communicate and thus have the
lowest overhead, work best.

We present two novel domain-independent adaptive communication methods that
use communication cost estimates to alter their communication approach based on
domain conditions. In our first approach, robots uniformly switch their communi-
cation scheme between differing communication approaches. In this method, robots
contain full implementations of several communication methods, and switch between
them as needed. In contrast, our second approach represents a generalized commu-
nication scheme, that allows each robot to adapt independently to its domain con-
ditions. Each robot creates its own communication range radius (which we refer to
as its neighborhood of communication), to create a sliding scale of communication
between localized to centralized methods. Each robot uses its coordination cost esti-
mate to determine how large its neighborhood should be.

To evaluate these adaptive methods, we performed thousands of trials using an es-
tablished robotic simulator, in a multi-robot foraging task. We tested groups of vary-
ing sizes and communication methods. We found that groups that used the adaptive
methods often significantly exceeded the best productivity levels of the non-adaptive
algorithms they were based on.

2 Related Work

A major challenge to designers of robotic groups exists in choosing an optimal com-
munication method. Many practical frameworks have been presented for use within
robotic teams [3–9, 12] and can generally be assigned to categories of no communi-
cation, localized, and centralized approaches.

It is possible to create effective group behavior without any communication [2].
For example, the Stigmergy concept [6] involves group members basing their ac-
tions by observing how other group members previously modified their environ-
ment. This approach has been shown to be effective in several animal and robotic
domains [6] without using any explicit communication. Coordination without com-
munication can potentially facilitate better adaptability, robustness and scalability
qualities over methods using communication [11]. Additionally, the lack of commu-
nication also allows such methods to be implemented on simpler robots. However,
such algorithms often require powerful and accurate sensing capabilities [9]. Also,
our results demonstrate that groups implementing these methods did not always pro-
vide the highest levels of productivity, especially within dynamic domains where
frequent coordination conflicts exist.
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A second set of approaches attempt to improve group performance by having ro-
bots locally communicate information [7, 9]. For example, work of Jäger and Nebel
[7] present a method whereby robots nearing a collision stopped to exchange trajec-
tory information. They then successfully detect and resolve deadlock conditions of
two or more robots mutually blocking. However, their trajectory planning method
was not able to perform well in groups of over five robots. In contrast, Mataric [9]
reported that a local communication scheme scaled well with group size. One key
difference seems to lie within the local communication implementations. In Jäger’s
algorithm, one or more robots must stop moving during trajectory replanning. We
believe this led to a breakdown in the system once the group size grew. Mataric’s
locally communicating robots broadcast information while continuing their foraging
task. This allowed for better scalability qualities.

A third type of approach involves the use of some type of central repository of
information [12]. This centralized body, which could also be implemented as one
"expert" teammate, would then be able to easily share its store of pooled information
with other teammates. While this approach allows for free information sharing and
can thus improve performance, several drawbacks are evident. First, the centralized
mechanism creates a single point of failure. The cost of communication is also likely
to be large, and requires hardware and bandwidth suitable for simultaneous commu-
nication with the centralized body. While these drawbacks are at times significant,
they may be justified given the needs of the domain.

In this work, we assume that representative communication methods from these
categories are predefined, and have been implemented with optimal values for their
exact parameters given domain conditions. Several approaches exist for finding these
parameters within a given coordination method. For example, work by Yoshida et
al. [4] presented a framework to derive an optimal localized communication area
betweens within groups of robots to share information in a minimum of time. This
approach assumes domain conditions such as spatial distributions and the probabil-
ity of information transmission can be readily calculated. Previously, Goldberg and
Mataric [5] focused on interference (which they defined as the time robots spent
colliding) as a basis for measuring a coordination method’s effectiveness. However,
they did not address how to create adaptive methods based on interference. Our pre-
vious work [10] built upon this interference definition to include all resources spent
resolving coordination conflicts including the time spent before and after collisions.
We then demonstrated that parameter tweaking is possible through this measure. The
advantage to this approach over the work of Yoshida et al. [4] is its ability to allow
robots to autonomously adapt, even in dynamic environments. However, in contrast
to their work, our previous work [10] did not study communication issues.

In this work, we use coordination cost measures to compare a given set of com-
munication methods and to create adaptive methods based on these existing meth-
ods. We explicitly model all resources spent on coordination activities including the
resources spent on communication even if they do not detract from the time to com-
plete the task. Our goal was to properly match communication methods to domain
conditions, while considering their relative costs. Furthermore, adaptation between
communication schemes presents new challenges, since many protocols require stan-
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dardized communication between all team members. These challenges are addressed
in this paper.

3 Using Coordination Costs to Adapt Communications
Our coordination cost measure facilitates identifying which communication method
is most suitable given the environment. We model every robot’s coordination cost
Ci, as a factor that impacts the entire group’s productivity. We analyze two cost cate-
gories: (i) costs relating to communication and (ii) proactive and/or reactive collision
resolution behaviors. We focus on the time and energy spent communicating and in
the consequent resolutions behaviors (see Implementation Section for full details).
We then combine these factors to create a multi-attribute cost function based on
the Simple Additive Weighting (SAW) method [14] often used for multi-attribute
utility functions. While methods with no communication have no Ci for communi-
cation, this method could not always successfully resolve collisions and then spent
more resources on collision resolution behaviors, or another Ci. Conversely, central-
ized methods incurred a communication cost Ci that often eclipsed the needs of the
domain and weighed heavily on productivity. Other communication issues, such as
bandwidth limitations, can similarly be categorized as additional cost factors as they
impact any specific robot. For example, if a robot needed to retransmit a message
due to limited shared bandwidth, costs in terms of additional time latency and en-
ergy used in retransmission are likely to result.

Using this measure we can compare communication methods, but in this paper
we focus on using it for online adaptation between communication schemes. In this
section we present two types of adaptive methods: (i) uniform communication adap-
tation (ii) adaptive neighborhoods of communication. Both methods led to significant
increases in productivity over static approaches (see Experiments section).

3.1 Uniform Switching Between Methods

In our first method, all robots simultaneously switch between mutually exclusive
communication methods as needed. In order to facilitate this form of adaptation,
each robot autonomously maintains a cost estimate, V used to decide which com-
munication method to use. As a robot detects no resource conflicts, it decreases an
estimate of this cost, V , by an amount Wdown. When a robot senses a conflict is
occurring, the value of V is increased by an amount Wup. The values for V are
then mapped to a set of communication schemes methods ranging from those with
little cost overhead such as those with no communication, to more robust methods
with higher overheads such as the localized and centralized methods. As the level
of projected conflicts rises (as becomes more likely in larger group sizes) the value
of V rises in turn, and the robots use progressively more aggressive communica-
tion methods to more effectively resolve projected collisions. While these activities
themselves constitute a cost that detracts from the group’s productivity, they are nec-
essary as more simple behaviors did not suffice. As different coordination methods
often have different costs, Ci for a given domain, we believed this approach could be
used to significantly improve the productivity of the group.
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Several key issues needed to be addressed in implementing this method with
groups of robots. First, we assumed that all group members are aware of the over-
heads associated with various coordination methods, and can order them based on
their relative complexities. This ordering can be derived from theoretical analysis
or through observation (as we do in later in this paper). Second, an approach to
quickly set the weights, Wup, and Wdown used within our algorithms is needed.
While traditional learning methods, such as Q-learning [13] may converge on an op-
timal policy, this approach is difficult to implement because of two major reasons.
First, Q-learning is based on a a concept of "state" that is not readily definable during
task execution. As opposed to clearly defined discrete domains, there is no reward for
any given cycle of activity in the robotic domains we studied. Even assuming an op-
timal policy could be learned, a second, more fundamental problem exists. Robotic
domains often contain dynamics that render a learned policy obsolete very quickly.
Thus, our approach is to sacrifice finding a globally optimal policy in exchange for
finding a locally optimal policy after a much shorter training period for our weights.
We used a gradient learning procedure to achieve this result.

Next, it must be noted that uniform adaptation requires all robots to change com-
munication in sync because of the mutual exclusivity of the methods used. For exam-
ple, it is impossible for one robot to use a centralized method, with others using one
without communication, as the centralized approach is based on information from all
team members. As a result, once any one robot in the group autonomously decided
it needed to switch communication schemes, a communication change must also oc-
cur within all other team members. This could force certain members to use a more
expensive communication method than it locally found necessary. We relaxed these
requirements in the second adaptive method, presented in the next section.

Finally, care must be taken to prevent the robots from quickly oscillating between
methods based on their localized conditions. In our implementation, communication
adaptation was triggered once one robot’s value for V exceeded a certain threshold.
After this point, that robot broadcasted which method it was switching to and all
group members would change in kind and reinitialize their cost estimates V to this
new value. Furthermore, we also used domain specific information, such as priori-
tizing collisions closer to the home base within our foraging domain. In this fashion,
we partially limited the types of triggers to those of importance to the entire group.
Once again, our second type of communication adaptation relaxes this requirement
and is effective without any such heuristics.

3.2 Adaptive Neighborhoods of Communication

The advantage in our first adaptive approach lies in its simplicity. Our uniform adap-
tive approach switches between existing coordination methods based on estimated
coordination cost. Assuming one analyzes a new domain with completely different
communication methods, and can order the communication methods based on their
communication costs, this approach will be equally valid as it implements existing
methods and reaches the highest levels of productivity from among those methods–
whatever they may be.
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In contrast, our second adaptation method is a parameterized generalization of
the three specific categories of communication methods (No-Communication, Local-
ized, and Centralized). As many robotic domains use elements of these same meth-
ods [3, 4, 6–8, 12], we reason that a similar approach is likely to work in these and
other domains as well.

The basis of this approach is introducing a parameter to control how large a ra-
dius of communication is used by each robot. This method uses a distance d inside
which robots exchange information, which we term its communication neighbor-
hood. Formally, this radius of communication could be considered a neighborhood
Γ of size d, created from robot v and includes all teammates, u, inside this radius.
As such, we represent the neighborhood as Γd(v) = {u| u robot, dist(u, v) ≤ d}.

Adjusting the value of d in Γd can be used to approximate the previously studied
communication categories. Assuming d is set to zero, no communication will ever be
exchanged and this method is trivially equivalent to the No-Communication method.
Assuming d is set to some small amount, ε, this method will become similar to the
Localized method and information will be exchanged only with the robot it is about
to collide with. If d is set to the radius of the domain, the neighborhood of commu-
nication encompasses all teammates this method becomes similar to the Centralized
method. Thus, the degree of centralization exclusively depends on the value of d.

4 Implementation Details
We used the Teambots [1] simulator to implement communication schemes involv-
ing no communication, localized and centralized approaches within groups of No-
mad N150 foraging robots. The foraging domain is defined as locating target items
from a search region S, and delivering them to a goal region G [5]. Foraging robots
often collide as they approach the home base(s) within their area of operation. In our
domain there was only one goal region, G, which was located in the center of the
operating area. In our implementation, there were a total of 60 target pucks spread
throughout an operating area of approximately 10 by 10 meters. We measured how
many pucks were delivered to the goal region within 9 minutes by groups of 2–30
robots using each communication type. We averaged the results of 100 trials for each
group size with the robots being placed at random initial positions for each run. The
number of trials performed and the relatively large group sizes would have been dif-
ficult to implement on physical robots.

We created experiment sets measuring the time and energy spent in two coordi-
nation categories–communication and collision resolution. The coordination costs in
our first set of experiments involved the time spent in communication and collision
resolution behaviors out of each trial’s total time of 9 minutes. In our second set of
experiments, we allocated each robot 500 units of fuel. We assumed most of the fuel
was used by the robots to move, with a smaller amount (1 unit per 100 seconds)
used to maintain basic sensors and processing. For the time based experiments, we
assumed robots pairs stopped for 1/5 of a second to communicate, representing some
methods [7] where robots stop to exchange information. In the energy based local-
ized experiments, we assumed robots did not stop to communicate, as is the case
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with other methods [9], but each robot still spent 0.3 units of fuel per communica-
tion exchange. Our coordination cost involved the amount of fuel that was used in
communication and repulsion behaviors.

All three communication schemes were similar in that they resolved collisions
by mutually repelling once they sensed a teammate within a certain safe distance
ε, which we set to 1.5 robot radii. Once within this distance, robots acted as they
were in danger of colliding and used repulsions schemes to resolve their collision(s).
The No-Communication method was unique in that robots never used time or fuel
to communicate, and thus only had costs relating to the repulsion behaviors robots
engaged in. However, this method assumed domain specific information, namely
it used the robot’s autonomously computed scalar distance, S, from its location to
the home base in the domain. Robots used a function of this distance, which we
implemented to be 5 times S and rounded to the closest second, as the time to repel
from its teammate(s) after a projected collision.

Our localized method used less domain specific information and is similar to the
localized methods previously proposed [7, 9]. Communication between robots was
initiated once it was in danger of colliding–a teammate came within the ε distance.
After this event, these group members would exchange information above their tra-
jectories (here their relative distances from their typical target, their home base). The
closer robot then moved forward, while the other robot repelled for a fixed period of
20 seconds.

Our final method, Centralized, used a centralized server with a database of the lo-
cation of all the robots similar to other centralized methods [12]. Within this method,
one of two events triggered communication. First, as with the localized method, ro-
bots dropping within the ε distance initiated communication by reporting its posi-
tion, done here with the centralized server. The server then reported back a repel
value based on its relative position to all other teammates. However, in order for the
server to store a good estimate of the positions of all robots, a second, often more
frequent type of communication was needed where each robot reported its position
to the server with frequency L. If this communication occurred too frequently, this
central database would have the best estimate of positions, but the time or energy
spent on communication would spike, and productivity would plummet. If commu-
nication was infrequent, the latency of the information stored on the server would
create outdated data. This in turn would reduce the effectiveness of this method, and
result in more collisions. We found that a latency time of 1 second yielded the highest
productivity in the time based experiments, and a latency value of 5 seconds yielding
the highest productivity within the energy based experiments.

It is important to stress that the focus of our work is switching between categories
of communication methods, and not to find optimal parameters within any one given
communication method. We refer the reader to previous work [4, 10] on how to the-
oretically or empirically derive parameters within one communication method. Our
work is based on the understanding that a high negative correlation exists between
each groups’ productivity and our coordination cost, regardless of the exact imple-
mentation for the parameters used in the No-Communication, Localized and Central-
ized methods. For example, we studied 7 latency variations within the Centralized
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method in both experiment sets. Our groups enforced maximal latency periods of
L set to 0.1, 0.3, 1, 5, 10, 30 and 60 seconds. While the optimal latency value was
different across experiment sets, in both cases the productivity of these variations
was highly negatively correlated with their relative coordination costs. In the first
case, we found a correlation of -0.95 between these latency variations and the corre-
sponding coordination cost based on time. In the trials based on fuel, this value was
-0.97. Similarly, factors such as the exact energy spent on communication exchanges
(0.3 units of fuel per exchange) or the time spent on communication (1/5 seconds
per exchange) could vary across domains, or the distance between communication
partners. However, we consistently found that the resources spent on these communi-
cation exchanges was strongly negatively correlated with those groups’ productivity.

While we consider the neighborhood communication approach to be a parameter-
ized generalization of the three previously described categories, some implementa-
tion details differ in this method over the static ones it emulates. Within this method,
once any robot A, detects another robot within the ε distance, it initiates communi-
cation with all robots found within the Γd(A) area. All robots in Γd(A) must then
report back to Robot A with their projected trajectories. Robot A then sorts all ro-
bots’ trajectories by their relative distances from the home base in the domain. This
robot then reports back to every robot within Γd(A) a repel value based on that ro-
bot’s relative position in the neighborhood. All robots, including the initiating robot
(robot A), then accept this value and immediately engage in repel behaviors for the
dictated length of time. It is possible that a robot may be a member of more than one
neighborhood. In such cases, robots accept the larger repel value regardless of the
sender.

While the repel amounts of the robot initiating communication (Robot A) are
calculated in a similar fashion to the previously described centralized method, here
these values are calculated by members of the team, instead of one centralized server.
The radius of communication in the centralized approach is the full width of the do-
main, while the Γd radius is typically much smaller. However, the biggest difference
in implementing this approach is how repel values are obtained. Robots in previous
methods only repelled based on communication received after dropping within the
ε distance. In this method, robots may repel if they enter the Γd radius even if they
are not in immediate danger of colliding. The reason for this is as follows. As robots
within the Γd radius are typically close to each other, we found that these robots of-
ten would soon initiate their own radii of communication. In other methods this was
not a concern, as other teammates were not effected by this phenomenon. However,
here this would create multiple neighborhoods involving the same teammates. Thus,
proactively assigning repel values was crucial for containing communication costs
as Γd grew.

5 Experimental Results
The first set of experiments attempts to first lend support to the underlying hypoth-
esis, that the combined coordination cost measure is in fact correlated to the pro-
ductivity of the different groups. Our results from experiments involving time and
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energy costs support the claim that the best method of communication does change
with domain conditions (see figure 1). In the time experiments, we found an aver-
age correlation of -0.96 between the average productivity found in groups of 2–30
robots and the group’s corresponding average cost. In the equivalent energy based
experiments, we found a value of -0.95.

Fig. 1. Comparing the productivity levels of three communication types with the coordination
costs based on the time spent on communication relative to different group sizes. Results
averaged from 100 trials per datapoint.

Similarly, we found that no one neighborhood size always fared best. We com-
pared the productivity levels of foraging groups where d was set to 1, 2, 3, 5 and 50
robot lengths. Recall that ε is approximately 1 robot length (1.5 radii). Thus Γ1 repre-
sents the nearly localized variation with Γ50 corresponding to the nearly centralized
version of this method.

Figure 2 represents the relative productivity levels for these static neighborhood
groups relative to the energy costs levels measured in these groups. Notice how in
small groups, Γ1 yielded the highest average productivity. As we have seen, when
possible, resources spent on coordination, here by creating large communication
neighborhoods, should be avoided when possible. As small areas of communication
sufficed in small groups, this approach had the highest productivity. As the group
size grew, additional communication was necessary to maintain high productivity
levels. As a result, larger neighborhoods were necessary and groups with Γ5 resulted
in the highest productivity. However, forcing too much communication when not
necessary created communication costs that reduced productivity to levels found in
methods that spend too few resources on communication. In this method, the produc-
tivity level of the Γ50 method, which created too large a neighborhood, approached
those of Γ1, which did not create a large enough one. We again found a strong corre-
lation between the various Γd variations and the groups’ corresponding coordination
costs and productivity with an average negative correlation of −0.96.

Based on the confirmed hypothesis, that the cost measure is indeed correlated
(negatively) with performance, the next set of experiments evaluated the performance
of the two adaptive methods compared to the static methods on which they were
based. Figure 3 shows the results from these experiments. Notice that both adaptive
approaches approximated or significantly exceeded the highest productivity levels
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Fig. 2. The impact of varying neighborhood sizes (d) on productivity levels and costs in energy
experiments. Results averaged from 100 trials per datapoint.

of the static methods (No Communication, Local, and Centralized methods) they
were based on, especially in medium to large groups. We attribute the success of
both methods to their ability to change communication methods to the needs of the
domain. We believe that the neighborhood method outperformed the uniform one
as it was allowed to create locally different neighborhood sizes, something none
of the static neighborhood methods were capable of. This in turn facilitated better
adaptation and higher productivity.

Fig. 3. Comparing adaptive communication methods based on time and energy costs to static
methods. Results averaged from 100 trials per datapoint.

To evaluate the statistical significance of these results, we conducted the two
tailed t-test and a 1-factor ANOVA test comparing our adaptive groups and the three
static groups they were based on. In all cases, in both time and energy categories, the
null hypothesis p values were below 0.001. This confirms our hypothesis that we can
improve productivity through creating adaptive methods based on communication
costs.

6 Conclusion
This work demonstrates how coordination costs can account for the relative effec-
tiveness of robotic communication methods. Our measure focuses on the time and
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energy spent communicating and resolving collisions. We demonstrate the effective-
ness of our methods in comparing between very different communication methods
falling within categories of no communication, localized and centralized communi-
cation methods. By using this information we are able to match the most effective
communication scheme to a given robotic domain. We present two general adap-
tive communication algorithms, uniform and neighborhood methods. We show, in
thousands of foraging experiments, that coordination cost is indeed negatively corre-
lated with productivity, and that the use of our adaptive methods leads to significant
performance boosts. While we find the neighborhood adaptive method to be more
effective in the robotic foraging domain we studied, both approaches are likely to be
applicable to many other domains [3, 7, 8, 12]. It is possible that the uniform method
is easier to implement or will yield better adaptive qualities in other domains.
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5. D. Goldberg and M. Matarić. Design and evaluation of robust behavior-based controllers
for distributed multi-robot collection tasks. In Robot Teams: From Diversity to Polymor-
phism, pages 315–344, 2001.

6. O. Holland and C. Melhuish. Stigmergy, self-organization, and sorting in collective ro-
botics. Artif. Life, 5(2):173–202, 1999.

7. M. Jager and B. Nebel. Decentralized collision avoidance, deadlock detection, and dead-
lock resolution for multiple mobile robots. In IROS, pages 1213–1219, 2001.

8. G. A. Kaminka and R. Glick. Towards robust multi-robot formations. In ICRA-06, 2006.
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