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Abstract

Multi-robot systems researchers have been investigatiagtave coordination
methods for improving spatial coordination in teams. Suetthods utilize learn-
ing to improve selection of the coordination method, givies dynamic changes
in density of the robots. Unfortunately, while their emgaii success is evident,
none of these methods has been understood in the contexsthgxXormal work
on multi-robot learning. This paper presents a reinforagaearning approach
to coordination algorithm selection, which is not only smoie work well in ex-
periments, but is also analytically grounded. We presemtard function Ef-
fectiveness IndeXEl), that reduces time and resources spent coordinatimd), a
maximizes the time between conflicts that require coortnatlt does this by
measuringthe resource-spending velocityVe empirically show its successful
use in stateless reinforcement learning, in several danamncluding robots in
virtual worlds, simulated robots, and physical AIBO robote@iting foraging.
In addition, we analytically explore the reasons that Elksoxell. We show that
under some assumptions, spatial coordination opporésndan be modeled as
matrix games in which the payoffs to the robots are unknow abe directly a
function of El estimates. The use of reinforcement leariéagls to robots max-
imizing their EI rewards in equilibrium. We then apply the elvard function
in full multi-state reinforcement learning, and demon&trthat it can be used in
settings requiring tight coordination between the robdtsis work is a step to-
wards bridging the gap between the theoretical study ofacte®ns, and their use
in multi-robot coordination.
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Chapter 1
Introduction

Multi-robot systems researchers have been investigatngrunication-less co-
ordination methods for improving spatial coordinationeains [14, 35, 34, 15].
Such methods attempt to resolve spatial conflicts betwesmn-teembers, e.g.,
by dynamic setting of right-of-way priorities [39, 43], cgirained avoidance of
conflict areas [6], territorial separation [36, 12, 21], olerbased priorities [29].
It is accepted that no one method is always best [13, 11, 24fier, the best
method depends on the density of the robots and other dyafiyaahanging set-
tings [34]. All methods reach a point where adding robotsh® group (i.e.,

increasing the density of the robots in space) reduces lbyeod just marginal)

productivity [36, 35]. However, this point differs betwesrethods [34, 11], and
between application contexts. Some approaches to thiteolgal include use of
communications, and methods utilizing additional senséarimation (e.g., the
position of others around the robot).

A different promising approach to this challenge utilizégoaithm selection
methods to dynamically select the best non-communicatogdination method,
given the changing settings of the robots. For instancesdiibhand Jennings [11]
propose a method based on reinforcement learning, where &gerdination
methods are switched to accommodate dynamic changes tontir®renent.
More recently, Rosenfeld et al. [34] advocated allowing eadot to individ-
ually switch coordination methods to reduce its own estadaesource costs.
They have shown that this results in combinations of hetmiegus coordination



methods, that are significantly better than any single nte®bected uniformly.
In general, all of these adaptive coordination methods l@veonstrated much
success in multiple domains of interest.

This thesis makes several distinct contributions. Fitspresents a novel
reward function, callecEffectiveness Indef€l), which is used in a stateless
reinforcement-learning approach to coordination al@anitselection in multi-
robot tasks. The key idea in El is to reduce time and resowspest coordi-
nating, and maximize the time between conflicts that reqroozdination. It does
this by measuringhe resource-spending velocifihe resource "burn rate"). The
use of reinforcement learning minimizes this velocity. Qe feature of El is
that it does not require any knowledge of the task involvedi ia thus domain-
independent. We empirically show that El succeeds in imipgwnulti-robot
coordination in several domains, including robots in \attworlds, simulated
robots, and physical AIBO robots executing foraging. In igatar, use of El
is shown to improve on results from previous techniques.

As an additional contribution, we analytically explore tteasons and as-
sumptions underlying the success of EI. We formalize theegrpent domains
as extensive-form games. We show that under some assusptiase games
can be modeled as matrix games in which the payoffs to thesaye unknown,
but are directly a function of El estimates. The use of reitément learning
leads to robots maximizing their El rewards in equilibriuvile believe that this
work represents an important step towards bridging the gapden the theoret-
ical study of interactions (via game theory), and their wsexplain and inform
multi-robot coordination.

Finally, we explore the use of El in more complex settings:st-iwe show
that El can be used in a state-based policy with the familie@rning algorithm.
We demonstrate its use in highly-constrained settingsrevtiee coordination be-
tween agents is critical to the success of the team as a wholhese settings,
the use of El in multi-state policies is shown to be supenats use in a stateless
method discussed earlier in the thesis, for foraging. S&ome show that El can
be used to indirectly learn the appropriate conditionstioown use, e.g., the con-
ditions under-which a conflict is declared (which allows armination method to
be selected). This overcomes the need for separate leaohitige conditions



under-which El is to be used. Third, we apply El in a commengidual environ-
ment, where synthetic agents learn to select differenesotd a target location,
S0 as to minimize arrival times. The surprising result of ggpplication is that EI-
based learning works well, even though the coordinatiornotkis fixed, and it is
the route travel durations that are being learned (i.e slaedaiented selection).

This thesis is organized as follows. Chapter 2 discusseggbawwkd and re-
lated work. Chapter 3 introduces the Effectiveness Indexfigasure and rele-
vant notation. Chapter 4 discusses the use of El in statedegenmcement learn-
ing. This chapter leaves two immediate challenges operghwilie cover in other
chapters: (i) A theoretical explanation as to why statedssork in multi-agent
reinforcement learning (Chapter 5); and (ii) How can EIl bedusanore complex
settings, involving multiple states and parametrized @@t on its use (Chap-
ter 6). Finally, Chapter 7 concludes and presents directmmfsiture work.



Chapter 2
Background and Related Work

Our work is related to several lines of investigations intiragent and multi-robot
systems research. Some of our work in this thesis is eval@ate contrasted with
other work onmulti-robot foraging a standard multi-robot coordination problem,
discussed in Section 2.1. However, we generalize our s2belyond foraging,
and indeed show that it fits into the area of multi-agent merdgment learning
and game-theory (Section 2.2).

2.1 Multi-Robot Coordination and Foraging

Foraging is a canonical task in multi-robot systems, wheu#tipte robots are all
situated within a common work-area. Their task is to pickmak objects puckg
spread through the work area, and bring them to a goal locétypically at the
center of the work area). They continue in the process ofcheay for pucks,
and bringing them to the goal location, until time runs obg humber of pucks
is typically not known in advance. Scoring is team-based: d®hre evaluated
based on the total number of pucks which have been sucdgssfaught to the
goal location. In most variants of multi-robot foragingbats are not allowed to
explicitly communicate with each other.

Many investigations have utilized multi-robot foragingaatest problem with
which to evaluate coordination methods that do not util@m@munications; when
communication possible, other methods apply (see, e.8], [Bommunication-



less coordination is inherent to multi-robot foraging, @sats tend to collide with
others when leaving and entering the goal area, and wheaohsegrthrough the
environment [35, 36]. Indeed, a number of non-adaptive dioation methods
have been published and demonstrated in multi-robot focagi few of these are
used extensively in this thesis.

The noisemethod is described by Balch and Arkin in [6]. When using this
method, a virtual repulsion force is projected into the nmgats of a robot when
itis about to collide, to make it change its heading. Someea injected as well,
to prevent being stuck in a local minimum. Taggressiommethod was proposed
by Vaughan et al. [39]. It works by having robots who are alioutollide stop
in their tracks, and randomly pick either "meek" or "aggresshehaviors. These
would cause the robots to back away (meek) for a period of tmattempt to
move forward ("aggressive”). As this is done with every actigde, the proba-
bility of actual collision is very low. Finally, the thepelmethod causes colliding
robots to back away for a given amount of time, essentiallgngng their course
for the period. Repel is essentially an enforced "meek” bemaélection for all
robots; it is described in [34].

It has been repeatedly shown that no one coordination meshaest for for-
aging [35, 36], or indeed for other tasks requiring coordora[13]; rather, the ef-
fectiveness of the method is dependent on group size. Hoyaifferent methods
stop being effective with different group sizes [34, 11].uslseveral researchers
have described ways of adapting the coordination methduetgroup size.

Fontan and Matati[36, 12] have proposed a method of coordination that at-
tempts to prevent collisions from taking place, by alloogtrobots to different
regions. Abucket brigadealgorithm is used to transfer pucks from one region to
the next, until the puck is delivered to the goal region. Tihecation of robots to
regions is adaptive, in the sense of taking the number oftsobto account. To
maintain coordination, the robots require knowing of thveriess of other robots,
in contrast to our work. Similar ideas of territorial divasi have been developed
for other tasks, such as area patrolling [10, 3], and cowe[ag, 16, 20]. Later
work in foraging, by Ostergaard et al. [29], has examinedsaalyadapting the
bucket-brigade to the number of robots possible, withoplieit knowledge of the
liveness of robots. They thus adapt a particular coorddnatethod to the scale
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of the team. In contrast, our work has tackled both adaptsyeaific method, as
well as choosing between methods.

A different approach, closely related to ours, is based ardination algo-
rithm selection. Rosenfeld et al. [34, 32] presented a methatladapts the
selection of coordination methods by multi-robot teamghdynamic settings
in which team-members find themselves. The method relies essuring the
resources expended on coordination, using a measure Callatined Coordina-
tion Cost CCC); however, it ignores the gains accumulated from long ok of
no coordination needs, in contrast to our work. Similarlptw work, the adapta-
tion is stateless, i.e., has no mapping from world statetior®methods. Instead,
the CCC is estimated at any given point, and once it passeeaneed (learned
offline) thresholds, it causes dynamic re-selection of ttwdination methods by
each individual robot, attempting to minimize the CCC. In casitrall our learn-
ing and adaption is done on-line.

Interference [15, 14] is a closely related measure to CCC, amdbeaseen as
a special case of it: It measures the amount of time spent@mlic@tion, but not
other resource usage costs (as in CCC) or frequency of the needrdinate (as
in our work). Goldberg and Matdri15] use it to evaluate and compare different
organizational solutions for foraging, i.e., differenskkeexecution methods: In
the first, all robots are homogeneous, and play the same ttokei$ the same
organization we evaluate in this thesis, and also studidddsenfeld et al. [34]);
in the second, robots are divided into different behavigraups ("castes"), where
the behavior of robots are decided by the group they belo(girtolar in principle
to [36]); in the final organizational solution, all robot®adentical, but explicitly
cooperate with each other by stopping their motions wherawe of them picks a
puck. Goldberg and Matdrhave shown that the first method is superior to others,
and has the smallest interference value. In contrast, wesfoa only one task-
execution method (corresponding to the first, winning, sotuthey present), and
study the use of alternative coordination methods within it

Following up on earlier work on the aggression method [39]luZga and
Vaughan [43] have shown that choosing aggression leveloptiopal to the
robot’s task investment can produce better overall systerfopnance compared
to aggression chosen at random. Thus biasing the randowtiealef the "ag-
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gressive" behavior to the effort already spent on bringmegauck home improves
overall performance. This result is compatible with our iigs. However, our
work on Effectiveness Index relies solely on task-indegemdesource measure-
ment.

2.2 Multi-Agent Reinforcement Learning

Since Sutton and Barto’s introduction of reinforcementnaay (RL) [37], there
have been, of course, numerous investigations of reinfoece learning in a wide
variety of settings and forms. A majority of these has foduse single-robot
learning, which is beyond the scope of this paper. In gepBials used to learn
a policy, i.e., a mapping between states and actions to téles the robot is in
these states. This is done by relying on a reward functionciwis given to the
RL algorithm.

Most investigations of reinforcement learning in multbad settings have
focused on improving the learning mechanisms (e.g., mowjfyhe basic Q-
learning algorithm), and utilized task-specific rewarddumons. We briefly dis-
cuss these below. Two recent surveys are provided in [42, 17]

Mataric [28] discusses three techniques for using rewards in yrabibt Q-
learning: A local performance-based reward (each robaivew reward for its
own performance, and per its own goals), a global performdrased reward (all
robots receive reward based on achievement of team goatsy heuristic strat-
egy referred to as shaped reinforcement. Shaped reinfertdenvhich was de-
veloped by Mataric, provides a heuristic function that corab rewards based on
local rewards, global rewards and coordination interfeeeof the robots. Balch
[7] reports on using reinforcement learning in individuabot behavior selec-
tion. His work uses a two-layer architecture: The lowesetayg a reactive motor
schema (similar to the potential fields), which implemewpt@t behaviors. The
selection of schemas is made at the upper level, using a @ynganechanism.
The rewards for the selection were carefully selected fehedomain and ap-
plication, in contrast to our work. Indeed, in other work, &a[4] discusses
considerations for task-dependent reward functions fiofaecement learning in
multi-robot settings. Balch shows that the choice of rewamtfion influences
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the behavioral diversity, and group performance in a vaméttasks, including
foraging and soccer.

Kok and Vlassis [24] discuss a technique for propagatingardgszamong co-
operative robots, based on the structure of the dependexteedn the robots.
However, they too assume that the reward function is givgraesof the task.

In contrast to Balch’s [7], and Kok and Vlassis’s [24] work, wgplore a
domain-independent reward function, based on minimizasgpurce use, and use
them in selecting between coordination methods, rathertéek behaviors.

Maes and Brooks[26] describe an algorithm which allows a Wehdased
single robot to learn to move by a correct coordination ofavedrs that con-
trol each of the robot’s six legs. This learning is based anphrception of a
positive and a negative feedback and according to the mmlosthat the archi-
tecture is fully distributed. Each behavior in all six legssches for correlation
between action and positive feedback (i.e. appropriatiergcand tries to under-
stand what conditions are robust enough for the actionrtiaximize probability
of a positive feedback and minimize probability of neggtivelthough this work
demonstrate significant results in coordinated behavtbesalgorithm relies on
essentially instantaneous communications between thevtwgh, for their coordi-
nation (and feedback). However, when in multi-robot sgjrone cannot assume
perfect, instantaneous communications. Our proposed warikplements Maes
and Brooks’ work: While they focus on distributed reinforcerkearning based
on a given set of rewards, we focus on general reward furetitat may be useful
for re-reinforcement learning.

An interesting technique, Learning Momentum (LM), was destmated by
Clark, Arkin and Rome [30] for a single robot, and extended faitrrobots by
Lee and Arkin [25]. The main idea of LM is behavior’'s weightrsodification.
Weights are adjusted by a gradient descent method duringgéneing process
and then the behavior manager is fusing behaviors accdydimthem. All of the
behaviors, which LM is working with, have different goaladahus the technique
learns to select between competing goals. This is the mé#ereice from our
approach, which is intended for selecting one best beh&waor a set of different
behaviors with a same goal.

Excelente-Toledo and Jennings [11] propose a mechanismsefecting be-
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tween coordination methods, based on their effectivenedsmaportance. They
define a number of general characteristics of coordinatiethods, including the
conditions (and cost for achieving them) for the applicatid each method, the
cost of the algorithm, and their likelihood of success. Eefcthese characteris-
tics manually receives a qualitative grade (high, mediww)| during an offline
evaluation period. During run-time, the cost of each cawation method (with
the additional cost of achieving its application condihrand the likelihood of
success are used as the basis for selection. Similarlydaitik, we utilize the
concepts of method costs and success, though the procesensaded, and mea-
sures these factors quantitativelg-line Reinforcement learning is used as the
basis for coordination method selection.

Hogg and Jennings [18] examine economic strategies balgnuiividual and
cooperative goals. They utilize models of the other robotsraethods of coordi-
nation to adjust the sociability of an robot. They utilizeeestage Q-learning for
learning models of other robots, to improve predictionsaafrdination results. In
contrast, we present a reward function that can be utiliadéern to individually
select between coordination methods, without modelingther robots.

Kapetanakis and Kudenko [22] present the FMQ learning dlgar This
algorithm is intended for coordination learning in onegetdDP games. FMQ is
a modified regular Q-Learning method for one-stage gamesramdodification
is based on the Boltzmann strategy. They then examine howlant tioat uses
FMQ learning technique may influence other robot’s effesiess of learning,
when the latter uses a simple Q-learning algorithm [23].sTrhethod does not
use communication or monitoring of the other robots’ adioout is based on
the assumption that all of the robots are getting the samardsy The reward
functions are assumed to be given. In contrast, we focuseretliard functions
to be used, rather than the learning algorithm.

Wolpert et al. [41, 40] developed the COIN reinforcementii@ay frame-
work. Each agent’s reward function is basedveenderful life utility, the differ-
ence between the group utility with the agent, and witho@inilarly to Wolpert
et al., our study focuses on the reward function, rather thanearning algo-
rithm; and similarly, we focus on functions that aakgned with global group
utility. However, our work differs in several ways. Firstewdistinguish utility
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due to coordination, from utility due to task execution. &wt;, our reward func-
tion involves also the time spent coordinating and time spgacuting the task.
Finally, we contribute in this paper a game-theoretic pectipe on multi-robot
tasks.

Tumer [38] continued developing the concept of aligned rehfianctions, and
discusses methodology for defining reward functions fanfoecement learning
in multi-robot settings. The properties necessarily f@st functions require in-
dependence of individual rewards, and alignment with tlebdajl utility of the
group. Tumer presents two individual reward functions tir&t consistent with
these requirements. utility functions presented in theepdapoth of them contain
part of global utility, and thus require full observation @mmunications with
other robots, in contrast to our work.

Agogino and Tumer [1, 2] construct fitness functions for atiohary adapta-
tion of a multi-component (e.g., multi-robot) system. Tapproach emphasizes
() the need for correlation (alignment) between individitaess of agent and the
general fitness function of the entire system success; dawél) independence
of the individual functions of the actions of other agentsigh affects the speed
of adaptation). Agogino and Tumer provide several domaipetident functions
for the solution of a specific problem (searching for Pointsrn@erest). Our work
differs in several points: First, we did not apply our El cdétions to evolutionary
learning (adaptation); second, we distinguish the tagkated and coordination
components of the global function.
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Chapter 3
Effectiveness Index (El)

We first cast the problem of selecting coordination algonghas a reinforcement
learning problem (Section 3.1). We then introduce the &ffeendex (El) reward
function in Section 3.2.

3.1 Coordination Algorithm Selection

Coordination prevents and resolves conflicts among robaasnmulti-robot sys-
tem. Such conflicts can emerge as results for shared res(eigce space), or
as a result of violation of joint decisions by team-membekéany coordina-
tion algorithms (protocols) have been proposed and expploydMRS researchers
[12, 29, 36, 39]. Not one method is good for all cases and gsizgs [34].
However, deciding on a coordination method for use is noivéaatrtask, as the
effectiveness of coordination methods in a given contembtknown in advance.
We focus here on loosely-coupled application scenariogsew@ordination is
triggered by conflict situations, identified through somechamism (we assume
that such a mechanism exists, though it may differ betweenagits; most re-
searchers simply use a pending collision as a trigger). Teisiormal routine
of a robot’s operation is to carry out its primary task, uittils interrupted by
an occurring or potentially-occurring conflict with anothiebot, which must be
resolved by a coordination algorithm. Each such interoupis calleda conflict
event The event triggers a coordination algorithm to handle theflct. Once
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it successfully finishes, the robots involved go back tortpeimary task. Such
multi-robot scenarios include foraging, search and expion, and deliveries.

LetA={ay...,a;...,an},1 <i < N beagroup ofV robots, cooperating
on a group task that started at timgarbitrarily) lasts up-to timél” (A starts
working and stops working on the task together). We denot&; by {c; ;},0 <
Jj < K, the set of conflict events for robot wherec; ; marks the time of the
beginning of each conflict.

The time between the beginning of a conflict evgnand up until the next
event, the interval; ; = [¢; ;, ¢; j+1), can be broken into two conceptual periods:
Theactiveinterval I, = [c;;,t; ;) (for somec;; < t;; < ¢;j;1) in which the
robot was actively investing resources in coordinatiord #re passiveinterval
I7; = [tij, cij+1) in which the robot no longer requires investing in coordiorat
from its perspective the conflict event has been succegsfaiidled, and it is back
to carrying out its task. By definition ; = I}, + I7;. We define theotal active
timeas/® =3, > . I, and thetotal passive timas/? = 3, > . I} ..

Our research focuses on a case where the robot has a non&nptyp$coor-
dination algorithms to select from. The choice of a specifiordination method
a € M for a given conflict event; ; may effect the active and passive intervals
175, IY; (and possibly, other conflicts; see next section). To dettégedepen-
dency we us€?;(a),I};(a) as active and passive intervals (respectively), due to
using coordination method. Figure 3.1 illustrates this notation.

Task execution Task execution
P P
Sta:t/cl,o G5 Lis /C;,—;u Ii5a Finish
N ¢ % - - =
— i
Ii,J ti,; Ii_ﬂ \ti,jA'\ Time
Coordination  Coordination
'

T

Figure 3.1: lllustration of task time-line, from the robgterspective. Task exe-
cution is occasionally interrupted by the requirement tengbresources on coor-
dination.

We define the problem of coordination algorithm selectioteirms of rein-
forcement learning. We assume each robot tries to maxirtszenn reward by
selecting a coordination methed
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3.2 Effectiveness Index

We call the proposed general reward for coordinakdfiectiveness Indel). Its
domain independence is based on its using three intringibgr than extrinsic)
factors in its computation; these factors depend only oerival computation or
measurement, rather than environment responses.

3.2.1 The cost of coordinating.The first factor we consider is the cost of internal
resources (other than time) used by the chosen method. STégpecially impor-
tant in physical robots, where battery life and power arerecem. We argue that
such internal estimate of resource usage is practical:

e First, some resource usage is directly measurable. Fanost energy con-
sumption during coordinated movement (e.g., when gettit@ba possible
collision) or communications (when communicating to avaicbllision) is
directly measurable in robots, by accessing the batterjcddwefore and
after using the coordination algorithm.

e Second, resource usage may sometimes be analytically ¢edipieor in-
stance, given a the basic resource cost of a unit of trangmjdbe cost of
using a specific protocol may be analytically computed (&stied directly
to its communication complexity in bits).

We denote byC¢ the total cost of coordination, of robat It can be broken
into the costs spent on resolving all conflicty’ = Y. Cf;. Cf; is similar to
other measures suggested previously, but excludes thefcsie and resources
spent before the conflict (unlike [34]), and is limited toyaobnsidering individual
intrinsic resources (unlike [43]).

Let us userost;(«, t) to denote the costs due to using coordination method
a € M at any timet, by roboti, during the lifetime of the taskcost;(«, t) is a
function mapping the selection of a coordination methodt timet to the cost
of applying it, in terms of resources available to the robdke expect this cost
to vary with the chosen methad (as different methods have different costs of
application), and with time (as applying the method at a twieen robots are
about to collide is different from applying it when the robatre far apart). The
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function is not necessarily known to us a-priori (and indaadhis research, is
not).

Using the functiorcost;(«, t) we define theC(; of a particular event of robot
i attimec; ;:

C o ti,' Ci,'
Ciila) = fc{’] costi(a, t) dt + Li’jj-&-l costi(a, 1) di o)
= [" cost;(a, t) dt
57
C’f’} is defined as the cost of applying the coordination algoritluring the active
interval[c; ;, t; ;) and the passive intervé, ;. ¢; ;+1). However, the coordination
costs during the passive interval are zero by definition.

3.2.2 The time spent coordinating.The main goal of a coordination algorithm is
to reach a (joint) decision that allows all involved robasontinue their primary
activity. Therefore, the sooner the robot returns to itsnmask, the less time

is spent on coordination, and likely, the robot can finishtatsk more quickly.
Thus, smallerl{ is better. Note that this is true regardless of the use ofrothe
resources (which are measured@y). Even if somehow other resources were
free, effective coordination would minimize conflict-résion time.

We thus define théctive Coordination CostACC) function for roboti and
methoda at timeg; ;, that considers thactive timein the calculation of coordina-
tion resources cost:

ACC; (o) = I () + CF () (3.2)

3.2.3 The frequency of coordinating.If there are frequent interruptions to the
robot’s task in order to coordinate, even if short-lived arekpensive, this would
delay the robot. We assume (and the results show) that gawdipation deci-
sions lead to long durations of non-interrupted work by thigot. Therefore, the
frequency of coordination method’s use is not less impaortzan the time spent
on conflict resolving. Thus, largdf ; is better.

We thus want to balance the total active coordination cdétC; =
> ; ACC; ; against the frequency of coordination. We want to balanoedived,
infrequent calls to an expensive coordination method agaimmewhat more fre-
guent calls to a cheaper coordination method.
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We therefore define the Effectiveness Index of rohatf conflict j, due to
using coordination method € M as follows:

ACCi () Ifi(a) +CF(a)

Bl j(a) = =T
Iiyj(a) —|—I£j(a) Iiyj(a) —i—[&(a)

(3.3)

That is, the effectiveness index (EI) of a coordination rodth during this
event is the velocity by which it spends resources duringxecution, amortized
by how long a period in which no conflict occurs. Since greBtesignifies greater
costs, we typically put a negation sign in front of the El, igngfy that greater
velocity is worse; we seek to minimize resource spendingorsi
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Chapter 4

Stateless Reinforcement Learning
Using El

We now turn to evaluate the use of El in reinforcement learsettings. This
chapter introduces the use of El in stateless reinforceteaming, where there
El is used as the basis for the reward associated with sgdeaticoordination
method. The stateless reinforcement learning algorithmtieduced in Section
4.1. We then turn to survey experiment results in multiplendims, supporting
the use of stateless EI in multi-robot team tasks.

In Sections 4.2 and 4.3, we use EIl in a canonical multi-rolgstesns task,
called foraging. We show that the use of El leads to improwesfbpmance in two
independent foraging settings, in simulation (Sectior) 4/ with real robots
(Section 4.3). We then explore the use of El in settings sdmaéwifferent than
previously described. In Section 6.3 presents the use of &tftings where coor-
dination is implicit in the selection of domain actions hat than explicit coordi-
nation methods.

4.1 Elin stateless Q-Learning

In this paper we use the simple single-state Q-learningrighgo (Algorithm 4.1)
to estimate the El values from the robot’s individual pecspe. The ternstate-
lessapplies here, as environment or robot states in which coatidin methods
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are selected are not distinguished. In other words, there distinction between
the different states a robot might be in when selecting aiipamordination
methoda. Rather, the reward{FE 1) collected for usingy is associated with it no
matter where and when it was selected.

The learning algorithm we use is based on the following Qrhieg equation:

Qi(a) = Qi—1(a) + p(Ri(a) —vQi-1(a))

wherep is the learning speed factor, andis a factor of discounting. The al-
gorithm uses a constant exploration ratefor simplicity; there are of course
complex—and more sophisticated—methods of changing thieeation rate dy-
namically, but they are not our focus in this paper. While Eragent Q-learning
is known to face difficulties in some multi-robot settings4&, 17], we show ex-
perimentally that even this simple algorithm can convetgesuseful result. We
discuss its successes and failures extensively in the pekbas. Chapter 5 ex-
plores the success of the learning mechanism in much gretiat. In Algorithm
4.1 below, we use the following variables.

¢ Qo] is a table with the learned El for all coordination methads M.

SolvingT'ime is the time when the conflict ends ().

BgnCycleTime is the time when the conflict is starteg] ().

EndCycleTime is the time when the previous conflict cycle ends (,).

Clost is a cost spent resolving the conflict('C; ;).

Counter keeps track of conflictsjj.

4.2 Foraging in TeamBots Simulation

As previously described in Chapter 2, foraging is a canonasi in multi-robot
systems research, and has been studied extensively. taskisobots locate tar-
get items (pucks) within a defined work area, and deliver them goal region.
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Algorithm 1 Single-State EI-Based Adaptation

Require: [ € [0, 1] — rate of exploration vs exploitation

Require: p € [0, 1] —learning speed factor

Require: ~ € [0, 1] — learning discount factor

Require: M — a set of coordination algorithms

Require: A way of measuring accumulating coordination resourcescost
Require: A way of checking current time or step number in case of discsgs-

tem.

1: Count «— 0
2: forall « € M do

© e N gR®

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:

Q[a] « randond[0, 1])

: while robot is activado

WAIT FOR CONFLICT EVENT

Count «— Count + 1

EndCycleTime «— CurrentTime)

if Count > 1 {Not First Conflict} then
ty < SolvingTime — BgnCycleTime
tp, «— EndCycleTime — SolvingTime

to+Cost
% —_——
EI et

a «— SelectedMethod
Qle] — Qla] +p- (EI —~-Qla])
BgnCycleTime «— EndCycleTime
if > randon{]0, 1]) then
SelectedMethod «— random M)
else
SelectedMethod «— argmax,,Q[c/]
EXECUTE Selected M ethod {Record resource spending (st}
SolvingTime «— CurrentTimé)
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Because there is typically a single goal region, and the packspread through-
out the work area, the goal area becomes congested as robatsmand out of it
as they bring in new pucks, and leave to collect new oneseotisply. A number
of coordination methods have been explored for foraging (Sleapter 2). Here
we utilize only on a subset of methods as the basis for the fusk o

We follow Rosenfeld et al.'s work [34]. We used the TeamBotsusator [5]
to run experiments. Teambots simulated the activity of gsoof Nomad N150
robots in a foraging area that measured approximately 5 betens We used
a total of 40 target pucks, 20 of which were stationary witthia search area,
and 20 moved randomly. For each group, we measured how maig pere
delivered to the goal region by groups of 3,5,15,25,35,8@t®within 10 and 20
minutes. We averaged the results of 16—30 trials in eachpgs@e configuration
with the robots being placed at random initial positionsdach run. Thus, each
experiment simulated for each method a total of about 1@0stof 10 and 20
minute intervals; this was done to evaluate the effect drfitng time on the use of
the El method.

We compare the EI method with three types of coordinatiorhoug described
also in [34]: Noise(which essentially allows the robots to collide, but inces
their motion uncertainty to try to escape collisionagressiori39], andRepe)
in which robots move away (variable distance) to avoid anengjing collision.
We compare all of these to random coordination algorithracten (RND), and
to the method of Rosenfeld et al. (ACIM) [34].

We present the results of various configurations below, gufés 4.1-4.12.
In all, unless otherwise marked, the X axis marks the grom@, €ind the Y axis
marks the number of pucks collected.

Figure 4.1 shows that given no resource limitations, the &tfhwd is as good
as ACIM (and Repel) which provides the best results, thougastriot used prior
off-line learning. All methods were run for 20 minutes. Res@s$ were not lim-
ited, and had no cost.

Figures 4.2—-4.4 show the advantage of El over ACIM when resoaosts
apply. Here, motion costs a unit of simulated fuel for eacmuation tick. There
is a total of only 500 units of fuel available for 20 simulatiminutes; robots stop
moving ('die") as their fuel runs out.
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time limit: 20 min, resource limit: infinity

45

40 P A e — e SEE e

35
9 30 T El 20min ———
o \ “ACIM 20min -
5 2 RND 20min -
> 20 noise 20min-=- |
= “w_aggr 20min---=--
o 15 “.repel 20min---=-—

10 [ § - N : ‘.*

0 5 10 15 20 25 30 35 40 45
group size

Figure 4.1: Simulated foraging” = 20, no resource limits.

First, we contrast ACIM, RND, and EI under these severe cansstaThe
line markedACIM(t:1,f:0) marks the performance of the ACIM when it was not
trained off-line with these costs in effect, but rather ased that fuel is free (i.e.,
as in the previous set of results). TAEIM(t:.7,f..3) line shows the performance
of ACIM when the CCC method assigns a non-negative weight todbeat fuel.
The lineskl(no fuel)andEIl(with fuel)show the analogical performance of the El
methods when the fuel is not taken into account, or is takemagscount. The
performance of random coordination method selection isgired, to serve as
a baseline. The figure shows that when ACIM takes fuel costsantount, it
performs well. But when it does not, its performance is vewy;lndeed, it is
lower than random. On the other hand, El always performedl wéh explicit
knowledge of fuel costs or without.

Let us consider these results in finer-grain resolution.uf@gl.3 contrasts
the performance of El and RND, with the coordination methbey select from.
The figure clearly shows the superior performance of El wiith @without a-priori
knowledge of fuel-constraints.

Figure 4.4 provides an additional perspective on the saimatgin. The figure
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time limit: 20 min, resource limit: 500 units
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S El(no fuel) -
2 X El(with fuel) =
® 15} RND =
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Figure 4.2: Simulated foraging: ACIM and EI, = 20, fuel is limited to 500
units.
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Figure 4.3: Simulated foraging: El, RND and the base methbds, 20, fuel is
limited to 500 units.
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shows the number of robots that remain active when time ran Blie two El
methods are the only ones that consistently leave all rodctige as time runs
out.

IS
S

©
&

3]
S

——noise(1)
—#-noise(3)
noise(5)

o
o

repel(1)
—x—repel(3)
—o—repel(5)
——eit.7f.2
——rmd

eit1f:0

num. of dead robots
N
8

o

=)

o

5 10 15 20 25 30 35
num. of robots

Figure 4.4: Simulated foraging: Number of inactive (deamhats at?” = 20,
when fuel is limited to 500 units.

Figure 4.5 demonstrates that our use of El is not limited lecteg between
the specific methods described above. Here, we utilized setected between
multiple variants of the repel method. Repel has a parametérhwcontrols
the distance (given in robot radii) to which robots backtraefore attempting
to move to their goal location. We use El to select betweesethvariants.

One weakness of the method we propose is that it relies on-éinetraining
period, unlike Rosenfeld et al’'s ACIM method (which trains ioff). Indeed,
when we reduce the training period from 20 minutes to 10 nesuthe relative
effectiveness of El (compared to ACIM) is greatly reducedyuirés 4.6 and 4.7
show the effect of this reduction in training time, when fisainlimited, and when
it is limited (respectively).

Given sufficient training time, the fact that EI adapts cosbgly on-line gives
it a significant advantage over offline learning methodshsagACIM. In a final
set of experiments, we evaluated the use of El (contrastiiy ACIM) when
there is limited fuel, and the coordination methods are Y&ake., they spend
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Figure 4.5: Simulated foraging” = 20, Repel at distance of 2,3,5,7 and 10 robot
radii. Fuel is unlimited.
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Figure 4.6: Simulated foraging” = 10, Fuel is unlimited.
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Figure 4.7: Simulated foraging” = 10, Fuel is limited to 500 cycles.

more fuel then they report to the method selection process.

Figures 4.8-4.10 show how ACIM and EI respond to unknown casthese
figures, we show a comparison between ACIM and El adaptatiterevone of
the base coordination methods (aggression, noise, regekctively) are "leaking
fuel", i.e., they spend some fraction of a fuel unit more thdweatised, withevery
cycleof operation. In all of these, the EI methods outperforms A@iMImost all
settings in group sizes, demonstrating its efficacy oveoffibne-based method.

Figure 4.11 summarizes these findings. Here, both EI and AGk¢ fuel
costs into account, but the actual fuel costs are greatgordvides significantly
better performance in these settings (1-tailed t-gest,0.0027).

These results are further strengthened by examining thelatd deviation of
the number of collected pucks when using "leaky" methodsurei@.12 shows
the average standard deviation of collected pucks, wheodbedination method
is spending 0.2, 0.5, and 1 fuel units more than it reportscpele. The X axis
measures the group size. The Y axis measures the averagarstateviation
across the three conditions. The three sub-figures shovetudts separately for
leaky aggression, noise, and repel. Each sub-figure ces#&@¥M and EI.

A lower standard deviation indicates reduced sensitivatynisreporting of
the coordination methods on their resource spending, amdssthat in fact the
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Figure 4.8: Simulated foraging?” = 20, Fuel is limited to 500 cycles. The
aggression method is spending more than it claims. In alese, EI was given a
weight of 0.3 when calculating fuel costs.
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Figure 4.9: Simulated foraging” = 20, Fuel is limited to 500 cycles. The noise
method is spending more than it claims. In all of these, El grasn a weight of
0.3 when calculating fuel costs.
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Figure 4.10: Simulated foragin@: = 20, Fuel is limited to 500 cycles. The repel
method is spending more than it claims. In all of these, El grasn a weight of
0.3 when calculating fuel costs.
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time limit: 20 min, resource limit: 500 unit,
extra spending: aggr-0.5 unit per step
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Figure 4.11: Simulated foraging@: = 20, resource cost unknown.

El-based method is extremely robust to resource spendiagunement.
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Figure 4.12: Simulated foraging: The average standardatewi of the number
of collected pucks, wheft = 20, fuel is limited to 500 cycles, and the methods
spend 0.2, 0.5, and 1 additional fuel unit for every cycle pémtion. In all of
these, El and ACIM were given a weight of 0.3 when calculatung tosts.
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4.3 Foraging in AIBO Robots

We have also utilized El-based adaptation in foraging erparts with real
robots. The application to physical robots presents a nuwibehallenges com-
pared to the application in simulation:

e First, learning times are considerably shorter, due to imitdd battery
power available. Thus this evaluates the ability of EI towayge to use-
ful values quickly.

e Second, the number of robots is smaller, and thus effectatbalue to the
number of robots might not come into play. In our experimews used
three robots (see experiment setup description below).

e Third, there is considerable uncertainty in motion and isgn&hich might
cause robots to misbehave, compared to their simulatedemants. For
instance, robots might become entangled, or may try to usedowtion
with a fixed obstacle (which they cannot recognize); roboty @miso face
difficulties in leading a puck to the goal location.

The experiment setup is shown in Figure 4.13. Three Sony Alif0ts were
placed within a boxed arena, measuring 2m by 2m, and contaiiour pucks
(red aluminum cans, with some additional weight). Each rabequipped with
a camera, for recognizing color, and infra-red sensorsdhatv it to measure
distance (up to 90cm) in the direction of the head. The rob@te allowed up
to 10 minutes to collect the pucks, by bringing them to thel g@oea in one of
the corners (marked blue). Every puck that was brought togtied area was
physically removed by the experimenters and moved outdidieecarena. This
ensured that pucks in the goal area did not confuse the robots

We implemented three coordination method: Two basic coatdin methods,
NoiseandRepel(described above), and the stateless Q-learning methnd trs
El reward. Due to the extensive training period requiredl(laeyond battery life),
we did not carry out a comparison with Rosenfeld et al.'s ACIMoé. We ran
ten trials with each of the three methods. However, due tatieal failures, some
of the data was destroyed and so we were left with eight tohNoise, nine of
Repel, and ten of EI.
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Figure 4.13: Three Sony AIBO robots executing a foraging taskir laboratory.
The goal location is in the top left corner. Every puck caéetwas taken out of
the arena.

We faced several challenges in applying El to the robotst,Rive found that
the time-limit was not sufficient to allow El to train. We thakowed preliminary
learning to take place, for approximately 15 minutes. Thevdtlies at the end
of this period (which were not optimal) were used as theahitalues for the El
trials. Each of the ten trials started with these initial Ql¢éavalues, and the Q
updates continued from this point.

Second, the robots cannot detect conflicts with certairgyiristance, a robot
bumping into the walled side of the arena would detect a adnflMoreover,
some collisions between robots cannot be detected, dueitolithited sensing
capabilities. We solved this by allowing the operator ttiate conflicts by a fixed
procedure.

Finally, we found that sometimes robots failed catastrogihy (i.e., suffered
hardware shutoff). So as to not bias the trials, we meastiedverage time per
puck retrieved. This allowed us to compare runs of diffeiengths (each up to
10 minutes or the first robot failing catastrophically).

We contrasted the performance of the three groups (NoiseglRapd El).
Figure 4.14 shows the median number of pucks collected peuteby each of
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the three methods. The X axis shows the three methods. ThésYreasures the
median number of pucks collected.

Robots foraging results

14

1.2

0.8

0.6

Retrieved pucks

0.4

0.2

El Noise Repel
Coordination method

Figure 4.14: AIBO foraging: Pucks collected per minute (raegli Higher result
IS better.

We found that Repel (selected by all three robots) is the leebinique. The
El method did better than Noise, but did not reach the resfilRepel. To some
degree, this is to be expected, because the El algorithimagticonstant explo-
ration rate (up to 19% of the conflicts of each robot). Thusaweder the best of
conditions, the El runs are expected to worse than the besirpeng method.

We see the same trend in Figure 4.15, which shows the averagbearn of
conflicts in the different groups. Here the X axis again shtivesthree methods.
The Y axis measures the mean number of conflicts. We see tnaiutmber of
conflicts in learning is between Repel and Noise.

To show that indeed the fixed exploration rate had a significantribution to
the results, we also examine the El-based rankings of tlee@oid repel methods
(i.e., whether the El values ultimately prefer repel or epigigure 4.16 shows the
average El values that were achieved at the end of each renX&ltis shows the
robot in question. The Y axis shows negative El valueg'(), thus the 0 line is at
the top. We remind the reader that our goal is to minimize .El, prefer smaller
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Robots foraging results: Conflicts
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Figure 4.15: AIBO foraging: Mean number of conflicts. Lowesult is better.
negative results. Thus a higher results is better. For ezmbt,rwe see two bars:
One for the El value of Repel, and one for Noise. We see that thrale robots,

the El values learned for Repel are better (lower). Thusdethbose based on the
El values, all robots would have chosen the Repel method (itimal choice).
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Robots foraging results: learned El
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Figure 4.16: AIBO foraging: Negative El values for Noise angh&dor each of
the three robots (higher is better).
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Chapter 5

Why EI Works? And Why it Does
Not?

We now turn to discuss the use of El as a reward function, franaraalytical
perspective. We are interested in exploring the conditiorder-which we expect
El to be effective. There are common themes that run throlighe tasks in
which EI has been successful: (i) loose coordination betviee robots (i.e., only
occasional need for spatial coordination); (ii) a coopeeaask (the robots seek to
maximize group utility); and (iii) a fixed time (deadline)rfoompleting the task.
We refer to these tasks &€T tasks(Loose-coordination, Cooperative, Timed
tasks).

For instance, in foraging, we see that robots execute thdividual roles
(seeking pucks and retrieving them) essentially withoytapriori coordination.
When they become too close to each other, they need to spatalidinate. The
robot all contribute to the team goal, of maximizing the nemdf pucks retrieved.
Moreover, they have limited time to do this. Incidentallyey also have finite
number of pucks, which break some of the assumptions we nelaesbWe shall
come back to this.

Computing optimal plans of execution for tasks such as fogg purely a
theoretical exercise in the current state of the art. Intpr@cdetermining detailed
trajectories for multiple robots in continuous space, veithof the uncertainties
involved (e.g., pucks slipping from robots’ grips, motiamasensing uncertainty),
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is infeasible. Much more so, when we add the a-priori sedaatif coordination
methods in different points in time. We therefore seek alitve models with
which to analytically explore LCT tasks.

5.1 LCT Tasks as Extensive-Form Games

We utilize game theory to analyze LCT tasks. As we have alreedgd, each
individual robot’s perspective is that its task execut®nccasionally interrupted,
requiring the application of some coordination method oteoito resolve a spatial
conflict, to get back to task execution. Starting in this satisn, we will make a
series of simplifying assumptions and analysis steps tlilasmow that it might
be possible to view LCT tasks from a game theoretic perspedur objective is
therefore to contribute an analytical first step towardsrenéd understanding of
why El works in real-world LCT tasks.

For the initial part this discussion, we assume for simplithat we limit our-
selves to two robots. This is a strong assumption, as in Egtuaost often LCT
tasks often involve more than two robots. We address thigwasson later in this
section. In particular, we show that the convergence of &inlieg is assured in
particular in cases where (many) more than two robots makbeugroup.

We make an additional assumption, which is not as strong,ctiralicts al-
ways involve two robots only, and that they are both award,dand they both
enter the conflict at the same time. This assumption oftedshial practice, since
when one robot’s sensors detect a conflict, most often soteesther robot’s.

At first glance, it may seem possible to model LCT tasks as asefisingle-
shot games (i.e., repeating games), where in each gamettbesaavailable to
each robot consist of the coordination methods availabiie Tthe joint selection
of methods by the two robots creates a combination of methwbitsh solves the
conflict (at least temporarily). The payoffs for the two redbmclude the pucks
collected in the time between games, minus the cost of ressincluding time)
spent making and executing the selected methods. The tdhtre exists a time
limit to the LCT task in question can be modeled as a given fimitézon.

However, finite-horizon repeating games are not a good nfodelCT tasks.
In particular, the methods selected by the robots in onetpoitime affect the
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payoffs (and costs) at a later point in time. First, the chatcoordination meth-
ods at timet affects the time of the next conflict. One coordination mdthaay
be very costly, yet reduce the likelihood that the robotsiget conflict again;
another method may be cheap, but cause the robots to comeoinfiect often.
Second, the robots change the environment in which theyatpduring the time
they are carrying out their tasks, and thus change futureffsayFor instance,
robots collect pucks during their task execution time, afteiocollect those near-
est the goal area first. Thus their payoff (in terms of puchected) from games
later in the sequence is lower than from games earlier on.

We thus utilize a model of LCT tasks as extensive-form gamde imitial
node of the game tree lies at the time of the first conflict, and the choices
of the first robot at this time lead to children of this node. ths two robots act
simultaneously, these children also occur at time Also, note that the selections
of the robots are not observable to each dthémn illustration of the game tree
appears in Figure 5.1.

Following each simultaneous choice of methods by the rolibts chosen
combination of coordination methods is executed (duringrdmation timel?,),
and this is followed by a period of task executig’b. The game ends when to-
tal time T runs out. The payoffs to the robots are then given as the nuofbe
pucks retrieved, minus the cost of resources spent on tke Tesminal nodes
may appear anywhere in the game tree, as some selections afltbts lead to
less conflicts, and thus greater opportunity for task execut

Under ideal—and purely theoretical conditions—the robvatsild know the
payoffs awaiting them in each terminal node, and would theualtde to, in prin-
ciple, compute a game-playing strategy that would maxirttimeteam’s utility.
To do this, the robots would need to know the times spentvesptonflicts and
executing the task, and would also need to know (in advaheegains achieved
during each task-execution period. Even ignoring the gansg assuming that
maximizing task-execution timg_, > . I?; is sufficient, the robots would be re-
quired to know all conflict resolution times in advance. Tikislearly impractical,

1This is true in all communication-less coordination methoghich are used in most previous
work [39, 34]. When used with communication-based cooréinatethod, this restriction may
be removed. It might also be possible to relax this restrictf robots could infer each others’
choices post-factum.
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Robot 1
Selection
(attimec )

Robot 2
Selection
(attimec, )

Robot 1
Selection
(attime c )

Robot 2
Selectlon
(at time c,

Figure 5.1: An illustration of the extensive-form game tfeean LCT task. Con-
flict times are denoted in the nodes. Terminal nodes (toted4l") are dark. Note
that the second confliet , may occur at different absolute times depending on
the choices of the robots at tinag; .
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as it requires predicting in advance all possible conflicis #heir durations and
effects. And the sheer size of the game tree (there are hdsmaifeconflicts in

a typical foraging task, as presented in the previous sectiakes learning it a
difficult task at best. We are not aware of any method capableaoning the

terminal payoffs or node-associated durations and effecthe type of domains
we study in this paper.

5.2 Modeling LCT Tasks as a Matrix Game

We thus make a simplifying assumption, that all effects afrdmation method
selections remain fixed, regardless of where they occutthierovords, we assume
that the joint execution of a specific combination of seléci®ordination methods
will always cost the same (in time and resources), regasdiethe time in which
the conflict occurred. Moreover, the assumption also insghat we assume that
the task-execution time (and associated gains)—whichrakpen the methods
selected—will also remain fixed. We state this formally:

Assumption 1. Let « be a coordination method, selected by robdtVe assume
that for any0 < j, k < K;, the following hold:

I}i(a) = Ify(a), I(a) = I} (a), Clia) = Ch(a)

This strong assumption achieves a key reduction in the caxiplof the
model, but gets us farther from the reality of LCT multi-rolbasks. However,
the resulting model provides an intuition as to why and whewdrks. In Sec-
tion 5.4 we examine the assumptions of the model and thaitioel to the reality
of the experiments.

The duration of coordination method executidii)( and the duration of the
subsequent conflict-free task-executidf))( are fixed; they now depend only on
the method selected, rather than also on the time of thetsglecThus a path
through the game tree can now be compressed. For each cdinbiobselected
coordination method, we can simply multiply the costs andgg&rom using this
combination, by the number of conflicts that will take plaice is selected.
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Thus we can reduce the game tree into a matrix game, wtigrs the number
of conflicts occurring within total timé&’ that results from the first robot selecting
«;, and the second robot selecting U, ; is the utility gained from this choice.
This utility is defined as:

Uj = [gain(If (i) + gain(I}(a;))]
— [CF (i) + CF ()] (5.1)

where we use (for roba) the notatioryain(I7(«;)) to denote the gains achieved
by robot: during the task execution timg(«;). Note that we treat these gains
as being a function of a time duration only, rather than théwo, which only
affect the time duration. Underlying this is an assumptioet the coordination
method choice affect utility (e.g., the pucks acquiredyondlirectly, by affecting
the time available for task execution. We assume furthdrgaims monotonically
increase with time. Maximizing the time available, maxiggzhe gains.

Table 5.1 is an example matrix game for two robots, each tseiebetween
two coordination methods. Note however that in generatgtiee N robots and
| M| methods available to each.

2 2
a7 Q5

a% K171U171 KLQULQ
1
a5 K271U271 K272U272

Table 5.1: LCT task as a matrix game, reduced from the LCT gaeeelty As-
sumption 1. Entries hold team payoffs.

Note that the robots do not have access to the selection® daftkier robots,
and thus for them, the game matrix does not have a single conpaoff, but
individual payoffs. These are represented in each cell byitiag K, ;U; ; as
K; jui(o), K; ju;(a;), where

up, () = gain(I (ax)) — Cf (a).

This results in the revised matrix game appearing in Talde 5.
The number of conflicté(; ; is really the total time’, divided by the duration
of each conflict cycle, i.el* + IP. Thus the individual payoff entries for robbt

45



of 03
) | Kigui(aq), K7 us(as)

) | K3gus(ay), K3 pus(as)

o1 | Kijui(an), Ky (a

y | K3 yus(as), K3 yua(a

2
1
2
1

Table 5.2: An example LCT task as a matrix game, with indivighag offs.

- - T
selecting method,, can be rewritten a o) T
Let us now consider these individual payoffs. The payoffdarindividual
robot/ that selected is:

Tlg(i(a)) = clti(@)] . 9Ui(@)) = (i (a)) (5.2)
If(e) + I () I (a) + I} (@) '
o [l CY) — C(I;l<&)) (53)

() + I ()

These two steps require some explanation. First, of cosirses for all entries
in the matrix7" is constant, dividing byl" maintains the proportionality. The
second step is key to the El heuristic. It holds only undetagerrestrictions on
the nature of the functionain(), but we believe these restrictions hold for many
gain functions in practice. For instance, the step holdsnetergain() is linear
with a coefficient greater than 1. Now:

I[f(a) = cf(a)) _ If(a) + [I}'(e) = [} ()] = c(f())

It (o) + IF (@) a I#(a) + IP(a) (5.4)
_ [P() + 17 ()] = [ (o) + c(If ()]
- I (o) + I} (@) (5.5)
_ (@) + 1) Ia) + (I (@)
T (@) + 1) I(a) + () (5.6)
—1- El(a) (5.7)
x —El{a) (5.8)

Thus the game matrix is in fact equivalent to the followingrxg Table 5.3).
Here, each robot seeks to minimize its own individual El gbfroaximize its -El
payoff). If robots minimize their individual El payoffs, drassuming that their
equilibrium is Hicks optimal (i.e., the sum of payoffs is nraal), then solving
this game matrix is equivalent to maximizing group utility.
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2 2
a7 Qg

al | —EL(al),—ElL(a?) | —EL(al), —FEly(a3)
al | —EL(ad),—ElL(a?) | —ELy(ad),—EI(a3)

2
1
2
1

Table 5.3: LCT task as an EI matrix game.

5.3 Learning Payoffs in LCT Matrix Games

Unfortunately, when the robots first begin their task, theydt know the payoffs,
and thus rely on the reinforcement learning framework toreage to appropriate
El values. Of course, it is known that Q-learning does nothangeneral case,
converge to equilibrium in 2-player repeated games [8, 42, However, there
are a number of features that hold for the EI game matrike domains we stugy
which makes the specific situation special.

First, the game matrix is theoretically symmetric. Becaos®ts are homoge-
neous, a combination of coordination methods a,) will yield the same payoffs
as{ag, aq).

Second, we know that for the specific game settings, one c@tbn yields
optimal payoffs (in the sense that the sum of robot payoftgptimal). Although
it is now accepted that no one coordination method is alwags in all settings,
itis certainly the case that in a specific scenario (e.g.eaifip conflict, a specific
group size), a combination can be found which is best.

Third, the value ofEI for the optimal individually-selected methed can
only decrease if the other robot does not select an optiméhadey;. Under
normal conditions, the numerator of thd value,/{(a;}) + C“(a}) is dependent
only on the execution o&} by the robot. On the other hand, the denominator
It (aj) + If(aj) can only decrease (because the time to the next conffigt, )
can only decrease, by definition). Thus, thé value can only grow larger (i.e.,
—ET grows smaller). Selection of the optim&l values is thus dominant.

Finally, and most importantly, the games that take place heznot between
two players. Rather, the process is more akin to randomizexyamous matching
in economics and evolutionary game theory this process, pairs of players are
randomly selected, and they do not know their opponentsitife(and thus do
not know whether they have met the same opponents before).

2\We thank Sarit Kraus for this observation.

47



Indeed, this last quality is crucial in understanding why wse of El works. It
turns out that there exists work in economics that showstthdér such settings,
using simple reinforcement learning techniques (in ouecsisiteless Q-learning)
causeshe populatiorto converge to Nash equilibrium, even if mixed [19]. Thus
rather than having any individual agent converge to the chiXash equilibrium,
the population as a whole converges to it, i.e., the numbagehts selecting a
specific policy is proportional to their target probabdgiunder the mixed Nash
equilibrium.

In particular, Hopkins lists several conditions for thisppéation conver-
gence [19]. First, the game matrix must be symmetric [19, @5}, as is ours.
Second, agents update their reward estimates using fudtifay or stimulus-
response learning (which essentially corresponds to atelsss reinforcement
learning approach) [19, pg. 101-102]. Finally, The ageatslomly select their
initial methods; in our case this is also true. Under thesaitmns, Hopkins
shows that the population of the agents converges to antewudy-stable Nash
equilibrium.

There remains the question of whether indeed we can guarémie agents
converge to the maximal team-payoff Nash equilibrium, ifrenthan one equi-
librium exists. We again turn to economics literature, viasbiows that for coor-
dination games—including even the difficult Prisoner'sebiima game—agents
in repeated randomized matching settings tend to convertietPareto-efficient
solution [9, 31]. However, these works typically assumeliguknowledge of
some kind, which is absent in our domain. Thus we cannot cdectiefinitely
that the use of stateless EI reinforcement-learning widlessarily converge to
the group-optimal solution (the maximal group utility). i$lguestion remains,
unfortunately, open.

5.4 Reuvisiting the EI Experiments

Armed with the analytically-motivated intuition as to why &orks, we now go
back to re-examine the experiment results. In generaletaer of course differ-
ences between the analytical intuitions and assumptiodglenuse of El in a
reinforcement learning context: (i) the values learnedagmeroximations of the
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El values, which cannot be known with certainty; (ii) thewsaptions allowing
reduction of the LCT extensive-form game tree to a game mdtirot hold in
practice; and (iii) even the assumptions underlying themsite-form game tree
(e.g., that robots start their conflict at the same time, atrttieir gains depend only
on time available for task execution) are incorrect. We erarspecific lessons
below.

We begin with the teambots simulation experiments, wheredsl highly suc-
cessful, and was also demonstrated to be robust to unknasts ddespite the fact
that the domain cannot be reduced to the matrix game foromnstout that some
of the assumptions are approximately satisfied, which @xple success of El
here.

First, the fact that about half the pucks moved randomly detkpread them
around the arena even after many pucks were collected. Feugains expected
later in the task were closer to the gains at the beginninedask, than it would
have been had all pucks been immobile (in which case puclkeicto base are
collected first, resulting in higher productivity in the l@gng).

Second, the size of the arena, compared to the size of thésralas such
that the robots did not need to converge to one optimal coatioim of selection
methods: Different zones in the arena required differentlmoations. In princi-
ple, this should have challenged the approach, as theestatielarning algorithm
cannot reason about the robots being in different stateee&o However, as the
robots moved between areas fairly slowly, they were abledeptato the condi-
tions in new zones, essentially forgetting earlier El valughis is a benefit of the
stateless algorithm.

Finally, in these simulation experiments, the number obtslwas fairly large.
Thus the conditions for convergence to the Nash equilibifil®happly.

The situation is different in the experiments with the re#B@ robots. The
limited training time and the limited number of robots (ottlyee) raises questions
as to the applicability of Hopkins’ work to this domain. etk the application
of El stateless algorithms here is less successful thanersithulated foraging
domain.

Another issue with the AIBO robot experiments is the use offitkerl explo-
ration rate. The choice of a fixed exploration rate can hurtopmance of the
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algorithm, as is clearly seen in the results of the AIBO fonggexperiments. Be-
cause robotsnustexplore, they are sometimes forced to act against theietbett
knowledge, and thus reduce performance. But this did notttie results in the
simulation domain, where El often gave the best resultd afethods. We believe
that this is due to the size of the arena, which created diffezones as discussed
above. Here exploration was very useful, to enable implireihsition between
states. In contrast, in the AIBO experiments, the size of tkeawas so small,
that density remained fixed throughout the arena, and exmoreventually lead
to reduced results.
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Chapter 6

Advanced Use of El In
Reinforcement Learning

The single-state reinforcement learning framework in Wwhie have utilized El in
previous chapters leaves several open questions, whickdvess in this chapter.
First, the use of El seems to depend critically on the timasdbfine the scope of
conflicts (the active and passive times of a cycle). We addhes issue in Section
6.1, in which we show that the EIl framework can also learn tecsghento de-
clare a conflict.. Then, in Section 6.2 we present the use of &full state-based
Q-learning implementation, i.e., moving away from the difigal stateless algo-
rithm presented earlier, to more common implementatiotg-tefarning, in which
learning occurs in multiple states. We show that this caulr@svery significant
improvements to team performance Finally, in Section 6.3h@v preliminary
results demonstrating the successful use of El-basedihgaof selecting task
actions, rather than coordination methods.

6.1 Learning When to Declare a Conflict

The physical calculation of an EI value depends directly lwa decision that a
conflict has occurred. The decision to declare a conflictrizetiie active portion
of the cycle, in which a coordination method is selected xecation. The conflict
ends when the coordination method finishes execution. Ub now, we have
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assumed a fixed procedure was given, and focused on the udenathin the
reinforcement learning framework.

However, the decision to declare a conflict can have signifizapact on the
use of a coordination method. A fixed coordination methaday be more or less
successful, depending on when it is called into action. Rstaince, in examining
spatial coordination in robots, a conflict state occurs witaen(or more) robots are
too close. But the distance in which the robots decide on aiconfay vary. Thus
the repeal coordination method, for instance, which mokesobot away for a
fixed distance, may cause the robot to end up at a differeatitot, depending on
the initial distance between the robots (the conflict deaisi

Indeed, Figure 6.1 shows the effects of variable conflicthatédn in the sim-
ulated foraging domain. Here, the distance between thetsptaich is used to
declare a conflict state, is varied between the default tywoo2ot radii (used in
earlier chapters), and eight (8). In the figures, the X axiasuees the number of
robots in the team. The Y axis shows the number of pucks deliday a team us-
ing only the repeal method (Figure 6.1-a) or the aggressiethod (Figure 6.1-b).
Each line corresponds to a different conflict radius debnitiThe figures clearly
show that different radii significantly change the resuftthe foraging.

Thus the definition of a conflict can change the behavior oanteGiven a
new domain in which we want to utilize the EI method, we reguarway that
adapts also the conflict threshold, as well as selectioneotdordination method.

We propose to do this by folding the conflict distance definigiinto the meth-
ods, creating multiple methods that involve different aistes. Let\/ be the set
of coordination methods, ant be the set of possible conflict definitions. For
each methodv € M and conflict radius: € R, we create a method,, which
involves thea: method at conflict distance We then use reinforcement learning
with El, as before, but allow the El to select from the spacd?di | M| methods.

Figure 6.2 shows the results of experiments using this aabran the simu-
lated foraging domain. As before, the X axis measures théeuof robots in the
team. The Y axis measures the number of pucks collected. §ueefcontrasts
several methods and distances:

Repel 2, Repel 8, Aggression 2, Aggression hese are fixed methods, which
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Figure 6.1: Team performance in the simulated foraging dom&he distance
defining a conflict between two nearby robots is varied fromo 2.t
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Figure 6.2: Team performance in the simulated foraging donuging El to learn
conflict declaration parameters.

utilize repel or aggression (respectively), with a conflistance of 2 robot
radii or 8 robot radii. Thus heré/ = { Repel, Aggressioy andR = 2, 8.

El_A2,8 R2,8. The result of using El-based single-state reinforcemeautnie
ing, selecting from the pool of four static combination nweth M/ x R =
{Repel 2, Repel 8, Aggression 2, Aggressign 8

RND_A2,8 R2,8.The result of using random selection over the space of four
static combination method¥ x R = {Repel 2, Repel 8, Aggression 2, Ag-
gression 8.

The different curves in Figure 6.2 shows the results of usapgal and ag-
gression (with fixed conflict distances, at 2 and 8 robot yads well as the use
of El or random selection between the combination methots.r&sults demon-
strate the efficacy of the method in learning methods thatiatsorporate conflict
timing parameters.
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6.2 Using El in Reinforcement Learning with Mul-
tiple States

We now move away from the simple single-state Q-learningrétymn (Algorithm
4.1), and explore the use of El in more familiar Q-learningisgs, where the
environment states are taken into account. Here, the refpaid) collected for
using a specific coordination methadis associated with the robot being in a
particular environment state

The learning algorithm we use is based on the following Qrhieg equation:

Qi(s,a) = Qr-1(s,a) + p(Ri(s,a) —vQi-1(s,a))

wherep is the learning speed factor, ands a factor of discounting. As before,
the algorithm uses a constant exploration rate

Two versions of the MSL (Multi-State Learning) algorithmegvossible. In
one, the estimated El values are learned for conflicts thataea begin in the
same state (we call this variant ML In this variant of the algorithm, an agent
that goes into a conflict in a specific statend resolves it, will continue measuring
time in the conflict’s associated passive interval untiéturns to the state Any
other conflicts will be tracked separately. In the other,dénvariant, conflicts
that begin in a state may end anywhere (we call this variart 1S his is a more
natural extension to the stateless reinforcement learliggrithm we have seen
before, as only one conflict is tracked at any given moment.

We use the following notation in the algorithm:

e ([s, ] is a table with learned El for all states and actions, whegeS (S
is the set of environment states), and M.

e cci is the Current Conflict Index, i.e, a specific conflict for whicle are
currently measuring time and costs. In the MSariant, it is used to keep
track of multiple conflicts for which information is trackeand thus takes
on values from the set of stat8s In the MSL, variant, it is set to a constant
null value (which represents the fact that MSteats a conflict’'s active and
passive intervals beginning at a statend ending at any state).
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e SelectedMethod|cci] is a method that currently selected for solving conflict
associated witlaci.

e ConflictState[cci] is a state where conflict associated witt is started.

e SolvingTime[cci] is a time moment when conflict associated with has
been solved.

e BgnCycleTime[cci] is a time moment when conflict associated withis
started.

e EndCycleTime[cci] is a time moment when previous conflict cycle asso-
ciated withcci is ended (e.i. new conflict associated with is started).

e Cost[cci] is a cost spent for solving conflict associated with(i.e. this is
Active Coordination Cost).

e Counterlcci] is counter of conflicts associated withy.

To evaluate the use of the two MSL variants, we applied theadhallenging
domain, involving discrete maze-like environments, in ethnarrow corridors
require agents to coordinate their movements to reach fnoenlacation to the
next. Figure 6.3 shows the two test environments. In onegthee two goal
locations; in the other, five. All agents within the envircemis (up to 20) can
move in the 4 basic directions (north, south, east, westpahdime step. Each
agent randomly picks a goal location and attempts to mové tnce the goal
is reached, the agent picks another goal. Since agents tcpas®through each
other, nor through walls, they require coordination in gating in the narrow
corridors of the mazes.

In these two environments, we ran hundreds of repeated,téath a thousand
steps long. The exploration ratewas fixed at 0.2; the learning factpiwas set
to 0.8 by default (a second set of experiments varies thigegdj and the discount
factory was set was to 1.0.

Figure 6.4 below shows the results. Here, the X axis marksitineber of
agents in the environment. The Y axis marks the number oSgualieved by the
group of agents (the sum of their individual achievementig)e figure shows a
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Algorithm 2 Multi-State EI-Based Learning (MSL)

Require: ( € [0, 1] — rate of exploration vs exploitation

Require: p € [0, 1] — learning speed factor

Require: ~ € [0, 1] — learning discount factor

Require: M — a set of coordination algorithms

Require: A way of measuring accumulating coordination resourcescost

Require: A way of current state observation

Require: A way of checking current time or step number in case of discsgs-
tem.

1: forall cci € members of'ount do
2. Count[cci] < 0
3: forall (s,a) € S x M do
4. Q[s,a] « randong[0, 1])
5. cci +— ¢ {This line for MSL; only}
6: while robot is activedo
7. WAIT FOR CONFLICT EVENT
8: s« ObsorveStatg
9: cci «— s {This line for for MSL, only}
10:  Count[cci] <+ Count[cci] + 1
11:  EndCycleTime[cci] < CurrentTimé)
12:  if Count[cci] > 1 {Not First Conflict for current statethen
13: ty < SolvingTime[cci] — BgnCycleTimelcci]
14: t, «— EndCycleTime|cci] — SolvingTime|cci]
15: EJ « — tatCostleci] tfif;[m]
16: w « ConflictState[cci]
17: a « Selected M ethod|cci]
18: Q[wv&] <—Q[w,a]+p- (E[_V'Q[wvab
19:  BgnCycleTime[cci] «— EndCycleTime|cci]
20:  ConflictState[cci] < s
21: if g > randong]0, 1]) then
22: Selected M ethod|cci| < randon{ M)
23:  else
24: Selected M ethod|cci] < argmax . ,,Qls, ]
25:  EXECUTE SelectedMethod|cci]  {Record resource spending to
Costlccil}
26:  SolvingTime[cci| < CurrentTimé)
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Figure 6.3: Discrete environment requiring coordinationnavigate between
goals. Filled squares denote walls and obstacles, fountgtars mark goal lo-
cations, empty/passable positions marked white.

clear difference between the stateless reinforcementilgatechnique presented
earlier (here, called SSL for Single-State Learning), daednhulti-state reinforce-

ment learning described in this section. Specifically, irsilite reinforcement

learning in this domain proves extremely useful.

Since the discount factor has significant impact on the |iscoéreinforce-
ment learning algorithms, we also vary the discount facta final set of experi-
ments, and reduce it from 1.0 to 0.2. The results are pres@mtéigure 6.5. The
figure demonstrates that reducing the discount factor didméactor, change the
results of the analysis, and indeed may indeed slight rededermance.

6.3 EIl-Based Learning of Task-Oriented Decisions

Finally, we evaluated the use of El with robots in virtual eomments. Here, we
utilized robots that operate in VR-Forces[27], a commertigh-fidelity simula-
tor. Each robot controls a simulated entity in the environthand must carry out
its own path planning and decision-making. A bird’s eye vadthe experiment
setup is shown in Figure 6.6.

Within this environment, we conducted experiments withr faictual robots,
where the coordination was implicit, rather than expliéMl of the four robots
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(a) Learning results after 1000 cycles, in the maze with tealg) Results are con-
trasted with the random-coordination algorithm, as welldth each of the fixed
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Figure 6.4: Results from the maze experiments.
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Figure 6.5: Learning results after 1000 cycles, in the maige two goals.

B VR-Forces 1 - G/mak/vr3.9/data/scen
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Figure 6.6: A screen shot of VR-Forces experiment setup. Thees shows a
bird-eye view of the virtual environment, and the corridiors/hich the simulated

entities (robots) travel.
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Figure 6.7: Results in the virtual environment domain.

had the goal of getting to a target location. They could de thirough one of
two paths, the firstfath 1) slightly shorter than the othepdth2). Each path was
built from 5-10 navigation points, which the robots go thgbun sequence to
travel through the path. Actual travel times through thénpatary, and are not
just a function of the path length: First, when robots movetlus same path,
they sometimes crowd the path and cause delays in moving(etgit if robots
collide or block others from reaching a navigation poinéc@nd, because this is a
high-fidelity simulation, the actual movement velocity bétrobots is not always
the same, and varies slightly from one run to the next. Theltresthat it is not
immediately obvious how robots should divide up the patha®en them. Using
El to select between the paths is not a selection of a codrdimeethod, but is
instead a selection of a task, such that coordination isiaipl

We conducted 21 runs, where the EI values were saved fromwntorthe
next. The results of these runs are shown in Figure 6.7. Thesliats the four
different robots (agentsy—D. The Y axis measures the number of runs (out of
the 21) that each agent selected a particular path. The tvgorbark, for each
agent, the path selectionsithl or path?2.

The results show convergence of the first three robots totssdgath 1, while
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the fourth and last robot jumps back and forth betweeth1 andpath2. When
we examine the results in detail, we discover that indeeddeesion of the fourth
robot is difficult: On one hand, four robots gmthl often interfere with each
other. On the other hand, the usepmafh2 does add to the overall task time of
the robot. Thus the EI values are very close to each othertrendbbot in fact
converges to arbitrary selection between the two paths.

An interesting lesson can be learned from the experimentiservirtual en-
vironment. Here, El was applied to a task that it was not méamtnvolving
implicit, rather than explicit, coordination. The naturfetluis task is that there is
more than one single equilibrium point, as two combinatibpaths are possible.
Thus our intuition as to the convergence properties of th@dgirithm should not
hold. However, the algorithm converged quickly to selegtetween two almost
equally-valued alternatives, reflecting the two top cheice

62



Chapter 7
Conclusions and Future Work

This thesis examined in depth a novel reward function forpeoative settings,
called Effectiveness Index (El). El estimates the resoapending velocity of a
robot, due to its efforts spent on coordination. By minimigial, robots dedi-
cate more time to the task, and are thus capable of improhieig team utility.
We used EI as a reward function for selecting between coatidim methods, by
reinforcement-learning. This technique was shown to waek im three different
domains: Simulation-based multi-robot foraging, real AlB@ilti-robot forag-
ing, and high-fidelity commercial virtual environment. Té&eperiments explore
the scope of the technique, its successes and limitatiamaddition, we have
formally explored multi-robot tasks for which El is interdiéNe have shown that
under some assumptions, EI emerges analytically from a ghewetic look at
the coordination in these tasks. We believe that this wqrkasents a step towards
bridging the gap between theoretical investigations adranttions, and their use
to inform real-world multi-robot system design. Improvegults can be achieved
by extending both the theory underlying the use of El, andgaming algorithms
in which it is used.
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