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a b s t r a c t

Recent progress in peer to peer (P2P) search algorithms has presented viable structured

and unstructured approaches for full-text search. We posit that these existing

approaches are each best suited for different types of queries. We present PHIRST, the

first system to facilitate effective full-text search within P2P databases. PHIRST works by

effectively leveraging between the relative strengths of these approaches. Similar to

structured approaches, agents first publish terms within their stored documents.

However, frequent terms are quickly identified and not exhaustively stored, resulting in

a significant reduction in the system’s storage requirements. During query lookup,

agents use unstructured search to compensate for the lack of fully published terms.

Additionally, they explicitly weigh between the costs involved in structured and

unstructured approaches, allowing for a significant reduction in query costs. Finally, we

address how node failures can be effectively addressed through storing multiple copies

of selected data. We evaluated the effectiveness of our approach using both real-world

and artificial queries. We found that in most situations our approach yields near perfect

recall. We discuss the limitations of our system, as well as possible compensatory

strategies.

& 2008 Elsevier B.V. All rights reserved.

1. Introduction

Full-text search, or the ability to locate documents
based on terms found within documents, is arguably one
of the most essential tasks in any distributed database [1].
Search engines such as Google [2] have demonstrated
the effectiveness of centralized search. However, classic
solutions also demonstrate the challenge of large-scale
search. For example, a search on Google for the word, ‘‘a’’,
currently returns over 15 billion pages [2]. Though

Google’s servers are capable of storing this magnitude
of storage, this approach is infeasible for distributed
solutions involving more limited devices.

In this paper, we address the challenge of implement-
ing full-text search within peer-to-peer (P2P) network
databases. Our motivation is to demonstrate the feasibility
of implementing a P2P database comprised of resource
limited machines, such as handheld devices. Thus, any
solution must be keenly aware of the following con-
straints: cost—many networks, such as cellular networks,
have costs associated with each message. One key goal of
the system is to keep communication costs low. Hardware

limitations—we assume each device is limited in its
amount of storage. Any proposed solution must take this
limitation into consideration. Distributed—any proposed
solution must be distributed equitably. As we assume a
network of agents with similar hardware composition, no
one agent can be required to have storage or communica-
tion requirements grossly beyond that of other machines.
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Resilient—our assumption is that peers are able to connect
and disconnect at will from the network. As a result, our
system must be able to deal with peer failures, a concept
typically referred to as churn [3,4].

To date, three basic approaches have been proposed for
full-text search within P2P databases [5]. Structured
approaches are based on the classic information retrieval
(IR) theory [6], and use inverted lists to quickly find query
terms. However, they rely on expensive publishing and
query lookup stages. A second approach creates super-
peers, or nodes that are able to locally interact with a large
subset of agents. While this approach does significantly
reduce publishing costs, it violates the distributed re-
quirement in our system. Finally, unstructured approaches
involve no publishing, but are unsuccessful in locating
hard to find items [5].

In this paper we present PHIRST, a system for Peer-to-
peer Hybrid Restricted Search for Text. This approach has
three key contributions. First, PHIRST is the first system
capable of performing distributed full-text search—

something previously thought to be infeasible [1]. The
key to PHIRST’s success is its ability to restrict the amount
of data needed to be published to execute full-text search.
Not only does this ensure that the hardware limitations of
agents’ nodes are not exceeded, it also better distributes
the system’s storage. Furthermore, a peer’s average data
load actually decreases as peers with documents are
added. Thus, the system becomes progressively more
scalable as its size increases. Nonetheless, PHIRST is
still able to effectively process full-text search through
a hybrid approach that leverages the advantages of
structured search (SS) and unstructured search (US)
algorithms. PHIRST’s limited published data are used to
locate hard-to-find items. US is used to find common
terms that were not published. Second, not only does
PHIRST present a feasible approach for full-text search,
but it also processes these searches with lower cost as
well. We also present full-text query algorithms where
nodes explicitly reason based on estimated search costs
about which search approach to use, reducing query costs.
Finally, we present how storing redundant copies of these
entries can effectively deal with temporary node failures
without the need of any centralized mechanism.

To validate the effectiveness of PHIRST, we used a real
web corpus [7]. We found that the hybrid approach we
present used significantly less storage to store all inverted
lists than previous approaches where all terms were
published [1,5]. Next, we used artificial and real queries to
evaluate the system. The artificial queries demonstrated
the strengths and limitations of our system. The unstruc-
tured component of PHIRST was extremely successful in
finding frequent terms, and the structured component
was equally successful in finding any pairs of terms where
at least one term was not frequent. In both of these cases,
the recall of our system was always 100%. The system’s
performance did have less than 100% recall when terms of
2 or more words of medium frequency were constructed.
We present several compensatory strategies for addres-
sing this limitation in the system. Finally, to evaluate the
practical impact of this potential drawback, we studied
real queries taken from IMDB’s movie database [8] and

found PHIRST was in fact effective in answering these
queries.

2. Related work

Classical IR systems use a centralized server to store
inverted lists of every term in every document within the
system [6]. These lists are ‘‘inverted’’ in that the server
stores lists of the location for each term, and not the term
itself. Inverted lists can store other information, such as
the term’s location in the document, the number of
occurrences for that term, etc. Search results are then
returned by intersecting the inverted lists for all terms in
the query. These results are then typically ranked using
heuristics such as TF/IDF [9]. For example, if searching for
the terms, ‘‘family movie’’, one would first lookup the
inverted list of ‘‘family’’, intersect that file with that of
‘‘movie’’, and then order the results before sending them
back to the user.

The goal of a P2P system is to provide results of equal
quality without the need of a centralized server with the
inverted lists. Potentially, the distributed solution may
have advantages such as no single point of failure, lower
maintenance costs, and more up-to-date data. Toward this
goal a variety of distributed mechanisms have been
proposed.

Structures such as distributed hash tables (DHTs) are
one way to distribute the process of storing inverted lists.
Many DHT frameworks have been presented, such as
Bamboo [4], Chord [10], and Tapestry [11]. A DHT could
then be used for IR in two stages: publishing and query
lookups. As agents join the network, they need to update
the system’s inverted lists with their terms. This is done
by every agent sending a ‘‘publish’’ message to the DHT
with the unique terms it contains. In DHT systems, these
messages are routed to the peer with the inverted list in
logðNÞ hops, with N being the total number of agents in
the network [4,10]. During query lookups, an agent must
first identify which peer(s) store the inverted lists for the
desired term(s). Again, this lookup can be done in logðNÞ
hops [4,10]. Then, the agent must retrieve these lists and
intersect them to find which peer(s) contain all of the
terms.

Li et al. [1] present formidable challenges in imple-
menting both the publishing and lookup phases of this
approach in large distributed networks. Assuming a word
exists in all documents, its inverted list will be of this
length. Thus, the storage requirements for these inverted
lists are likely to exceed the hardware abilities of agents in
these systems as the number of documents grows.
Furthermore, sending large lists will incur a large com-
munication cost, even potentially exceeding the band-
width limitation of the network. Because of these
difficulties, they concluded that naive implementations
of P2P full-text search are simply infeasible.

Several recent developments have been suggested to
make a full-text distributed system viable. One suggestion
is to process the SS starting with the node storing the term
with the fewest peer entries in its inverted list. That node
then forwards its list to the node with the next longest list,
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where the terms are locally intersected before being
forwarded. This approach can offer significant cost savings
by insuring that no agent can send an inverted list longer
than the one stored by the least common term [5].
Reynolds and Vahdat also suggest encoding inverted lists
as Bloom filters to reduce their size [12]. These filters can
also be cached to reduce the frequency these files must be
sent. Finally, they suggest using incremental results,
where only a partial set of results are returned allowing
search operations to halt after finding a fixed number of
results, making search costs proportional to the number of
documents returned.

US protocols provide an alternative that are used
within Gnutella and other P2P networks [13]. These
protocols have no publishing requirements. To find a
document, the querying node sends its query around the
network until a predefined number of results have been
found, or a predefined TTL (time to live) has been reached.
Assuming the search terms are in fact popular, this
approach will be successful after searching a fraction of
the network. Various optimizations have again been
suggested within this approach. It has been found that
random walks are more effective than simply flooding the
network with the query [14]. Furthermore, one can initiate
multiple simultaneous ‘‘walks’’ to find items more quickly,
or use state-keeping to prevent ‘‘walkers’’ from revisiting
the same nodes [14]. Despite these optimizations, US has
been found to be unsuccessful in finding rare terms [13].

In super-peer networks, certain agents store a dis-
proportionate amount of inverted list data. Instead of all
peers publishing inverted data over a distributed DHT
network, agents send copies of their lists to their assigned
super-peers. As agents are assumed to have direct
communication with their super-peers, only one hop is
needed to publish a message, instead of the logðNÞ paths
within DHT systems. During query processing, an agent
forwards its request to its super-peer, who then takes the
intersection between the inverted lists of all super-peers.
However, this approach requires that certain nodes have
higher bandwidth and storage capabilities [5]—something
we could not assume for our system.

Hybrid architectures involve using elements from
multiple approaches. Loo et al. [15,16] propose a hybrid
approach where a DHT is used within super-peers to
locate infrequent files, and unstructured query flooding is
used to find common files. This approach is most similar
to ours in that we also use a DHT to find infrequent terms
and US for frequent terms. However, several key differ-
ences exist. First, their approach was a hybrid approach
between Gnutella ultrapeers (super-peers) and unstruc-
tured flooding. We present a hybrid approach that can
generically use any form of structured or unstructured
approaches, such as random walks instead of unstructured
flooding or global DHTs instead of a super-peer system.
Second, in determining if a file was common or not, they
needed to rely on information locally available from
super-peers, and used a variety of heuristics to attempt
to extrapolate this information for the global network
[15]. Since we build PHIRST based on a global DHT, we are
able to identify rare-items based on complete information.
Possibly most significantly, Loo et al. [16] only published

the files’ names, and not their content. As they considered
full-text search to be infeasible for the reasons previously
presented [1], their system was limited to performing
searches based on the data’s file name, and not on the text
within that data. In contrast, the PHIRST system actually
becomes more scalable as nodes are added and is thus the
first system to facilitate effective full-text search even
within large P2P databases. Finally, an earlier version of
this work was previously published [17]. In addition to
significant updates to the publishing and query algorithms
presented in this paper, this version of PHIRST addresses
issues of churn, something not addressed in our previous
work.

3. PHIRST overview

First, we present an overview of the PHIRST system,
how its publishing and query algorithms interconnect,
and the variables used in them. While this section
describes how information is published within the Chord
DHT [10], PHIRST’s publishing algorithm is generally
presented in Section 4 so it may be used within other
DHTs as well. Similarly, Section 5 presents query algo-
rithms which select the best search algorithm based on
the estimated cost of performing the search algorithms at
the user’s disposal. The selection algorithm (Algorithm 3)
is generally written such that new search algorithms can
be introduced without affecting the algorithm’s structure.
Only later, in Algorithm 4, we present how these costs are
calculated specific to the DHT and US algorithms we used.

In order to facilitate structured full-text search for
infrequent words, inverted file term data must be stored
within structured network overlays such as Chord. Briefly,
Chord uses consistent hash functions to create an m-bit
identifier. These identifiers form a circle modulo 2m. The
node responsible for storing any given term is found by
using a preselected hash function, such as SHA-1, to
compute the hash value of that term. Chord then routes
the term to the agent with the Chord identifier equal to or
the successor (the next existent node) of that value [10].
For example, Fig. 1 depicts a simple example with three
nodes, and an identifier space of 8 ð23

Þ. Assuming the
term hashes to a value of 6, it needs to be stored on the
next node within the circular space, or on node 0.
Assuming the term hashes to 1, it is stored on node 1.

The use of a consistent hash function within the Chord
algorithm provides several positive qualities. First, it
creates important performance guarantees, such as a
logðNÞ average search length to find the node containing
a certain term. Furthermore, nodes can be easily added
(joins) or removed (disjoins) by inserting them into the
circular space, and re-indexing only a fraction of the
pointers within the system. Finally, the hash function
used by Chord ensures that no agent will receive more
than OðlogðNÞÞ terms above the average amount stored by
other nodes in the network [10], creating an equitable
distribution of terms within the distributed system. We
refer the reader to the Chord paper for further details [10].

In the PHIRST algorithms, we use the following variable
names. Recall that N refers to the number of agents
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contained within the system. The PHIRST algorithms are
based on knowledge of what this value for N is, and
maintains a variable NODE_COUNTER to store this value.
We refer to the total number of documents to be indexed
for the full-text search as D. Unless otherwise noted, we
assume that every node stores one document, and N ¼ D.
However, PHIRST’s algorithms are not dependent on this
simplification. In PHIRST’s publishing phase, inverted file
information must be added from a new document, Doc,
for each of the terms Termi out of a total of num_terms

terms, found on node IDSOURCE. This information is sent
to node IDDEST to be published. IDDEST can be found by
using the successor function within Chord. Referring back
to Fig. 1, assuming the term Termi hashes directly to the
numeric value of one of the nodes (e.g. 0, 1, or 3), IDDEST is
assigned to this node. Otherwise, the next node (the
successor) in the circular space becomes IDDEST . IDDEST
is responsible for storing the inverted file information for
this term, as well as any other term that was routed to it
for storage. It keeps a counter, TERM_COUNTER, of the
number of times the term Termi is found within the
combined database of D documents.

For example, Table 1, provides an example of the
inverted lists for five words stored on one node. Each row
in the table represents a word, and the IP address(es) on
the network where documents with that word can be
found. Common words, such as ‘‘a’’ and ‘‘the’’ within the
table, will produce much longer inverted lists than
uncommon words such as ‘‘aardvark’’ and ‘‘zygote’’. Due
to space restrictions this table only presents up to the first
7 inverted entries for each word, out of a potential number

of D columns. Because word distribution within docu-
ments typically follow Zipf’s law, some of the words
within documents occur very frequently while many
others occur rarely [18]. In an extreme example, one node
may be responsible for storing extremely common words
such as ‘‘the’’ and ‘‘a’’, while other nodes are assigned only
rare terms.

While DHTs such as Chord are effective in equitably
distributing terms over the system’s nodes, they do not
enforce equitable distribution of the amount of inverted
file information per node. As such, Chord does balance the
number of terms, Termi, stored per node, but not the
amount of data associated with these terms. Not only is
this a major challenge in light of the distributed nature of
the system, but it also prevents feasible full-text search
[1]. The first key contribution of this paper is how we
overcome these challenges by means of a publishing
algorithm that limits the amount of inverted file informa-
tion nodes must store, even for common words. We
denote the size of the inverted file for term Termi as
SIZE_OF_FILE(Termi), and limit this file’s size to d entries.
Details of PHIRST’s publishing algorithms are found in
Section 4.

However, PHIRST must still overcome the problem of
how full-text queries can be properly performed without
exhaustively indexing this information. We define the
query task as finding a number of results, T, that match
all query terms, or a total of num_query_terms terms,
within the documents’ text. Capping a query at T results is
needed within US, as there is no global mechanism for
knowing the total number of matches [5]. The second key
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Fig. 1. An example of a Chord ring with m ¼ 3. Figure based on Chord paper [10].

Table 1
Example of several words (terms within the DHT), and their inverted lists

Termi Address1 Address2 Address3 Address4 Address5 Address6 Address7

a 10.1.1.1 10.1.1.2 10.1.1.3 10.1.1.4 10.1.1.5 10.1.1.6 10.1.1.7

aardvark 10.13.132.45

the 10.1.1.1 10.1.1.2 10.1.1.3 10.1.1.4 10.1.1.5 10.1.1.6 10.1.1.7

zoo 10.1.3.4 10.1.3.44 10.1.39.12

zygote 10.7.12.45

A. Rosenfeld et al. / Information Systems 34 (2009) 290–303 293



Author's personal copy

contribution of this paper is a novel querying algorithm
that leverages between SS and US algorithms to effectively
find matches despite the limit in the amount of data each
peer stores. Furthermore, this algorithm selects between
different types of search approaches based on estimated
cost, reducing the cost of processing queries. Details of
PHIRST’s query algorithms are found in Section 5.

Finally, modifications to the above algorithms are
necessary to address scheduled and unscheduled discon-
nects of nodes from the network. PHIRST incorporates a
system for handling scheduled disconnects through an
orderly mechanism for unpublishing inverted file infor-
mation. It also contains replicated inverted file informa-
tion for handling unscheduled node disconnects. Details
of these algorithms are found in Section 6.

4. The publishing algorithms

First, once any agent joins the network, regardless of
whether it has any documents to publish, it must update
the variable NODE_COUNTER. We will see that this value is
needed by the query algorithms described below. This can
be done through an UPDATE_NODE_COUNTER function to
send a request to the node responsible for storing this
counter to update it by one. For simplicity, let us assume
this global counter is stored on the first agent, ID1, or
IDNODE_COUNTER ¼ ID1. Thus, we assume all nodes per-
form the command, UPDATE_NODE_COUNTER(ID1, 1)
upon joining the network. We will explore variations of
this assumption in Section 6 where we assume that
multiple copies of this counter are necessary if node
failures must be presumed and node ID1 may not be
available.

Next, every time an agent wishes to add a document to
the network, it must publish the words in these
documents as described in Algorithms 1 and 2. Note that
there are two parts to this procedure. Algorithm 1
determines the terms in the document, Doc, that must
be published, and where to send these terms in the DHT
network. Algorithm 2, takes place on the receiving end,
where node IDDEST decides what information should be
stored from node IDSOURCE.

Algorithm 1. Publishing Algorithm (Document Doc)—
Initiating Agent

1: Terms ( Preprocessed words in Doc

2: num_terms( LENGTH(Terms)

3: for i ¼ Term1 to Termnum_terms do

4: IDDEST ( FindAddress(IDSOURCE)

5: ADD_TERM(Termi , IDSOURCE , IDDEST )

6: end for

In Algorithm 1, node IDSOURCE first generates a set of
Terms it wishes to publish (line 1). Similar to other studies
[5] we assume that the agent preprocesses its document
to remove extraneous information such as HTML tags and
duplicate instances of terms. Stemming, or reducing each
word to its root form, is also done as it has been observed
to improve the accuracy of the search [5]. Furthermore, as
we detail in Section 7, stemming also further reduces the

amount of information needed to be published and stored.
In line 2 we initialize the num_terms variable to the
number of unique terms to be published. The publishing
agent, IDSOURCE, then sends every term, Termi, to be
stored in an inverted list on peer IDDEST (lines 3–6). This
information will be used to create or update inverted files
on the destination node. This node is identified via the
function FindAddress in line 4 which can use Chord’s
previous described consistent hash function [10] or
similar DHT implementation.

Algorithm 2. ADD_TERM (Termi, IDSOURCE, IDDEST )—
Receiving Agent

1: if SIZE_OF_FILEðTermiÞ ¼ 0 then
2: CREATE_FILE(Termi , IDSOURCE)

3: CREATE_TERM_COUNTER(Termi)

4: else if SIZE_OF_FILEðTermiÞod then
5: UPDATE_FILE(Termi ,IDSOURCE)

6: UPDATE_TERM_COUNTER(Termi, 1)

7: else
8: UPDATE_TERM_COUNTER(Termi, 1)

9: end if

Next, the publishing algorithm consists of a second
stage, depicted by Algorithm 2, where agent IDDEST ,
responsible for storing inverted list information, must
process these data. PHIRST enforces an equitable term
distribution by requiring nodes to store a maximum of d

entries in the inverted file for a given term. As lines 1–3 of
the algorithm detail, assuming this is the first time this
term has been found in all D documents, agent IDDEST
creates a new inverted file with this term (line 2) and a
new term counter (line 3). Assuming this is an existing
term with fewer than d entries, the location of IDSOURCE
is added to the existing inverted file (line 5) and the
counter for TERM_COUNTERi is incremented (line 6).
Otherwise, d instances of that term exist and the location
of the term is not added to the inverted file, but
TERM_COUNTERi is still incremented (line 8). This counter
information is used by the query algorithms to determine
the global frequency of this term.

Previous works require all term instances be published,
and thus the length of the inverted files stored on nodes
can grow unchecked. Because we limit each node so that it
only stores a maximum d possible term instances, the
storage requirements of the system are greatly reduced.
Referring back to Table 1, let us assume the worst case,
and all D documents in the system contain all terms and
thus the variable Terms in Algorithm 1 will be the same for
every Doc in D. Previous works require creating a
maximum of D entries in the inverted lists represented
in the table, while PHIRST requires only a maximum of d

entries. Thus, in the worst case, PHIRST’s storage require-
ment becomes d � num_terms instead of D � num_terms.
As we set d5D, we found these savings to be quite
significant.

Theoretically, additional information about each term
may be published, such as the position of the term or how
many instances of the term exists within the document
and this and similar information may be aggregated into a
rating of the term to be published. This information may
be especially important when more than d instances of
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the term exist. The receiving agent, IDDEST , could then
decide which d term instances to store by continuously
sorting scores of the terms it has, and maintaining only
those with the highest d rating. In a similar vein, if more
than d instances of Termi exist, it may be advantageous to
store the most recent d documents, especially if turnover
exists within nodes.

The performance guarantees of DHTs, such as Chord,
ensure that the publishing algorithm runs at a fairly low
cost. Because each node, IDSOURCE, needs logðNÞ hops to
find the agent, IDDEST , responsible for storing the term’s
inverted list, the total number of messages needed to
publish a document is of order Oðnum_terms � logðNÞÞ
where num_terms is the number of unique terms in that
document. Note that the publishing algorithm described
herein sends all terms, even those that in fact do not need
publishing because they already contain d instances. For
future work, we hope to study how nodes may be able to
reduce this amount by knowing in advance which terms
already have d terms.

5. The query algorithms

The query algorithms are called once any agent wishes
to conduct a distributed full-text search. As Algorithm 3
describes, this process operates in two stages. First, the
agent initiating the query retrieves the global frequencies
of all search terms (line 2) and sorts them from least to
most frequent (line 3). These values can be calculated by
looking up the frequency of every term from the agent
storing term Termi. Referring back to Algorithm 2 note
that the peer storing Termi has a counter with this value
even if more than d instances of this term occurred.
The frequency of every term is divided by the value
NODE_COUNTER which can give an estimate as to how
many nodes must be visited to find this term through an
US. Finding these values requires one lookup of the value
of NODE_COUNTER (which we previously assumed to be
stored on agent ID1), as well as a lookup of the frequencies
of each term from the agent storing term Termi. Referring
back to Algorithm 2 (line 8) observe that the peer storing
Termi has a counter with this value even if more than d

instances of this term occurred.
Note that the expected frequency of terms is not

necessarily equal to their actual frequency. For example,
while the words ‘‘new’’ and ‘‘york’’ may be relatively rare,
the frequency of ‘‘new york’’ is likely to be higher than the
product of both individual terms. Thus, this naive
approach may not be true for the actual combination
of terms, a factor that may bias the algorithm towards
using the wrong search approach, especially in borderline
cases. This point is further discussed below regarding
Algorithm 4.

Algorithm 3. Hybrid Query Algorithm (T, Query1 . . .

Querynum_query_terms)

1: space (1 {Used for initialization to all P2P nodes}

2: Frequency_Array ( Query1 . . .Querynum_query_terms

{Frequency_Array is an unsorted array of query terms}

3: Q_Array ( Sorted Query Terms Least to most Frequent

{Q_Array is the sorted array of query terms}

4: for Queryi ¼ Q_Array½1� to Q_Array½num_query_terms� do
5: Frequency ( Product(Frequency_Array[i] . . .

Frequency_Array[num_query_terms])

6: Tradeoff ( Calculate-Tradeoff(space, Queryi . . .

Querynum_query_terms , Frequency)

7: if Tradeoff40 then
8: Found( 0

9: while (Found o T) AND (NOT Exhausted(space)) do
10: Found( Foundþ Search-Unstructðspace;Queryi . . .

Querynum_query_termsÞ

11: end while
12: break

13: else
14: space ( List(Queryi) \ space

15: if i ¼ Querynum_query_terms

16: if LENGTH(space) 4 T then
17: return first T list entries {Or NULL}

18: else
19: return all list entries

20: end if
21: end if
22: end if
23: end for

Once the frequencies of all terms are known, the
algorithm then reasons about which algorithm to select.
This process iteratively calls the tradeoff function which
we define below (Algorithm 4). If US is deemed less costly,
all terms are immediately searched for simultaneously
(lines 7–12). This type of search can either terminate
because T matches have been found or the search space
has been exhaustively searched. If SS is deemed less
costly, that term’s inverted list is requested, and the
search space is intersected with the inverted list of the
new term (the function List in line 14 returns the inverted
list for the term). Assuming we have reached the last term
(lines 15–21) we return the first T matches found after
all terms have been successfully intersected. Once the
SS identifies that fewer than T matches have been found
(line 16) it returns all list entries (line 17). Note that line
17 also presents the option that failure or NULL is returned
if less than T results were found.

This algorithm has several key features. First, the
search process is begun starting with the least frequent
term. This is done following previous approaches [5] to
save on communication costs when using SS. Each
successive peer receives the previously intersected list,
and locally intersects this information with that of its
term (line 14). As a result of this process the intersected
lists become progressively smaller (or in the worst case
remain the same length) and the maximum information
any peer can send is bounded by SIZE_OF_FILE(Term1).
Second, one might question why agents do not immedi-
ately return the entire inverted list of the terms they store,
instead of first returning the term’s frequency. Retrieving
frequency information incurs a cost since we must find
the frequency information for every term Termi out of a
total of num_query_terms search query terms, and must
also retrieve the value for the variable NODE_COUNTER.
Thus, the cost overhead of finding this information is
num_query_terms � logðNÞ þ 1 as the frequency of each
term Termi can be found in the DHT in logðNÞ, and we
assume that NODE_COUNTER is found on ID1 and conse-
quently can be directly assessed in one hop. However, this
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paper asserts that the information gained from this
frequency information, such as bounding search costs to
the size of the least frequent term, outweighs the search
costs involved in processing the query in two stages.
Finally, as the search goal is to return T results, the last
node within a SS does not need to return its entire
inverted list. Instead, it only needs to send the first
T results. Accordingly, the maximal SS cost will be of order
ðnum_query_terms� 1Þ�SIZE_OF_FILEðTerm1Þ þ T .

Arguably the most important feature of this algorithm
is its ability to switch between SS and US midway through
processing the query terms. Even if SS is used for the first
term(s), the algorithm iteratively calls the tradeoff algo-
rithm (Algorithm 4) after each term. Once the algorithm
notes that an US is cheaper, it immediately uses this
search to find all remaining terms. For example, assume a
multi-word query contains several common and uncom-
mon words. The algorithm may first take the intersection
of the inverted lists for all infrequent words to create a
list f. The algorithm may then switch to an US within f to
find the remaining common words.

Similarly, note that this approach lacks a TTL for its US
that exist in other unstructured approaches [5]. We
assume US is to be used only when the expected cost of
using an US is low (see Algorithm 4). We expect this to
occur when the US will terminate quickly, such as when:
(i) the search terms are very common from the onset or
(ii) an US is used to find the remaining common terms
after a SS generated an inverted list of f terms.

We now address the search specific mechanism needed
to identify which search algorithm will have the higher
expected cost. This tradeoff depends on T, or the number
of search terms desired, the costs specific for the different
types of search options within the query algorithm, and d

or the maximal number of inverted list entries published
for each term. Algorithm 4 details this process as follows:

Algorithm 4. Calculate-Tradeoff (T, space, Termi . . .

Termnum_query_terms, Frequency)

1: Expect-Visit ( T / Frequency {Number of nodes Unstructured search

will likely visit}

2: if CU� (Expect-Visit) oCS� (Sending(query-terms)) then
3: RETURN 1 {pure unstructured search}

4: else if SIZE_OF_FILE(Termi) o d then
5: RETURN -1 {pure structured search for this term}

6: else
7: space ( List(Termi) \ space

8: RETURN 1 {Use unstructured afterwards}

9: end if

First, the algorithm calculates the expected cost of
conducting an US. The expected number of documents
that will be visited in an US before finding T results is:
T=Frequency (line 1), where Frequency is the product of
frequency of all terms. We can compare this value to that
of using a SS, whose cost is also known, and is
proportional to the length of the inverted lists that need
to be sent. We assume there is some cost, CU associated
with conducting an US on one peer. We also assume that
some cost CS is associated with sending one entry from
the inverted list (line 2). Recall that the initial maximal SS
cost is bounded by CS� (ðnum_query_termsÞ � 1�
SIZE_OF_FILEðTerm1Þ þ T) (see the previous description

of Algorithm 3). The cost of the US can be calculated as
CU � T=Frequency. The ability to compare the expected
cost of using both searches allows the algorithm to best
decide how to proceed (lines 2–5).

For many cases, a clear choice exists with reference to
which search algorithm would be best to use. Let us
assume that CU ¼ CS ¼ 1, and that all documents have
been indexed, or d is greater than or equal to the total
number of documents in the system (D). When searching
for common words, or Frequency is near 1, the cost
of using the US is likely to be near T, as these words are
likely to be found on the first several nodes searched.
Processing the same query with SS will be more costly,
as the inverted files’ size is nearly equal to the number of
documents and we assume T is much smaller than D. For
example, assume NODE_COUNTER ¼ 10 000, T is 10, each
node stores 2 documents on average (D ¼ 10 000 � 2
or 20 000) and two terms are searched for with
TERM_COUNTERðTerm1Þ¼TERM_COUNTERðTerm2Þ¼5000
ðFrequency ¼ 0:5 � 0:5 or 0:25Þ. Using US will find 10
results in approximately 40 node visits, while SS will
require sending inverted files with 5000 terms. Note that
in extreme examples, Frequency may be even much
greater than 1, such as in the trivial case where only one
node exists, but contains multiple documents with all
terms. Conversely, for infrequent terms, say with one term
occurring only 1 time, the cost of an US will be N

or a number much larger than T, as all nodes must be
searched before realizing T results could not be found.
However, the SS will only cost a maximum of num_query_
terms� 1�SIZE_OF_FILEðTerm1Þ þ T , which is here bound
by SIZE_OF_FILE(Term1) being only 1. Finally, SS is also the
clear choice for queries involving one term. Note that in
these cases, no inverted lists need to be sent
ðnum_query_terms� 1 ¼ 0Þ, and only the first T terms are
returned. The cost of using US will be greater than this
amount (except for the exceptional case where the
frequency of the term(s) is 1.0 or higher).

There are two reasons why the most challenging cases
involve queries with terms of medium frequency. First, as
previously mentioned at the beginning of Section 4, the
expected frequency of terms is not necessarily equal to
their actual frequency. As a result, the PHIRST approach is
most likely to deviate from the optimal choice in these
types of cases, especially when the values, CU�(Expect-
Visit) and CS�(Sending(query-terms)) are similar. A second
challenge results from the fact that we only publish up to
d instances of a given term. In cases where inverted lists
are published without limitation, e.g. d equals D, the
second algorithm contains only two possible outcomes—

either the expected cost is larger for a SS or it is not.
However, our assumption is that hardware limitations
prevent storing this large number of terms, and d must be
set much lower than D. Consequently, situations will arise
where we would like to use inverted lists, but as these files
have incomplete indices, this approach will fail in finding
results in position dþ �. While other options may be
possible, in these cases our algorithm (in lines 6–8) takes
the d terms from the inverted lists, and conducts an US for
all remaining terms. In general, we found this approach to
be effective as long as Tod, or the relationship, Tod5D
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exists. We further explore the impact of this limitation in
the results (7).

6. Dealing with network churn

The publishing and query algorithms address full-text
search issues related to storage hardware limitations,
methods for equitably distributing inverted lists,
and search cost minimization. As we study real-world
P2P databases, the system must additionally address
temporary and permanent peer failures. This section
provides a solution for this issue, known as churn, which
is suitable for a distributed system.

6.1. The churn challenge

Churn can be defined as the turnover rate of nodes in
the system over a given time period [3]. Based on previous
work [3], we define churn (C) as follows: given a sequence
of changes in the set of N peer nodes being available
and unavailable, let Ui be the set of in-use nodes after the
ith change, with U0 as the initial set. Churn is the sum over
each event of the fraction of the system that has changed its

state in that event, normalized by run time t:

C ¼
1

t
�
X

events i

jUi�1 � Uij

N
,

where � is the symmetric set difference.
Within many real-world networks, most churn events

are likely to be caused by temporary changes of status
where nodes are momentarily not in service, but will
eventually return to operation. For example, a user might
turn off her phone while sleeping, attending meetings, or
going on vacations. We would expect these types of
networks to have a rather high churn rate due to these
types of events. A less frequent type of churn is likely
when a node decides to permanently change its status,
perhaps because a device breaks or when a user switches
cellular carriers and receives a new number. While these
events do not occur frequently, the node’s information will
be permanently lost if the device’s data are not replicated.

Unstructured networks are not impacted by churn as
long as the fluctuation of nodes’ states still leaves the
entire network with full connectivity [13]. As this method
has no publishing or required routing of lookup informa-
tion, it is unaffected by even very high churn rates. This
has led some to claim that unstructured networks are
most appropriate in these types of environments [13].

A variety of strategies have been proposed for dealing
with churn in structured environments [3] to allow for
continued connectivity once a node fails. One classic
approach is to reactively fix the overlay network once a
failure is detected. A second approach is to periodically

check if nodes have failed. This can be done through
constantly sampling neighbor nodes, and then preemp-
tively replacing failed nodes before they cause a lookup
failure. In environments with low churn levels the reactive
methods perform better as they have no inherent
communication overhead. However, in environments with

even moderate churn levels, periodic methods perform
significantly better [4].

It is important to differentiate between maintaining
the connectivity of live nodes within the base DHT
network, and the ability to find the data once stored in
the network. Periodic approaches are better at handling
churn, or finding nodes that are still participating in the
network. However, our system must additionally maintain
lost nodes’ published inverted list information, something
DHTs typically cannot do (refer back to the end of Section
3). We now present a solution for this challenge.

6.2. Addressing churn in a P2P application

First, we present Algorithms 5 and 6 to deal with
planned types of disconnects, or when node IDSOURCE can
orderly remove the inverted list information it has
published. While we recognize that planned disconnects
will not represent all churn events within a real system,
this algorithm utilizes key elements of PHIRST. We then
generalize this approach for dealing with unplanned
churn events.

Algorithm 5. Unpublishing Algorithm (Document
Doc)–Initiating Agent

1: Terms ( Preprocessed words in Doc

2: for i ¼ Term1 to Termnum_terms do

3: IDDEST ( FindAddress(Termi)

4: REMOVE_TERM(Termi , IDSOURCE , IDDEST )

5: end for
6: SUCCESSOR ( FIND_SUCCESSOR(IDSOURCE)

7: for j ¼ File1 to FileNUM_FILES do
8: COPY(Filej , SUCCESSOR)

9: end for

Algorithms 5 and 6 address the actions a peer IDSOURCE
must perform before a planned disconnect (in Algorithm 5),
and those IDDEST must perform in removing IDSOURCE’s
terms (Algorithm 6). Note the strong similarity between
these unpublishing algorithms, and the previously
described publishing algorithms (Algorithms 1 and 2).
In both cases, Similarly, the function REMOVE_TERM in
line 4 of Algorithm 5 and UPDATE_TERM_COUNTER in line
4 of Algorithm 6 closely parallel the ADD_TERM function
in line 5 of Algorithm 1 and the UPDATE_TERM_COUNTER
functions in lines 6 and 8 of Algorithm 2. The purpose of
the function REMOVE_TERM is to remove the entry of the
disconnecting peer, IDSOURCE, from the inverted list
stored on peer IDDEST . Note that these unpublishing
algorithms also contain several new types of actions. In
lines 6–9 of Algorithm 5, IDSOURCE must copy the
inverted lists it currently stores (out of a total of
NUM_FILES inverted lists) to a new node. To do this, first
we find the successor node within the overlay network
(line 6) of Algorithm 5. DHT networks such as Chord [10]
provide the implementation for the FIND_SUCCESSOR
function referred to. Then, every one of the inverted files
currently stored on IDSOURCE (which number NUM_-
FILES) are transferred over to the successor node. From
this point onward, this node will have the responsibility of
responding to queries for any of the terms contained in
these inverted files. In Algorithm 6, peer IDDEST removes
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Termi if it had stored this value in its inverted file for this
term (within the maximum of d terms it had stored). This
check is done through the EXISTS function in line 1.
Finally, after the peer IDSOURCE has performed Algorithm 5
for all documents it had stored, or if a disconnecting node
never had stored any documents, it must update
the variable NODE_COUNTER of the global number of
documents. However, here this value must be reduced
through performing the function, UPDATE_NODE_
COUNTERðIDNODE_COUNTER;�1Þ instead of the function
call UPDATE_NODE_COUNTERðIDNODE_COUNTER;1Þ used
upon joining the network.

Algorithm 6. REMOVE_TERM(Termi, IDSOURCE, IDDEST )
—Receiving Agent

1: if EXISTS(Termi , IDSOURCE) then

2: UNSTORE(Termi , IDSOURCE)

3: end if
4: UPDATE_TERM_COUNTER(Termi, -1)

However, our assumption is that most churn effects
result from temporary and unplanned failures where the
failing node will not issue this unpublish command. In
order to address this point, we present a solution where
inverted list data are replicated to handle failures.

While the DHTs pointers need to be immediately
updated in case of a node failure, however, temporary,
that node’s data do not need to be copied if a set of backup
copies exist. PHIRST relies on this set of backups with the
assumption that the node’s failure was temporary, and it
will soon function again in the network. This saves
communication costs in copying inverted list data,
assuming that node does soon rejoin the network.

These data replicas can be easily created during the
publishing stage. We modify the publishing algorithm
(Algorithm 1) to send its data to k peers instead of just
one. We refer to the k copies of a group of R redundant
nodes, R1; . . . ;Rk, where all nodes receive the same
publishing data. Note that DHTs such as Chord [10] can
enable this functionality by sending a publishing message
to the normal hashed peer IDDEST within the Chord ring,
and the next k� 1 peers as well or, IDDEST ,
IDDEST þ 1; . . . ; IDDEST þ k� 1. This is one approach to
allow nodes to easily find the k copies. Consequently,
line 5 of Algorithm 1 which stated: ADD_TERM(Termi,
IDSOURCE, IDDEST ) should be modified to become lines
5–7 of Algorithm 7.

Algorithm 7. Modification Publishing Algorithm for
Churn (Document Doc)—Initiating Agent

1: Terms ( Preprocessed words in Doc

2: num_terms ( LENGTH(Terms)

3: for i ¼ Term1 to Termnum_terms do

4: IDDEST ( FindAddress(IDSOURCE)

5: for a ¼ 0 to k do
6: ADD_TERM(Termi ,IDSOURCE , IDDEST þ a)

7: end for
8: end for

For example, assume k ¼ 2, or two copies of each
inverted list are stored. Referring back to Fig. 1, all inverted
lists that would normally be stored only on node 0, are
now stored on nodes 0 and 1, inverted lists for 1 are stored

on 1,3, etc. A temporary failure of node 1 will be handled
by its successor, namely node 3, which also stored the
same inverted list data. Join actions remain similar to
those previously presented for DHTs with the exception
that here a joining node must also be updated with the
data currently being stored on the redundant nodes
R1; . . . ;Rk that it is now joining. After these data are
stored, the last node of the redundant set ðRkÞ can erase
these data.

In a dynamic system, this approach will need to
address two additional issues. First, care must be taken
to address churn changes within the group of k redundant
nodes after they are formed. For example, assume a new
document is published, but node R1 is temporarily
unavailable. The data should still be published on the
remaining k� 1 nodes which now have the most updated
version of the inverted lists. Once node R1 becomes
available again, it must receive the updated information.
Second, we assume that most nodes become unavailable
only temporarily, and thus a failure of a node, H, should
not be a reason to immediately find a new node to
replicate the data. However, after a certain time period, M,
it must be assumed that node H has in fact left the system,
and a new node must be found to store k nodes.

Algorithm 8. Replicating Data Under Churn (Node H)

1: Start ( Randomize start time

2: for Time ¼ Start to M step L do
3: if Up(H) then
4: Lock(H)

5: Update(H)

6: return

7: end if
8: end for
9: Replace(H) {Assume Node C has left the network}

10: UPDATE_NODE_COUNTERðIDNODE_COUNTER ;�1Þ

Algorithm 8 outlines these two steps. The precondition
for this algorithm is that a group of k nodes has already
published the application data (inverted lists) as per
Algorithm 7, and these nodes are aware of the others’
existence. Within Chord this can be done through
predecessor and successor pointers. Also, this algorithm
is called once the redundant node set notices that a
member of the set is not working (node H). We assume
this is done by periodically sampling, which has pre-
viously been shown to be effective [4]. Next, we assume
the remaining nodes mark what data have been published
after node H failed, and can thus update node H once it
becomes available.

Based on these preconditions, the algorithm operates
as follows. Once a failure has been detected, the remaining
nodes monitor the down node for a total time period of
M (line 2 of the algorithm). Each node checks if the failed
node resumes operation every L time units. Note that each
node randomizes its start time (line 1). Consequently two
or more nodes do not unnecessarily monitor node H
during the same time period. Assuming a node has found
that H has resumed functioning, it updates node H with
the information it missed and the algorithm terminates
(lines 3–7). Immediately before performing this Update
process, this node places a lock on H (line 4), so no other
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node can update it simultaneously. This type of con-
currency control mechanism is often used within data-
bases [19]. Note that as part of the Update process, this
node should also notify the other nodes in the replication
set, ðR1; . . . ;RkÞ, that there is no need to update node H
with this information as well. Finally, if the algorithm
reaches line 9, we assume node H is permanently down.
As Chord operates by searching successor nodes for
information, this replacement node must be taken from
the next node not currently in the set ðR1; . . . ;RkÞ, or node
Rkþ1. Additionally, we must reduce the variable
NODE_COUNTER which stores the number of nodes in
the system. This is done in line 9 of the algorithm.

However, comparing this approach to Algorithms 5 and
6 reveals two challenges. In Algorithm 5 a disconnecting
node is assumed to be able to initiate an orderly
disconnect, enabling a proper removal of all of its entries
from the inverted lists. However, as the failures in this case
are unpredictable, this is not possible with Algorithm 8.
Furthermore, in line 10 of Algorithm 8 and throughout the
paper we refer to IDNODE_COUNTER as the peer responsible
for storing information about the total number of nodes in
the system. For simplicity, we had assumed this counter is
stored on the first agent, or ID1 (see the beginning of
Section 4). However, this assumption must be changed to
account for possible churn effects on this peer. One solution
is to replicate this value k times to deal with churn, and
refer to IDNODE_COUNTER as this set of peers.

The value for k is a tunable parameter that must be set
with care. As we deal with hardware with limited storage
and assume communication is costly, care must be taken to
refrain from sending unnecessary data. However, sufficient
data replicas must be present to make the probability that
all k peers will simultaneously fail extremely small.

Fortunately, the average system churn is typically a
known or measurable quantity, and can be used to set the
value of k. Assuming an average churn rate of p exists
within the system, the probability the query algorithm
will not find an inverted list given k redundant copies
is pk. For example, assume an average churn rate of 0.5, or
50% of the nodes will be unavailable in any given time
period. The probability all five nodes will be down
simultaneously is 0:55, or 0.03, and the probability at
least one will still function is 1� ProbabilityðFailure_AllÞ,
or 0.97. As the next section details, computing these
probabilities are an effective guideline for setting k.

7. Experimental results

In this section we present the experimental results
used to validate the effectiveness of the algorithms in this
paper. As our research goal was to check if PHIRST is
appropriate for medium sized newsgroups, we chose a
corpus of 2000 real movie websites to conduct our
experiments [7]. The results from the publishing experi-
ments demonstrate that PHIRST actually becomes more
feasible as more documents and agents are added to the
network. We also created two types of query experiments.
In one group we created artificial queries based on the
frequencies of words. This experiment demonstrated the

theoretical strengths and weaknesses of PHIRST. We also
studied real movie queries based on the Internet Movie
Database [8]. These experiments demonstrated that any
weakness in PHIRST is likely to be insignificant in
handling real queries.

7.1. Publishing experiments

Recall that the publishing algorithm is based on storing
a maximum of d entries in a given term’s inverted list. We
simulated the publishing process to study how this
parameter affected the average number of stored inverted
entries with and without term stemming. Fig. 2 displays
the average number of inverted terms (Y-axis) in groups of
50, 250, 500, 1000 and 2000 agents (X-axis). We assumed
that every agent published 1 document taken from the
movie corpus [7]. In the top graph, we used the Paice
stemming algorithm [20] on each term before storing it.
The bottom graph published each term without stem-
ming. In both graphs we also ran the publishing algorithm
with d ¼ 25 and 75.

Several interesting results can be seen from this graph.
First, on average stemming saved approximately 50 words
per document. This is because stemming lumps similar
words, reducing the number of unique words occurring
per document. Second, note the publishing algorithm has
progressively larger storage savings as the number of
nodes grows. Assuming d ¼ D, all terms will be stored, and
no publishing gain will be realized by using the PHIRST
approach. However, assuming d is kept fixed, the more
documents that are added, the gap between d and
D grows. This results in progressively more words
exceeding the d threshold, and additional entries of these
words no longer need to be stored. As a result, the
publishing algorithm becomes more scalable the more
nodes that are added, making full-text search feasible
even in very large P2P databases.

Finally, in this experiment we assumed each node had
1 document to publish. We also ran this approach with
more dense (e.g. 2 documents per node) or more sparse
(e.g. 1 document every 2 nodes) network assumptions. As
one would expect, the number of terms each node stores
is proportional to the total number of nodes. For example,
Table 2 shows the sparse assumption of 1 document
published for every two nodes. These values are identical
to those in Fig. 2 multiplied by a factor of 0.5.

We also found a Zipfian distribution of terms with a
long tail of infrequent terms (see Fig. 3). Similar distribu-
tions have been found in P2P systems for items such as file
frequency [15,16] and term frequency [18]. The storage
saving results we found were from words with frequencies
greater than d, or the terms towards the head of this
distribution.

7.2. Query experiments

We first conducted query experiments based on
artificial queries chosen according to term frequency.
Fig. 3 displays the rank order of all words within the 2000
document corpus (a total of approximately 22 000 words)
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based on the words’ frequencies. We considered words of
high frequency if they appeared in 30% or more of the
documents. There were 200 words in this category. Note
that high frequency words are not just ‘‘stop’’ words like
‘‘the’’, ‘‘and’’, or ‘‘a’’, but can be specific to the corpus. For
example, these words included movie specific terms such
as ‘‘character’’, ‘‘play’’, and ‘‘plot’’. At the other extreme,
we defined low frequency words as those appearing
50 times or less (frequency 2.5% or less). The large
majority of terms were within this category due to the
long tail of the term distribution. Finally, we assumed

medium frequency words were those between the above
extremes.

We created paired terms (2 terms) of all permutations
of these categories. This involved words, both with high
frequency (HH), both with low frequency (LL), both with
medium frequency (MM), low high combinations (LH),
low medium combinations (LM), and medium high
combinations (MH). Note that the order of the words
does not have an impact on the query algorithms since the
terms are first sorted by these algorithms based on their
frequency. For example, the low medium category (LM) is
consequently equivalent to the medium low one (ML).

Next, we generated 1000 artificial queries from each
category. We studied how many results were returned
from each of four search algorithms. The SS algorithm
published all terms and sent these indices between agents
as needed during queries. The US algorithm used no
publishing and used a random walk approach to find
query results. In the used implementation, a random node
was selected to begin the random walk, and assumed a
fully connected graph allowing free passage between
nodes. The TTL ¼ 100 algorithm used the same US, but
terminated after visiting 100 agents. Finally, the hybrid
PHIRST approach implemented the publishing and query
algorithms described in this paper. In these experiments
we used a value of d ¼ 75 in the PHIRST method.

Table 3 displays the average number of nodes visited
(in the case of US) and/or the inverted list entries sent
(for SS) for finding 20 matches from each query ðT ¼ 20Þ.
For simplicity, we assumed that the costs of visiting nodes
through US, and sending inverted list entries are equal, or
CU ¼ CS. As expected, we found that the SS is the most
expensive method for finding common terms; where the
US is the most effective. Conversely, SS is the most
effective in finding rare terms. As one might expect, the
hybrid PHIRST approach operates similarly to SS in finding
rare terms (LL) and US in finding common items (HH).
This indicates the success of this approach in selecting
the best search algorithm. Note that in middle categories
(for example MH) this approach incurred significantly
lower costs than the SS and US algorithms it is based
upon. PHIRST saves costs by only sending a maximum of
d entries even when SS is deemed necessary. Furthermore,
this approach switches between the SS and US methods as
needed, saving additional costs. Note that these results do
not include the costs associated with looking up terms’
frequency information. Recall from Section 5 that these
costs are bounded by num_query_terms � logðNÞ þ 1 where
num_query_terms is the number of query terms (in this
case 2) and N is 2000 (or logðNÞ is approximately 11).
However, actual Chord implementations have found that
the actual cost is often much lower and is dependant on
the actual implementation of the DHT network [5].
Consequently, we do not include this cost in the results.

We also studied the impact of the number of
documents per node (document density) on these costs.
The US is most affected by the density of the documents.
For example, assuming each agent stores two documents,
the cost of using this search algorithm will be
half. Conversely, sparse networks make US less appealing.
This tradeoff does come to light within the unstructured
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Fig. 2. A comparison of the publishing requirements of full publishing

versus publishing limited to d ¼ 75.

Table 2
Average number of inverted list entries if one document was published

for every two peers

Number of nodes 50 250 500 1000 2000

Fully published 150.43 151.51 153.13 153.13 157.83

d ¼ 25 138.84 93.11 72.17 53.97 40.605

d ¼ 75 150.43 127.14 105.72 84.38 67.035
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element of the Hybrid Algorithm 4 in lines 1 and 2.
However, unless extreme changes in the document
density occur (e.g. every node contains a large percentage
of the documents), differences in the search costs are so
large that this parameter is unlikely to have any impact on
which algorithm should be used in categories such as LL,
LM, and LH. The structured approach is completely
unaffected by document density, and thus the Hybrid’s
structured component is uninfluenced as well.

The results in Table 4 display the combined number of
query results (recall) returned from each search algorithm
with the maximal results set here to 5 ðT ¼ 5Þ and 1000
queries. This result underlies the potential strengths and
weakness of the PHIRST method. Despite the lower costs
of PHIRST, this approach was overall equally effective in
returning the query results. When word combinations
were frequent, the US component of the PHIRST method
still found the results (thus MH was still successful). At
the other extreme, assuming the word frequency of any
term was less than d, at least one term was fully indexed.
In these cases, complete recall was also guaranteed if SS
was used on the indexed term(s) followed by the US to
find all remaining terms. In addition, all terms taken from
the L category were in less than d documents (as L values
had 50 or fewer instances while d ¼ 75), resulting in
full recall for all of these categories (LL, LM, and LH).
As predicted in Section 5, the query algorithms did
experience minor difficulties in finding series of terms
of medium frequency. Note that the PHIRST method

did return slightly fewer results in the MM cases
(870 versus 874).

We found that this limitation was negligible in
answering real-world queries once d was significantly
higher than T. To verify this finding we used the 1000
most popular real movie keywords taken from the
Internet Movie Database2 retrieved on October 25, 2006.
These queries were typically between 1 and 4 words
(mean 1.94).

Table 5 shows a comparison of the number of results
found from these queries with the SS, US, and TTL ¼ 100
methods, and the PHIRST method with d ¼ 75 and
variable values for T. The results from the SS and US
algorithms represent baseline algorithms that found the
maximal number of results (100% recall) for the 1000
queries. For example, with T ¼ 5, a total of 4592 combined
hits were found given these queries. Both the TTL ¼ 100
and PHIRST algorithms did not guarantee 100% recall,
albeit with markedly lower search costs. Note that the
PHIRST algorithm found nearly all results (99.89% of the
results found by the complete US and SS algorithms) when
only 5 results were requested ðT ¼ 5Þ. PHIRST held up
fairly well even when 20 matches ðT ¼ 20Þ were required
with 97.78% of all matches found. The recall of the PHIRST
approach dropped with T (92.77% at T ¼ 50, and only
33.23% at T ¼ D). This confirms the claim that in real
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Fig. 3. Distribution of terms by rank order within movie corpus documents.

Table 3
A comparison of the cost levels of SS, US, TTL, and PHIRST methods in

LL, LM, LH, MM, MH, and HH artificial queries

SS US TTL ¼ 100 PHIRST

LL 1466 2 000 000 100 000 1466

LM 2206 2 000 000 100 000 2142

LH 3177 1987 754 100 000 2010

MM 20 732 1865 474 99 953 13 256

MH 60 188 234 211 95 624 18 075

HH 871986 19 746 20 077 19 995

Results for the case where CU ¼ CS ¼ 1.

Table 4
A comparison of the combined recall levels of SS, US, TTL, and PHIRST

methods in 1000 LL, LM, LH, MM, MH, and HH artificial queries

SS US TTL ¼ 100 PHIRST

LL 3 3 0 3

LM 68 68 2 68

LH 1167 1167 47 1167

MM 874 874 93 870

MH 4626 4626 1180 4626

HH 5000 5000 4997 5000

2 (http://www.imdb.com/Search/keywords)
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queries the recall of the PHIRST approach would be nearly
100% for T5d (e.g., T ¼ 5), but would perform poorly once
Tbd (e.g., T ¼ D). In comparison, the TTL ¼ 100 algorithm
performed much worse, even in the case of T ¼ 5 with
only 2138 total results found.

Table 6 displays the search costs for executing these
real queries within the four algorithms described in this
paper assuming CS ¼ CU ¼ 1, and each agent stores only
one document. We again found that the PHIRST approach
had significantly lower search costs than all three of the
other approaches. Again, observe that the advantage of the
PHIRST approach was most evident when dbT . If T ¼ 5,
the PHIRST approach incurred a cost of nearly 1

5 the cost of
the next best method (SS) (with a high recall of 99.89%). If
T ¼ 20, its cost, nevertheless, was nearly 1

3 that of the next
best method (SS) (still with a high recall of 97.78%). If
T ¼ D, the cost advantage of the PHIRST approach was
under 1

2 of the next best method ðTTL ¼ 100Þ (the recall
was only 33.23%).

7.3. Churn experiments

Recall that the PHIRST approach to handling churn
requires that k copies of each inverted list must be stored.
We conducted experiments studying the relationship
between the value of k, the system’s publishing require-
ments in creating these k copies, and the search costs
related to executing queries. The goal was to achieve at
least 95% of the query results when confronted with churn
compared to the results achieved when no churn existed
while minimizing publishing and search costs.

We simulated conditions with k set at 1, 5, and 15 and
studied their impact on the publishing storage and query
results of the Hybrid algorithm and set d ¼ 75 for the
publishing algorithm. We revisited the real-world queries
from the previous dataset, again assumed 2000 nodes

published a total of 2000 documents, and studied the case
where the goal was to return 20 matches (T), and a
scenario with a very high churn rate of 0.5. To simulate
churn, we created random snapshots of the simulator
where half of the nodes were chosen at random to have
failed with uniform distribution. In the first set of
experiments we assumed that when the entire set of
k nodes were ‘‘down’’ the query would fail. The results
from this experiment are presented in Table 7.

As these results indicate, there is a clear tradeoff
between having additional nodes within k, their storage
requirements, and the query results. Setting k ¼ 1 had the
lowest publishing load, but also meant that each term had
no replicated copies. Note that this value of 134.07 is
identical to the result found in the top portion of Fig. 2 for
the data point where the number of nodes is 2000.
Keeping additional copies of inverted term data increased
the published load per node proportionately. As a result,
one could publish one redundant dataset ðk ¼ 2Þ in PHIRST
and still incur a cheaper publishing cost than naively
publishing all terms (PHIRST k ¼ 2 encountered a publish-
ing load cost of 268.14 compared to the naive publishing
load of 315.67 seen in Fig. 2). While setting k ¼ 15
resulted in the highest average published load, it allowed
the algorithm to find all possible results (see query results
in Table 7). In this experiment, we assumed a query would
fail if a SS was desired, but the node with the inverted
list(s) had failed. As a result, note that the numbers in
the third column (search costs in Table 7) increase as
k increases. In the case of k ¼ 1, the search failed many
times, thus resulting in significantly lower search costs in
conjunction with the lower query results. As predicted
mathematically (see end of Section 6), setting k ¼ 5
results in an effective tradeoff between achieving over
95% recall from the inverted lists (96% of the results from
k ¼ 15) while still keeping the publishing load relatively
low (1

3 of the publishing load of k ¼ 15).
Next, we repeated the above experiment, but assumed

that an US would be used if the node with the inverted list
failed. These results are presented in Table 8. Note that the
publishing costs (column 2 in Table 8) are identical to
those depicted in Table 7. However, as opposed to the
results in Table 8, here the query results remained fairly
constant. Nonetheless, note that in this experiment the
search cost for k ¼ 15 was the lowest since the entire k set
of nodes never failed, and thus random search was never
used. Conversely, setting k ¼ 1 resulted in often using the
random search, which here caused the highest search cost.
Also, small fluctuations existed in the query results, with
performance slightly decreasing as k increased. First, as
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Table 5
A comparison of the combined recall levels of SS, US, TTL, and PHIRST

methods with reference to different numbers of results (T) and 1000

queries

SS US TTL ¼ 100 PHIRST

T ¼ 5 4592 4592 2138 4587

T ¼ 20 15 598 15 598 3712 15 252

T ¼ 50 30 347 30 347 4534 28 154

T ¼ 2000 105 649 105 649 5254 35 087

Table 6
A comparison of the cost levels of SS, US, TTL, and PHIRST methods with

reference to different numbers of results (T)

SS US TTL ¼ 100 PHIRST

T ¼ 5 57 680 591841 86 578 12 006

T ¼ 20 68 696 1181515 97 735 24 976

T ¼ 50 83 435 1567 039 99 269 38 744

T ¼ 2000 158 737 2 000 000 100 000 68 610

Table 7
A comparison of the impact of redundant nodes on the publishing load,

query results, and search cost within the Hybrid method with d ¼ 75 and

T ¼ 20 when node failure results in search termination

Replicated nodes ðkÞ Publishing load Query results Search costs

1 134.07 6756 6015

5 670.35 14 692 24 308

15 2011.05 15 272 24 919
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each experiment randomly decided which nodes should
fail, slight differences existed between trials. Additionally,
when a node’s inverted list was unavailable, as often
occurred when k ¼ 1, a full US was used. Despite the high
search costs, this approach did infrequently find results
that the PHIRST hybrid approach would have missed as SS
had been desired, but not enough entries had been
indexed to return the full 20 results. Referring back to
row 2 of Table 5 (results of T ¼ 20) we see that the full SS
found 15 598 matches in the equivalent experiment
without churn, as opposed to 15 252 found by PHIRST.
However, note that these differences represent less than
1% of the highest query result value (when k ¼ 1). Finally,
here k ¼ 5 again provided a good tradeoff between
publishing costs, query results, and search costs.

Based on these results we concluded that the PHIRST
approach was successful in reducing the publishing load,
even in systems with a very high churn rate.

8. Conclusions

In this work we have presented PHIRST, the first system
capable of executing distributed P2P full-text search.
PHIRST contains novel publishing algorithms that ensure
that no agent will be required to store more than d entries
in its inverted list of a given term. This allows PHIRST’s
publishing algorithms to partially index all words in the
corpus and still keep the storage costs allocated equitably.
More importantly, this approach also makes PHIRST
highly scalable since the average amount of the inverted
file information actually decreases as the number of
agents and documents in the system increases. We have
also presented query algorithms that select the best
search approach based on global frequencies of all words
in the corpus. These algorithms allow PHIRST to choose
the best method based on estimated costs. PHIRST uses US
to effectively compensate for the lack of inverted lists of
terms published and SS to locate rare terms. Finally, we
have shown that PHIRST can handle issues related to both
scheduled and unscheduled node failures.
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Table 8
A comparison of the impact of redundant nodes on publishing load,

query results, and search costs of the Hybrid method where d ¼ 75 and

T ¼ 20 when node failure results in an unstructured search

Replicated nodes ðkÞ Publishing load Query results Search costs

1 134.07 15 428 566 477

5 670.35 15 259 59 994

15 2011.05 15 277 35 544
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